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Visualizing resonances in finite volume
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In present work, we explore and experiment with an alternative approach to studying resonance
properties in a finite volume. By analytic continuing the finite lattice size L into a complex plane, the
oscillating behavior of the finite volume Green’s function is mapped onto an infinite volume Green’s
function that is corrected by exponentially decaying finite volume effect. The analytic continuation
technique thus can be applied to study resonance properties directly in finite volume dynamical equations.
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I. INTRODUCTION

The Dalitz plot is a powerful tool in particle physics to
extract information from processes involving three-particle
final states. For instance, the u- and d-quark mass differ-
ence can be extracted by the Dalitz analysis of n — 37
[1-7]. Since many resonances emerge in few-hadron
systems, the Dalitz plot also plays an important role in
the study of resonance dynamics from experimental data,
e.g., the coupled-channel analysis of p and K* resonances
dynamics in [8,9].

On the theory side, lattice quantum chromodynamics
(LQCD) has been one of the promising ab initio methods to
provide understanding of few-hadron dynamics from the
Standard Model. In past few years, many progresses have
been made in LQCD calculations towards understanding
multihadron systems [10-27]. However, LQCD normally
puts out discrete energy spectra of few-hadron systems,
because of the finite volume inherent to the method, rather
than reaction amplitudes, which are needed to generate the
Dalitz plot. Lattice QCD calculations are usually performed
with the spatial periodic boundary condition. In the two-
body sector, connections between infinite-volume reaction
amplitudes and energy levels in a cubic box under periodic
boundary condition can be constructed in a compact and
elegant equation, normally referred as the Liischer formula
[28], and it has since been extended to cases including
moving frames and coupled channels [29-39].
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Various approaches to finite-volume three-particle dyna-
mics exist [40-69], such as the relativistic all-orders
perturbation theory [45—49], the effective theory based
approach [40—42,50,51,70], and the Faddeev type equation
based variational approach [65-69]. As pointed out in
Ref. [71], though the quantization conditions are formu-
lated in different ways depending on a specific approach,
all approaches share the same strategy and similar features.
The infinite-volume reaction amplitudes are in fact not
directly extracted from lattice data. Only subprocess
interactions or associated subprocess amplitudes are
obtained from the quantization condition, and the total
infinite volume reaction amplitudes have to be computed in
a separate step. Two-step procedures seem like a compro-
mise solution, and one may hope to have an ultimate
formalism that grants the user direct access to infinite-
volume reaction amplitudes from the LQCD energy levels,
independently of interhadron interaction models. But
deriving such relations beyond two-body systems poses
great challenges. With two-step procedures, the finite-
volume and infinite-volume physics can be dealt separately,
eventually linked by interhadron interactions at one’s
proposal. Therefore, the quantization condition is free of
infinite-volume reaction amplitudes, and it is more straight-
forward to implement in the practical data analysis of the
LQCD results. The model dependence of the interhadron
potential can be assessed by how well it fits to the LQCD
energy levels. However, scattering observables, such as the
Dalitz plot, must be computed in a separate step.

In the present work, we aim to explore and experiment
with an alternative approach by fully taking advantage of
Faddeev type integral equations in a finite volume. By the
analytic continuation of a box size L into a complex plane,
the mapping relation of a finite volume Green’s function in
different energy domains can be established as the conse-
quence of global spatial symmetry. Therefore, in a finite
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volume, L may be used as a tunable parameter to turn an
oscillating finite volume Green’s function into the infinite
volume Green’s function with some exponentially decaying
finite volume corrections. Hence, the resonance shows up
as a peak as well in finite volume scattering amplitudes,
even for small L values.

The paper is organized as follows. The analytic con-
tinuation technique is explained and demonstrated in Sec. II
with the one-dimension case. We summarize the findings in
Sec. III.

II. ANALYTIC CONTINUATION OF FINITE
VOLUME AMPLITUDES

The finite-volume Green’s function is qualitatively
different from its infinite-volume counterpart in that one
has poles in the complex energy plane corresponding to
discrete levels, and the other has branch cuts corresponding
to a continuous spectrum. So a very large cubic box must be
used if one would like to approximate scattering states in
finite volume. However, as we will show in this section, if L
is analytically continued to its complex plane, finite-
volume amplitudes can resemble quite well the actual
reaction amplitudes, even for relatively small values of
L. To keep the technical discussion at a manageable level,
our presentation in what follows will be only limited to a
nonrelativistic few-body system in one-dimensional space.
The physical application of such a technique, such as the
Dalitz plot of n,# — 3z, will be presented in a sepa-
rate work.

A. Finite volume amplitude and Liischer formula

Let us start the discussion with two-body interactions in
finite volume. One of the major tasks of investigating finite-
volume dynamics is to look for the discrete eigenenergies
of few-body systems in a periodic box. These energy
eigenstates are stationary and are described by a homo-
geneous Lippmann-Schwinger (LS) equation in the two-
body case,

¢L(E) = GL(E)V¢L(E)v (1)

where G; and ¢; stand for the finite volume Green’s
function and wave function, respectively, and V denotes the
interaction potential of particles. Equivalently, the homo-
geneous LS equation can be rewritten as

tL(E) = VGL(E)t,(E), (2)
where
1L(E) = =V, (E).

The energies of stationary states are those letting the
following determinant vanish:

det[I - VG,(E)] =0, Ee{E,....E,...}. (3)
It is useful to introduce an operator 7; (E) that satisfies

the inhomogeneous LS equation,
7 (E) = =V + VGL(E)7, (E). (4)

The solution of Eq. (4) is symbolically given by
o (E) = -1 (5)
v

which will be used in the three-body finite-volume LS
equations. The poles of the 7;(E) amplitude also yield
eigenenergy solutions of a stationary state of the few-body
finite volume system, which is consistent with the quan-
tization condition given by Eq. (3).

The matrix element of 7, (E) between two plane waves
defines the finite-volume transition amplitude, which could
be on shell or off shell. Using 1D as the example, the off
shell finite-volume amplitude in the plane wave basis is
given by

1 (ks B k) = (klz (E)[K), (6)

where
2nn
(k, k/) (S T, and n € Z. (7)

Equation (4) thus yields

(kG EK) = =V(k—K)
+ > Vlk=p)G(p: E)er(ps E;K),  (8)

where the two-body finite-volume Green’s function in the
center of mass (CM) frame is given by

1
- LmE - p*’

G.(p;E) 9)

Equation (8) resembles the LS equation in an infinite

volume for scattering states, hence discrete (K, k) # vV/mE
may be interpreted as off shell incoming and outgoing
momenta, respectively.

Considering the short-range interaction approximation,
V(k—k)~V(0)=V, the solution to Eq. (8) is thus
dominated primarily by diagonal terms of off shell ampli-
tudes, 7, (k; E; k) ~ 7, (E), which are normally also referred
to as on shell approximation; see Refs. [31,72]. Hence,
Eq. (8) is reduced to a algebra equation, and the solution is
given by
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1

() =10 (10)
g L—G.(0.E)
where
vVmE
1 1 cot L
G.(0,E) =— § = i 11
H08 Lp=2”T”.nesz_p2 2vmE o

The potential term % is related to the scattering phase shift

and infinite volume Green’s function,

%: —2\/1’_71_E.[c0t6(E) —i]+Gw(0,E),  (12)

where

dp 1 B i
2rmE — p*>  2/mE'

Thus, Eq. (10) can be rewritten in the form that is associated
to the Liischer formula,

G (0,E) = (13)

1 1
" 2/mEcot3(E) — M, (E)’

where M, (E) is Liischer’s zeta function,

7. (E) (14)

ML(E) =i+ 2VmE[G,(0,E)—G.(0,E)].  (15)
The pole of 7; (E) yields the Liischer formula,
cot§(E) = M (E) = 0. (16)

Although the expression of 7;(E) in Eq. (10) has a
similar structure as its infinite volume counterpart, the on
shell two-body scattering amplitude,

1 1 1

7o (E) = " L-GL(0.E)  2y/mEcots(E) —i’

(17)

7, (E) and 7. (E) behave significantly different due to
superficially divergent analytic appearance of finite volume
and infinite volume Green’s functions. In finite volume,
G (0,E) is a periodic oscillating real function, compared
with the infinite volume counterpart G (0, E), which
is purely imaginary. The difference between G, (0, E)
and G, (0,E) may be understood from the analytic
properties of Green’s functions; in infinite volume,
Green’s function is determined by the branch cut lying
on positive real axis,

1
1 o Vg
%mm_%Adw——< (18)

mE — s’

ReG.(0,E)
1.0

FIG. 1. The comparison of G, (0,E) and G (0, E) with the
complex argument mE + ie, where ¢ = 0.1 and L = 10 (blue),
100 (black), and oo (red).

For the values of mE taken slightly above the real axis by
mE + ie, the principle part of the above interaction vanishes;
only the absorptive part survives and that yields the
imaginary part — Z\/ﬁ However, in finite volume, the

branch cut dissolves into discrete poles lying on the real
axis; therefore, for the values of mE not overlapping with
pole positions, only the principle part contributes. It is also
interesting to see that for finite ie, both G;(0,E) and
G (0,E) becomes complex, and the sharp oscillating
behavior of G (0, E) is smoothed out and starts matching
with G (0, E) when L > 1/+/€; see Fig. | as a example. In
other words, as € —» 0, 7, (E) and 7,(E) indeed behaves
significantly different for finite L, and 7, (E) — 7, (E) only
when L — oo. Therefore, 7, (E) for finite L normally are not
considered as a useful tool for the identification of a sharp
resonance that on the contrary appears as a peak in 7, (E).

Next, we will explain how the analytic continuation
technique may allow one to have finite volume amplitude
that resembles the behavior of an infinite volume amplitude
for even finite L and real mE values with € — 0. It turns out
that the analytic continuation technique is the direct
consequence of the global symmetry of Green’s function
in complex space.
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B. Global symmetry and analytic continuation
of Green’s function

Using again a 1D nonrelativistic few-body system as an
example, in infinite volume, a two-body Green’s function
satisfies

<mE + j—;> Goo(x. E) = 6(x), (19)

where the physical value of the position x is defined on a
real axis. Now, let us extend x to the complex plane by
multiplying a phase factor e,

x — xe'?,

where 6 € [0, z]. We remark that the method of extension
of x to complex plane is also known as the complex scaling
method in nuclear and atomic physics; see Refs. [73—75]. In
complex space, Eq. (19) yields

<mEei29 + %) (679G (xe? E)] = 5(x). (20)

One can conclude that the Green’s function equation is
invariant under the global rotation of space in a complex
plane, and e G (xe' E) is related to the solution of

Eq. (19) on a real axis with the eigenenergy of mEe'??;
hence,
Gy (xe E) = G (x, Ee™). (21)
For 6 = %; thus,
G (0,E) =iG,(0,—E). (22)

This is indeed consistent with the analytic expression in
Eq. (13). That is to say that the Green’s function in a
physical region (E > 0) is mirrored to an unphysical region
(E < 0) by Eq. (22) as the consequence of global spatial
symmetry. In infinite volume, E is the only tunable
parameter in G (0, E) that can be used to cross from
physical region to unphysical region or vice versa.

The finite volume two-body Green’s function is given by

= 8(x+nL). (23

nez

<mE—|—6;£>GL (x,E)

Similarly, we want to extend the finite system to the
complex plane by a global spatial rotation, x — xe’® and
also L — Le'; thus, we find

25 (x+nL).

nez

E 20 d_Z —10G
mkre +dx2 [ Lelé‘

(24)

Equation (24) yields a useful relation,
G, ,0(0,E) = G (0, Ee™?). (25)

A key observation is that because of the extra tunable
parameter L in a finite volume, now, Eq. (25) allows one to
navigate freely between the physical and unphysical
regions of a finite volume Green’s function with a fixed
value of E.

It is also worth noting that though G, (0,E) and
G (0,E) are significantly different for E > 0 with finite
L, below the physical threshold (£ < 0),

C oth VImEIL |mE|L

Nk

infinite volume counterpart
as increasing L, due to the fact

G (0,E<0)= (26)
quickly approaches its

G(0,E<0)= _2\/Tm—E\
that

VmE oo
cothTL—1+2e VIREL 4 e=2VmEL 1 TS (27)

Now, using relation in Eq. (25), simply rotating L — iL, we
find

coth =3 Er vmE
G (0,E) = —i——2 " — G_(0,E)coth Y= L.
Nnﬁ 2

(28)

Therefore, in the physical region E > 0, G;; (0, E) behaves
just as G (0, E) with exponential decaying corrections due
to the finite volume effect; see Fig. 2.

C. Resonance in iL space

With the continuation L — iL, the finite-volume on shell
amplitude,

1 1
o 2\/mECOt5(E) - M1L<E) ’

approximates very well 7., (E) in the physical region of E,

TiL(E)

(29)

differing only by powers of e~V™EL,

L—oo

M (E)=i(1 42 VmEL £ 2p=2VmEL )25 (30)
We will illustrate how this helps identify resonances as a
peak of 7;; (E), just as in the infinite-volume case.

We propose a resonance model by replacing V by

9p

V T~ N\
" 0+m(E—mp)
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G(0,E)

— ReGL(0,E)

----- ImGo(0,E) ===== ReGu(0,E)
G(0,E)

J

= ImGir(0,E)

----- IMGo(0,E) ===== ReG.(0,E)

FIG. 2. Plot of ReG, (0, E) (black solid) and ImG,; (0, E) (red
solid) with L=10 vs ImG4(0,E) (dashed green) and
ReG, (0, E) (dashed magenta).

where g, and m,, are the coupling constant and mass of the
resonance, respectively, and mV, can be used to para-
metrize the background contribution. The infinite-volume
scattering amplitude is thus given by

, (31)

1 + i
mVot+——=—  2vVmE

m( E m/,)

to be compared with the analytically continued finite-
volume amplitude,

(res) 1
iy (E) = - p —_— (32)
gf —+ 2@ COthTL

The comparison of 7o (E) and 7;; (res) (E) for a resonance
model is plotted in Fig. 3.

In infinite volume, the resonance pole position is
given by

10f
osl
L L L - mE
L 0.1 0.2 0 04 05 0.6
05|
—_ T ===—- Too
FIG. 3. The comparison of szeb 0)( 0,E) (solid black) and

Tgfs’o) (0,E) (dashed red) with L =10, mV, =0, g, = 0.04,
and mm, = 0.3.

1 i
+
» 2vVmE

9,
mVO + m(Efm

=0, (33)

and in finite volume, the pole position of 7"

shifted,

(E) is

1 n .coth—”z"EL 0 (34)
i =0.
mVy + (ngm/,) 2vVmE

Figure 4 depicts the resonance pole of 1, o (E) for various

values of L and the pole of ) (E (E). Tt shows clearly how

rapidly the finite-volume pole approaches its infinite-
volume limit.

-0.05 »
-0.10 »
-0.15 »

-0.20 -

IR SN SN S T S SN SN S T SN SN ST SN SN S S T SN S SR T S
0.50 0.55 0.60 0.65 0.70 0.75

FIG. 4. The trajectory of the resonance pole position as the
function of L with the parameters of a resonance model:
mVy =0, g, =0.04, and mm, = 0.3. An arrow indicates in-
creasing L direction.
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D. Inhomogeneous three-particle Faddeev
type equation in finite volume

The idea presented in previous sections can now be
applied into three-body systems. In finite volume, the
stationary solutions of a three-body system may be
described by an homogeneous Schrodinger equation,

@, =GL(E)(Vip + Vo3 + V3y)®p, (35)

where the subscript of V5 is used to describe the interaction
among different pairs. The Eq. (35) can be converted into
homogeneous Faddeev type coupled dynamical equations;
see [66—69]. In a simple case with three identical particles
interacting through only a pairwise interaction, only one
dynamical equation is required; symbolically, it is given by

GL(E)T.(E). (36)

where T, (E) = —V®,(E) stands for the finite volume
Faddeev three-body amplitude. Homogeneous Egs. (36)
or (35) thus yield the quantization condition,

2

det || —————
v —GL(E)

G,(E)| =0, (37)

which determines the discrete eigenenergy of stationary
solutions that satisfies the periodic boundary condition in a
finite volume. In addition to establishing the quantization
condition and obtaining eigenenergies, the finite volume
wave function may also be computed from the dynamical
equations, Egs. (36) and (35); the technical details of
extracting a few-body finite volume wave function are
presented in Appendix A.

To compare with infinite volume scattering amplitudes,
let us introduce a three-body operator 7 ; (E) that satisfies
the inhomogeneous three-body equation,

1 2
AT A TS

GL(E)TL(E); (38)

the poles of 7, (E) correspond to the stationary solutions
that are also described by the homogeneous equation,
Eq. (36). The off shell finite volume amplitude in a plane
wave basis that resembles the scattering amplitude in
infinite volume may be introduced by

T (ki ko Es K KS) = (ki k| T L (E)|KYKY) L, (39)

where (k;.k,) and (ki,k,) €%n,n € Z represent out-
going and incoming two independent momenta of particles.
While considering only the pairwise contact interaction,
T (ky. ko E; Ky, K)) depends only on a single outgoing
momentum, e.g., in a (13) channel,

T (ky kys Es K KS) = —/ drzdryze~ s gmikars
L

x mVd(ri3)¢r(ri3, ras ki, k)
=T (ko: Es Ky k). (40)
The off shell inhomogeneous three-body LS equation for a
pairwise contact interaction is thus given in a compact

form,

T (kE K, K)

k
=2 () (k|k; K1) ,
~24"(E) > LG (k.p:E)T (p:EsKyL k). (41)
p=22neZ
where
(k|Kiky) = L{Oxx, + Sxk, + Si)- (42)

The three-body finite volume Green’s function is given by

2 1

G(p1: 2 E) :FME——W’ (43)
i=1Pi

and the two-body amplitude T(Lk)(E) in a moving frame is

defined by

1

(k)
7, (E) = — ~
- vy = 22 pLGL(k. piE)
1
o . (44)
L _ CG"@_%L+C<>£@+§L
mV, 4\/mE_%k2

The k and /mE — 2 k* in rik) (E) represent the total and the

relative momenta of the two-particle pair, respectively.
Instead of solving the off shell LS equation, Eq. (41), it
may be more convenient to introduce a half off shell
amplitude that only depends on the outgoing momenta of
particles by the sum over all the initial momenta (k/, k%),

1
T, (E)==——77—> T, (kEK,K); (45)
) = S R, 2 TR

thus, Eq. (41) is converted into

(40)

The 7 ; (k; E) amplitude may be used to describe the decay
process. Equation (46) thus resembles an isobar model in
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the dispersion approach [1,3,5,6,76], where T(Lk) (E) may be
interpreted as a naive isobar pair term, and the second term
in Eq. (46) thus corresponds to the isobar corrections due to
the rescattering effect among different isobar pairs. Just as a
two-body finite volume amplitude, for a finite value of L
and real E, 7 (k; E) is a real and oscillating function that
may not be in the suitable form for the task of the
identification of resonance.

E. Analytic continuation of three-particle Faddeev type
equation in finite volume and solutions in iL space

The inhomogeneous three-body dynamical equation,
Eq. (46), can be analytically continued into iL space as
well,

T (kE)
:TE?(E)_%E?(E) Z (iL)G, (k,p;E)T ;1 (p:E),
P:%.nez
(47)
where
2 1
Gi(p1. P2 E) (iL)2 I ’ )
and
$(E) = - 1 e
1 . coth \/@_7 L +coth \/”E‘—ékZUL
m_VO + l 4\/mE 312

Now, it will be illustrated in what follows that the solution
of Eq. (47), T ;. (k; E), will behave similar to its counterpart
in infinite volume, 7 o (k; E), which is given by

T (k;E)
—(8) -2 (B) [ dp(en)Gunll BT (i)
(50)
where
- 2 1
G P E) = , 51
oo(pl P2 ) (2”)2 2mE — Z?:] pz2 ( )
and
) 1
T (E) = — l (52)

mvg T 2/ mE-32

In addition to finding solutions of Eq. (47) in iL space for
discrete momenta values, Eq. (47) also allows us to

analytically continue the argument k in 7 ;; (k; E) into real
continuous values that can be used to compute a Dalitz
plot etc.

First of all, Eq. (47) can be solved for k € 2’"‘ ,n € Zby
matrix inversion,

leE Z

k

pati (E). (53)

where (k, p) € 22

7. n € Z, and D;; (E) matrix are given by

[Dir(E)] i = 8pi + 200 (E)(iL)Gop (k. pi E). (54)

Next, plugging Eq. (53) into Eq. (47), therefore, the
T (k;E) with a real continuous k argument is now
obtained by

Ti(kE) = 75‘?

(E)gir(k; E), (55)

where

ReT(k;E)
06

0.4
0.2
0.0 5 mE—ZkZ

-0.2

-04

ImT(kE)
1.0
081
0.6
0.4
0.2

0.0

FIG. 5. The comparison of 7 ;; (k; E) (solid black), T(mk (E)
(solid blue), and 7 (k;E) with fixed mE = 0.8, L 10,
mVy =0, g, =0.04, and m, = 0.3.
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ReT(KE)
06¢ mE=0.6
0.4+

T
0.2 M’

0.0

T FRC P
0.4 0.5 0.6 ‘

0.2} / B
-0.4} \,//
----- L=10 ===== 1.=20
----- L=40 mmm== T
ImT(GE)
10}
0.8f
0.6f
0.4}
0.2}
0.0 [===zzamegs
770 .
_____ L=10 ===== [=20
----- L=40 mmm== T,

FIG. 6. The comparison of 7 ;; (k; E) and 7 , (k; E) (blue) with
multiple L’s: L = 5 (pink), 10 (black), 20 (green), 40 (magenta).
Model parameters are fixed with mE = 0.6, mV, = 0, g, = 0.04,
and m, = 0.3.

giL(k§E)
=1-2 Y (iL)Gy(k.p:E)[DF (E)], 7} (E).

(p.p)=%tnez

(56)

The second term in the g;; function describes the correction
to the isobar model from crossed channels due to the
rescattering effect.

Again, with a simple resonance model of a two-body
amplitude by replacement mVy — mV + m and
t®(E) - 7 (E) in both finite and infinite volumes, for
instance,

ReT(k;E)
0.6

04r

27/
0.2 ;‘/‘Vv

0.0 f———

-0.2}

_04F}

ImT(K;E)
1.0 mE=0.8
0.8}
0.6}
0.4f

0.2F

0.0 ==

L TN =memm. [ 3
0.4 0.5 0.6 ‘

FIG.7. The comparison of 7 ;; (k; E) and 7 ., (k; E) (blue) with
a fixed mE = 0.8 and multiple L’s: L =5 (pink), 10 (black),
20 (green), 40 (magenta).

the comparison of numerical solutions of 7 ;; (k; E) given
by Eq. (55), and its counterpart in infinite volume,
7T (ks E), given by Eq. (50), is shown in Fig. 5.

We remark that the cusp effect in 7 ;; (k; E) for areal k is
a pure finite volume artifact; also see Figs. 68 for the plot
of T ;; (k; E) with multiple L’s and mE’s. The finite volume
cusp originates from the analytic continuation of the finite
volume three-body Green’s function with real arguments,

Z (iL)GiL(kv P E)

p=2%.neZ
1 1 1 1
=+ — . (58
iLmE—k2+iL Z mE — p?> — pk — k? (58)

p:%,n;éo

Now, we can clearly see the pole term in a finite volume

Green’s function, ﬁ which appears to cause trouble for

the real k values near =v/mE. In fact, this singular term
shows up in g;; (k; E) that is defined in Eq. (56) as a pole
singularity; however, it also shows up in

gy = _ :
iL _L__Sn€Z (iL)Gyy (k. p; E)

_2
mVo P=it

« (mE — k?)
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FIG. 8. The comparison of 7 ;; (k; E) and 7 ,(k; E) (blue) with
a fixed mE = 0.8 and multiple L’s: L =5 (pink), 10 (black),
20 (green), 40 (magenta).

as zero, see the red dashed curves in Fig. 5. Therefore,
the finite volume three-body amplitude 7 ;. (k;E) =
rgllf) (E)gir(k; E) is free of a singularity in the end.
Although the singularity is canceled out, the finite volume
effect still shows up as a cusp, which is absent in infinite
volume amplitudes. We also notice that the finite volume
cusp is located at k ~ ++/mE, while the location of a two-
body resonance is around mE —3k* ~ mm,. Hence, the
cusp may start interfering with the shape of resonance when
E ~4m,; see Figs. 6-8 as an example.

III. SUMMARY AND DISCUSSION

In summary, we explore and experiment with an alter-
native approach of studying resonance properties in a finite
volume. As the consequence of the global symmetry of a
Green’s function in the complex spatial plane, by analytic
continuation of L into iL, the oscillating behavior of a finite
volume Green’s function can be mapped into an infinite
volume Green’s function with corrections of an exponen-
tially decaying finite volume effect. Using the finite volume
size L as a tuning knob, the finite volume scattering
amplitude may behave similarly to an infinite volume
amplitude in iL space. A cusp in the three-body finite
volume amplitude due to a finite volume effect is also
observed; it may start interfering with and distorting the

shape of a resonance while the total energy E is in certain
range. Nevertheless, the resonance peak is still clearly
visible even in a small box. Hence, the resonance properties
may be computed directly from the finite volume dynami-
cal equations.

The analytical continuation technique presented in the
paper may be useful in visualizing resonances from
finite volume dynamical equations, in processes such as
n,1 — 3z. In order to describe a three-particle resonance, a
three-body short-range interaction must be included as
well. A simple model that may be used to describe a three-
particle resonance is sketched in Appendix B.
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APPENDIX A: MULTIPARTICLE WAVE
FUNCTION IN FINITE VOLUME

The total multiparticle wave function is related to the
total finite volume amplitude by

®, = ~G,(E)TS(E). (A1)

The total amplitude 77 (E) is usually given by the sum of
multiple terms, for instance, in a three-body interaction
with only a pairwise interaction; thus,

TRE) =Y TV(E).  a#p#r. (A2
y=1
where T,Eaﬁ )(E) satisfies coupled homogeneous equations,
such as
(12) 1 (23) (31)
T,7°(E) =———=GL(E)T,7(E)+T; "(E).
L (E) TG.(B) L(E)T(E) + T 7 (E)]

(A3)

For three identical particles, the coupled homogeneous

equations are reduced to Eq. (36) and T<Laﬂ ) (E) =TL(E).
Therefore, finding eigensolutions of a finite volume Faddeev
amplitude becomes a key step for computing the wave
function.

In general, the dynamical equations of finite volume
Faddeev amplitudes may be casted as a matrix equation in a
linear form,
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Ti(E) = ZKI-,,-(E)T;(E), (A4)

where the vector T(E) stands for the energy dependent
amplitude that also depends on the discrete momenta, and
the matrix K(E) represents the energy dependent kernel
function. In a finite volume, due to the periodic boundary
condition, the Eq. (A4) can be satisfied only for some
discrete energies, {E,,...,E,,...}. Equation (A4) has
nontrivial solutions only if

det[I - K(E)] =0, Ee{E,}. (A5)
In order to find the eigenvector solution of Eq. (A4), let us
consider the subtracted equation of Eq. (A4),

T,(E) =T, (E)+ Z[Ki.j(E) - K, ;(E)|T;(E), (A6)

where T, (E) stands for the iyth element of a T(E) vector
we choose for the subtraction. T; (E) may also be used as a
normalization factor and is a constant value for a fixed E.
Hence, the solution of a subtracted Eq. (A6) is obtained by
a matrix inversion,

1

TE) =72 K(E) + Ko(E)

To(E), (A7)

where T(E) = T, (E) vector is a constant for a fixed E,
and [K|; ,(E) = K,  ;(E). The expression in Eq. (A7) is
indeed the eigenvector solution of Eq. (A4) when
Ee{E,}, since T(E,) =K(E,)T(E,) and so is
To(E,) = Ko(E,)T(E,). The subtracted homogeneous
dynamical equations hence can be used to find eigenvector
solutions of finite volume Faddeev type equations.

Next, we will just use a simple example to illustrate the
above described approach. Let us consider three non-
relativistic identical bosons interacting with contact inter-
actions in 1D. The wave function is given in terms of a
finite volume Faddeev amplitude by

$r(ri3.ra3) = —Zeip‘r”eipzrﬁél_(m,P2§E)
pP1.P2

X [TL(pi; E) + TL(p2; E) + To(ps; E)],
(A8)
where (py, p2) €¥n.n € Z, and p; = —p; — p,. r;; are

relative coordinates between ith and jth particles. The
T, (E) satisfies the integral equation,

Ty (ki E) = =22} (E)> LGy (k. p: E)T,(p: E),
P

(A9)

where (k, p) € #n,n € Z. The eigenenergies are obtained
by a quantization condition,

det [5,(.[, —K(k,p;E)] =0, (A10)
where the kernel function is
K(k.p;E) = =22 (E)LG, (k. p:E).  (All)

Once eigenenergies are determined, the eigenvector can be
found by the matrix inversion of the subtracted Eq. (A9),

> e, — Kk, p; E) + K(ko, p; E)T1(p; E) = Tp (ko3 E),

(A12)

where kq is the subtraction point and can be chosen
arbitrarily, and T (ky) may be treated as a normalization
factor.

1. Multiparticle energy spectrum of a resonance model

To make it more interesting, let us propose a resonance
model with the following replacement in the contact
interaction:

g P

mVy—> mVy+
0 0 mE—%kz—mm

. (A13)

where (g, m,,) stand for the coupling constant and mass of
resonance, respectively. Therefore, the two- and three-
particle energy spectrum in the CM frame are determined
by a two-body quantization condition,

1 cot@L
o — =0, (A14)
mVy + m(E—ﬁmp) 2vVmE
and a three-body quantization condition,
1 ) (res,k) E
det |5, + 0 E) o (ars)

ZmE—kz—kp—p2
respectively, where

1

9,
mVO + mE—%kz—mmp

SmE—32—k S E—32 -+
.coth%L + cothmf“ﬂL
i )

4,/ mE —3k*

BT = -

(A16)

The two- and three-particle energy spectra are shown in
Figs. 9 and 10, respectively. The resonance shows up at
the mE,, = 0.3 location and flattens up the curves of
the two-body energy spectrum as the function of L near
mkE,, = 0.3. A similar pattern is observed in the three-body
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FIG.9. The CM frame two particles energy spectrum (solid red)
for a resonance model with parameters: mV, = 0, g, = 0.04, and
mm, = 0.3. The free particles energy spectrum (dashed blue) is

also plotted as a reference with mES = (222, n € 7.

FIG. 10. The CM frame three particles energy spectrum (solid
red) for a resonance model with parameters: mV, = 0, g, = 0.04,
and mm, = 0.3. The free particles energy spectrum (dashed blue)
is also plotted as a reference with mEéifee) =pl+pip2+ P,

(P1.p2) €E¥nez.

energy spectrum; however, the situation in the
three-body sector is slightly more sophisticated. The
energy spectrum of free particles shows the degeneracy
for some levels, such as the blue curve in the middle
that has a double degeneracy for (p;.p,) =2 (1.1) and
(p1,p2) = ZL—”(Z,—l); hence, three blue free three-body
energy spectrum curves in fact represent four energy levels.
The degeneracy in the second and third levels in the middle
is removed by interaction; see the splitting in the two red
curves in the middle of Fig. 10.

2. Three particles wave function of a resonance model

With the resonance model proposed in Sec. A 1, we can
thus apply the technique described previously to compute a

)

"\)“% ‘\,‘ :

<A

“ 5 ‘qg"“\"\ Q“
N

N
i\ | ?M\Y

FIG. 11. Three-body wave function |¢ (r3, r23)|* for a reso-
nance model with parameters: mV, = 0, g, = 0.04, mm, = 0.3,

L =16, and mEj3, = 0.3046 ~ mm,,.

three particles wave function. The three-body finite volume
T; amplitude is solved by matrix inversion and is given by

T(p;E) =) D7 (ko. E)],uTL(kos E),  (Al7)

k

where k is an arbitrary subtraction point, and the D matrix
is given by

Dk,p(kO;E) = Opp — K(k,p;E) + K(ko, p;E).  (A18)
Using T (p; E) as input, the three-body wave function can

be computed by Eq. (A8); see Fig. 11 as an example with
mE5, as a near resonance mass.

APPENDIX B: THREE-PARTICLE
RESONANCE MODEL

In order to describe a three-particle resonance decay or
scattering process, the three-body short-range interaction
must be included. In this section, we present a simple three-
body contact interaction model that may be useful to
describe a process such as # — 3z. When the three-body
short-range interaction is included, all the discussion
presented in Sec. IID must be extended by including a
three-body amplitude 7(3*). Thus, Eq. (38) is replaced by
coupled equations,

TL(E)=1,(E)~1,(E)G,(E)2T L(E)+T{"(E)]. (Bl)

and
b b b
Ti"(E) = " (E) = f" (E)GL(E)ST L (E).  (B2)
where T(L3b) is related to the three-body interaction V,3 by
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1

7# “GE) (B3)

With the same convention, z; is related to the two-body
pairwise interaction V by

1
W) =~ (B4)
Eliminating T(L3h) in Eq. (B1), we thus find
T(E) =7 (E)[1 =G (E)r,” (E)
—7,(E)GL(E)2=37." (E)G,(E)|T(E). (BS)

The quantization condition Eq. (37) is thus replaced by

det [l + 7, (E)G,(E)(2 - 31" (E)G,(E))] = 0,

(B6)
where the three-body term T(L3b)(E) may be modeled to
describe the impact of the three-body resonance to the
spectrum of a three-body system.

In a momentum basis with a short-range three-body
interaction, Eq. (B5) is thus given by

Tu(E) = ()1 - (ZLGLM 5)) &)

TL Z[ZLGL (k, p; E)

p

-3 (ZLGL(k, P E))
x 7y (ZLGLp PiE )}TL(p, E),

(B7)

where

0 (E) = - 1 (B8)

kaGL(k P )

The three-particle resonance may be modeled by replacing
V123 by

MV123

9123
m(E — mm)’

where gj,3 and m 3 represent the coupling strength and
mass of three-body resonance.

mV123 +
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