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Jet clustering is traditionally an unsupervised learning task because there is no unique way to associate
hadronic final states with the quark and gluon degrees of freedom that generated them. However, for
uncolored particles like W, Z, and Higgs bosons, it is possible to approximately (though not exactly)
associate final state hadrons to their ancestor. By labeling simulated final state hadrons as descending from
an uncolored particle, it is possible to train a supervised learning method to create boson jets. Such a
method would operate on individual particles and identify connections between particles originating from
the same uncolored particle. Graph neural networks are well-suited for this purpose as they can act on
unordered sets and naturally create strong connections between particles with the same label. These
networks are used to train a supervised jet clustering algorithm. The kinematic properties of these graph jets
better match the properties of simulated Lorentz-boosted W bosons. Furthermore, the graph jets contain
more information for discriminating W jets from generic quark jets. This work marks the beginning of a
new exploration in jet physics to use machine learning to optimize the construction of jets and not only the
observables computed from jet constituents.
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I. INTRODUCTION

Lorentz-boosted massive bosons are a common feature
of theories that extend the Standard Model (SM) of particle
physics. In particular, new heavy particles introduced to
solve one of the challenges with the SMmay predominately
decay into bosons and if there is a large mass hierarchy
between the heavy particle and the bosons, the latter will be
produced in the lab frame with a significant Lorentz boost.
Singly produced bosons can also have significant Lorentz
boost when produced in association with initial state
radiation. The ATLAS and CMS collaborations have
performed extensive searches involving boosted bosons
decaying hadronically in the VV [1–4], Vh [5,6], hh [7–9],
VX [10], Xh [11], XY [12], single-X [13–17], and single-h
[18,19] channels, where V ∈ fW�; Zg, h is the SM Higgs
boson, and X=Y are beyond the SM bosons.
A variety of jet substructure techniques have been devel-

oped to enhance Lorentz boosted boson tagging [20–27].
These methods range from physically motivated features
such as groomed jet mass [28–32], N-subjettiness [33,34]

and D2 [35] to complex observables built using machine
learning [21]. ATLAS and CMS have integrated and
extended these methods as well as studied them using
collision data [36–40]. One feature that all of these algo-
rithms have in common is that they start from a collection of
constituents selected using a jet clustering algorithm.Various
studies have investigated optimizing the jet clustering algo-
rithmbyconsideringmanyoptions [41–43].While important
for converging on amethod in the traditional paradigm, these
approaches are fundamentally limited by the discreteness of
the algorithm types and the flexibility offered by the tunable
parameters of a given algorithm.
The most common approach for forming the initial

Lorentz boosted boson candidate jets is the anti-kt algorithm
[44]. This algorithm is a form of unsupervised learning
because no per-particle labels are used to form the jets.1

Instead, a distance measure motivated by the fragmentation
of quarks and gluons is used to collect constituents that were
likely produced from the same initiating high-energy quark
or gluon. This last sentence does not have a precise meaning
because quark and gluon jets are not well-defined objects
[47,48]. Due to the strength of the strong force, the energy
flows from outgoing quarks and gluons are interconnected
with each other and with the beam remnants. In contrast, the
quarks and gluons from color singlet massive bosons are
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1Previous attempts at combining jet finding with unsupervised
machine learning have been studied in the past [45,46], but do not
have the benefits of the supervised approaches discussed here.
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isolated from the rest of the event. In the limit that the
number of colors Nc → ∞ or the width of the boson
resonance Γ → 0, there is a unique mapping between final
state hadrons and ancestor color singlet. The corrections to
this picture are suppressed by at least ð1=NcÞ2 (“color
reconnection”) and by powers of Γ=ΛQCD.
Given the approximate (but not exact) mapping between

hadrons and color singlets, it makes sense to ask if one
could construct a supervised approach to forming jets. In
particular, a machine could be trained to label individual
particles as originating from a color singlet or not based on
the particle kinematic properties as well as the relationship
with other particles in the event. While such an approach
may give up the calculability afforded by algorithms like
anti-kt, it may provide an optimal approach to constructing
jets for searches where calculability is not necessarily
required. If the jets are constructed optimally, then their
substructure should contain as much information as pos-
sible for identifying their origin. One could even co-
optimize the jet construction and the jet classification in
an end-to-end approach [49,50], but there are many benefits
to first building jets, such as the jet energy calibration.
Modern machine learning has proven to be a powerful

toolkit for jet substructure. For example, a wide range of
architectures and applications have been studied for tagging
the origin of jets [50–103]. To construct a supervised jet
clustering algorithm, a machine learning architecture is
needed that can process variable length sets as input.
Multiple such point cloud methods have been studied for
jet substructure [70,72,73,78,79,104], but the structure
chosen here is the graph neural network (GNN) (see
Refs. [70,72,73,79,104–109]). This is because GNNs not
only can process variable length sets, but they can also label
the relationship between elements (not unique to GNNs, but
natural given their construction). This property is critical for
labeling particles as originating from the color singlet
ancestor or not. Labeling constituents is also known as
semantic segmentation andhas been studied for other tasks in
high energy physics ranging from pileup particle identifica-
tion [72,110] to liquid argon time projection chamber
labeling [111,112]. In addition, a recent study [113] shows
thatGNNs can be executedwith a latency of less than 1 μs on
an field-programmable gate arrays, making such networks
very promising for real-time data learning and filtering.
This paper is organized as follows. Section II introduces

the simulated samples used to train the supervised jet
clustering algorithm, where Lorentz-boosted W bosons
provide a reoccurring example. The graph neural network
methods are described in Sec. III and numerical results are
presented in Sec. IV. The paper ends with outlook and
conclusions in Sec. V.

II. SIMULATION

Proton-proton collisions are simulated with PYTHIA8.183

[114,115] at a center-of-mass-energy of
ffiffiffi

s
p ¼ 13 TeV.

Lorentz boostedW bosons are generated from the decay of
a hypothetical W0 boson with a mass of 600 GeV that
decays 100% of the time to a W boson and a Z boson. The
W boson is forced to decay hadronically and the Z boson
decays into neutrinos. To simulate a quark jet with nearly
the same kinematic properties, a hypothetical excited quark
q� with a mass of 600 GeV is generated and decays 100%
of the time into a quark and a Z boson. This Z boson then is
forced to decay into neutrinos. The widths of the W0, q�,
andW boson are set to 0.01 GeV. In total, 100; 000 W0 and
q� events were generated.
As a leading Nc generator such as PYTHIA, it is possible

to uniquely trace final state hadrons to the W boson.
Individual final state hadrons are then labeled based on
the existence (or not) of a real W boson in their ancestry
from the event record. This is illustrated for one event
in Fig. 1.
To compare with the graph neural network-based cluster-

ing scheme described in the next section, jets are clustered
using the anti-kt algorithm [44] with radius parameter R ¼
1.0 implemented in FASTJET3.0.3 [116,117]. Jets are only kept
if they have pT > 100 GeV. These jets are subsequently
trimmed [30] by keeping only R ¼ 0.2 subjets with at least
5%of the ungroomed jet’s transversemomentum. Trimming
is not the only jet grooming algorithm [28–32], but it is
widely used (see, e.g., Refs. [41,42]).
Figure 2 presents histograms of basic quantities in W0

events. The number of detector-stable particles with a W
ancestor is about the same as the number of constituents
inside the leading jet clustered by the anti-kt algorithm,
however, it only accounts for about 10% of the total number
of detector-stable particles in the event. The mass computed
from the detector-stable particles originating from a W
boson is nearly exactlymW while leading jet mass is peaked
aroundmW with a broad width. On the other hand, there are
many non-W particles in the event, giving rise to an event
mass far from theW boson mass. Therefore, it is nontrivial
for a machine to find the W decay products in order to
reconstruct the W boson mass. In the leading jet case, the
low-mass peak corresponds to cases where both quarks
from the W decay are not mostly contained within the
leading jet or the leading jet is unrelated to the quarks from
the W decay. Figure 3 shows that the kinematic properties
of the jets inW0 and q� events are similar. The jet transverse
momentum spectra are not identical because the radiation
pattern outside of the jet cone is different for the color
singlet W and color triplet quarks.

III. GRAPH NEURAL NETWORK METHODS

A graph contains a set of nodes, a set of edges with each
connecting a pair of nodes, and a set of node-, edge- and
graph-level attributes, collectively called graph attributes.
Graph neural networks (GNN) are trainable functions
that operate on a graph to learn latent graph attributes as
well as to form a parametrized message-passing by which
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information is propagated across the graph, ultimately
learning sophisticated graph attributes.
Each collision event is represented as a fully connected

bidirectional graph in which the nodes are the final state
particles and the edges are the connections between all
pairs of particles. The node-level attributes are the four-
momenta of the particles and the edge- and graph-level
attributes will be learned by a GNN. The GNN architecture

is same as the one in Ref. [71], which is based on the model
in Ref. [118], composed of four trainable components:
(1) a node encoder which transforms the node-level

attributes into their latent representations;
(2) an edge encoder which transforms the aggregated

latent attributes of its neighbouring nodes into their
latent representations;

(3) an interaction network [119];

FIG. 2. Left: a histogram of the number of detector-stable particles originating from theW boson, inside the leading jet, and in the full
event from theW0 production. The leading jet is constructed from the anti-kt algorithm. The spike at 0 corresponds to events with no jet
with pT > 100 GeV. For the full event, the number of constituents is divided by 10. Right: a histogram of the mass from detector-stable
particles originating from theW boson, inside the leading jet, and in the full event from theW0 production. For the full event, the mass is
divided by 100.

FIG. 1. An illustration of theW → cs̄ decay tracing for a single event. At each step, every nondetector-stable particle is replaced with
their immediate descendants from the PYTHIA event record. The order per row is arbitrary.
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(4) and a decoder that computes graph- or edge-level
classification scores.

The encoders and the decoder use basic deep learning
building blocks including multilayer perceptrons.
The boosted W boson is reconstructed by training a

GNN, namely the edge classifier, to learn the relational
information of the final state hadrons. Specifically, the
edge-level attributes of the simulated W boson events are
labeled as 1 if two hadrons come from the same W boson

FIG. 3. A histogram of the pT of the vector sum of the four
momenta of the detector-stable particles originating from the W
boson and inside the leading jet in the W0 and q� events.

FIG. 4. Metrics used in evaluating classification performance of the edge classifier. Upper left: the distribution of the edge score for
edges that connect the hadrons coming from the W boson in yellow (true edges) and the edges that do not in blue (fake edges). Upper
right: the receiver operating characteristic (ROC) curve. AUC is the area under the ROC curve. Bottom left: the edge efficiency and edge
purity as a function of the threshold on the edge score. The definition of the edge efficiency and purity can be found in the text. Bottom
right: the edge efficiency versus the edge purity.

TABLE I. The edge efficiency and edge purity as a function of
the threshold on the edge scores. The definition of the edge
efficiency and edge purity can be found in the text.

Threshold 0.1 0.5 0.8
Edge efficiency 0.965 0.896 0.824
Edge purity 0.715 0.908 0.960
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FIG. 5. Left: comparison of the number of selected constituents by the edge classifier (GNN) and the constituents inside the leading jet
constructed from the anti-kt algorithm. Right: Decomposition of the selected constituents from the two methods into the ones selected by
both methods in green, only by the leading jet in blue and only by the edge classifier in yellow.

FIG. 6. Comparisons of the four-momenta of the reconstructedW boson candidates among the anti-kt jet clustering in blue, the GNN-
based jet clustering in yellow and the truth-level W boson in green. The spike at zero in the top left plot corresponds to events with no
anti-kt jet with pT > 100 GeV. Such events are removed from the other plots.
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and 0 otherwise. The edge classifier outputs edge-level
classification scores, abbreviated as edge scores, which are
compared with the edge labeling using the binary cross-
entropy loss. Trainable parameters in the classifier are
optimized by the gradient-based stochastic optimizer,
Adam [120]. The reconstructed W boson candidate for
each event is built from the hadrons that are connected
by edges with scores larger than a threshold of 0.5.
The threshold is a hyper-parameter that can be tuned for
a specific problem. The four-momenta of the reconstructed
W boson candidate are the sum of the four-momenta of the
selected hadrons. The “edge classifier” was trained with
90,000 simulated W boson events and tested with 5,000
events.
The reconstructed W boson candidates from the GNN-

based edge classifier carry unique information which other
machine learning architectures (or traditional jet substruc-
ture observables) can use in order to separate the W boson
events from background events, such as the q� events. In
this study, another GNN with the same architecture as the
edge classifier is used, namely the event classifier. The
input graphs are the fully connected bidirectional graphs
constructed from the hadrons selected by the trained edge
classifier. The graph-level attributes are labeled as 1 for the
W boson events and 0 for the q� events. The event classifier
outputs the graph-level classification score, abbreviated as
event scores, which are compared with the graph labeling
using the binary cross-entropy loss. Trainable parameters in
the classifier are optimized by the gradient-based stochastic
optimizer, Adam. The event classifier was trained with
90,000 W boson events and 90,000 q� events, and tested
with other 5,000W boson events and 5,000 q� events. As a
comparison, the GNN is also trained with the inputs from
the anti-kt algorithm. In this case, the input graphs are the
fully connected bidirectional graphs constructed from the
hadrons inside the leading jet which in turn is constructed

from the anti-kt algorithm. To facilitate the discussions
below, the GNN trained with the inputs from the anti-kt
algorithm is called tGNN while that trained with the inputs
from the trained edge classifier is called eGNN. All training
was performed on an NVIDIA V100 GPU.

IV. RESULTS

The edge classifier was trained for 30 epochs, after
which no improvement was seen when the model was
evaluated on the testing data. The performance of the edge
classifier is showed in Fig. 4. Two important metrics are the
edge efficiency, defined as the ratio of the number of true
edges passing the threshold over the number of total true
edges, and the purity, defined as the ratio of the number of
true edges passing the threshold over the number of total

FIG. 7. Comparison of the mass resolution (left) and the energy fraction (right) between the anti-kt jet clustering and the GNN-based
jet clustering. The mean and standard deviation are calculated in the range of −0.25 and 0.25 in all cases.

FIG. 8. Comparison of the ROC curve from the GNNs trained
with the inputs from the anti-kt based jet clustering and the inputs
from the trained edge classifier. Note that the small inefficiency
from the pT requirement for the anti-kt jets is not included.
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edges passing the threshold. Varying the threshold in the
edge scores results in different values of edge efficiency
and purity. Table I shows the edge efficiency and purity for
three different thresholds on the edges scores.
The nodes that are connected by the edges passing a

threshold of 0.5 are considered as the hadrons coming from
the W bosons. The four-momenta of the reconstructed W
boson is the sum of these surviving hadrons. Figure 5
compares the number of hadrons selected by the edge
classifier and the anti-kt algorithm. On average, the number
of hadrons selected by the edge classifier is about 20%
more than that the anti-kt jet includes, disregarding the
events with no anti-kt jet with pT > 100 GeV. There are
also many particles chosen by one algorithm but not by
the other. It will be interesting in the future to examine the
properties of such particles to identify which features the
GNN is learning differently than anti-kt (and vice versa).
Furthermore, Fig. 6 compares the kinematic distributions
of the W boson candidates reconstructed from hadrons
selected by the edge classifier or the anti-kt algorithm
or the truth-labeled. About 3% of the time, there is no

reconstructed jet with pT > 100 GeV, which results in the
spike at zero. In addition, the fraction of the reconstructed
W energy/mass over the totalW energy/mass are compared
between the two methods in Fig. 7. In both cases, the GNN-
based method significantly outperforms the anti-kt based
method in reconstructing the boosted W bosons.2

The event classifiers were trained for 25 epochs for the
tGNN and 15 epochs for the eGNN. In both cases, no
improvement were seen after these epochs when the GNNs
were evaluated on the testing data. Figure 8 shows a
comparison of the receiver operating characteristic curve
(ROC curve) of the two trained GNNs as well as the area
under the ROC curve (AUC). The GNN trained with the
inputs from the edge classifier outperforms the GNN

FIG. 9. Comparisons of the four-momenta of the reconstructed jet for the q� events between the anti-kT jet clustering and the GNN jet
clustering.

2There is no correct answer for generic quark jets, but the
GNN-based jet clustering is applied to the q� events and the four-
momenta of the reconstructed jet is compared with the leading jet
from the anti-kT algorithm in the Appendix (Fig. 9). There is a
small tendency of the jet mass to be near theW mass, but it is not
as sharp as for W events.
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trained with inputs from the traditional anti-kt algorithm by
more than 40% in AUC.

V. CONCLUSIONS

Traditional jet clustering based on unsupervised learning
has proven to be an effective tool for studying hadronic
final states at the LHC. In particular, the widely-used anti-kt
algorithm is both theoretically and experimentally powerful
for studying the SM and searching for physics beyond the
SM. A wide variety of jet substructure techniques using
these jets with and without machine learning are being
developed and many have already been deployed in data
analysis. However, there is a unique opportunity with color
singlet decays to reexamine the construction of jets.
In particular, we have exploited the precise mapping

between color singlet particles and final-state hadrons to
constructed a supervised jet clustering based on graph
neural network. These jets match the kinematic properties
of trueW bosons more precisely than the leading anti-kt jet.
Furthermore, we have shown that there is more information
contained in the graph network jets about the originating
particle than anti-kt jets. In particular, a classifier trained
using jet constituents to distinguish W boson jets from
quark jets is more effective for GNN jets than for anti-kt
jets.
This work marks the beginning of a new exploration in

jet physics to use machine learning to optimize the
construction of jets and not only the observables computed
from jet constituents. Tagging Lorentz-boosted color sin-
glet jets is an integral part of measurement and search
efforts at the LHC and so further developments in this area

have a significant potential to enhance the sensitivity of the
LHC physics program. A variety of further studies will be
required to integrate supervised jets into the experimental
workflow. In particular, future work will investigate how
event topology effects GNN jets (i.e., what happens when
there are more (W) jets in the event). Furthermore, it is
important to study the impact of detector-effects and to
investigate how well such jets could be calibrated, includ-
ing pileup stability.
The studies presented in this paper have only considered

boosted W bosons, but the same ideas could be applied
to any color-singlet particles and it will be interesting
to see how GNN jets can be integrated with additional
information such as b-jet tagging in the case of Higgs
bosons. Examining the structure of the supervised jets may
also provide useful physical insight about where the
information about the initiating particle is embedded in
the event radiation pattern. Finally, it may be that the
ultimate performance is achievable when supervised learn-
ing is combined with unsupervised techniques and this
could lead to new insight for traditional quark and gluon jet
reconstruction.
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