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In the simulation of QCD with 2þ 1 flavors of Wilson fermions, the positivity of the fermion
determinant is generally assumed. We present evidence that this assumption is in general not justified and
discuss the consequences of this finding.
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I. INTRODUCTION

A widespread choice for lattice QCD simulations is a
setup with two light mass-degenerate quarks to which
a strange quark and possibly a charm quark are added.
The latter two are typically included with algorithms
like the RHMC [1] or the PHMC [2,3], which effectively
take the modulus of the fermion determinant of the strange
and the charm quark. In QCD simulations, it is typically
assumed that the masses of the strange and the charm are
large enough, and that therefore the use of the modulus has
no effect.
In general, chiral symmetry together with γ5-Hermiticity

guarantees the positivity of the fermion determinant for
each flavor, but for Wilson fermions, the explicit breaking
of chiral symmetry makes negative values possible. Thus,
in the absence of further restrictions, there are regions of
configuration space, where the fermion determinant is
negative. The assumption of its positivity is based on the
belief that such regions are not part of those drawn by
importance sampling algorithms in an ensemble with
typical statistics. For sure, one would expect that toward
the continuum limit the probability of such configurations
decreases rapidly.
In this paper, we discuss the observation of negative

fermion determinants in large scale simulations undertaken
by the Coordinated Lattice Simulation (CLS) effort [4,5].
The CLS consortium has generated ensembles with 2þ 1
flavors of nonperturbatively improved Wilson fermions
with lattice spacings ranging from 0.09 fm to 0.04 fm
and quark masses including the physical light- and

strange-quark masses. One particularity is that most sim-
ulation points are along lines of constant sum of bare quark
masses, tuned such that this sum equals the sum of the
physical quark masses. This means that at the symmetric
point, the quark masses are roughly a third of the physical
strange. Only at physical light-quark masses, also the third
quark attains the mass of the physical strange.
These simulations employ the OPENQCD code [6], whose

general algorithmic setup, including twisted-mass reweight-
ing [7] for the light quarks and the RHMC algorithm for the
strange [1], is described in Ref. [8]. Since these algorithmic
choices, in particular the modification to the action used by
the twisted-mass reweighting and in the RHMC, could have
an impact on the observed spectra of the Dirac operator, we
summarize them in the following, also giving details which
so far have not been published.
To our knowledge, there has not been a detailed analysis

of this kind of problem in the literature, which might also
be related to the fact that among the major discretizations
only Wilson-type fermions are affected. Note that in the
non-QCD lattice literature, such problems have previously
been discussed; see, e.g., Ref. [9]. In Sec. V C, we briefly
investigate the potential problem of autocorrelations due
to the (twisted-mass regularized) light quark determinant,
but do not find an additional problem on the two ensembles
analyzed.

II. DESCRIPTION OF THE PROBLEM

The partition sum for 2þ 1 flavor simulations is given
by the path integral over the gauge field variables U,

Z ¼
Z

½dU� detfDðmudÞg2 detfDðmsÞge−Sg½U�: ð2:1Þ

Here, DðmÞ is the (improved) Wilson Dirac operator
[10,11], whose gauge field dependence is implicit,
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DðmÞ ¼ 1

2

X3
μ¼0

fγμð∇�
μ þ∇μÞ − a∇�

μ∇μg

þ acSW
X3
μ;ν¼0

i
4
σμνF̂μν þm: ð2:2Þ

It depends on the quark mass, mud for the light and ms for
the strange, with ∇μ and ∇�

μ the covariant forward and
backward derivatives, respectively. The improvement term
containing the standard discretization of the field strength
tensor F̂μν [12] comes with the coefficient cSW. For the
CLS setup with a tree-level improved gauge action Sg, the
coefficient cSW has been determined in Ref. [13].
Because of the γ5-Hermiticity of the Dirac operator

γ5Dγ5 ¼ D†, the determinant is real, detfDg ¼ ðdetfDgÞ�,
and each eigenvalue λ of the Dirac operator is either real
or comes in a complex conjugate pair; i.e., λ� is also an
eigenvalue of D. Since the determinant is the product of all
eigenvalues, negative values of the fermion determinant
appear if there is an odd number nneg of negative real
eigenvalues of D.
For practical simulations, there are two issues which

arise from the observation of negative, real eigenvalues of
the strange Dirac operator. On the one hand, one needs to
be aware of the fact that the determinants themselves are
not suitable weights for the Monte Carlo evaluation of the
path integral, because they are not positive. On the other
hand, important regions in field space are connected by
regions with small weight, which is a challenge for typical
update algorithms. These two issues are discussed now.
Before we go into details, we note that it is standard to

use an even-odd decomposition of the fermion determinant
[14]. Deriving from a two-color labeling of the lattice sites,
we have

detfDg ¼ detfDoog detfDee −DeoD−1
ooDoeg

≡ detfDoog detfD̂g ð2:3Þ

if DooðxÞ is invertible for all sites x. In our simulations, it is
checked that detfDooðxÞg > 0 on all configurations. Since
D̂ is γ5-Hermitian, the above discussion also applies to this
operator, and the negativity of the fermion determinant
can be equally analyzed with D̂. The number of negative
eigenvalues of D and D̂ is the same.

A. Monte Carlo

Virtually all large scale lattice simulations use a Markov
chain Monte Carlo, where the probability with which a
configuration is drawn is given by the action terms

PðUÞ ∝ detfDudg2j detfDsgje−Sg½U� ≡ e−Sg½U�−Sf;ud½U�−Sf;s½U�:

ð2:4Þ

If the determinant of Ds is not manifestly positive, one
therefore needs to include a reweighting factor,

Ws ¼
detfDsg
j detfDsgj

¼ ð−1Þnneg ; ð2:5Þ

in the measurement. Expectation values can then be
computed in the standard way using [15]

hAi ¼ hAWsiþ
hWsiþ

; ð2:6Þ

with h·iþ the expectation value in the theory with the
modulus of the strange determinant taken, as in Eq. (2.4).
The determination of nneg is the subject of Sec. IVand is

numerically expensive. The inclusion of such a fluctuating
sign has an impact on the uncertainties which can be
reached in the actual simulation. The impact depends
strongly on the covariance between the observable and
the reweighting factor.

B. Update algorithms

The second problem is the performance of the typical
update algorithms which move in small steps in configu-
ration space, like the molecular dynamics based Hybrid
Monte Carlo [16]. Since they change the gauge fields
quasicontinuously, changing nneg by one unit can only be
achieved by going through configurations with a zero
eigenvalue of D. A change by two units is possible if a
pair of complex conjugate eigenvalues with negative real
parts approach the ImðλÞ ¼ 0 axis and become real.
From a vanishing real eigenvalue of DðmÞ follows a

vanishing fermion determinant, which means that one
needs to pass through configurations U with vanishing
weight PðUÞ as given in (2.4). Configuration space is
therefore divided into sectors of even and odd nneg, where
nneg is in general different for light and strange quarks.
For exact integration of the molecular dynamics equa-

tions of motion, which are at the base of the HMC
algorithm, this means that changing nneg by one unit is
highly unlikely if not impossible. While in a practical
simulation this integration is never exact, it will at least lead
to very long autocorrelation times, with long periods in
which nneg is constant.
Since nonvanishing nneg is a discretization effect, most

of the time nneg will be zero. Even in a situation where
no nonvanishing values have been observed on a given
Markov-chain, the question arises if this is a consequence
of poor sampling or if indeed the probability of nonzero
values is so small that this is a likely outcome.

C. Twisted-mass reweighting

For the light quarks, the problem discussed in the
previous section has been already identified and addressed

DANIEL MOHLER and STEFAN SCHAEFER PHYS. REV. D 102, 074506 (2020)

074506-2



in Ref. [7]. The proposed method has also been used in the
CLS simulations. Instead of generating gauge field con-
figurations with the contribution of the two light fermions
to the weight given by detfD†ðmÞDðmÞg, one uses even-
odd preconditioning (2.3) and for the determinant of the
Schur complement

detfD̂†ðmÞD̂ðmÞg → det

�½D̂†ðmÞD̂ðmÞ þ μ20�2
D̂†ðmÞD̂ðmÞ þ 2μ20

�
: ð2:7Þ

The ratio between this weight function and detfD̂†ðmÞ
D̂ðmÞg as it appears in the path integral is then included by
a reweighting factor into the measurement.
The twisted-mass parameter needs to be chosen with care.

On the one hand, it should be large enough to lower the
barrier in the action and make all of configuration space
accessible also in practical terms. On the other hand, it has to
be small enough such that the fluctuations of the reweighting
factor do not induce too much noise in the measurement and
statistical uncertainties are kept under control.

D. RHMC

In the CLS simulations, also the strange quark is
included with an approximation to the corresponding
fermion determinant

detfD̂g →
1

detfRðD̂†D̂Þg ; ð2:8Þ

where RðxÞ is a rational approximation to the inverse
square root. The product between the two determinants
needs to again be included, by reweighting in the meas-
urement. For its computation, one assumes that the factor is
positive at the strange-quark mass, an assumption which
turns out to be incorrect for our ensembles.
The Zolotarev rational function has three parameters: the

upper and lower bound of the approximation as well as
the number of poles used. Between the bounds, the function
then has a defined maximal error. In general, one aims
at a situation where the reweighting factors fluctuate little
and there are no eigenvalues of the matrix outside of the
bounds.
We note, however, that the rational function also pro-

vides a cutoff for the action Ss;f ¼ tr logR, which even for
vanishing eigenvalues of D stays finite. This approach can
therefore also avoid a sector formation and possible
practical problems of ergodicity.

III. CLS SIMULATIONS

Within the CLS effort, a sizeable library of gauge field
configurations with 2þ 1 flavors of improved Wilson
fermions has been generated using the algorithmic
setup discussed in the previous section and Refs. [4,17].
The lattice spacing ranges from a ≈ 0.09 fm down to

a ≈ 0.04 fm, with pion masses down to the physical
masses; see Table I for an overview of a subset of these
ensembles. Most of the ensembles have been generated
along lines of constant sum of the three bare quark masses
tuned such that they go through the point defined by the
physical values of the masses of the pion and kaon as well
as the flow scale t0 [4,18]. These are supplemented by
ensembles along lines of constant strange-quark mass [19].
On most ensembles, open boundary conditions in time are
imposed to avoid the freezing of the topological charge as
the continuum is approached [17,20].
The OPENQCD code is employed. It uses Hasenbusch’s

frequency splitting for the simulation of the light quarks
[21,22], factorizing Eq. (2.7) according to

TABLE I. Subset of CLS ensembles which have been inves-
tigated for negative real modes. In the id, the letter gives the
geometry, the first digit gives the coupling, and the final two label
the quark mass combination. The lattice spacing as determined in
Ref. [5] is a ≈ 0.086 fm, 0.0076 fm, 0.064 fm, and 0.05 fm for
β ¼ 3.4, 3.55, 3.46, and 3.7, respectively. The column marked
“bc” specifies the boundary conditions in time, which can be
either open (obc) or periodic (pbc). Ensembles marked with an
asterisk in the last column are still in production. For more precise
estimates of the pion and kaon masses including uncertainties
please refer to other CLS publications cited in the text. Note y
stands for “yes” and n for “no.”

id β Ns Nt

mπ

(MeV)
mK

(MeV) mπL bc nneg ≠ 0

U103 3.40 24 128 420 420 4.4 obc y
H101 32 96 420 420 5.9 obc n
U102 24 128 350 440 3.6 obc y
H102 32 96 350 440 4.9 obc n
U101 24 128 280 460 3.0 obc n
H105 32 96 280 460 3.9 obc y
N101 48 128 280 460 5.9 obc y
C101 48 96 220 470 4.6 obc y
D101 64 128 220 470 6.1 obc y
H107 32 96 370 550 5.1 obc n

B450 3.46 32 64 420 420 5.2 pbc n
S400 32 128 350 440 4.3 obc y
N401 48 128 290 460 5.3 obc y
B451 32 64 420 570 5.2 pbc n
B452 32 64 350 550 4.3 pbc n

H200 3.55 32 96 420 430 4.4 obc n
N202 48 128 410 410 6.4 obc n
N203 48 128 350 440 5.4 obc n
S201 32 128 280 460 2.9 obc n
N200 48 128 280 460 4.4 obc n
D200 64 128 200 480 4.2 obc n
E250 96 192 130 490 4.1 pbc y�

N300 3.70 48 128 420 420 5.1 obc n
N302 48 128 350 460 4.2 obc n
J303 64 192 260 470 4.2 obc y
E300 96 192 180 490 4.3 obc n�
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det

�½D̂†ðmÞD̂ðmÞ þ μ20�2
D̂†ðmÞD̂ðmÞ þ 2μ20

�

¼ det

�
D̂†ðmÞD̂ðmÞ þ μ20
D̂†ðmÞD̂ðmÞ þ 2μ20

� YNhb−1

n¼0

× det

�
D̂†ðmÞD̂ðmÞ þ μ2n
D̂†ðmÞD̂ðmÞ þ μ2nþ1

�

× detfD̂†ðmÞD̂ðmÞ þ μ2Nhb
g; ð3:1Þ

where μi < μiþ1 are free parameters for i > 0. Each factor
is introduced by pseudofermions in the standard fashion.
The terms with the smaller μi will be dominated by the
contribution of the part of the spectrum of DðmÞ with
smaller eigenvalues, with the last factor containing the
contribution of the UV modes.
Also, the RHMC is implemented with frequency split-

ting in mind. The rational approximation RðxÞ is decom-
posed into factors

RðQ̂2Þ ¼ A
Ynrat
k¼1

Q̂2 þ ν̄2k
Q̂2 þ μ̄2k

¼ A
Q̂2 þ ν̄21
Q̂2 þ μ̄21

×
Ynrat
k¼2

Q̂2 þ ν̄2k
Q̂2 þ μ̄2k

;

ð3:2Þ

with Q̂ ¼ γ5D̂. This is the decomposition in which the pole
corresponding to the smallest μ̄i has been separated, but
factorizations into a larger number of terms have been used.
Such a factorization makes it possible to integrate these
terms on a coarser timescale, a fact that will become
important in the further discussion.

A. Molecular dynamics integration

All simulations discussed in this paper have been per-
formed with a three-level hierarchical integration scheme.
The outermost level being a second order Omelyan inte-
grator [23] with λ ¼ 1=6, OMF2 in the terminology of
OPENQCD. On this level, some small fermionic forces are
integrated, most of the time the first one or two terms in the
product Eq. (3.1) as well as a few terms corresponding to
the smallest values of μ̄i in the RHMC. For each of its steps,
the second level is a fourth-order Omelyan integrator, OMF4,
Eqs. (62) and (71) of Ref. [23], on which the rest of the
fermion forces reside. On the innermost level, only the gauge
force is integrated, again with one step of the fourth order
integrator per outer step.
With this setup, one is left to tune the number of outer

steps, and which of the fermionic forces are put on the
outermost level. Furthermore, μ0 and the parameters of
the rational approximation need to be chosen. For some of
the ensembles, these choices vary from run to run. This is
why we distinguish ensembles with otherwise the same
physical parameters by run identifiers like r001. The outer

step size has been chosen such that the acceptance rate for
most runs is above 90%.

IV. DETERMINATION OF THE NEGATIVE
REAL MODES

The obvious method to determine whether the Dirac
operator on a given gauge field configuration has negative
real eigenvalues would be to compute the smallest eigen-
values of this operator. Unfortunately, the methods for such
complex systems are quite inefficient, and we therefore
resort to studying the spectrum of the Hermitian system
Q̂ ¼ γ5D̂. For the numerical examples, we use the PRIMME

package [24,25].1

While there is no one-to-one correspondence between
the spectra of the two operators, we immediately note
that zero modes of D̂ are also zero modes of Q̂. Since
DðmÞ ¼ Dð0Þ þm, for increasing quark mass, the negative
real eigenvalues will first decrease in magnitude before
going through zero. At this point, also a single eigenvalue
of Q̂ will change sign. Note that, since detDooðxÞ > 0
always, increasing the mass will not make it zero.
For sufficiently large quark mass, Q̂ has an equal number

of positive and negative eigenvalues. Real negative eigen-
values of D̂ therefore manifest themselves as an asymmetry
in the number of positive versus the number of negative
eigenvalues of Q̂.
Unfortunately, the spectral asymmetry is too difficult to

determine directly. We therefore use a combination of two
indicators. First, according to the Feynman-Hellmann
theorem, for a given eigenvector ψ of Q̂ with eigenvalue λ,

d
dm

λ ¼
�
ψ ;

dQ̂
dm

ψ

�
¼ ðψ ; γ5ψÞ þ ðϕ; γ5ϕÞ; ð4:1Þ

with ϕ ¼ Q−1
ooQoeψ . If this derivative is positive (negative)

for positive (negative) eigenvalues, they are moving away
from zero. They are therefore unlikely to go through zero
for a larger step in m. Of course, this diagnostic can be
misleading because of mixing between the modes of Q̂.

A. Identification of modes as function of mass

A more reliable way of identifying eigenvalues which
cross zero with increasing mass exploits that the eigen-
vectors of Q̂ themselves are smooth functions of the
mass. Since the eigenvectors are orthogonal for each value
of m, the scalar products ðψ 0

i;ψ jÞ will have a modulus
close to unity for a matching mode. Here, ψ are the
normalized eigenvectors at mass m, and ψ 0 are those at
m0, with jm0 −mj reasonably small.

1Note that the recent algorithmic developments for the eigen-
problem of the shifted system in Ref. [26] could be beneficial in
the present context.
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It can also be advisable to combine the two techniques:
using a Newton iteration based on Eq. (4.1), the zero crossing
can be efficiently and unambiguously found. However, even
without this explicit confirmation, the slow variation of the
eigenvectors turned out to be a robust tool. Examples of the
tracking of these modes can be seen in Fig. 1. We display a
sequence of configurations from run S400r001, which is in
general quite typical, but also contains a rather extreme
excursion to very large negative real value.
The figure shows the ten eigenvalues of Q̂ closest to the

origin as a function of the quark mass. The zero point of the x
axis corresponds to the strange-quark mass and the mass
increases toward the right byΔm. The eigenvalues which are
identified between successive masses are connected by
straight lines, and a line crossing zero at Δm1 corresponds
to a negative real eigenvalue −Δm1 of DðmsÞ. The con-
figurations in the run are two trajectories of length τ ¼ 2
molecular dynamics units apart. First of all, we observe that
the transition from positive to negative eigenvalue occurs
within a few trajectories, without going through a prolonged
period of configurations with exceptionally small eigenval-
ues. This is highlighted by the fact that the intersection point
at the configuration after the first occurrence of a negative
real eigenvalue is not particularly small.
Furthermore, the value of the negative real eigenvalue is

moving quite quickly, with a rather large excursion to more
negative values. This illustrates that one needs to go to
relatively largemass shifts for a reliable determination ofnneg.

B. Numerical results

The result of the analysis for ensembles with nneg > 0 is
collected in Table II. We give the probability to find a

configuration with a negative strange fermion determinant
hnnegi. We note that we did not encounter a single
configuration with two negative real eigenvalues of the
strange Dirac operator. In general, we find that the problem
occurs so rarely that it is difficult to quantify the probability
of configurations with negative real eigenvalues. Taking
into account all configurations investigated. and without
proper error analysis, we observe hnnegi of roughly 2% at
β ¼ 3.4 and β ¼ 3.46, on around 0.3% of the configura-
tions at β ¼ 3.55 and on only very few of the configura-
tions (approximately 0.05%) at β ¼ 3.7. As one would
expect, negative real eigenvalues quickly become unlikely
as the continuum limit is approached.
Of course, such a global view ignores the varying physical

parameters, in particular the quark masses as well as the
details of the algorithmic choices, like the twisted-mass
reweighting parameter μ0, and the rational function used in
the RHMC. We will discuss their impact in the next section.
Furthermore, the above statement ignores the impact of

autocorrelations on such numbers. As becomes evident
from Table II, large values for hnnegi come with large
autocorrelations in this quantity: once a negative real
eigenvalue occurs, the Markov chain frequently gets stuck,
and therefore many such configurations are produced in a
row. This does not mean that these configurations are
particularly likely. Indeed, the uncertainties of hnnegi are
typically on the order of 100%. It simply means that the
runs are too short to determine these values precisely.
To illustrate this issue, we have collected Monte Carlo

time histories of the number of negative eigenvalues in
Fig. 2. In fact, we find only few ensembles, where nneg > 0

has been visited more than once.

FIG. 1. Examples of the identification of eigenvalues of Q̂ crossing as the strange-quark mass is increased by Δm. We plot
measurements on close-by configurations from the S400r001 run. The value of Δm at which zero is crossed is a measure for the
eigenvalue −λ of DðmsÞ. Note that crossings occur when the other eigenvalues have at least doubled their value, again indicated by the
increased gap in the other eigenvalues.
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V. DISCUSSION

In the previous section, we have established that, in
particular on the coarser lattices, there is a non-negligible
frequency with which negative real eigenvalues of the
strange Dirac operator occur.
A possible explanation of this occurrence could be the

modification of the action by twisted-mass reweighting
and the chosen RHMC function. Both increase the

probability for small eigenvalues to appear in the ensem-
bles (before applying the reweighting). However, we find
that the mass shifts at which the crossings occur are
typically large, of the order of twice the spectral gap
hjλminji. This means that the negative eigenvalues of D
typically have (at least) the same magnitude as the
smallest positive ones. Most of them are in a region
where the approximated action and the “exact” fermion

TABLE II. Runs in which at least one configuration with nneg ≠ 0 occurred. The probability of this event is given,
together with its autocorrelation time. Note that the errors of these numbers have a very large uncertainty due to the
long autocorrelations observed in some of the runs. As another measure of autocorrelations, we give the number of
sections in the chain with nneg ≠ 0 denoted by nsec, the length of the longest such region nmax, and the total statistics
in number of configurations. We also list the twisted-mass parameter μ0, the number of outer integrator steps nout,
and the parameters of the rational approximation. We observe a correlation of a lower number of outer integrator
steps and longer stretches of nneg ≠ 0.

Ensemble hnnegi τint nsec nmax Statistics μ0 nout nrat ra, rb

H105r001 0.004(4) 2.0(4) 2 2 1023 0.001 10 11 [0.01,7.3]
H105r002 0.001(1) 0.50(3) 1 1 1042 0.001 10 11 [0.01,7.3]
H105r005 0.11(11) 45(22) 1 92 837 0.0005 7 13 [0.0032,7.6]
N101r001 0.11(11) 15(7) 1 30 280 0.0005 9 14 [0.0032,7.6]
C101r014 0.02(1) 6(1) 8 12 2000 0.0006 12 13 [0.006,7.8]
C101r015 0.09(9) 25(12) 6 33 601 0.0003 13 13 [0.006,7.8]
D101r005 0.03(3) 4(2) 1 9 286 0.0003 12 14 [0.006,7.8]
U103r002 0.09(9) 76(36) 1 154 1781 0.001 6 12 [0.0056,7.5]
U103r003 0.0005(5) 0.50(2) 1 1 1819 0.001 6 12 [0.0056,7.5]
U102r002 0.004(4) 7(1) 2 12 3562 0.002 6 12 [0.007,8.0]

N401r000 0.16(9) 35(16) 3 90 1100 0.00065 8 14 [0.002,7.5]
S400r000 0.01(1) 5(1) 1 10 872 0.00065 7 12 [0.01,7.3]
S400r001 0.01(1) 11(2) 1 21 2001 0.00065 7 12 [0.01,7.3]

E250r000 0.12(12) 8(4) 4 16 151 0.0001 14 14 [0.01,7.5]
E250r001 0.03(2) 3(1) 4 5 503 0.0001 15 14 [0.01,7.5]

J303r003 0.003(3) 1.5(3) 1 3 1073 0.00075 6 13 [0.008,7.0]

FIG. 2. Monte Carlo time history of the number of negative real eigenvalues of the Dirac operator. Configurations are spaced by 4 units
of molecular dynamics time; only for J303, this spacing amounts to 8 units. We observe that changes in the number are rare.
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determinant are almost the same. For the RHMC, the
reweighting factors typically fluctuate on the percent
level, and also for the twisted-mass reweighting factors,
we do not observe a correlation between small values and
a nonvanishing nneg.
Another possibility would be algorithmic instabilities or

even an error in the simulation code. While both are hard to
exclude, the rather consistent picture with the number of
negative eigenvalues decreasing rapidly toward the con-
tinuum and no apparent correlation with volume, integrator
step size, or acceptance rate does not make this a very
convincing explanation.
Therefore, our current working hypothesis is that the

phenomenon described in this paper is a feature of the
action. The fluctuations in the spectrum are simply larger
than naively expected. The setup with the regularized
actions is therefore necessary to reach these areas of
configuration space and is essential for a correct simulation.

A. Autocorrelations

As already mentioned above, even with the regularized
action, a negative real eigenvalue has to cross a barrier in
the action around λ ¼ 0 in order to disappear. This is linked
with larger, fluctuating forces. In how far this is a problem
depends on the choice of the integrator for the molecular
dynamics equation of motion. With a precise enough
integrator for the terms which are dominated by the
contribution from small eigenvalues, the right momentum
to get across the barrier is still needed, but the acceptance of
such a trajectory will not suffer.
In the practical simulations on which this analysis is

based, the force terms which receive most contributions
from the smallest eigenvalues are most of the time tiny.
They have therefore been integrated on a coarser timescale.
If the associated step size is too large, this can lead to poor
acceptance of trajectories in which an eigenvalue has
become very small or crossed zero.

That the tuning of such a setup can be delicate when
there is a nonvanishing probability of negative real eigen-
values is illustrated with two runs from the H105 ensemble.
In runs r000 and r001, μ0 ¼ 0.001 has been chosen
along with an 11 pole rational approximation in the interval
[0.01, 7.3]. With the first term in the light quark product
Eq. (3.1) and the two smallest poles of the RHMC on the
outermost level, ten steps have led to an acceptance rate of
97%. This has to be compared to the choices taken for the
r005 run. Here, μ ¼ 0.0005 along with a 13 pole rational
function in [0.0032, 7.6] was used. Choosing seven outer
integration steps, again the first term of the light fermion
forces and the three smallest μ̄i in the RHMC on the outer
level, has led to an acceptance rate of 89%. We plot the
corresponding regularizing functions in Fig. 3.
At first sight, the three chains are equally acceptable. The

reweighting factors were well behaved, with the twisted-
mass reweighting factors fluctuating less for r005 as
expected. No signs of strange behavior in elementary
observables were detected either. Only in the history of
the energy violation of the molecular dynamics depicted in
Fig. 4, a long stretch of trajectories between number 1000
and 1500 with low acceptance has been observed.
It turns out that in this region, a negative real eigenvalue

of the strange Dirac operator had developed. In this situa-
tion, it matters how accurately the terms with the smallest μ̂i
are integrated, as they are dominated by the contributions
from the smallest eigenvalues. Here, we note that for the
r005 run, we put more poles on the outer level of the
integrator, and we increased its step size significantly.
The likely explanation is that trajectories which would
have changed this eigenvalue’s sign were rejected, such
that the system did not get out of this region.
Note that also in the other runs negative real eigenvalues

were produced, but the system quickly moved away from
these configurations. While these considerations are based
on very low statistics, unavoidable by the nature of the
problem, they do give a consistent picture. Note that from

FIG. 3. On the left, function for a single variable which replaces the − logðxÞ of the fermion action, for the light quark due to the
twisted-mass reweighting and for the strange due to the RHMC. We show the parameters of the H105r001 and H105r005 runs. Note
that for the latter the potential barrier is roughly 1 unit higher. On the right, we give the measured distribution of the lowest eigenvalue of
Q̂, not including the reweighting factors and without giving uncertainties, which are difficult to compute in the case of the H105r005
runs due to the large autocorrelations discussed in the text. The scales of the x axis in the two plots is different for better readability.
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the point of view of tuning of the algorithm, this is an
unpleasant situation, since the problem can even arise only
after a significant portion of the full run. In hindsight, it
would probably be better to use only a two-level scheme
and not try to save computing time by using a further
integrator level for these problematic forces.

B. Regularizing the action

As we have seen, the choice of the rational approxima-
tion and the quality of the integration of the associated
forces has a determining impact on the problem discussed
in this paper. One would naively expect that at a quark mass
as large as the strange’s, the spectrum of Q̂2 can be confined
to a region ½ra; rb� in a practical simulation. Given the fast
convergence of the Zolotarev approximation to 1=

ffiffiffi
x

p
, one

then aims at choosing the number of poles and the range
given by ra and rb such that no eigenvalue outside this
interval will be encountered and the approximation error is
negligible.
As has become clear from the findings presented here,

this is a dangerous choice in that both decreasing ra and
increasing nrat improve the approximation but also heighten
the obstacle at λ ¼ 0, which the eigenvalues have to
overcome in order to get out of a region with a negative
real eigenvalue.
These considerations can help understand the different

behavior between the runs H105r001 and H105r005
discussed in the previous section. In Fig. 3, we show as an
illustration the function by which − logðλÞ, the contribution
to the action of a single eigenvalue, is replaced due to the
twisted-mass regularization and the rational approximation.

This needs to be compared with the distribution of the
lowest eigenvalue given in the same figure.
As we see, for the strange quark, the approximations do

not differ in the region of the lowest eigenvalues of Q̂.
However, the maximum of the depicted functions at λ ¼ 0
is about 1 unit higher, making it much less likely to be
overcome in a trajectory. Given these considerations, it
seems advisable to fix ra and rb such that it covers the
spectrum of Q̂2 apart from maybe some rare outliers which
seem unavoidable in light of our findings while using a low
order rational approximation such that one gets an accept-
able fluctuation in the associated reweighting factors.

C. Light quarks

Negative real eigenvalues of the Dirac operator at the
strange mass are also negative at the light-quark mass (if
chosen below the strange’s mass value). While the degen-
eracy of the two quark masses makes the product of the two
determinants positive, the negative eigenvalues can still
introduce large autocorrelations if the algorithm is ineffi-
cient in changing their sign.
In Fig. 3, we compare functions with which the − logðλÞ

has been replaced in our setup for the runs H105r001/2
and H105r005. As can be seen, the fixed rational
approximation acts quite similarly to the twisted-mass
reweighting; by chance, the twisted-mass parameters on
the former runs give a function for one flavor which is
almost identical to the rational approximation chosen for
the latter.
Of course, it is not possible to deduce from the function

alone whether or not there will be autocorrelation problems.

FIG. 4. The violation of the HMC Hamiltonian in the top row is confronted with the number of negative eigenvalues of the Dirac
operator in the bottom. We show the data for the runs H105r001 and H105r005. There is clear evidence that the period of poor
acceptance, i.e., small expð−dHÞ, is correlated with the appearance of a negative real eigenvalue in the latter run. The different choice of
molecular dynamics integrator might be responsible for the system staying in this state for an extended time.
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It also depends on the typical distribution of the eigenvalues
among other factors. In our analysis of the two algorithmic
setups, we observe negative real eigenvalues of the light
Dirac operator also on configurations, where this is not the
case at the strange mass. However, also at the light-quark
mass, at most, one negative real eigenvalue occurs. These
negative eigenvalues at the light-quark mass do not exhibit
significant autocorrelations and (with the very limited
statistics) on H105r001 are roughly twice as likely as
at the strange-quark mass.

D. Effect of reweighting

With the (additional) reweighting factors equal to�1 and
the rare occurrence of the −1, it is obvious that their effect
on the final observables will be small, at least as long as
there is no strong correlation between the observable
and the reweighting factor. Then, the variance is not
expected to differ substantially [27]. However, the auto-
correlation problem discussed above can significantly
impact the achievable accuracies, if a reliable error analysis
is possible at all.
To illustrate the effect in a real situation, we again took

the ensembles H105r001 and H105r002 and compared
them to H105r005. These have the same physical
parameters, but in the latter run, the problem of negative
real eigenvalues is much more pronounced.
For the pion mass, we extract amπ ¼ 0.1213ð12Þ from

the former two ensembles and amπ ¼ 0.1207ð21Þ from the
latter when we take the effect of the determinant’s sign into
account. This is to be confronted with 0.1213(12) and
0.1220(17), respectively, without this reweighting factor.
As expected, for the ensembles with very few negative
signs of the determinant, there is no significant difference,
neither for the value nor for the uncertainty. For r005, we
observe a shift in the value which is somewhat smaller than
the statistical uncertainty and also an increase in the error.
For the pseudoscalar decay constant, the situation is

essentially the same: on the first two ensembles, it changes
from 0.0763(10) without the signs to 0.0764(10) including
them. On r005 the respective numbers are 0.0758(9) and
0.0748(12).

VI. CONCLUSIONS

On coarser lattices, the nonperturbatively improved
Wilson Dirac operator at the strange-quark mass features
negative real eigenvalues on a non-negligible subset of the
configurations in the 2þ 1 flavor CLS ensembles. This has
not been anticipated during the planning of the simulations,
but the corresponding sign can be included in the meas-
urement as a reweighting factor. We have described a robust
but expensive way to compute this sign; however, it is

difficult to exclude that occasionally a negative real
eigenmode of the Dirac operator remains undetected.
Since the effect of the reweighting seems to be rather
small, we, however, assume that the effect of potentially
missing a few such configurations would be even smaller.
The scenario observed also has consequences on the

planning of the simulations. Specifically, one needs to
ensure that all regions of configuration space can be
reached by the algorithm, even if one has the prejudice
that some regions are not “relevant.” In the CLS ensembles,
twisted-mass reweighting for the light quarks and the
RHMC with fixed rational functions are employed to this
end. However, for some of the runs, in hindsight, one
should have used a larger value for the twisted-mass
parameter and/or fewer poles and smaller approximation
range for the rational function. This would have made
the transition of eigenvalues through zero easier and
reduced autocorrelations. Also, an integration scheme for
the molecular dynamics equations of motion, where the
forces dominated by the contributions of small eigenvalues
of the Dirac operator are not put on a very coarse step size,
seems advisable.
Note that one part of our action is not regulated: the

diagonal term of the Dirac operator detDoo. The fact that it
turns out to be always positive might be due to the infinite
barrier at zero determinant, rather than the actual physics
of the system. This is impossible to tell after the
simulation. As a side remark, this determinant is constant
for unimproved Wilson fermions or the variant proposed
in Ref. [28].
The practical ergodicity of Monte Carlo simulations

remains difficult to assess in general, and it will always
depend on the discretization and algorithms in question
where possible difficulties might arise. Our discussion also
highlights the fact that typical lattice simulations are not
close to the continuum if it comes to details of the behavior
of single eigenvalues of the Dirac operator.
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von Hippel, Martin Lüscher, Teseo San José, Rainer
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