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We address the issue of radiative corrections to Kaluza-Klein (KK) masses in five-dimensional quantum
electrodynamics (QED) supplemented by aether Lorentz-violating terms. Specifically, we compute the
corrections to the Kaluza-Klein (KK) photon masses from one fermion loop. In general, the KK masses
receive radiative corrections due to breaking the five-dimensional Lorentz invariance by compactification.
As we show, the presence of the additional Lorentz violating factor, an aether background, leads to the
nontrivial modification of these corrections. This model may be of interest in addressing important
phenomenological issues such as the relation between radiative corrected KK mass splitting of a particular
mode and uncertainties in the measurements and/or possible spatial variation of the fine-structure constant.
For the recent data on the fine-structure constant, we find a KK mass splitting of magnitude ∼0.01 MeV for
the first excited Kaluza-Klein gauge boson at TeV scale. On the other hand, the large KK modes limit
displays a very interesting phenomenon, showing the very special role of the aether in protecting the higher
modes from the quantum corrections.
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I. INTRODUCTION

The aether compactification was put forward sometime
ago as an alternative to compactification in the presence of
large extra dimensions without introduction of branes to
control the influence of five-dimensional bulk space-time
on the field content in our four-dimensional Universe.

Differently from braneworlds, in this type of compactifi-
cation there are no corrections to the four-dimensional
Newtonian law [1]. However the possibility of suppressing
the Kaluza-Klein (KK) modes makes the mechanism
efficient to guarantee a four-dimensional effective theory
describing the physics of our Universe after the compacti-
fication. This is because Lorentz-violating aether fields
along extra dimensions affect the conventional Kaluza-
Klein compactification scheme, since their interactions
play a fundamental role in the mass splitting of the KK
towers: the mass spacings between different states are now
modified, as we shall see later in greater details. In the case
of large extra dimensions, even very high KK modes could,
in principle, be accessible to a four-dimensional observer.
The stabilization of the extra dimension in aether

compactification has been also studied in [2], where the
effects of the aether field on the moduli stabilization
mechanism were discussed. In this case the authors
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considered a spacelike aether field aligned along the
compact fifth direction with a Maxwell-type term. They
show that an interplay between the Casimir energy due to
massless and massive bulk fields can produce a potential
for stabilization of the compact extra dimension.
Another important problem regarding KK masses con-

cerns their radiative corrections. In [3], this issue was
addressed by considering the one-loop radiative corrections
to KK masses in five- and six-dimensional theories. Such a
computation has been shown to produce a finite result since
the nontrivial winding number (corresponding to the com-
pactification) contributions to Feynman loop diagrams are
well defined and cutoff independent even if higher dimen-
sional theories are not renormalizable. Because this exactly
corresponds to the part of loop diagrams that leads to the
violation of the five-dimensional Lorentz invariance induced
by the presence of a compact dimension (as probed by IR or
large-distance physics), it contributes to the correction of the
KK masses. (See [4] for a comprehensive study on Lorentz
violation in extra dimensions and [5,6] for the further study of
phenomenology of a simple KK model with the improved
(due to the subleading finite corrections) one-loop mass
spectrum.) On the other hand, for the zero winding number,
i.e., for the short-distance physics, the contribution to loop
diagrams is Lorentz invariant (and divergent). To isolate the
finite Lorentz violating corrections from the divergent
Lorentz invariant contributions one proceeds as follows:
from every loop of the compactified theory one subtracts the
corresponding loop of the uncompactified theory. Since
the theories are equivalent in UV (short-distance) regime,
the divergences are canceled. However, the KK mass
corrections remain unchanged and finite due to the
Lorentz invariance of the subtraction prescription.
Several studies combining the aether field, Lorentz and

parity symmetry violation, and radiative corrections in four
and higher dimensional extended quantum electrodynamics
(QED) have been conducted in the literature. The aetherlike
Lorentz-violating term radiatively induced in extended
Lorentz-violating four- and five-dimensional QED was
previously addressed in [7,8]. The aether field modifications
of the Stefan-Boltzmann law and the Casimir effect at both
zero and finite temperature have been investigated in [9]. In
[10], the induction of a parity breaking term was found by
computing the vacuum polarization tensor from a five-
dimensional QED compactified in a magnetic flux back-
ground. Further models, such as cosmology in the presence
of dynamical timelike four-vector aether field in a four-
dimensional theory (a sigma-model aether) and in the
presence of an aether constant field along the extra dimension
in the inflationaryUniverse, have also been examined in [11].
The main goal of the present study is to investigate the

one-loop radiative corrections to the KK masses in the
Lorentz-violating five-dimensional QED (QED5) extended
by a vector (aether) field with expectation value aligned
along the extra dimension. To this end, we apply the

subtraction prescription introduced in [3] and briefly sum-
marized above. More specifically, we compute the correc-
tions to the KK photon masses coming from one fermionic
loop. It is known [3] that at this order the masses receive
corrections evenwithout the presence of aether. Our aim is to
study the effect of the interaction with aether background.
We will see that the one-loop radiative corrections get
nontrivially modified, which could, in principle, lead to
new phenomenological bounds on the Lorentz-violating
parameters andmeasurements of the fine-structure constant.
By considering the recent results of Ref. [12], i.e.,
Δα=α ¼ −2.18� 7.27 × 10−5, and assuming the compac-
tification radius R ∼ 1 mm, for Kaluza-Klein gauge bosons
at TeV scale we found KK mass splitting uncertainty with
the magnitude ∼0.01 MeV for the first excited mode.
This paper is organized as follows: in Sec. II, we

consider the spontaneous compactification of Maxwell-
aether theory initially defined in 5D. We show that while
the zero modes correspond to the standard 4DMaxwell and
real scalar field with the modified kinetic part of the latter,
the nonzero modes correspond, after the appropriate gauge
fixing, to a family of noninteracting complex Proca fields.
In Sec. III, we provide some basic information about the
aether-QED extension in 5D. We describe the gauge
symmetry of the model and define the one-loop polariza-
tion tensor. In Sec. IV, using the modified fermionic
propagator we compute radiative corrections to masses
of Kaluza-Klein modes in the compactified QED5 extended
by the aether coupled to massless fermions. The exact
integral form for the KK masses is obtained, which allows
us to analyze different interesting limits, controlled by
some effective coupling constant Λ: (i) critical, Λ ¼ 0, that
includes the case without aether studied in [3]); (ii) close to
critical, and (iii) large KK, which is a very interesting limit,
showing the very special role of the aether in protecting the
higher modes from the quantum corrections. Also, the
existence of a unitary bound is established. Section V
contains our conclusions.

II. COMPACTIFICATION OF
MAXWELL-AETHER THEORY

Let us consider the following five-dimensional effective
action for an electromagnetic field extended by the lowest-
order coupling to the aether background field ua, given as
[1] (we use the metric with the mostly minuses signature)

SMA ¼
Z

d5x

�
−
1

4
FabFab þ 1

2μ2A
uaubηcdFacFbd

�
; ð1Þ

where xa ¼ ðxμ; x5Þ and μ ¼ 0; 3. The field strength tensor
Fab is defined in terms of the potential Aa by the usual
relation:

Fab ¼ ∂aAb − ∂bAa: ð2Þ
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The effective action, Eq. (1), is invariant under the gauge transformation: δAa ¼ ∂aωðxÞ. We consider an aether background
of the form

ua ¼ ð0; 0; 0; 0; vÞ; ð3Þ
where the extra dimension coordinatized by x5 is compactified on a circle of radius R. We correspondingly split the vector
potential as Aa ¼ ðAμ; A5 ¼ ϕÞ. This leads to

SMA ¼ 1

2πR

Z
d4x

Z
2πR

0

dx5
�
−
1

4
FμνFμν −

1

2
ð1þ α2AÞF5μF5μ

�

¼ 1

2πR

Z
d4x

Z
2πR

0

dx5
�
−
1

4
FμνFμν þ 1

2
ð1þ α2AÞð∂μϕ∂μϕ − ∂5Aμ∂5AμÞ − ð1þ α2AÞ∂μϕ∂5Aμ

�
; ð4Þ

where αA ¼ v=μA. Notice that the first term of the action (4) cannot be identified with theMaxwell action at four-dimensional
spacetime, because the vector potential Aμ depends on both coordinates, xμ and x5. By following the standard procedure
adopted in studies of compactified models, we consider the Fourier expansions of the fields Aμ and ϕ as follows [5]:

Aμðxμ; x5Þ ¼
X∞
n¼−∞

Aμ
ðnÞðxÞeinx

5=R; ð5aÞ

ϕðxμ; x5Þ ¼
X∞
n¼−∞

ϕðnÞðxÞeinx5=R; ð5bÞ

where the requirement of the single-valuedness of AaðxÞ leads to the quantization of k5, k5 ¼ n=R, n ∈ Z. Now inserting the
above expansions into Eq. (4), we obtain

SMA ¼
Z

d4x
X∞
n¼−∞

�
−
1

4
Fμν
ðnÞFð−nÞμν þ ð1þ α2AÞ

�
1

2
∂μϕðnÞ∂μϕð−nÞ þ

n2

2R2
Aμ
ðnÞAð−nÞμ −

in
R
Aμ
ð−nÞ∂μϕðnÞ

��

¼
Z

d4x

�
−
1

4
Fμν
ð0ÞFð0Þμν þ

1

2
ð1þ α2AÞ∂μϕð0Þ∂μϕð0Þ þ

X∞
n¼1

�
−
1

2
Fμν
ðnÞFð−nÞμν þ ð1þ α2AÞ

�
∂μϕðnÞ∂μϕð−nÞ

þ n2

R2
Aμ
ðnÞAð−nÞμ þ

in
R
Aμ
ðnÞ∂μϕð−nÞ −

in
R
Aμ
ð−nÞ∂μϕðnÞ

���
: ð6Þ

Since Aa is a real quantity, we have that A
μ
ð−nÞ ¼ A�μ

ðnÞ and ϕð−nÞ ¼ ϕ�
ðnÞ. Thus, Eq. (6) can be rewritten more conveniently,

SMA ¼
Z

d4x

�
−
1

4
Fμν
ð0ÞFð0Þμν þ

1

2
ð1þ α2AÞ∂μϕð0Þ∂μϕð0Þ

þ
X∞
n¼1

�
−
1

2
Fμν
ðnÞF

�
ðnÞμν þ ð1þ α2AÞ

n2

R2

�
Aμ
ðnÞ −

iR
n
∂μϕðnÞ

��
A�
ðnÞμ þ

iR
n
∂μϕ

�
ðnÞ

���
; ð7Þ

where now all of the fields are defined on the four-dimensional space-time. Notice that the aether background does not affect
the zero mode term at four dimensions, corresponding to theMaxwell theory, but rescales the kinetic part of the scalar sector.
For n ≠ 0, the effective action (7) takes the form of the infinite sum of decoupled Stueckelberg actions for the complex fields
Aμ
ðnÞ and ϕðnÞ. As it is well known, this theory isUð1Þ gauge invariant if Aμ

ðnÞ transforms as the usual connection and ϕðnÞ is in
the affine representation, i.e., under Uð1Þ they transform as

Aμ
ðnÞ → Aμ

ðnÞ þ ∂μωðnÞ; ϕðnÞ → ϕðnÞ −
in
R
ωðnÞ: ð8Þ

As usual, we can fix the gauge,ϕðnÞ ¼ 0, and arrive at the action for the family of the noninteractingmassive Proca fields with

the KK masses given by m2
KKðnÞ ≡ ð1þ α2AÞ n2

R2,

SKKMA ¼
Z

d4x
X∞
n¼1

�
−
1

2
Fμν
ðnÞF

�
ðnÞμν þ ð1þ α2AÞ

n2

R2
Aμ
ðnÞA

�
ðnÞμ

�
; ð9Þ
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so the KK masses are enhanced by a factor ð1þ α2AÞ
compared to the usual compactification without the aether
background. This leads to the followingmodified dispersion
relations [4]:

E2 ¼ k2 þ ð1þ α2AÞ
n2

R2
; k ¼ jk⃗j: ð10Þ

Note that althoughwe have fixed the gauge of theKK part of
the theory, the full resulting action, which is a sum of n ¼ 0
Maxwell/scalar part of (7) and n ≠ 0 part (9), still has the
residual Uð1Þ symmetry under which the n ≠ 0 KK modes
transform trivially [see also the discussion after Eq. (16)].
As a trivial classical analysis of the action (9), let us look

at the propagation of electromagnetic waves with the
modified dispersion relation (10), by investigating the
group and phase velocities. As usual, we shall assume that
the photon follows the group velocity defined as

vg ¼
∂E
∂k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1þ α2AÞðn=kRÞ2
p : ð11Þ

On the other hand, the phase velocity is defined as
vp ¼ E=k, i.e.,

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ α2AÞðn=kRÞ2

q
: ð12Þ

From here we easily find the relationship between Eqs. (11)
and (12)

vp − vg
vg

¼ ð1þ α2AÞðn=kRÞ2; ð13Þ

in complete agreement with the classical Rayleigh’s for-

mula, vp−vgvg
¼ − k

vg

dvp
dk . Notice that for any value of αA, this

implies vp > vg, which means a normal dispersion
medium.

III. ONE-LOOP QUANTUM CORRECTION OF
AETHER LORENTZ-VIOLATING QED5

The main purpose of this section is to introduce the
model within which we will compute the radiative correc-
tions to KK photon masses [given by the dispersion relation
(10)]. This model is given by the aether Lorentz-violating
massless QED in five dimensions described by the follow-
ing effective action:

Sð5ÞQEDA¼
Z

d5x

�
iψ̄γa∂aψ−

i
μ2ψ

uaubψ̄γa∂bψ−e5ψ̄γaAaψ

�
;

ð14Þ

where the 5D γ matrices and the metric are defined as

γa ¼ ðγμ; iγ5Þ; fγμ; γνg ¼ 2ημν;

γ5 ¼ iγ0γ1γ2γ3; ημν ¼ diagð1;−1;−1;−1Þ: ð15Þ

For the background (3) the action (14) takes the form

Sð5ÞQEDA ¼
Z

d5xðiðψ̄γμ∂μψ þ iψ̄ð1þ α2ψÞγ5∂5ψÞ

− e5ψ̄γaAaψÞ; ð16Þ

where α2ψ ≔ v2

μ2ψ
. The full action is the sum of (16) and the

action from the previous section (7) [in the Stueckelberg
gauge, cf (9)]. The action (16) is invariant under the gauge
transformation

δAa ¼
1

e5
∂aωðxÞ;

δψðxÞ ¼ −iωðxÞψðxÞ;
δψ̄ðxÞ ¼ iωðxÞψ̄ðxÞ; ð17Þ

where ∂5ωðxÞ ¼ 0. This symmetry is compatible with the
residual Uð1Þ gauge symmetry of (7) left after fixing the
Stueckelberg gauge, i.e., while the higher KK modes,
n ≠ 0, of Aμ and the only surviving, n ¼ 0, mode of
ϕ≡ A5 are the scalars under this symmetry, the zero mode
of Aμ is the usual Uð1Þ gauge boson, and ψ belongs to the
fundamental representation.
Now we trivially show that the effect of the interaction

with the aether background in (16) could be taken into
account exactly by bringing the model to the form, which
will look as in the “aetherless” scenario. This is achieved by
defining the set of the deformed γ matrices:

γ̃a ¼ ðγμ; ið1þ α2ψÞγ5Þ with fγ̃a; γ̃bg ¼ 2gab;

and gab ¼ diagð1;−1;−1;−1;−ð1þ α2ψÞÞ: ð18Þ

Then (16) takes the usual form

Sð5ÞQEDA ¼
Z

d5xðiψ̄ γ̃a∂aψ − e5ψ̄γaAaψÞ: ð19Þ

So the whole effect of the aether-fermion interaction is
reduced to the difference between the physical and effective
[amplified by the factor of ð1þ α2ψ Þ] scales of the fifth
dimension1 and it is taken into account exactly by the
minimal modification of the fermionic propagator:

1This effect is in the spirit of the spectral geometry where the
physical geometry is determined by some relevant Dirac operator.
In this sense, the effect of the coupling to aether is similar to
matter coupling to the Horava-Lifshitz gravity in the low energy
regime, where the similar re-scaling effectively happens for the
whole space part of the metric and not just for one direction [13].
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S̃ðkÞ ≔ i
γ̃aka

: ð20Þ

Of course, this scale mismatch will have nontrivial conse-
quences after the compactification.
Note that in (19) we have two types of the γ matrices: one

is entering the propagator (20) and the other is responsible
for the vertex of the perturbation series. Actually, it is easy
to see that the minimal action (14) is not the most general
one. One should also include the term euuaubψ̄γaAbψ≡
−ieuv2ψ̄γ5A5ψ , where eu is another arbitrary parameter.
But this term can be handled in exactly the same way as
above by defining the second set of the deformed matrices,
˜̃γa ¼ ðγμ; ið1þ eu=e5Þγ5Þ. So the result will again look as
in (19) but with a modified vertex. This modification will
have an effect on the scalar, n ¼ 0, mode of ϕ≡ A5 (recall
that all the higher modes of A5 were “eaten” by the
Stueckelberg gauge).
Within the model, just defined, we would like to study

the corrections to the KK photon masses induced by the
interaction with the fermionic sector. These corrections will
come from the part of the vacuum polarization tensor, iΠab,
proportional to the metric. We will be interested in the
corrections to the vector KK modes, i.e., given by iΠμν. The
contribution to the mass of the scalar KK zero mode will
come from iΠ55 and could be calculated in complete
analogy. (So for us it is not important which γ matrices
enter the vertex, because ˜̃γμ ≡ γμ.) The first nontrivial
contribution to iΠμν comes from the diagram on Fig. 1.
For the convenience of the future calculations, from now on
we adopt the following notations: k, p, etc. with indices or

without will be used to denote four-momenta, while for the
momenta in the fifth direction the index 5 will be used
explicitly.
To calculate the contribution of the diagram on Fig. 1,

we use the standard Feynman rules with the only exception
that we should use the modified massless fermionic
propagator (20)

ð21aÞ

ð21bÞ

Then, to this order, the 4D part of the photon vacuum
polarization tensor is given by (as usual, “−” comes from
the fermionic loop and there is still no compactification)

iΠμν ¼ −e25

Z
d5k
ð2πÞ5 tr

�
ð−iγμÞ i

=kþ ið1þ α2ψ Þγ5k5
ð−iγνÞ i

ð=k − =pÞ þ ið1þ α2ψ Þγ5ðk5 − p5Þ
�
: ð22Þ

The compactification on a circle of the radius R along the fifth direction is standardly taken into account by passing from
the integral over k5 to the sum over k5 ¼ m

R, m ∈ Z

Z
d5k
ð2πÞ5 →

1

2πR

X
k5

Z
d4k
ð2πÞ4 ; ð23Þ

so that the expression for the polarization in the compactified case becomes [after defining the effective 4D electric charge
e2 ¼ e25=ð2πRÞ]

iΠμν ¼ −e2
X
k5

Z
d4k
ð2πÞ4

tr½γμð=kþ ið1þ α2ψ Þγ5k5Þγνð=k − =pþ ið1þ α2ψÞγ5ðk5 − p5ÞÞ�
ðk2 − ð1þ α2ψÞ2k25Þ½ðk − pÞ2 − ð1þ α2ψÞ2ðk5 − p5Þ2�

: ð24Þ

Before calculating this one-loop contribution to the vacuum polarization (which we do in the next section), it is useful to
compare (24) to the case without Lorentz breaking aether background, discussed in [3].
First of all, of course, in both cases the corresponding diagram is divergent and this divergence is dealt with in the same

way—by the subtraction of the uncompactified result. This is done via the Poisson summation formula, which essentially
trades the winding and KK numbers. This is explained in more details in the next section.

FIG. 1. The one-loop contribution to the polarization tensor.
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Then we have two obvious differences with the aether-
less case: (i) the modified dispersion relation (10) for the
on-shell KK photons, and (ii) the modified fermionic
propagator (20) [which is, of course, the consequence of
the modification of the dispersion relation analogous to
(10) but now for the fermion sector]. We will see that while
the former leads to some technical complications in the
calculations, the latter (combined with the former) has a
rather interesting physical consequence, relating the seem-
ingly independent coupling constants αA and αψ .

IV. CONTRIBUTION INDUCED BY AETHER
COMPACTIFICATION

In this section, we provide the results of our calculations
for one-loop corrections via the subtraction prescription
and apply the obtained results to find the corrections to the
masses of the KK photons.
As we mentioned in the previous section, to render the

expression (24) finite, one has just to subtract from it the
uncompactified result (22) [3]. This procedure has a very
clear physical meaning (and standardly used in quantum
field theory on curved backgrounds): because the diver-
gence is due to the bad UV behavior of the diagram, it
should be exactly the same as in the uncompactified case
(UV physics does not “know” that the space is compact in
one direction). In practice this is done by rewriting the KK
sum in (24) in terms of the winding modes using the
Poisson summation formula [3] (see [14] for the discussion
of the regularization method for quantum field theories in
spacetimes with compactified extra dimensions not relying
on the Poisson summation formula)

1

2πR

Xþ∞

m¼−∞
Fðm=RÞ →

Xþ∞

n¼−∞
fð2πRnÞ; ð25Þ

where the functions fðxÞ and FðkÞ are related by Fourier
transformation

fðxÞ ¼ F−1fFðkÞg ¼
Z þ∞

−∞

dk
2π

eikxFðkÞ; ð26Þ

and throwing away the term corresponding to the zero
winding number. (Here, m corresponds to the KK number,
while n denotes the winding number.) One can think of this
as discarding the contribution, which does not probe the
compactness of the extra dimension. Really, the n ¼ 0
contribution to the sum is identical to the integral over the
uncompactified extra dimension:

fð0Þ ¼
Z þ∞

−∞

dk5
2π

Fðk5Þ: ð27Þ

So, it is obvious that in this way, the subtraction prescrip-
tion simply removes the divergent n ¼ 0 term and the
remaining terms in the sum, i.e., n ≠ 0, are exactly the ones
that keep the information about the compact fifth dimen-
sion. As we will explicitly see below, they are all finite and
the sum is convergent.
Before applying the described subtraction prescription to

our case let us first perform the standard manipulations with
Eq. (24): calculate the trace over spinorial indices and use
the Feynman parametrization. The result for the trace is
given by

Nμν ≔ tr½γμð=kþ ið1þ α2ψÞγ5k5Þγνð=k − =pþ ið1þ α2ψÞγ5ðk5 − p5ÞÞ�
≔ 4½kμðkν − pνÞ þ kνðkμ − pμÞ − ημνk · ðk − pÞ þ ημνð1þ α2ψÞ2k5ðk5 − p5Þ�: ð28Þ

To deal with the denominator of (24) we, as usual, use the Feynman trick

1

AB
¼

Z
1

0

dx
ðxAþ ð1 − xÞBÞ2 for all A;B: ð29Þ

Then (24) becomes

iΠμν ¼ −e2
Z

1

0

dx
X
k5

Z
d4k
ð2πÞ4

Ñμν

½k2 − ð1þ α2ψÞ2k025 þ xð1 − xÞðp2 − ð1þ α2ψÞ2p2
5Þ�2

; ð30Þ

where we defined k025 ≔ k5 − p5x and Ñμν ¼ Nμνjkμ→kμþpμx. In this formula, p2 is a 4D momentum of an on-shell KK
photon corresponding to p5 ¼ l=R, l ∈ Z. To this order of approximation, we can use the zero order on-shell condition
(10), i.e., p2 ¼ ð1þ α2AÞp2

5. Plugging this into (30), discarding the terms linear in kμ and replacing kμkν with 1
4
k2ημν (due to

the obvious symmetries of the integral) and, finally, rescaling all the momenta by R (so now, p5 ¼ l and k05 ¼ m − lx, l,
m ∈ Z) we get
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iΠμν ¼ −
4e2

R2

X
m∈Z

Z
1

0

dx
Z

d4k
ð2πÞ4

�
ημν

�
−
k2

2
þ xð1 − xÞð1þ α2A − ð1þ α2ψÞ2Þp2

5

þ ð2x − 1Þð1þ α2ψ Þ2p5k05 þ ð1þ α2ψÞ2k025
�
− 2xð1 − xÞpμpν

�

×
1

½k2 − ð1þ α2ψ Þ2k025 þ xð1 − xÞð1þ α2A − ð1þ α2ψÞ2Þp2
5�2

: ð31Þ

Before we proceed, let us take a look at the obtained
expression. First of all, as a trivial check, it is easily verified
that for αA ¼ αψ ¼ 0 we have the correct expression for the
aetherless case [3]. But for the general value of the coupling
constants there is a very new feature. While the factor of
ð1þ α2ψ Þ2 in front of k25 in the denominator is just a
consequence of the aforementioned modified fermionic
dispersion relation, the factor of ð1þ α2A − ð1þ α2ψ Þ2Þ in
front of p2

5 is much more interesting. Because xð1 − xÞ is
non-negative for all x ∈ ½0; 1�, the sign of xð1−xÞð1þα2A−
ð1þα2ψÞ2Þp2

5 depends only on the sign of ð1þ α2A−
ð1þ α2ψ Þ2Þ. If this is positive, one can always find a high
enough KK momentum p5, so this term would dominate
ð1þ α2ψ Þ2ðk5 − p5xÞ2 for any fixed k25 and some x. This

will lead to an imaginary pole in (31) signaling about
problems with unitarity. So, we should conclude that the
theory has a unitary bound on the coupling constants2:

ð1þ α2ψÞ2 ≥ 1þ α2A: ð32Þ

From now on, to ensure one-loop unitarity, we will assume
that (32) is satisfied. (Of course, in the aetherless case, it is
satisfied trivially.)
It is well known that the corrections to the KK photon

masses will come from the part of (31) proportional to
the metric, ημνΠη, which after the usual Wick rotation,
k0 → ik0, is given by

Πη ¼ −
4e2Λ2

ψ

R2

X
m

Z
1

0

dx
Z

d4k̄E
ð2πÞ4 ×

�k̄2E
2
− xð1 − xÞΛ2p2

5 þ ð2x − 1Þp5k05 þ k025
½k̄2E þ k025 þ xð1 − xÞΛ2p2

5�2
�
; ð33Þ

where in our notation k̄E ¼ kE=Λψ with Λψ ≔ 1þ α2ψ and we introduced the “effective” coupling constant,

Λ2 ≔ −
1þ α2A − Λ2

ψ

Λ2
ψ

: ð34Þ

It is clear that the whole effect of Λψ is reduced to the multiplicative modification of the electric charge, while Λ really
controls how the quantum corrections deviate from the aetherless case. Note that the unitary bound (32) is important to
ensure that Λ2 is non-negative. It is easy to see that Λ2 ∈ ½0; 1Þ.
With the help of the formula

1

Ar ¼
1

ðr − 1Þ!
Z

∞

0

dllr−1e−Al ð35Þ

Eq. (33) can be transformed into the form permitting integration over k̄E, the result being (after the variable change l ¼ 1=t)3

Πη ¼ −
e2Λ2

ψ

4π2R2

X
m

Z
1

0

dx
Z

∞

0

dt

�
1þ ð2x − 1Þp5k05

t
−
xð1 − xÞΛ2p2

5

t
þ k025

t

�
e−½k

02
5
þxð1−xÞΛ2p2

5
�=t: ð36Þ

2Of course, this could be seen directly from (24): if ð1þ α2ψ Þ2 < 1þ α2A then S̃ðk − pÞ has an imaginary pole for any fixed k5
and high enough p5. This also shows that the unitary bound does not depend on the subtraction procedure.

3Note that the unitary bound (32) guarantees that the transformation (35) makes sense: if (32) is violated the application of (35) in (33)
would be divergent.
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At this point,we are finally ready to apply the Poisson summation formula (25). For thiswe have to calculate inverse Fourier
transformation of the integrand in (36) with respect to k5. The relevant Fourier integrals are standard and are given by

F−1fe−½k25þxð1−xÞΛ2p2
5
�=tg ¼

ffiffiffiffiffiffi
t
4π

r
e−xð1−xÞΛ

2p2
5
=te−

y2t
4 ;

F−1fk5e−½k25þxð1−xÞΛ2p2
5
�=tg ¼

�
iyt
2

� ffiffiffiffiffiffi
t
4π

r
e−xð1−xÞΛ

2p2
5
=te−

y2t
4 ;

F−1fk25e−½k
2
5
þxð1−xÞΛ2p2

5
�=tg ¼

�
t
2
−
t2y2

4

� ffiffiffiffiffiffi
t
4π

r
e−xð1−xÞΛ

2p2
5
=te−

y2t
4 ;

F−1fFfk025 ¼ k5 − xp5gg ¼ fðyÞeixyp5 : ð37Þ

Using these results in the Poisson summation formula (25), we can transform the sum in (36), which goes over theKKmodes,
m, into the sum over the winding numbers, n

Πη ¼ −
Λ2
ψe2

2πR2

X∞
y¼−∞

Z
1

0

dxeixyp5

Z
∞

0

dt

ffiffiffiffiffiffi
t
4π

r
e−xð1−xÞΛ

2p2
5
=te−

y2t
4

�
3

2
þ i

�
x −

1

2

�
yp5 −

y2t
4

−
xð1 − xÞΛ2p2

5

t

�
; ð38Þ

where y ¼ 2πn. This can be simplified to the form maximally resembling the case Λ ¼ 0:

Πη ¼ −
Λ2
ψe2

2πR2

X∞
y¼−∞

Z
1

0

dxeixyp5

Z
∞

0

dt

ffiffiffiffiffiffi
t
4π

r
e−xð1−xÞΛ

2p2
5
=te−

y2t
4

�
i

�
x −

1

2

�
yp5 −

2xð1 − xÞΛ2p2
5

t

�
: ð39Þ

In the transition of Eq. (38) to Eq. (39) we used the observation that under the integral, i.e., up to a surface
term, 3=2 − y2t=4 ¼ −xð1 − xÞΛ2p2

5=t.
Finally, the integral over t is calculated with the help of the following standard result:

Z
∞

0

e−ðax
2þ b

x2
Þdx ¼ 1

2

ffiffiffi
π

a

r
e−2

ffiffiffiffi
ab

p
; for any a; b > 0: ð40Þ

The result of this integration is given by

Πη ¼ −
Λ2
ψe2

2πR2

X∞
y¼−∞

Z
1

0

dxeixyp5

�
ið2x − 1Þ yp5

jyj3 ½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
Λjp5jjyj� −

2xð1 − xÞΛ2jp5j2
jyj

�
e−

ffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p
Λjp5jjyj: ð41Þ

Although this could be rewritten in several equivalent ways,
it does not seem that any of them have some advantage
compared to the form (41). (See, though, the discussion of
the large KK limit below.) At the moment, we were unable
to calculate (41) analytically for an arbitrary value of Λ. So,
we will analyze and test this result from several different
points of view and in different limits.
First of all, let us verify that the mass corrections do not

depend on the sign of p5, i.e., that (41) is an even function
of p5. This is quite easy to see by sending p5 → −p5 and
using the symmetry of the sum over the winding modes
with respect to y → −y. So as a first trivial check, we have

δm2
KK ≡ Πηðp5Þ ¼ Πηð−p5Þ: ð42Þ

As was discussed after Eq. (17), the zero mode KK
photon corresponds to the massless p5 ¼ 0, Uð1Þ gauge

boson. So, we should expect that this residual gauge
symmetry is respected by the quantization and this mode
does not receive any quantum correction to the mass. This
is indeed the case, because it is trivial from (41) that

Πηðp5 ¼ 0Þ ¼ 0: ð43Þ

To study the massive KK modes, we have to, as was
discussed above, perform a minimal subtraction by dis-
carding the y ¼ 0 mode from the sum in (41) (note that the
y ¼ 0 term is indeed the only divergent one). As it was
explained, this corresponds to subtraction of the polariza-
tion tensor for the uncompactified model. The next, trivial,
observation (and some kind of a consistency check) is that
for the case ofΛ ¼ 0 the integration in (41) is trivial and we
reproduce exactly the trivially rescaled result of [3] without
aether (recall that y ¼ 2πn)
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δm2
KK ≡ ΠηðΛ ¼ 0Þ ¼ −

e2Λ2
ψ

2πR2

Xþ∞

n¼1

2

j2πnj3

¼ −
Λ2
ψe2ζð3Þ
4π4R2

; ð44Þ

where ζðxÞ is the standard Riemann zeta function. Actually,
this result is not entirely trivial. The saturated unitary bound
Λ ¼ 0 imposes a relation between the coupling constants:
1þ α2A ¼ ð1þ α2ψÞ2. Usually this would signal about some
symmetry in an underlying fundamental theory. It is worth
reminding the reader that our result is exact in these
coupling constants (the perturbation parameter is the
electric charge e or, rather, the fine-structure constant).

So the exact form of the quantum corrections (44) could be
a good way to test such a symmetry.
This observation shows the importance of the study of

the quantum corrections close to the saturation of the
unitary bound, i.e., for Λ ≪ 1. It is difficult to study this
limit directly from Eq. (41), because Λ effectively enters
the exponent in the combination Λjyj, which can be
arbitrarily large for high terms in the sum. It is more
convenient to work directly with (39), where Λ is a nice
expansion parameter for any y (actually, the effective
expansion parameter is Λjp5j, so the obtained result will
be valid only for the lower KKmodes, such thatΛjp5j ≪ 1,
see also below)

Πη ¼ −
Λ2
ψe2

2πR2

X∞
n¼−∞

Z
1

0

dxeixyp5

Z
∞

0

dt

ffiffiffiffiffiffi
t
4π

r
e−

y2t
4

�
i

�
x −

1

2

�
yp5 −

xð1 − xÞΛ2p2
5

t

�
i

�
x −

1

2

�
yp5 þ 2

��
þOðΛ4Þ; ð45Þ

which could be easily integrated over t and then over x. Then the result up to OðΛ4Þ takes the form

δm2
KK ≡ Πη ¼ −

Λ2
ψe2

2πR2

X
n≠0

Z
1

0

dxeixyp5

�
ið2x − 1Þ yp5

jyj3 −
xð1 − xÞΛ2p2

5

jyj
�
i
�
x −

1

2

�
yp5 þ 2

��

¼ −
Λ2
ψe2

2πR2

X
n≠0

2þ 8Λ2

ð2πnÞ3 ≡ −
Λ2
ψe2ζð3Þ
4π4R2

ð1þ 4Λ2Þ: ð46Þ

So we see that the whole effect of Λ ≠ 0 is again just an
overall factor and the result does not depend on the number
of a KK mode as in the case Λ ¼ 0, Eq. (44). But as we
mentioned above, this is true only for the lowest modes,
such that Λjp5j ≪ 1. We will see that in the opposite limit
the effect is much more drastic.
To study the limit of the large KK number, it is

convenient to use the exact final result (41). For the large

KK number (by this we mean that Λjp5j ≫ 1) the exponent
in (41) will be dominated by the value of x close to the end
points of the interval [0, 1]. Using the symmetry of the sum
with respect to y and with the help of the change of the
variable, s ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

Λjp5jjyj, which is well defined for
x ∈ ½0; 1=2�, one can easily bring (41) to the following
equivalent form (still no approximation):

Πη ¼ −
Λ2
ψe2

πR2

X
n≠0

Z 1
2
Λjp5jjyj

0

eiyp5

1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4s2=Λ2p2

5
y2

p
2

2sds
jyj5Λ2p2

5

8<
:−ið1þ sÞyp5 −

2s2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4s2=Λ2p2

5y
2

q
9=
;e−s: ð47Þ

In theΛjp5j ≫ 1 regime, we can extend the integration limit to infinity; this will introduce an error of order ofOðe−1
2
Λjp5jjyjÞ.

Then we can expand the integrand in 1=Λjp5j up to the first nontrivial term

Πη ¼ −
Λ2
ψe2

πR2

X
n≠0

Z
∞

0

2ds
j2πnj5Λ2p2

5

�
1

Λ2
s3ð1þ sÞ − 2s3

�
e−s þO

�
1

Λ4p4
5

�
: ð48Þ

Now the integral and the sum can be trivially calculated leading to the large KK number corrections
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δm2
KK ≡ Πη ¼ −

Λ2
ψe2

2πR2

1

Λ2p2
5

�
2

Λ2
ðΓð3Þ þ Γð4ÞÞ − 4Γð3Þ

�X
n≠0

1

ð2πnÞ5

≡ −
Λ2
ψe2ζð5Þ
4π6R2

1

Λ2p2
5

�
2

Λ2
− 1

�
: ð49Þ

Note that this result is nonperturbative in Λ, in particular, it
does not make sense to take Λ → 0 [for Λ ¼ 0 the change
of variable leading to (47) is degenerate]. The result (49)
shows a very important role of the aether in the case of the
noncritical coupling, Λ ≠ 0. While in the case of the
saturated unitary bound (including the aetherless case),
Λ ¼ 0, the mass corrections described by Eq. (44) are
universal, i.e., independent of the KK momentum p5, away
from criticality, the same is true only for the lowest KK
modes, Eq. (46). For the higher KK excitations, the
quantum corrections to the masses are suppressed by the
inverse powers of p2

5. This could, in principle, be of great
experimental importance, if an experiment is designed to
probe the higher KK modes.
At this point, we develop some analyses of possible

phenomenological consequences of the obtained results. In
the case of the small effective coupling constant, Λ ≪ 1,
Eq. (46), leads to the following modification of the
dispersion relation (10):

kμkμ ¼ m̄2
KK ¼ Λ2

ψð1 − Λ2Þ n
2

R2
− λðnÞΛ2

ψ ð1þ 4Λ2Þ n
2

R2
:

ð50Þ

Note that the corrections to the Kaluza-Klein masses are
modified (compared to [3]) by a factor λðnÞΛ2

ψ ð1þ 4Λ2Þ
[with λðnÞ ¼ e2n−2ζð3Þ=4π4], which involves the Lorentz-
violating aether parameter and the fine-structure constant,
which may be important for the precision phenomenology.
In writing (50), we trivially rewrote Eq. (10)

kμkμ ¼ m2
KK ¼ Λ2

ψ ð1 − Λ2Þ n
2

R2
ð51Þ

using the definition (34). For a related discussion of exper-
imental constraints on aether parameter, see Refs. [11,15].
Below, we shall focus on the bounds on varying the fine-
structure constant.
To this end, let us compare the KK masses given in

Eq. (50) and Eq. (51)

				 m̄
2
KK −m2

KK

m2
KK

				 ¼ λðnÞ þOðΛ2Þ; ð52Þ

where λðnÞ can be rewritten in terms of the fine-structure
constant α, i.e., λðnÞ ¼ αζð3Þ=n2π3. Note that as it was
discussed above, up to the order of OðΛ2Þ, this result is the

same as in the case of the compactification without aether.
Now we can relate the radiative corrections to the KK
masses with the small uncertainty Δα of the bare fine-
structure constant [16]. Substituting α → αþ Δα into (52)
we find, up to the leading term (or in the critical limit,
Λ ¼ 0), and for n ¼ 1

				 m̄
2
KK −m2

KK

m2
KK

				 ≃
�
αζð3Þ
π3

�
þ
�
αζð3Þ
π3

�
Δα
α

≃ 0.00028þ 0.00028
Δα
α

: ð53Þ

In the last step of the equation above we have used
ðαζð3Þ=π3Þ ≈ 0.00028, ζð3Þ ≈ 1.20205, for the bare value
α ≈ 1=137.
It is important to notice that the effect of the fine-

structure uncertainty in (53) can be completely masked
by the Λ2 terms discarded in (52). Really, up to these terms,
we have

				 m̄
2
KK −m2

KK

m2
KK

				 ¼ λðnÞð1þ 3Λ2Þ þOðΛ4Þ: ð54Þ

This shows that if Λ is not identically zero, but instead
Λ2 ∼ Δα

α , it would be impossible to tell whether the effect is
due to Δα or some noncritical Λ or both. To disentangle
these two contributions, one would need to go either to the
higher KK analysis (see below) or to use some other
experiment to put independent bounds.
For the case when Λjp5j ≫ 1 (49) (because Λ ∈ ½0; 1Þ,

this necessarily corresponds to higher KKmodes), we have,
using the same definition of λðnÞ as above,

kμkμ¼ m̄2
KK ¼Λ2

ψð1−Λ2Þn
2

R2
−
λðnÞ
π2

ζð5Þ
ζð3Þ

Λ2
ψ

Λ4p2
5

ð2−Λ2Þn
2

R2

ð55Þ

and using (51) we find

				 m̄
2
KK −m2

KK

m2
KK

				 ¼ λðnÞ
ζð5Þ
ζð3Þ

ð2 − Λ2Þ
ð1 − Λ2Þ

�
1

πΛ

�
2
�

1

Λjp5j
�

2

:

ð56Þ

Note that in (56) there are two competing possibilities. On
the one hand, because Λjp5j ≫ 1 we have that the relative
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radiative corrections are suppressed by the factor 1
ðΛjp5jÞ2 [as

the absolute corrections (49)]. On the other hand, if we are
in the strong noncritical regime, i.e., Λ is close to 1 (which
corresponds to Λ2

ψ ≫ 1þ α2A) then the term ð1 − Λ2Þ in the
denominator of (56) might become important rending the
relative radiative corrections to be large. All of this shows
the importance of the large KK limit as it reveals the
nontrivial role of the aether (somewhat hidden for the lower
modes). In principle, this should allow us to distinguish
between the critical models (the aetherless model being a
special case), for which the results (52), (53) are valid for
any value of p5, and the noncritical ones. At the same time
this would allow us to disentangle the effects due to the
variations of the fine structure and Λ ≠ 0.
Let us calculate some estimations for the critical case

(53). For the radius of the fifth dimension R ∼ 1 mm, v ∼
MP and μA ∼ 1 TeV, we find mKK ∼ 1 TeV for the mode
n ¼ 1 [1]. The spatial variation and uncertainty of the fine-
structure constant, i.e., Δα=α ¼ −2.18� 7.27 × 10−5, has
been tested very recently even in large redshifts as in the
early Universe [12]. In the present scenario one might
impose bounds on this uncertainty if we assume that higher
changes of α appear in the direction of the fifth dimension
and we know the uncertainty of radiatively corrected KK
masses. Alternatively, if we assume the well-know devia-
tions of α we can estimate the uncertainty of such KK
masses. In the example above, the bare KK mass is
mKK ∼ 1 TeV, then the uncertainty in the mass splitting
has the magnitude jΔm̄KKj ∼ 0.01 MeV for the first excited
mode. In a Randall-Sundrum model [17], the Kaluza-Klein
excitations of gauge bosons VKK [18] are expected to be
excited in the Large Hadron Collider via the Drell-Yan
process, pp → qq̄ → VKK → QQ̄, where q and Q are
initial and final heavy fermions, such as top and bottom
quarks. The KK gauge boson decay into light fermions
such as leptons and lower generation of quarks cannot be
neglected in general [19], such that light KK mass splitting
can be probed. Thus, inside the aforementioned radiative
corrected KK mass splitting, there exists the possibility
to accomplish an excess of KK gauge boson decays
into well-known light fermions such as muon neutrino,
mνμ < 0.2 MeV, electron neutrino, mνe < 2 eV, and so on,
as a consequence of spatial variation and uncertainty of the
fine-structure constant.

V. CONCLUSIONS

In the present study we have considered the aether
compactification in a five-dimensional quantum electrody-
namics. The effective four-dimensional theory presents
excitations with radiatively corrected Kaluza-Klein masses
coming from the 5D gauge bosons. These KK masses
depend fundamentally on both aether parameter (and the
corresponding coupling constants) and the fine-structure
constant α. The aether compactification modifies the mass

spacing between different Kaluza-Klein states as a conse-
quence of the interaction with the aether field aligned along
the compact fifth dimension. We investigate the radiative
corrections to the Kaluza-Klein masses by computing the
vacuum polarization in the presence of a compact fifth
dimension with the compactification radius R. A finite
result is found by considering a prescription where from
every fermion loop of the compactified theory the corre-
sponding fermion loop of the uncompactified theory is
subtracted. We would like to stress that the calculations are
nonperturbative in the coupling constants; the perturbation
is done only with respect to the fine-structure constant. This
allows us to see the unitary bound, unseen in the perturba-
tive in αψ approach. The exact integral form for the
radiative corrections to the masses is obtained, which
allowed us to analyze different interesting limits: (i) critical,
Λ ¼ 0 (this includes the case without aether studied in [3]);
(i) close to critical; (iii) large KK—this limit is very
interesting, showing the very special role of the aether in
protecting the higher modes from the quantum corrections,
among other effects.
Our results demonstrate a potential possibility to address

several important phenomenological issues. One interesting
route is to relate the deviations of the measurements of the
fine-structure constant to KK mass splitting. The variation
and uncertainty of the fine-structure constant was tested
very recently even in large redshifts as in the early Universe
[12]. In the present scenario, in the critical case of Λ ¼ 0,
we can, in principle, impose bounds on this uncertainty if
we assume that higher changes of α appear in the direction
of the fifth dimension. By considering the results of
Ref. [12], i.e., Δα=α ¼ −2.18� 7.27 × 10−5 and assuming
R ∼ 1 mm, for Kaluza-Klein gauge bosons at TeV scale we
found KK mass splitting uncertainty with the magnitude
∼0.01 MeV for the first excited mode. For the noncritical
case, to disentangle the effects due to Δα and Λ ≠ 0, one
has to go to the higher KK modes (or use other independent
experiments). Further investigations concerning the pos-
sibility of the decays of such KK gauge bosons into light
fermions, associated with KK mass splitting related to
spatial variation and uncertainties of the fine-structure
constant, seems to be phenomenologically interesting from
both a particle physics and astrophysics point of view.
Last but not least, we would like to comment on the

potential relevance of our results for the future 100 TeV
proton-proton collider. As it is stressed in [20], if one
considers the type of a compactification studied in our
paper as a natural UV completion of the four-dimensional
theory, “it is simply impossible to keep the scalar much
lighter than the new KK states.” In this situation the
complete control over the radiative corrections becomes
crucial. Because collider physics at 100 TeV scale should
have a much higher resolution from the point of view of KK
compactification and will have a potential to test extra
dimensions on a submillimeter scale (of order of 10−2 mm),
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this would give one a chance to test these corrections even
beyond the first KK level. One of our main results/
predictions is that such corrections would not be universal
in the presence of aether as compared to the aetherless case.
Although analytically we have established only the limiting
behavior, cf (46) and (49), it is rather obvious that the exact
form of the corrections [which could be evaluated, e.g.,
numerically, using (41) or (47)] will extrapolate between
those two limits leading to a different correction even for
the second KK mode. Of course, one should do this type of

calculation in a more realistic model, involving all relevant
fields. Our results show the importance of such study.
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