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We investigate all potentially viable scenarios that can produce the chiral enhancement required to
simultaneously explain the ðg − 2Þe and ðg − 2Þμ data with either a single scalar leptoquark or a pair of
scalar leptoquarks. We provide a classification of these scenarios in terms of their ability to satisfy the
existing limits on the branching ratio for the μ → eγ process. The simultaneous explanation of the
ðg − 2Þe;μ discrepancies, coupled with the current experimental data, implies that the ðg − 2Þe loops are
exclusively due to the charm-quark propagation, whereas the ðg − 2Þμ loops are due to the top-quark
propagation. The scenarios where the ðg − 2Þe loops are due to the top (bottom) quark propagation are, at
best, approximately 9 (3) orders of magnitude away from the experimental limit on the μ → eγ branching
ratio. All in all, there are only three particular scenarios that can pass the μ → eγ test and simultaneously
create a large enough impact on the ðg − 2Þe;μ discrepancies when the new physics is based on the Standard
Model fermion content. These are the S1, R2, and S1 & S3 scenarios, where the first two are already known
to be phenomenologically viable candidates with respect to all other flavor and collider data constraints. We
show that the third scenario—where the right-chiral couplings to charged leptons are due to S1, the left-
chiral couplings to charged leptons are due to S3, and the two leptoquarks mix through the Standard Model
Higgs field—cannot address the ðg − 2Þe and ðg − 2Þμ discrepancies at the 1σ level due to an interplay

between K0
L → e�μ∓, Z → eþe−, and Z → μþμ− data despite the ability of that scenario to avoid the

μ → eγ limit.

DOI: 10.1103/PhysRevD.102.075007

I. INTRODUCTION

The observed anomalous magnetic moments of electrons
and muons are in tension with the corresponding Standard
Model (SM) predictions. In particular, the experimental
results (aexpe;μ ) for the electron [1] and muon [2] anomalous
magnetic moments deviate from the SM predictions (aSMe;μ )
roughly at the 3σ [3] and 4σ [4–8] levels, respectively.
More precisely, the observed discrepancies that are of
opposite signs currently read

Δae ¼ aexpe − aSMe ¼ −ð8.7� 3.6Þ × 10−13; ð1Þ

Δaμ ¼ aexpμ − aSMμ ¼ ð2.79� 0.76Þ × 10−9: ð2Þ

Various sources of new physics are known to be capable
of substantially altering the SM values for ae ¼ ðg − 2Þe=2
and aμ ¼ ðg − 2Þμ=2. (For a sample of studies that analyzed
effects of the new physics sources on anomalous magnetic
moments see, for example, Refs. [9–38].) In this study, we
classify all potentially viable scenarios to explain both
discrepancies with either one or two scalar leptoquarks
using the level of disagreement with the existing limits on
the branching ratio for the μ → eγ process as our main tool.
Our analysis dovetails with the approach of Ref. [39] and
builds upon the results presented in Refs. [15,40].
There are only four scalar leptoquark multiplets one

needs to consider (as we demonstrate later on) if the
new physics scenarios for ae and aμ are based on the
SM fermionic content and include up to two scalar lepto-
quarks. These leptoquarks are S3ð3̄; 3; 1=3Þ, R2ð3; 2; 7=6Þ,
R̃2ð3; 2; 1=6Þ, and S1ð3̄; 1; 1=3Þ, where we specify the
transformation properties of leptoquarks under the SM
gauge group SUð3Þ × SUð2Þ ×Uð1Þ. (For reviews of
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leptoquark physics see, for example, Refs. [41,42].) In fact,
it was recently shown in Ref. [40] that it is possible to
simultaneously explain both discrepancies with the new
physics that is generated by a single leptoquark extension
of the SM, where the leptoquark in question is either S1 or
R2. In view of these promising results, our study aims to
clarify whether there are any additional scenarios that might
accomplish the same objective.
To address discrepancies between theory predictions and

measured values of ðg − 2Þe and ðg − 2Þμ utilizing scalar
leptoquarks, it is necessary that the associated one-loop
corrections must receive sufficient contributions, which can
only be guaranteed by quark mass insertion (chirality
enhanced effects) in the loops. The only leptoquarks that
can couple to leptons of both chiralities (which is a
prerequisite for such an enhancement) are S1 and R2,
and the SM gauge symmetry dictates the presence of up-
type quarks in the loop [43]. The only significant difference
between the S1 and R2 mediations is that the former is due
to the Q ¼ 1=3 leptoquark, while the latter is due to the
Q ¼ 5=3 one, where Q denotes electric charge in units of
absolute value of the electron charge. It has been estab-
lished that one needs top quarks in the ðg − 2Þμ loops if one
is to address the observed discrepancy at the 1σ level and
still be in agreement with the ever more stringent combi-
nation of constraints from the flavor physics experiments
and LHC [44]. The possibility to address the ðg − 2Þμ
discrepancy with the top-quark chirality-enhanced loop
contribution is phenomenologically viable even if one
resorts to a scenario where two leptoquarks of the same
electric charge couple to the muon–top-quark pairs of
opposite chiralities while mixing with each other through
the Higgs field in order to close the loop [45]. This
corresponds to the scenario where S1 mixes with the Q ¼
1=3 component of S3, where S1 provides the right-chiral
couplings to leptons while S3 provides the left-chiral ones.
On the other hand, the chirality-enhanced loops for ðg − 2Þe
that are generated by S1, R2, or the S1 & S3 combination
can be closed not only with the top quarks but also with the
charm quarks without any conflict with the existing
experimental limits, such as those due to the D − D̄
oscillation and/or atomic parity violation measurements
for the leptoquark masses that are allowed by the LHC data
analyses. Moreover, in the two-leptoquark scenario based
on the R2 & R̃2 combination it is possible to close the ðg −
2Þe loops in a phenomenologically viable way with the
bottom quarks as well [45].
We systematically study the ability of new physics

scenarios with up to two scalar leptoquarks to simulta-
neously accommodate the ðg − 2Þe;μ discrepancies using
the experimental limit originating from the μ → eγ process
as our primary classification tool. We find that there is only
one additional scenario (besides the S1 and R2 scenarios
that have already been discussed in Ref. [40]) that is not
constrained by this limit. The scenario in question

corresponds to the S1 & S3 combination, where the left-
chiral couplings are provided solely by S3 and the two
leptoquarks mix through the SM Higgs field. We further-
more show that the S1 & S3 scenario cannot address the
ðg − 2Þe;μ discrepancies at the 1σ level due to an interplay
between the K0

L → e�μ∓, Z → eþe−, and Z → μþμ− data
even though it clears the μ → eγ hurdle. In all instances we
always turn on four Yukawa couplings between the
leptoquark(s) and the relevant quark-lepton pairs to be
able to generate chirality-enhanced contributions of suffi-
cient strength. In Table I we summarize the scenarios we
consider to simultaneously address the ðg − 2Þe;μ discrep-
ancies as well as the associated predictions for the lowest
possible values of Brðμ → eγÞ.
The paper is organized as follows. In Sec. II we elaborate

on the scalar leptoquark contributions towards anomalous
magnetic moments of electrons and muons and discuss
the associated effect on the μ → eγ process that we find
to be the origin of the most relevant flavor constraint. We
then proceed to discuss the abilities of the four different
scenarios to simultaneously explain the ðg − 2Þe and
ðg − 2Þμ discrepancies with scalar leptoquarks. The first
two scenarios that rely on the single leptoquark contribu-
tions towards both anomalous magnetic moments in ques-
tion are discussed in Sec. II A, while the remaining two
possibilities are addressed in Sec. II B. We summarize our
findings in Sec. III.

II. ADDRESSING ðg− 2Þe;μ WITH SCALAR
LEPTOQUARKS

We first present an overview of the scalar leptoquark
effects on ðg − 2Þe;μ and the μ → eγ process using the S1
scenario for concreteness. The Yukawa couplings of S1
are [41]

TABLE I. The leptoquark scenarios that have the potential to
simultaneously address the ðg − 2Þe;μ discrepancies and the
associated minimal value of the μ → eγ branching ratio
ðBrðμ → eγÞÞmin. For each scenario we specify the quark q that
is behind the chirality-enhanced contribution and the electric
chargeQ of the leptoquark in the loops. See the text for details on
the notation.

SCENARIO ðg − 2Þe ðg − 2Þμ ðBrðμ → eγÞÞmin

S1∶ðq;QÞ ðt; 1=3Þ ðt; 1=3Þ τμαm3
μ

8

jΔaeΔaμj
memμ

S1∶ðq;QÞ ðc; 1=3Þ ðt; 1=3Þ 0
R2∶ðq;QÞ ðt; 5=3Þ ðt; 5=3Þ τμαm3

μ

8

jΔaeΔaμj
memμ

R2∶ðq;QÞ ðc; 5=3Þ ðt; 5=3Þ 0
S1 & S3∶ðq;QÞ ðt; 1=3Þ ðt; 1=3Þ τμαm3

μ

8

jΔaeΔaμj
memμ

S1 & S3∶ðq;QÞ ðc; 1=3Þ ðt; 1=3Þ 0
R2 & R̃2∶ðq;QÞ ðb; 2=3Þ ðt; 5=3Þ τμαm3

μπ
2

m2
em2

μm2
t

jVtbj2
jVcbj2

jΔaeΔaμj2
ð1þ4 ln xtÞ2 M

4
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L ⊃ yLijQ
c
iiσ2S1Lj þ yRiju

c
RiS1lRj þ H:c:; ð3Þ

where Qi ¼ ðuLidLiÞT and Lj ¼ ðνLilLiÞT are the left-
chiral quark and lepton SUð2Þ doublets, uRi and lRj are the
right-chiral up-type quarks and charged leptons, respec-
tively, σ2 is the Pauli matrix, and i, j ¼ 1, 2, 3 are flavor
indices. The Yukawa coupling matrices yL and yR are
a priori arbitrary 3 × 3 matrices in the flavor space. The S1
diquark couplings have been omitted to ensure proton
stability.
To calculate the flavor observables, it is convenient to

rewrite the Lagrangian of Eq. (3) in the SM fermion mass
eigenbasis, to which end we implement the following
unitary transformations of the SM fermion fields: uL →
ULuL, uR → URuR, dL → DLdL, dR → DRdR, lL →
ELlL, lR → ERlR, and νL → NLνL. These transforma-
tions represent the most general redefinitions of both the
left-chiral and right-chiral fields as long as one definesU ¼
E†
LNL and V ¼ U†

LDL, where U and V are the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) and Cabibbo-Kobayashi-
Maskawa (CKM) matrices, respectively. Note that the
unitary transformations of the right-chiral fermions are
not physical in the SM, whereas this might not be the case if
one considers its extensions. With these redefinitions, the
part of the Lagrangian presented in Eq. (3) takes the
following form:

LS1 ¼ −ðDT
Ly

LNLÞijdcLiS1νLj þ ðUT
Ly

LELÞijucLiS1lLj

þ ðUT
Ry

RERÞijucRiS1lRj þ H:c: ð4Þ

There are two particular bases that are commonly used in
the literature to study flavor physics signatures. One would
correspond to the case when the CKM rotations are entirely
in the down-type quark sector. We will refer to this as the
up-type quark mass-diagonal basis. The other basis corre-
sponds to the case when the CKM rotations are purely in

the up-type quark sector, and we accordingly refer to this as
the down-type quark mass-diagonal basis. In what follows,
we will always specify both the Yukawa ansatz and the
unitary transformations that we are going to use to study a
given new physics scenario. The former will be given in the
flavor basis, while the latter will be specified in the mass
eigenstate basis. In practical terms, this amounts to speci-
fying Yukawa couplings using Eq. (3) and the unitary
transformations using Eq. (4). Note that in our approach the
predictions will change if we keep the same Yukawa ansatz
but work with different unitary transformations.
Since the right-chiral rotations will not be relevant for

our analysis, it will be understood that UR ¼ DR ¼ ER ¼ I
throughout the rest of this manuscript, where I is the
identity matrix. Moreover, we will always take the PMNS
rotations to be in the neutrino sector. The up-type quark
mass-diagonal basis is thus implemented via UL ¼
UR ¼ DR ¼ EL ¼ ER ¼ I, whereas the down-type quark
mass-diagonal basis is specified through UR ¼ DL ¼
DR ¼ EL ¼ ER ¼ I. Consequently, the up-type quark
mass-diagonal basis corresponds to the DL ≡ V case,
while the down-type quark mass-diagonal basis is given
through UL ≡ V†. Of course, there is a continuous set of
unitary transformations that would take one from the first
basis into the second basis and vice versa. And, in our
approach, each of these transformations would yield, for
the same Yukawa coupling ansatz, its own phenomeno-
logical signatures.
Using The Lagrangian of Eq. (4), it is now possible to

write down the S1 contributions towards ðg − 2Þe;μ. We will
accomplish this by switching on the Yukawa couplings yL32,
yL31, y

R
32, and yR31 in Eq. (3) and working in the down-type

quark mass-diagonal basis. This scenario corresponds to
the situation when S1 couples simultaneously to the
electron–top-quark and muon–top-quark pairs. We accord-
ingly obtain

Δae ¼ −
3m2

e

8π2M2

�
mt

me
ReðV�

tby
L
31ðyR31Þ�Þ

�
7

6
þ 2

3
ln xt

�
−

1

12
ðjyR31j2 þ jyL31j2Þ

�
; ð5Þ

Δaμ ¼ −
3m2

μ

8π2M2

�
mt

mμ
ReðV�

tby
L
32ðyR32Þ�Þ

�
7

6
þ 2

3
ln xt

�
−

1

12
ðjyR32j2 þ jyL32j2Þ

�
: ð6Þ

Clearly, it is necessary to switch on at least four Yukawa couplings to simultaneously affect ðg − 2Þe and ðg − 2Þμ with the
chirality-enhanced contributions. One pair of couplings enters ðg − 2Þe and the other ðg − 2Þμ. Note that for convenience we
define xt ¼ m2

t =M2, where mt is the top-quark mass and M is the mass of the S1 leptoquark.
The current limit on the branching ratio for the μ → eγ process is Brðμ → eγÞ < 4.2 × 10−13 [46]. We find it to be the

most severe obstacle to a simultaneous explanation of the ðg − 2Þe;μ discrepancies with the scalar leptoquark physics. For
example, if the leading parts of the ðg − 2Þe;μ loops are proportional to the top-quark mass, as given in Eqs. (5) and (6), the
new physics contribution towards μ → eγ is [47]

Brðμ → eγÞ ¼ 9ατμm5
μ

1024π4M4
ðjA1j2 þ jB1j2Þ; ð7Þ
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where

A1 ¼ −
1

12

�
yL32ðyL31Þ� þ

me

mμ
yR32ðyR31Þ�

�
þ mt

mμ

�
7

6
þ 2

3
ln xt

�
VtbyR32ðyL31Þ�; ð8Þ

B1 ¼ −
1

12

�
yR32ðyR31Þ� þ

me

mμ
yL32ðyL31Þ�

�
þ mt

mμ

�
7

6
þ 2

3
ln xt

�
V�
tby

L
32ðyR31Þ�: ð9Þ

There are also new physics contributions to other
processes—such as μ − e conversion, μ → eee, and
Z → ll0, to name a few—that are generated once one
tries to simultaneously address ðg − 2Þe and ðg − 2Þμ with
scalar leptoquarks. We take these constraints into account
only if they are not subdominant with respect to the μ → eγ
limit in what follows.

A. Single-leptoquark scenarios: S1 and R2

1. S1 with the top-quark loops

Let us start with the S1 case, when the ðg − 2Þe and
ðg − 2Þμ loops are both top-quark induced, and with real
Yukawa couplings yL31, y

L
32, y

R
31, and yR32 [as defined in

Eq. (3)] switched on. We will work in the down-type quark
mass-diagonal basis in which the CKM matrix resides in
the up-type quark sector. Again, the PMNS rotations are
taken to reside in the neutrino sector, while the unitary
rotations of the right-chiral fermions are assumed to be
identity matrices throughout this manuscript.
The leading chirality-enhanced contributions towards

Δae and Δaμ are

Δae ¼ −
3

8π2
mtme

M2
yL31y

R
31

�
7

6
þ 2

3
ln xt

�
; ð10Þ

Δaμ ¼ −
3

8π2
mtmμ

M2
yL32y

R
32

�
7

6
þ 2

3
ln xt

�
; ð11Þ

while the μ → eγ contribution is

Brðμ → eγÞ ¼ τμαm3
μ

4

���� 3mt

16π2M2

�
7

6
þ 2

3
ln xt

�����
2

× ½jyR31yL32j2 þ jyL31yR32j2�: ð12Þ

If we define x ¼ yR31=y
R
32 and rearrange Eqs. (10), (11), and

(12), we obtain the following expression for Brðμ → eγÞ in
terms of Δae and Δaμ:

Brðμ → eγÞ ¼ τμαm3
μ

16

�
Δa2e
m2

e

1

x2
þ Δa2μ

m2
μ
x2
�
: ð13Þ

An especially nice feature of the prediction for Brðμ → eγÞ,
as given in Eq. (13), is that it does not exhibit dependence
on the scale of new physics whatsoever. If we determine the
minimal value of the right-hand side of Eq. (13) with res-
pect to x2 that we denote with ðBrðμ → eγÞÞmin, we obtain

ðBrðμ → eγÞÞmin ¼ τμαm3
μ

8

jΔaeΔaμj
memμ

¼ 1.6 × 10−4; ð14Þ

where the central values for Δae and Δaμ [as given in
Eqs. (1) and (2), respectively] are inserted for convenience.
We also use τμ ¼ 3.33941 × 1018 GeV−1, α ¼ 1=137,
mμ ¼ 105.65 MeV, and me ¼ 0.5109 MeV [48].
The prediction for the minimal attainable value ðBrðμ →

eγÞÞmin in Eq. (14) was obtained in Ref. [15] via the
effective field theory approach, under the assumption that
the single source of new physics couples simultaneously to
the muon–top-quark and electron–top-quark pairs. The
ðBrðμ → eγÞÞmin value, obtained for ðx2Þmin ¼ ðjΔaejmμÞ=
ðjΔaμjmeÞ, makes it transparent that it is impossible to
reconcile the experimental limit on Brðμ → eγÞ with
required shifts in Δae and Δaμ for any value of x since
the predicted minimal value and the experimentally
observed limit are already, at best, 8 to 9 orders of
magnitude apart. The same conclusion holds if one eval-
uates these observables for the same Yukawa ansatz, i.e.,
yL31, yL32, yR31, yR32 ≠ 0, but in the up-type quark mass-
diagonal basis. We accordingly quote this result for
ðBrðμ → eγÞÞmin in Table I.

2. S1 with the top- and charm-quark loops

One might entertain the possibility of addressing
ðg − 2Þe with the charm-quark loops and ðg − 2Þμ with
the top-quark loops. If we work in the down-type quark
mass-diagonal basis and switch on real Yukawa couplings
yL21, y

L
32, y

R
21, and yR32 [as defined in Eq. (3)], we obtain the

following expressions for Δae, Δaμ, and Brðμ → eγÞ:

Δae ¼ −
3memc

8π2M2

�
7

6
þ 2

3
ln xc

�
VcsyL21y

R
21; ð15Þ

Δaμ ¼ −
3mμmt

8π2M2

�
7

6
þ 2

3
ln xt

�
VtbyL32y

R
32; ð16Þ
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Brðμ → eγÞ ¼ 9ατμm5
μ

1024π4M4

×

�
jVtsj2

m2
t

m2
μ

�
7

6
þ 2

3
ln xt

�
2

ðyR32yL21Þ2

þ jVcbj2
m2

c

m2
μ

�
7

6
þ 2

3
ln xc

�
2

ðyL32yR21Þ2
�
;

ð17Þ
where we introduce xc ¼ m2

c=M2 withmc being the charm-
quark mass and neglect the subleading contributions inΔae
and Δaμ. Note that it is the CKM matrix that induces the
μ → eγ process within this basis and with this particular
Yukawa ansatz.
If we rearrange Eqs. (15), (16), and (17), and define

x ¼ yR21=y
R
32, we obtain

Brðμ → eγÞ ¼ τμαm3
μ

16

�
Δa2e
m2

e

Ã
x2

jVtsj2
jVcsj2

þ Δa2μ
m2

μ

x2

Ã

jVcbj2
jVtbj2

�
;

ð18Þ
where

Ã ¼ m2
t

m2
c

ð7
6
þ 2

3
ln xtÞ2

ð7
6
þ 2

3
ln xcÞ2

: ð19Þ

This time around the expression for Brðμ → eγÞ [as
given in Eq. (18)] exhibits logarithmic dependence on the
new physics scale, but the minimal attainable value does
not. Namely, we obtain that

ðBrðμ → eγÞÞmin ¼ τμαm3
μ

8

jΔaeΔaμj
memμ

jVtsjjVcbj
jVcsjjVtbj

¼ 2.8 × 10−7; ð20Þ
where we use jVcsj ¼ 0.9735, jVtbj ¼ 0.9991, jVcbj ¼
0.0416, and jVtsj ¼ 0.0409 [48]. We derive Eq. (20)
from Eq. (18) for ðx2Þmin ¼ ÃðjΔaejmμjVtsjjVtbjÞ=
ðjΔaμjmejVcsjjVcbjÞ.
It is clear from Eq. (20) that this particular S1 scenario

fails to reconcile required shifts in Δae and Δaμ with the
current bound on Brðμ → eγÞ. The minimal predicted value
for the branching ratio for μ → eγ is the CKM matrix
suppressed with respect to the case when both anomalous
magnetic moment discrepancies are addressed with the

top-quark loops. Nevertheless, the minimal predicted value
is still 6 orders of magnitude away from the associated
Brðμ → eγÞ experimental limit.
It was recently noted in Ref. [40] that if one takes the

same Yukawa ansatz, i.e., yL21, y
L
32, y

R
21, y

R
32 ≠ 0, but works

instead in the up-type quark mass-diagonal basis, one
completely suppresses the μ → eγ signature since S1
couples separately to the muon–top-quark and electron–
charm-quark pairs. One can recreate the up-type quark
mass-diagonal basis results for Δae, Δaμ, and Brðμ → eγÞ
by setting jVtsj ¼ jVcbj ¼ 0 and jVcsj ¼ jVtbj ¼ 1 in
Eqs. (15), (16), and (17), respectively. The authors of
Ref. [40] subsequently demonstrated that the S1 scenario
that addresses ðg − 2Þe with the charm-quark loops and
ðg − 2Þμ with the top-quark loops is phenomenologically
viable with respect to all current experimental data. We
accordingly quote that ðBrðμ → eγÞÞmin ¼ 0 for this par-
ticular scenario in Table I.

3. R2 with the top-quark loops

The analysis of the R2 scenario, where the ðg − 2Þe;μ
loops are both generated with the top quark, will mirror the
S1 case, as we show next. The relevant part of the
Lagrangian is

L ⊃ −yLijūRiR2iσ2LLj
þ yRijQ̄LiR2lRj þ H:c:; ð21Þ

where yL and yR are the Yukawa coupling matrices
associated with R2. If we go to the mass and electric
charge eigenstate basis we have that

LR2
¼ −ðU†

Ry
LELÞijūRilLjR

5=3
2 þ ðU†

Ly
RERÞijūLilRjR

5=3
2

þ ðU†
Ry

LNLÞijūRiνLjR2=3
2 þ ðD†

Ly
RERÞijd̄LilRjR

2=3
2

þ H:c:; ð22Þ

where R5=3
2 and R2=3

2 are Q ¼ 5=3 and Q ¼ 2=3 compo-
nents of the R2 multiplet, respectively. We will assume that
both components of R2 are mass degenerate and denote the
corresponding mass as M in what follows.
To generate Δal contributions with the chirality-

enhanced top-quark loops we need to switch on yR3l and
yL3l [as defined in Eq. (21)], where l ¼ 1; 2 ¼ e, μ. In the
down-type quark mass-diagonal basis this Yukawa ansatz
yields

Δal ¼ −
3m2

l

8π2M2

�
mt

ml
Re½ðVtbyR3lÞ�yL3l�

�
1

6
þ 2

3
ln xt

�
þ 1

4
ðjyR3lj2 þ jyL3lj2Þ

�
; ð23Þ

Brðμ → eγÞ ¼ 9ατμm5
μ

1024π4M4
ðjA2j2 þ jB2j2Þ; ð24Þ

where
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A2 ¼
1

4

�
yR32ðyR31Þ� þ

me

mμ
yL32ðyL31Þ�

�
þ mt

mμ

�
1

6
þ 2

3
ln xt

�
ðVtbyR31Þ�yL32; ð25Þ

B2 ¼
1

4

�
yL32ðyL31Þ� þ

me

mμ
yR32ðyR31Þ�

�
þ mt

mμ

�
1

6
þ 2

3
ln xt

�
ðyL31Þ�VtbyL32: ð26Þ

The expression for Brðμ → eγÞ in Eq. (23) translates into the
exact same functional form (including the numerical pre-
factors) as that of Eq. (13) where, again, we define x ¼
yR31=y

R
32 but this time for the R2 Yukawa couplings. This

accordingly yields the same minimal value for Brðμ → eγÞ
as given in Eq. (14) and thus shows that the R2 scenario with
the chirality-enhanced top-quark loops when the CKM
matrix resides in the up-type quark sector also fails to
simultaneously address the ðg − 2Þe;μ discrepancies in a
phenomenologically viable way due to the conflict with the
μ → eγ constraint. The same conclusion holds if one works
in the up-type quark mass-diagonal basis and agrees with the
effective field theory approach results of Ref. [15]. The value
we quote in Table I for ðBrðμ → eγÞÞmin reflects this fact.

4. R2 with the top- and charm-quark loops

If we try to accommodate ðg − 2Þe with the charm-quark
loops and ðg − 2Þμ with the top-quark loops by switching
on yR21, y

L
21, y

R
32, and yL32 in Eq. (21) while working in the

down-type quark mass-diagonal basis, we find that

Δae ¼ −
3memc

8π2M2

�
1

6
þ 2

3
ln xc

�
VcsyR21y

L
21; ð27Þ

Δaμ ¼ −
3mμmt

8π2M2

�
1

6
þ 2

3
ln xt

�
VtbyR32y

L
32; ð28Þ

while

Brðμ → eγÞ ¼ 9ατμm5
μ

1024π4M4

×

�
jVtsj2

m2
t

m2
μ

�
1

6
þ 2

3
ln xt

�
2

ðyR21yL32Þ2

þjVcbj2
m2

c

m2
μ

�
1

6
þ 2

3
ln xc

�
2

ðyL21yR32Þ2
�
: ð29Þ

If we introduce x ¼ yR21=y
R
32 and combine Eqs. (27), (28),

and (29), we obtain the following expression for
Brðμ → eγÞ in terms of Δae and Δaμ:

Brðμ → eγÞ ¼ τμαm3
μ

16

�
Δa2e
m2

e

1

x2
jVcbj2
jVcsj2

þ Δa2μ
m2

μ
x2

jVtsj2
jVtbj2

�
:

ð30Þ
It is now trivial to see that Eq. (30) yields the same minimal
value for the branching ratio for μ → eγ as given in

Eq. (20). The fact that we work in the down-type quark
mass-diagonal basis within our Yukawa coupling ansatz
leads to the CKM-matrix-induced μ → eγ process. This thus
renders the associated R2 scenario with the chirality-
enhanced top quarks loops for ðg − 2Þμ and charm-quark
loops for ðg − 2Þe not phenomenologically viable. If, on the
other hand, one keeps the same Yukawa coupling ansatz but
adopts the up-type quark mass-diagonal basis, the μ → eγ
process gets completely suppressed, as demonstrated in
Ref. [40]. We accordingly quote ðBrðμ→ eγÞÞmin ¼ 0 as the
minimal value for the μ → eγ branching ratio for this par-
ticular resolution of the ðg − 2Þe;μ discrepancies in Table I.
The subsequent analysis has shown that it is possible to
simultaneously address ðg − 2Þe with the charm-quark loops
and ðg − 2Þμ with the top-quark loops within the R2 scenario
without any conflict with the existing experimental data [40].

B. Two-leptoquark scenarios: S1 & S3 and R2 & R̃2

The two-leptoquark scenarios S1 & S3 and R2 & R̃2 open
up additional possibilities to simultaneously address the
ðg − 2Þe;μ discrepancies. For example, the R2 & R̃2 scenario
can produce chirality-enhanced contributions towards
ðg − 2Þe that are proportional to the bottom-quark mass.
In what follows we systematically go through the various
potentially viable possibilities, mirroring the analyses of
the single-leptoquark scenarios.

1. S1 & S3 with the top-quark loops

We start with the analysis of the two-leptoquark scenario
based on the S1 & S3 combination. The idea is to address
both discrepancies with the chirality-enhanced top-quark
loops, where the leptoquarks in the loop will be a mixture
of S1 with the Q ¼ 1=3 state in S3. Our objective is to
ascertain the phenomenological viability of this scenario
under the assumption that the two leptoquarks couple to
charged leptons of opposite chiralities.
The relevant parts of the new physics Lagrangian that

have not been introduced in preceding sections are

L ⊃ ySijQ
c
Liiσ2ðσaSa3ÞLLj þ λH†ðσaSa3ÞHS�1 þ H:c:; ð31Þ

where λ is a dimensionless coupling and σa, a ¼ 1, 2, 3, are
Pauli matrices. It is the second term in Eq. (31) that, after
electroweak symmetry breaking, induces a mixing between
S1=33 and S1 via the vacuum expectation value v of the SM
Higgs field Hð1; 2; 1=2Þ. Note that the S3 diquark cou-
plings have been omitted to ensure proton stability.
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The Yukawa couplings of S3, in the mass eigenstate basis
for the SM fermions, are

LS3 ¼ −ðDT
Ly

SNLÞijdcLiS1=33 νLj

−
ffiffiffi
2

p
ðDT

Ly
SELÞijdcLiS4=33 lLj

þ
ffiffiffi
2

p
ðUT

Ly
SNLÞijucLiS−2=33 νLj

− ðUT
Ly

SELÞijucLiS1=33 lLj þ H:c: ð32Þ

We perform the analysis in the leptoquark mass eigen-
state basis. The mixing matrix for S1=33 and S1 is [45]

�
S−
Sþ

�
¼

�
cos θ sin θ

− sin θ cos θ

��
S1=33

S1

�

≡
�

cθ sθ
−sθ cθ

��
S1=33

S1

�
; ð33Þ

with

tan 2θ ¼ λv2

M2
1 −M2

3

; ð34Þ

M2
� ¼ M2

1 þM2
3

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 −M2
3Þ2 þ λ2v4

q
; ð35Þ

where θ is the mixing angle, M� are masses of states S�
with Q ¼ 1=3, and M1 and M3 are masses of S1 and S3
multiplets, respectively, for λ ¼ 0. Note that S4=33 and S−2=33

have a common mass M3 regardless of the mixing.
We switch on yS31 and y

S
32 [as given in Eq. (31)] as well as

yR31 and yR32 [as defined in Eq. (3)] and work in the down-
type quark mass-diagonal basis to find that the general
formula for Δal, l ¼ 1, 2 ¼ e, μ in this mixed sce-
nario reads

Δal ¼ −
3m2

l

8π2

�
1

3M2
3

jyS3lj2 −
1

12M2
−
½jyR3lj2s2θ þ jyS3lj2c2θ� −

1

12M2þ
½jyR3lj2c2θ þ jyS3lj2s2θ�

þ mt

ml
Re½ðV�ySÞ�3lyR3l�

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþt

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−t

��	
: ð36Þ

If we take all of the Yukawa couplings to be real and keep only the chirality-enhanced terms, we get that

Δal ¼ −
3mtml

8π2
yR3ly

S
3l

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþt

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−t

��
; ð37Þ

and

Brðμ → eγÞ ¼ τμαm3
μ

4

9m2
t

ð16π2Þ2 ðjy
R
32y

S
31j2 þ jyR31yS32j2Þ

×

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþt

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−t

��
2

: ð38Þ

If we furthermore define x ¼ yR31=y
R
32 and rewrite

Brðμ → eγÞ in Eq. (38) using Eq. (37), we find that

Brðμ → eγÞ ¼ τμαm3
μ

16

�
Δa2e
m2

e

1

x2
þ Δa2μ

m2
μ
x2
�
: ð39Þ

This expression is identical to the one for the S1 scenario
with the top-quark loops and accordingly yields the
same minimal value for Brðμ → eγÞ as given in
Eq. (14). Since we obtain the same end result if we work
in the up-type quark mass-diagonal basis we conclude that
the S1 & S3 scenario with the top-quark loops is not
adequate for the simultaneous explanation of the Δae
and Δaμ shifts. What we effectively have in both bases
is that a single source of new physics simultaneously

couples to the muon–top-quark and electron–top-quark
pairs. It is thus not surprising that we obtain the effective
field theory approach results of Ref. [15]. The value for
ðBrðμ → eγÞÞmin that we quote in Table I for this particular
S1 & S3 scenario reflects this fact.

2. S1 & S3 with the top- and charm-quark loops

In order to investigate the viability of the S1 & S3
scenario when the chirality-enhanced shift in ðg − 2Þμ is
generated with the top-quark loops and the shift in ðg − 2Þe
is due to the charm-quark loops, we switch on yS21 and yS32
[as given in Eq. (31)] as well as yR21 and yR32 [as defined in
Eq. (3)] and work in the down-type quark mass-diagonal
basis to find that
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Δal ¼ −
3m2

l

8π2

�
1

3M2
3

jySqlj2 −
1

12M2
−
½jyRqlj2s2θ þ jðV�ySÞqlj2c2θ�

−
1

12M2þ
½jyRqlj2c2θ þ jðV�ySÞqlj2s2θ�

þ mq

ml
Re½ðV�ySÞ�qlyRql�

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþq

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−q

��	
; ð40Þ

where for index l ¼ e ¼ 1 one needs to set q ¼ c ¼ 2, while for l ¼ μ ¼ 2 one needs to set q ¼ t ¼ 3 when and where
appropriate. If Yukawa couplings are real and if we omit subleading terms, Eq. (40) translates into

Δae ¼ −
3memc

8π2
VcsyR21y

S
21

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþc

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−c

��
; ð41Þ

Δaμ ¼ −
3mμmt

8π2
VtbyR32y

S
32

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþt

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−t

��
: ð42Þ

The branching ratio for μ → eγ is

Brðμ → eγÞ ¼ τμαm3
μ

16

9s22θ
ð16π2Þ2

�
m2

t jVtsyS21y
R
32j2

�7
6
þ 2

3
ln xþt

M2þ
−

7
6
þ 2

3
ln x−t

M2
−

�
2

þm2
cjVcbyS32y

R
21j2

�7
6
þ 2

3
ln xþc

M2þ
−

7
6
þ 2

3
ln x−c

M2
−

�
2
	
: ð43Þ

Finally, the combination of Eqs. (41), (42), and (43)
yields

Brðμ → eγÞ ¼ τμαm3
μ

16

�
Δa2e
m2

e

B̃
x2

jVtsj2
jVcsj2

þ Δa2μ
m2

μ

x2

B̃

jVcbj2
jVtbj2

�
;

ð44Þ

where x ¼ yR21=y
R
32 and

B̃ ¼ m2
t

m2
c



7
6
þ2

3
ln xþt

M2
þ

−
7
6
þ2

3
ln x−t

M2
−

�
2



7
6
þ2

3
ln xþc

M2
þ

−
7
6
þ2

3
ln x−c

M2
−

�
2
: ð45Þ

Even though the expression for Brðμ → eγÞ exhibits
dependence on the scale of new physics, the minimal
attainable value ðBrðμ → eγÞÞmin does not and is equal to
the value already quoted in Eq. (20). Clearly, this particular
S1 & S3 scenario, when yS21, yS32, yR21, yR32 ≠ 0, fails to
pass the μ → eγ test since the fact that we work in
the down-type quark mass-diagonal basis generates the

CKM-matrix-induced coupling between the Q ¼ 1=3 lep-
toquark, a top quark, and an electron.
The situation changes drastically if we work in the up-

type quark mass-diagonal basis with the same Yukawa
ansatz. This time around the μ → eγ signature is com-
pletely absent since the switch to that basis would corre-
spond to setting jVtsj ¼ jVcbj ¼ 0 in Eq. (43). We
accordingly quote ðBrðμ → eγÞÞmin ¼ 0 in Table I for this
particular S1 & S3 scenario when the shifts in ðg − 2Þμ and
ðg − 2Þe are generated via the top-quark and charm-quark
loops, respectively. Note that the S4=33 state couples simul-
taneously to the muon–bottom-quark and electron–bottom-
quark pairs and could thus generate bottom-quark-mediated
μ → eγ loops. It turns out that these contributions to μ →
eγ are completely negligible within this particular Yukawa
ansatz. What thus remains to be analyzed is whether this
scenario is also consistent with all other flavor and collider
physics constraints. We address this question in what
follows.
The relevant expressions for Δae and Δaμ are

Δae ¼ −
3memc

8π2
yR21y

S
21

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþc

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−c

��
; ð46Þ

Δaμ ¼ −
3mμmt

8π2
yR32y

S
32

�
s2θ
2M2þ

�
7

6
þ 2

3
ln xþt

�
−

s2θ
2M2

−

�
7

6
þ 2

3
ln x−t

��
; ð47Þ

DORŠNER, FAJFER, and SAAD PHYS. REV. D 102, 075007 (2020)

075007-8



while the flavor constraints that we take into consideration
are K0

L → π0νν, Kþ → πþνν, B → K�νν, Bb=s → lþl0−,
Bþ → πþlþl0−, Bþ → Kþlþl0−, Kþ → πþlþl0−, K0

S →
π0lþl0−, K0

L → π0lþl0−, K0
L → lþl0−, B0

s − B̄0
s , B0

d − B̄0
d,

K0 − K̄0, and Z → lþl−. What we find is that this scenario
is ruled out, at the 1σ level, by the interplay between the
limits that originate from K0

L→e�μ∓, Z→ lþl−, l¼ e, μ,
and the LHC data, as we show next.
Let us start with the K0

L → e�μ∓ constraint. The
associated decay width is [49]

Γ ¼ 1

64π3
α2G2

Ff
2
K

m3
K

jVtbV�
tsj2η1=2ðmK;me;mμÞ

× f½m2
K − ðme þmμÞ2�ðme −mμÞ2jC9j2

þ ½m2
K − ðme −mμÞ2�ðme þmμÞ2jC10j2g; ð48Þ

where

η1=2ðmK;me;mμÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

K − ðme −mμÞ2�½m2
K − ðme þmμÞ2�

q
; ð49Þ

jC9j2 ¼ jC10j2 ¼
π2v4

α2jVtbV�
tsj2

jgj2; ð50Þ

g ¼ ðVTySÞ�seðVTySÞdμ þ ðVTySÞ�deðVTySÞsμffiffiffi
2

p
M2

3

: ð51Þ

The branching ratio for the K0
L → e�μ∓ process, for

me ¼ 0, is thus predicted to be

BrðK0
L → e�μ∓Þ ¼ τKf2K

128πm3
K

m2
μðm2

K −m2
μÞ2

M4
3

× jðVTySÞ�seðVTySÞdμ
þ ðVTySÞ�deðVTySÞsμj2: ð52Þ

The current experimental limit BrðK0
L → e�μ∓Þexp < 4.7×

10−12, combined with fK¼161MeV, mK¼497.116MeV,

and τK ¼ 7.77632 × 1016 GeV−1, then yields the following
limit on the Yukawa couplings of the S3 leptoquark to the
left-chiral leptons:

jyS21yS32j < 5.144 × 10−4
�

M3

1 TeV

�
2

: ð53Þ

Simply put, the K0
L → e�μ∓ and the current LHC data

on the leptoquark searches imply that the product of the
left-chiral couplings should be rather small. The need
to generate substantial shifts of ðg − 2Þe and ðg − 2Þμ, as
given in Eqs. (46) and (47), consequently requires the
S1 couplings to the right-chiral leptons to be large. But,
the largeness of these couplings is in tension with the
Z → lþl− data, as we show next.
Namely, following Ref. [50], we parametrize the relevant

interactions of the Z boson with

δLZ→ll0
eff ¼ g

cos θW

X
f;i;j

f̄iγμðgijLPL þ gijRPRÞfjZμ; ð54Þ

where gijL and gijR measure the strength of interaction
between the Z boson and the left- and right-chiral fermions,
respectively. Since in our case the S1 leptoquark couples
purely to the right-chiral leptons, the current experi-
mental limits on Z → eþe− and Z → μþμ− [51] provide
the following constraints, at the 1σ level, on the shift of gijR
with respect to the SM value:

Re½δgeeR � ≤ 2.9 × 10−4; Re½δgμμR � ≤ 1.3 × 10−3: ð55Þ

The exact expressions for δgllR , l ¼ e, μ, are

δgeeR ¼ 1

16π2
xþZw

þ
cewþ�

ce

�
guR

�
ln xþZ − iπ −

1

6

�
þ glR

6

�

þ 1

16π2
x−Zw

−
cew−�

ce

�
guR

�
ln x−Z − iπ −

1

6

�
þ glR

6

�
;

ð56Þ

δgμμR ¼ 3

16π2
wþ
tμw

þ�
tμ

�
ðguR − guLÞ

xþt ðxþt − 1 − ln xþt Þ
ðxþt − 1Þ2 þ xþZ

12
FRðxþt Þ

�

þ 3

16π2
w−
tμw−�

tμ

�
ðguR − guLÞ

x−t ðx−t − 1 − ln x−t Þ
ðx−t − 1Þ2 þ x−Z

12
FRðx−t Þ

�
; ð57Þ

where wþ
ql¼ðcθyRÞql, w−

ql ¼ ðsθyRÞql, and x�Z ¼ m2
Z=M

2
�,

while the function FRðxÞ is given in Ref. [50].
For example, if take M1 ¼ M3 ¼ 1 TeV and λ ¼ 3, the

inferred 1σ limits are yR21 ≤ 2.67 and yR32 ≤ 1.33. Once
again, these limits would turn out to be a rather constraining

factor for the S1 & S3 scenario. We accordingly present in
Fig. 1 the interplay between the K0

L → e�μ∓ and Z →
lþl− constraints. The left panel of Fig. 1 shows the
available parameter space for the left-chiral couplings of
the S3 leptoquark if we demand that the ðg − 2Þe;μ
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discrepancies are addressed at the 1σ or 2σ level, as
indicated, for two different leptoquark mass inputs. The
choice M1 ¼ M3 ¼ 1.2 TeV is not realistic in view of the
latest LHC data on the leptoquark searches but we choose
to show it in order to illustrate the mass dependence of our
results. Note that in the S1 & S3 scenario that we consider
there are four physical leptoquarks, three of which can
decay into charged leptons. The two Q ¼ 1=3 states decay
into tμ and ce pairs, whereas the Q ¼ 4=3 state can
primarily decay into bμ, be, and se pairs. We find that
the most relevant bounds on the leptoquark masses come
from the direct searches for scalar leptoquark pair produc-
tion at the LHC via the final states that feature tμ or bμ
pairs. For example, the current limits on the mass MS of
the scalar leptoquark S are MS ≳ 1470 GeV and MS ≳
1400 GeV for BðS → tμÞ ¼ 1 [52] and BðS → bμÞ ¼ 1
[53], respectively. Since we have multiple leptoquarks that
decay into the same final state we use the approach
advocated in Ref. [53] to deduce that the conservative
mass limit on scalar leptoquarks in the S1 & S3 scenario is
MS ≳ 1.6 TeV. Note that the actual branching ratios for
the leptoquark decay channels vary as one moves within the
ðg − 2Þe;μ preferred Yukawa parameter space, hence the
need for the conservative limit on the leptoquark masses.
TheM1 ¼ M3 ¼ 1.6 TeV input that we use is thus realistic
with respect to the LHC data but it is viable only at the 2σ
level when it comes to the flavor physics constraints. For
both mass inputs, we take the maximal value for the mixing
parameter λ, as allowed by the perturbativity arguments,
to maximize the impact of the S1 & S3 scenario on the
ðg − 2Þe;μ discrepancies. The right panel of Fig. 1 shows the
corresponding parameter space for the right-chiral cou-
plings of the S1 leptoquark. Clearly, there is only a small
part of parameter space that passes the Z → μþμ− con-
straint at the 2σ level for the M1 ¼ M3 ¼ 1.6 TeV input.
Note that the perturbativity limit on yR21, i.e., jyR21j ≤

ffiffiffiffiffiffi
4π

p
, is

stronger than the Z → eþe− constraint in that particular
leptoquark mass scenario.
To conclude, the interplay between K0

L → e�μ∓ and
Z → lþl− practically precludes a combined explanation of
the ðg − 2Þe;μ discrepancies at the 1σ level for the realistic
input for the leptoquark mass spectrum.We have performed
our analysis assuming that all of the Yukawa couplings as
well as the CKM matrix elements are real, for simplicity.
Also, the S1 & S3 scenario might leave an imprint on the
h → μþμ− process, as discussed recently in Ref. [54], but
this type of analysis also depends on additional terms in the
Lagrangian that are not featured in our manuscript and we
accordingly opt not to perform it.

3. R2 & R̃2 with the top- and bottom-quark loops

We consider the R2 & R̃2 scenario when ðg − 2Þμ is
addressed via the top-quark loops and with Yukawa
couplings of the R5=3

2 state, while the ðg − 2Þe discrepancy
is addressed with the bottom-quark loops and with Yukawa
couplings that are associated with the mixture of the R2=3

2

and R̃2=3 states. The relevant parts of the Lagrangian that
did not appear in the preceding sections are

L ⊃ −ỹLijd̄RiR̃2iσ2LLj
− λðR†

2HÞðR̃T
2 iσ2HÞ þ H:c:; ð58Þ

where d̄Ri are the right-handed down-type quarks and λ is a
dimensionless coupling.
The Yukawa couplings of the R̃2 charge eigenstate com-

ponents, in the mass eigenstate basis for the SM fermions,
are

LR̃2
¼ −ðD†

Rỹ
LELÞijd̄RilLjR̃

2=3
2

þ ðD†
Rỹ

LNLÞijd̄RiνLjR̃−1=3
2 þ H:c: ð59Þ

FIG. 1. The available parameter space for the left-chiral couplings of S3 (left) and the right-chiral couplings of S1 (right) with respect to
the K0

L → e�μ∓ and Z → lþl− constraints for two different inputs for the leptoquark masses. The ðg − 2Þe;μ discrepancies are
addressed at the 1σ or 2σ level, as indicated.
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We judiciously switch on ỹL31 in Eq. (58) and yL32, y
R
31, and

yR32 in Eq. (21) to generate the loops of interest in the down-

type quark mass-diagonal basis. Note that R2=3
2 needs to

couple to the right-chiral electron and a bottom quark for
the R2 & R̃2 scenario to work. Consequentially, three
Yukawa couplings are associated with R2 and only one
Yukawa is associated with R̃2. The mixed states of electric
charge Q ¼ 2=3 are

R2=3
2 ¼ cθR− − sθRþ; ð60Þ

R̃2=3
2 ¼ sθR− þ cθRþ; ð61Þ

with the mixing angle θ defined via

tan 2θ ¼ λv2

M̃2 −M2
; ð62Þ

and

M2
� ¼ M̃2 þM2

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM̃2 −M2Þ2 þ λ2v4

q
; ð63Þ

where the new physics mass eigenstates, after the mixing
takes place, are R5=3

2 , R�, and R̃−1=3
2 with M ¼ MR5=3

2

,

M� ¼ MR� , and M̃ ¼ M̃R̃−1=3
2

.

For real Yukawa couplings we obtain that

Δae ¼ −
memb

32π2
s2θyR31ỹ

L
31

�
5þ 2 ln xþb

M2þ
−
5þ 2 ln x−b

M2
−

�
;

ð64Þ

Δaμ ¼ −
mμmt

16π2
yR32y

L
32

�
1þ 4 ln xt

M2

�
; ð65Þ

Brðμ → eγÞ ¼ τμαm3
μm2

t

4096π4

×

�����yR31yL32
�
1þ 4 ln xt

M2

�����
2

þ
�
s2θmb

2mt

�
2
����ỹL31yR32

�
5þ 2 ln xþb

M2þ
−
5þ 2 ln x−b

M2
−

�����
2
�
; ð66Þ

where x�b ¼ m2
b=M

2
� and mb is the bottom-quark mass.

If we introduce x ¼ yR31=y
R
32 and rewrite Brðμ → eγÞ in

Eq. (66) using Eqs. (64) and (65), we find that

Brðμ → eγÞ ¼ τμαm3
μ

16

�
Δa2e
m2

e

1

x2
þ Δa2μ

m2
μ
x2
�
: ð67Þ

This expression yields the same minimal value for
Brðμ → eγÞ as given in Eq. (14) that is 8 to 9 orders of
magnitude above the current experimental limit, which
demonstrates that the limit on μ → eγ is an insurmountable
obstacle for this particular scenario.
Note, however, that it is possible to significantly sup-

press the μ → eγ signature within the R2 & R̃2 scenario
with a somewhat special Yukawa ansatz. Namely, if we
work in the up-type quark mass-diagonal basis and we
switch on ỹL31 in Eq. (58) and yL32, y

R
21, and yR32 in Eq. (21),

we can generate the ðg − 2Þe;μ loops of interest but with the
μ → eγ signature being generated only via the bottom-
quark mediation. The relevant expressions for Δae, Δaμ,
and Brðμ → eγÞ are

Δae ¼ −
memb

32π2
s2θVcbyR21ỹ

L
31

�
5þ 2 ln xþb

M2þ
−
5þ 2 ln x−b

M2
−

�
;

ð68Þ

Δaμ ¼ −
mμmt

16π2
yR32y

L
32

�
1þ 4 ln xt

M2

�
; ð69Þ

Brðμ → eγÞ ¼ τμαm3
μ

4096π4

�
s2θmb

2

�
2
����VtbỹL31y

R
32

�
5þ 2 ln xþb

M2þ

−
5þ 2 ln x−b

M2
−

�����
2

: ð70Þ

To obtain ðBrðμ → eγÞÞmin we first combine Eqs. (68)
and (70). This yields

Brðμ → eγÞ ¼ τμαm3
μ

16m2
e

jVtbj2
jVcbj2

jyR32j2
jyR21j2

jΔaej2; ð71Þ

where the minimum for Brðμ → eγÞ is obtained if we
maximize yR21 and minimize yR32. If we accordingly set
yR21 ¼ yL32 ¼

ffiffiffiffiffiffi
4π

p
and insert Eq. (69) into Eq. (72), we

finally get that

ðBrðμ → eγÞÞmin ¼ τμαm3
μπ

2

m2
em2

μm2
t

jVtbj2
jVcbj2

jΔaeΔaμj2
ð1þ 4 ln xtÞ2

M4;

ð72Þ

where againM is the mass of R5=3
2 . For example, if we take

M ¼ 1.6 TeV we obtain a ðBrðμ → eγÞÞmin that exceeds
the current experimental limit by 3 orders of magnitude.
Note that Eq. (72) is valid up to roughly M < 160 TeV
since we demand that yR32 remains perturbative at all times.
It is ðBrðμ → eγÞÞmin, as given in Eq. (72), that we quote in
Table I.
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III. CONCLUSIONS

We investigated all possible ways to simultaneously
address discrepancies between the observed values of the
electron and muon anomalous magnetic moments and the
SM theoretical predictions with the new physics scenarios
that introduce one or, at most, two scalar leptoquarks. We
provided a classification of these scenarios in terms of their
ability to satisfy the existing limits on the branching ratio
for the μ → eγ process. In order to be of the correct strength
the chirality-enhanced ðg − 2Þe loops could be due to the
top-quark, charm-quark, or bottom-quark propagation,
while the ðg − 2Þμ loops should be generated solely through
the top-quark propagation. The simultaneous explanation
of the discrepancies, on the other hand, coupled with the
current experimental data, requires that the ðg − 2Þe loops
are exclusively due to the charm-quark propagation. If the
ðg − 2Þe loops are due to the top (bottom) quark propaga-
tion the predicted minimal value for the μ → eγ branching
ratio exceeds the associated experimental limit by approx-
imately 9 (3) orders of magnitude. The scenarios we
considered require at least four Yukawa couplings to be
switched on in order to generate the aforementioned loops,

where one pair feeds into the electron anomalous magnetic
moment and the other pair into the muon one.
There are only three particular scenarios that can pass the

μ → eγ test and create a large enough impact on the
ðg − 2Þe;μ discrepancies when the new physics is based
on the SM fermion content. These are the S1, R2, and S1 &
S3 scenarios, where the first two are already known to be
phenomenologically viable candidates with respect to all
other flavor and collider data constraints. We have shown
that the third scenario—where the right-chiral couplings to
leptons are due to S1, the left-chiral couplings to leptons are
due to S3, and the two leptoquarks mix through the SM
Higgs field—cannot simultaneously address the ðg − 2Þe;μ
discrepancies at the 1σ level due to an interplay between
K0

L → e�μ∓, Z → eþe−, and Z → μþμ− data despite the
ability of that scenario to avoid the μ → eγ limit.
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