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We point out a problem of the phenomenological definition of the valence partons as the difference
between the partons and antipartons in the context of the next-to-next-leading-order evolution equations.
After demonstrating that the classification of the parton degrees of freedom (PDF) of the parton distribution
functions (PDFs) are the same in the QCD path-integral formulations of the hadronic tensor and the quasi-
PDF with large momentum effective theory (LaMET), we resolve the problem by showing that the proper
definition of the valence partons should be in terms of those in the connected insertions only. We also prove
that the strange partons appear as the disconnected sea in the nucleon.
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I. INTRODUCTION

Partonic structure of the nucleon has been discovered
and extensively studied in deep inelastic scattering (DIS) of
leptons. Further experiments in Drell-Yan process, semi-
inclusive DIS (SIDIS) help to identify and clarify the flavor
dependence, particularly the sea partons [1]. The first
experimental evidence that the sea patrons have nontrivial
flavor dependence is revealed in the experimental demon-
stration of the violation of Gottfried sum rule. The original
Gottfried sum rule, IG ≡ R

1
0 dx½Fp

2 ðxÞ − Fn
2ðxÞ�=x ¼ 1=3,

was obtained under the assumption that ū and d̄ sea partons
are the same [2]. However, the NMC measurement [3] ofR
1
0 dx½Fp

2 ðxÞ − Fn
2ðxÞ�=x turns out to be 0.235� 0.026, a

4σ difference from the Gottfried sum rule, which implies
that the ū ¼ d̄ assumption was invalid. Other flavor-
dependent issues under active experimental and theoretical
pursuits include the intrinsic strange and charm partons [4],
and the sðxÞ − s̄ðxÞ [5,6] and cðxÞ − c̄ðxÞ [7] asymmetries.
In this work, we shall scrutinize the definition of the

valence parton in the context of sðxÞ − s̄ðxÞ asymmetry and
the NNLO evolution. The conventional phenomenological
definition of the valence parton is q−ðxÞ≡ qðxÞ − q̄ðxÞ.
Given this definition, one faces the following questions:
(1) It has been suggested that the “NuTeVanomaly” [8]

might be resolved if there is a sðxÞ − s̄ asymmetry
[5,6]. Even though the global analyses do not have a
definite conclusion yet, when NNLO is considered

for parton evolution, there is a term in the splitting
function which will generate sðxÞ − s̄ asymmetry.
This involves a quark loop with three gluon lines
attached to it. It is small, i.e., Oðα3sÞ, but nonzero
nonetheless. Hence the question: although there
is no net strangeness in the nucleon (i.e.,R
dxðsðxÞ − s̄Þ ¼ 0Þ, why should the strange parton

with s−ðxÞ ¼ sðxÞ − s̄ðxÞ ≠ 0 be a part of the
valence distribution. This is contrary to the picture
of the quark model, particularly its SUð6Þ classi-
fication of the hadrons, in which the nucleon is
composed of u and d valence quarks only, while the
strange is part of the sea.

(2) Similarly, there is a question about the NNLO
evolution. One of the NNLO equations for q−ðxÞ
[9–11] is

dq−i
dt

¼ ðPv
qq −Pv

qq̄Þ⊗ q−i þ ðPs
qq −Ps

qq̄Þ⊗ Σv; ð1Þ

where t ¼ ln μ2. P−
qq, Ps

qq and Ps
qq̄ are splitting

functions, and

Σv ≡
X
i

ðqi − q̄iÞ; q−i ≡ qi − q̄i: ð2Þ

When and if q−i is interpreted as the valence
distribution, the second term on the right of
Eq. (1) implies that the valence distributions of d
and s can affect the evolution of the valence u
parton. This appears to be contradictory to the fact
that there is no flavor-changing couplings in QCD
between the valence quarks.

These concerns are hints that something is wrong with
identifying q− as the valence distribution. It turns out these
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puzzles can be resolved via the Euclidean path-integral
formulation of QCD.
This manuscript is organized as follows. Section II gives

the path-integral formulation of the hadronic tensor which
defines the parton degrees of freedom. Section III gives the
quasi-parton approach to calculating the PDF in Feynman-
x directly on the lattice via large momentum effective
theory (LaMET). It is shown that the parton degrees of the
freedom are identical to those from the hadronic tensor. We
shall present the resolution of the above puzzles in Sec. IV.
Finally, we prove in Sec. V that the strange quarks only

appear in the disconnected insertions in nucleon matrix
elements. The summary is given in Sec. VI.

II. EUCLIDEAN PATH-INTEGRAL
FORMULATION OF THE HADRONIC TENSOR

The Euclidean hadronic tensor was formulated in the
path-integral formalism to identify the origin of the
Gottfried sum rule violation [12]. It is the current-current
correlator in the nucleon and can be obtained by the
following four-point-to-two-point correlator ratio

W̃μνðq⃗; p⃗; τÞ ¼
Ep

mN

TrðΓeGpWpðt0; t1; t2; tfÞÞ
TrðΓeGppðt0; tfÞÞ

����
tf − t2 ≫ 1=ΔEp; t1 − t0 ≫ 1=ΔEp

¼ hNðp⃗Þj
Z

d3x
eiq⃗·x⃗

4π
e−iq⃗·x⃗Jμðx⃗; τÞJνð0; 0ÞjNðp⃗Þi; ð3Þ

where τ ¼ t2 − t1 is the Euclidean time separation between
the current Jνðt2Þ and Jμðt1Þ. The current-source and sink-
current separations t1 − t0 and tf − t2 are much larger than
the inverse of the energy ΔEp between the nucleon and its
first excited state, so that the nucleon excited states are
filtered out at large time separations. Formally, the inverse
Laplace transform converts W̃μνðq⃗; p⃗; τÞ to the Minkowski
hadronic tensor

Wμνðq⃗; p⃗; νÞ ¼
1

2mNi

Z
cþi∞

c−i∞
dτ eντW̃μνðq⃗; p⃗; τÞ; ð4Þ

with c > 0. This is basically doing the anti-Wick rotation to
go back to the Minkowski space. In practice with the lattice
calculation, it is not possible to perform the inverse Laplace
transform in Eq. (4), as there are no data on the imaginary τ.
Instead, one can turn this into an inverse problem and find a
solution from the Laplace transform [13]

W̃μνðq⃗; p⃗; τÞ ¼
Z

dν e−ντWμνðq⃗; p⃗; νÞ: ð5Þ

This has been studied [13–16] with the inverse algorithms
such as Backus-Gilbert, maximum entropy and Bayesian
reconstruction methods. The expected spectral density of
the neutrino-nucleon scattering cross section or structure
functions is illustrated in Fig. 1, which shows that there are
several kinematic regions in the spectral density in the
energy transfer ν—the elastic scattering, the inelastic
reactions (πN; ππM; ηN etc.) and resonances (Δ, Roper,
S11, etc.), shallow inelastic scattering (SIS), and deep
inelastic scattering (DIS) regions. To determine how large
a ν is needed for DIS, we look atW, the total invariant mass
of the hadronic state for the nucleon target at rest

W2 ¼ ðqþ pÞ2 ¼ m2
p −Q2 þ 2mpν ð6Þ

The global analyses of the high energy lepton-nucleon and
Drell-Yan experiments to extract the parton distribution
functions (PDFs) usually make a cut with W2 > 10 GeV2

to avoid the elastic and inelastic regions. Thus, to be
qualified in the DIS region, the energy transfer ν needs to be

ν > 4.86 GeVþ 0.533 ðGeV−1ÞQ2 ð7Þ

If we take Q2 ¼ 4 GeV2, this implies ν > 7 GeV. It is
shown recently in a lattice calculation that small lattice
spacing (e.g., a ≤ 0.04 fm) is needed to reach such high
energy excitations on the lattice [15].
It is shown [12,17,18] that, when the time order-

ing tf > t2 > t1 > t0 is fixed, the 4-point function
TrðΓeGpWpðt0; t1; t2; tfÞÞ can be grouped in terms of 6
topologically distinct and gauge invariant path-integral
insertions as illustrated in Figs. 2 and 3, according to

FIG. 1. Illustrated spectral density of the cross section or
structure function of the ν-N scattering to show the elastic, the
resonance, the SIS, and the DIS regions at different energy
transfer ν.
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different Wick contractions among the Grassmann numbers
in the two currents and the source/sink interpolation fields.
They can be denoted as connected insertions (CI) [Fig. 2(a)
Fig. 2(b), and Fig. 3(a)] where the quark lines are all
connected and disconnected insertions (DI) [Fig. 2(c),
Fig. 3(b), and Fig. 3(c)] where there are vacuum polar-
izations associated with the currents in disconnected quark
loops. Note, these diagrams depict the quarks propagating
in the nonperturbative gauge background which include the
fluctuating gauge fields and virtual quark loops from the
fermion determinant. Only the quark lines associated with
the interpolations fields and currents are drawn in these
quark skeleton diagrams.
At low energy lepton-nucleon scattering, all 6 diagrams

in Figs. 2 and 3 contribute and they are not separable. For
the elastic scattering case, the hadronic tensor Wμν as a
function of Q2 is basically the product sum of the relevant
nucleon form factors. For example, it is verified in a recent
lattice calculation [15,16] that it is the sum of Fig. 2(a)
and Fig. 3(a) that give rise to the square of the charges for
the u quarks in the proton in the forward limit when Jμ and
Jν are the charge current, i.e., W44ðp⃗ ¼ q⃗ ¼ 0; ν ¼ 0Þ×
ðu quarkÞ ¼ ð2euÞ2, while the other diagrams are zero due
to charge conservation. At low q⃗ and ν appropriate for a
ρ − N intermediate state, all connected insertions (CI) in

Figs. 2(a), 2(b), and 3(a) contribute to the ρ − N scattering.
It is worth pointing out that Fig. 2(b) includes the exchange
contribution to prevent the u=d quark in the loop in
Fig. 2(c) from occupying the same Dirac eigenstate in
the nucleon propagator, enforcing the Pauli principle.
In fact, Figs. 2(c) and Fig. 2(b) are analogous to the direct
and exchange diagrams in time-ordered Bethe-Goldstone
diagrams in many-body theory.

A. Parton degrees of freedom

In the DIS region [e.g., Q2 ≥ 4 GeV2 and ν > 7 GeV in
Eq. (7)] as illustrated in Fig. 1, insertions in Fig. 2 contain
leading and higher twists (handbag diagrams), while those
in Fig. 3 contain only higher twists (cat’s ears diagrams).
As far as the leading-twist DIS structure functions F1, F2

and F3 are concerned, the three diagrams in Fig. 2
are additive with contributions classified as the valence
and sea partons qvþcs in Fig. 2(a), the connected sea (CS)
antipartons q̄cs in Fig. 2(b), and disconnected sea (DS)
partons qds and antipartons q̄ds in Fig. 2(c) [12,17,18].
It was pointed out that the Gottfried sum rule violation
comes entirely from the connected sea difference ūcs − d̄cs

in the F2 structure functions at the isospin symmetric
limit [12].

(a) (b) (c)

FIG. 2. Three gauge invariant and topologically distinct insertions in the Euclidean-path integral formulation of the nucleon hadronic
tensor where the currents couple to the same quark propagator. In the DIS region, the parton degrees of freedom are (a) the valence and
connected sea (CS) partons qvþcs, (b) the CS antipartons q̄cs. Only u and d are present in (a) and (b) for the nucleon hadronic tensor.
(c) the disconnected sea (DS) partons qds and antipartons q̄ds with q ¼ u, d, s, and c.

(a) (b) (c)

FIG. 3. Three other gauge invariant and topologically distinct insertions where the currents are inserted on different quark propagators.
In the DIS region, they are higher-twist diagrams. (a) This is a connected insertion where the two currents are coupled to different quark
propagators. (b) One current is inserted to the quark propagating from the source to the sink; the other forms a quark loop. (c)
Disconnected insertion with both currents coupled to the quark loops.
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Owing to the factorization theorem [19] which separates
out the long-distance and short distance behaviors, the
structure function F1 of the hadronic tensor can be
factorized as

F1ðx;Q2Þ ¼
X
i

Z
1

x

dy
y
Ci

�
x
y
;
Q2

μ2
;
μ2f
μ2

; αsðμ2Þ
�

× fiðy; μf; μ2Þ; ð8Þ

where i is summed over qi; q̄i; g. Ci are the Wilson
coefficients and fi are the parton distribution functions
(PDFs). μf is the factorization scale, and μ is the renorm-
alization scale. In practice, the global fitting programs
adopt the parton degree of freedoms as u; d; ū; d̄; s; s̄ and g.
We see that from the path-integral formalism, each of the u
and d have two sources, one from the connected insertion
(CI) [Fig. 2(a)] and one from the disconnected insertion
(DI) [Fig. 2(c)], so are ū=d̄ from Fig. 2(b) and Fig. 2(c). On
the other hand, s and s̄ only come from the DI [Fig. 2(c)]. In
other words,

u ¼ uvþcs þ uds; d ¼ dvþcs þ dds

ū ¼ ūcs þ ūds; d̄ ¼ d̄cs þ d̄ds;

s ¼ sds; s̄ ¼ s̄ds: ð9Þ

This classification of the parton degrees of freedom
(PDF) is richer than those in terms of q and q̄ in the global
analysis in that there are two sources for the partons—qvþcs

and qds—and two sources for the antipartons—q̄cs and q̄ds.
They have different small x behaviors. For connected
insertion (CI) part, qvþcs; q̄cs ∼ x−1=2 where q ¼ u, d;
whereas, for the disconnected insertion (DI) part, qds; q̄ds ∼
x−1 where q ¼ u, d, s, c [17,18,20,21]. It is discerning to
follow these degrees of freedom in moments which further
reveal the roles of CI and DI in nucleon matrix elements.
They have been intensively studied in lattice calculations

which are beginning to take into account all systematic
corrections.

B. Moments of PDFs

The short-distance expansion of the current-current
correlator in the nucleon in Eq. (3) has been carried out
[17]. After applying inverse Laplace transform in Eq. (4)
and dispersion relation to convert the hadronic tensor to the
Minkowski space, it is shown that the total results are the
same as that of the operator product expansion. However,
the Euclidean path-integral formulation of the current-
current correlator is composed of several components.
The leading-twist forward Compton amplitude Tμν corre-
sponding to qvþcs in Fig. 2(a) are expanded as

TμνðqvþcsÞ ¼
X
f

e2f8pμpν

� X
even; n¼2

ð−2q · pÞn−2
ðQ2Þn−1 An

fðCIÞ

þ
X

odd; n¼3

ð−2q · pÞn−2
ðQ2Þn−1 An

fðCIÞ
�
; ð10Þ

where f indicates flavor. For the nucleon, it only involves u
and d in the CI. In this case, An

fðCIÞ are defined through the
renormalized connected insertion (CI) matrix element at μ

hpjΨ̄On
fΨjpiCIðμÞ ¼ 2An

fðCIÞðμÞðpμ1pμ2…pμn − tracesÞ:
ð11Þ

where the renormalized operators On
f are

On
f ¼ ZnðμÞiγμ1

�
−i
2

�
n−1

D
↔

μ2D
↔

μ3…D
↔

μn − traces: ð12Þ

where ZnðμÞ is the renormalization constant. This is
represented by the ratio of three-point functions illustrated
in Fig. 4(a) with the insertion of the tower of On

f operators
and the nucleon two-point function.

(a) (b) (c)

FIG. 4. Quark skeleton diagrams in the evaluation of matrix elements for the towers of local operators from the short-distance
expansion of JμðxÞJνð0Þ. Figures 4(a), 4(b), and 4(c) correspond to the short distance expansions from Figs. 2(a), 2(b) and 2(c),
respectively.
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Similarly, the short-distance expansion for the CS anti-
parton in Fig. 2(b) results in a similar expression as in
Eq. (10) with the substitution q → −q and μ ↔ ν. As a
result, this leads to the even n terms minus the odd n terms
instead of the sum as in Eq. (10), i.e.,

Tμνðq̄csÞ ¼
X

even; n¼2

� � �An
fðCIÞ −

X
odd; n¼3

� � �An
fðCIÞ: ð13Þ

In other words, the short-distance expansion of Tμν from
Fig. 2(b) yields three-point functions with a series of
insertions of the same operators Ψ̄On

fΨ except with a
minus sign for the odd n terms. This is illustrated in
Fig. 4(b). By the same token, the short-distance expansion
for the DS parton/antiparton contribution in Tμν from
Fig. 2(c) gives

Tμνðqds=q̄dsÞ ¼
X

even; n¼2

� � �An
fðDIÞ �

X
odd; n¼3

� � �An
fðDIÞ:

ð14Þ

They have the same expression as TμνðqvþcsÞ and Tμνðq̄csÞ
except An

fðDIÞ are from the DI part of the matrix element

hpjΨ̄On
fΨjpiDI ¼ 2An

fðDIÞðpμ1pμ2…pμn − tracesÞ: ð15Þ

In this case, the leading twist expansion of the DS con-
tribution to Tμν in Fig. 2(c) now leads to two series of
forward matrix elements of DI. One is for TμνðqdsÞ with
even plus odd n terms; the other is Tμνðq̄dsÞ with even minus
odd n terms as given in Eq. (14). Both are represented in the
three-point functions in Fig. 4(c). It is worth mentioning that
TμνðqvþcsÞ in Eq. (10) and TμνðqdsÞ in Eq. (14) are the same
as those derived from the contraction of the inner pair of
the quark fields in the conventional operator product
expansion of the time-ordered current-current product
q̄ðxÞγμqðxÞq̄ð0Þγνqð0Þ [22]. On the other hand, Tμνðq̄csÞ
in Eq. (13) and Tμνðq̄dsÞ in Eq. (14) are the same as those
from the contraction of the outer pair of the quark fields in
the current-current product. The only difference is that the
path-integral formalism allows the separations into the CI
and the DI.

In the operator product analysis, the An
f are the moments

of PDFs

An
fðCIÞ ¼ MnðCIÞ≡

Z
1

0

dx xn−1ðqvþcsðx; μÞ

þ ð−1Þnq̄csðx; μÞÞ; ð16Þ

An
fðDIÞ ¼ MnðDIÞ≡

Z
1

0

dx xn−1ðqdsðx; μÞ

þ ð−1Þnq̄dsðx; μÞÞ: ð17Þ

When the parts in Eqs. (10), (13), and (14) are summed
up, only the even n terms of the OPE are left for the vector
currents Jμ and Jν

Tμν ¼ TμνðqvþcsÞ þ Tμνðq̄csÞ þ Tμνðqds þ q̄dsÞ
¼ 2

X
even; n¼2

� � � ðAn
fðCIÞ þ An

fðDIÞÞ: ð18Þ

This is the same as that derived from the ordinary OPE.
However, what is achieved with the path-integral formu-
lation is the separation of CI from DI, in addition to the
separation of partons from antipartons. This separation
facilitates the identification of the CS parton as the source
of the Gottfried sum rule violation [12], and an extended set
of evolution equations for separate q̄csðx;Q2Þ and
q̄dsðx;Q2Þ [23]. We should emphasize that, for a given
moment, there is no more distinction between qvþcs and
q̄cs, nor with qds and q̄ds. There are only CI and DI matrix
elements.

C. Renormalization and evolution

The SU(3) flavor dependence of the moments is usually
expressed in terms of isovector, flavor octet, and flavor
singlet. Here in the path-integral formulation, there are
more moments that can be—and have been—evaluated on
the lattice. For example, the renormalization matrix for the
renormalized second moment hxi has the following struc-
ture [24,25]

0
BBBBBBBBB@

hxiuðCIÞRðμÞ
hxidðCIÞRðμÞ
hxiuðDIÞRðμÞ
hxidðDIÞRðμÞ
hxisðDIÞRðμÞ
hxiGðDIÞRðμÞ

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

ZC 0 0 0 0 0

0 ZC 0 0 0 0

ZD ZD ZC þ ZD ZD ZD ZqG

ZD ZD ZD ZC þ ZD ZD ZqG

ZD ZD ZD ZD ZC þ ZD ZqG

ZGq ZGq ZGq ZGq ZGq ZGG

1
CCCCCCCCCA

0
BBBBBBBBB@

hxiuðCIÞ
hxidðCIÞ
hxiuðDIÞ
hxidðDIÞ
hxisðDIÞ
hxiGðDIÞ

1
CCCCCCCCCA

ð19Þ

After linear combinations of CI and DI matrix elements in the equations in Eq. (19), one can reduce them to those in the
flavor-SU(3) representation
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0
BBBBB@

hxiRu−dðμÞ
hxiRuþd−2sðμÞ
hxiRuþdþsðμÞ
hxiRGðμÞ

1
CCCCCA ¼

0
BBB@

ZC 0 0 0

0 ZC 0 0

0 0 ZC þ NfZD NfZqG

0 0 ZGq ZGG

1
CCCA
0
BBB@

hxiu−d
hxiuþd−2s

hxiuþdþs

hxiG

1
CCCA ð20Þ

It should be noted that there are 6 observables in Eq. (19)
(5 if one assumes isospin symmetry so that hxiuðDIÞ ¼
hxidðDIÞ), while there are 4 in Eq. (20). This means that, by
separating the CI and DI, the path-integral formulation has
more information than that of the flavor classification.
Since the lattice calculations are organized with separate CI
and DI moments, it is natural to ask how to accommodate
such a separation in the global analysis so that one can
make a one-to-one comparison between the lattice results
and those from the global fits. At the moment, the CS
partons and DS partons are not separated in global
analyses, one could not make such a comprehensive
comparison and is only limited to the isovector and
strangeness quantities.
Attempts have been made [20,21,26,27] to separate out

the CS and DS partons by combining strange parton
distribution from a HERMES experiment [28], ūþ d̄ from
the CT10 analysis [29], and the ratio hxis=hxiuðDIÞ from
lattice calculations [21,30].
It has been pointed out [23] that in order to have a direct

one-to-one comparison with the 11 parton distributions in
Eq. (9) (including the glue distribution) from the hadronic
tensor which can be calculated on the lattice [13–15], the
NNLO evolution equations need to be extended to accom-
modate these partons. In certain cases, such as the moments
[15], precise lattice calculations can be used to help
constrain the global PDF analysis and the small x behavior.
The extended evolution equations are worked out [23] for
the 11 parton distributions in Eq. (9) with an explicit
separation of CS and DS. Due to the linear nature of the
evolution equations, these equations can be combined and
reduced to the present DGLAP equations with q̄cs and q̄ds

merged into q̄. But, only through the fully separated CS and
DS degrees of freedom in the extended evolution equations
can the CS and DS be separated at different Q2 [23]. This
aspect is essential for the global analysis of PDF to fit
experimental data at different Q2.
Another aspect of the separation of the CI from DI is

shown in Eq. (19) where the zeros reflect the fact that the CI
can mix into glue and DI, but not vice versa. There are no
valencelike partons in the strange and glue partons. This is
reflected in the extended evolution equations [23] and it
turns out to be crucial in resolving the puzzles presented in
introduction in Sec. I as we shall see later.

III. FEYNMAN-x APPROACH

A number of approaches have been developed in recent
years to calculate the PDFs in Feynman-x with lattice
calculation [31–33]. It was first pointed out by Ji [31] that
one can approximate a light-cone PDF by boosting a time
independent quasi PDF defined on the lattice to a large
momentum frame with an expansion in powers of the
inverse hadron momentum. At leading twist, the boosted
quasi PDF can be renormalized in the MS scheme and
factorized into the light-cone PDF and a perturbative
matching coefficient. The matching coefficient can be
calculated via the large momentum effective theory
(LaMET) [34]. The unpolarized quasi-PDF is defined on
the lattice

q̃ðx; PzÞ≡
Z

∞

−∞

dz
4π

eixPzzhPjψ̄ðzÞΓUðz; 0Þψð0ÞjPi; ð21Þ

(a) (b)

FIG. 5. Path-integral diagrams of quasi-PDF as defined in Eq. (21). The double lines represent the Wilson line operators. There are two
diagrams—(a) for CI and (b) for DI, respectively.
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where Γ ¼ γ4 or γz and the Wilson line is

Uðz; 0Þ ¼ Pexp

�
−ig

Z
z

0

dz0Azðz0Þ
�
: ð22Þ

There are two path-integral diagrams associated with the
four-point function in Eq. (21). As we can see in Fig. 5,
they are again separated into connected insertion (CI) and
disconnected insertion (DI) as in the Euclidean formulation
of the hadronic tensor in Sec. II. Unlike the PDF defined on
the light-cone which is boost invariant, the quasi-PDF in
Eq. (21) depends on the nucleon momentum Pz. When Pz
is much larger than the nucleon mass M and ΛQCD, the
quasi-PDF in the CI can be factorized into a matching
coefficient and the PDF as proved in the diagrammatic
approach [35] and via the operator product expansion [36]

:q̃

�
x;

μ

Pz

�
¼

Z
1

−1

dy
jyjC

�
x
y
;

μ

jyjPz

�

× q

�
y; μÞ þO

�
M2

P2
z
;
Λ2
QCD

x2P2
z

�
; ð23Þ

where μ is the factorization scale, and the power corrections
are in terms of M2=P2

Z [37] and ΛQCD2=x2P2
z [35]. It also

shows that the factorization formula for the quasi-PDF has
pz ¼ jyjPZ in the coefficient function C. As such, there are
no moment relations between the light-cone PDF and the
quasi-PDF.
We show two recent lattice calculations of quasi-PDF in

the CI from Fig. 5(a). Fig. 6(a) shows the calculation of the
polarized PDF (Δu − Δd) on a lattice with lattice spacing
a ¼ 0.09 and μ ¼ 3 GeV fm from the LP3 collaboration
[38] and Fig. 6(b) shows the unpolarized PDF (u − d) from
a lattice with a ¼ 0.0938 fm and μ ¼ 2 GeV from the
ETMC collaboration [39]. Both of them are calculated at
the physical pion mass and with one-loop matching from
LaMET. To better control the errors at small x with higher

momenta and excited states, variational approaches [40]
can be employed.
Since the light-cone parton distribution has support−1 ≤

x ≤ 1 with large enough PZ, it is different from those
defined from the hadronic tensor which has support
0 ≤ x ≤ 1. The light-cone PDFs with x > 0 correspond
to partons from the hadronic tensor through the factoriza-
tion in Eq. (8) and those with x < 0 correspond to
antipartons from the hadronic tensor with a negative sign.
As we mentioned in Sec. II C, partons in the CI have no
mixing from the DS and gluons. Therefore, at the same MS
scale μ, the CI light-cone PDFs are identified as those from
the hadronic tensor, i.e.,

qðx > 0; μÞðCIÞ ¼ qvþcsðx; μÞ;
qðx < 0; μÞðCIÞ ¼ −q̄csðjxj; μÞ: ð24Þ

It is clear from Fig. 6 that the CS antipartons in the region
x < 0 are explicitly revealed. Similarly, one can make the
corresponding identifications for the DS partons and
antipartons in Eq. (9).
Another way to show that parton degrees of freedom

in quasi-PDF with LaMET and those from the hadronic
tensor are the same is to look at the operator product
expansion. After renormalization to remove the power
divergence from the Wilson line self-energy, the renormal-
ized ψ ð̄zÞΓUðz; 0Þψð0Þ operator can be expanded in terms
of the gauge-invariant operators as z2 → 0

ψ ð̄zÞΓUðz; 0Þψð0ÞR ¼
X∞
n¼0

Cnðμ2z2Þ
ð−izÞn
n!

eμ1…eμnO
nðμÞ;

ð25Þ

whereOnðμÞ is that given in Eq. (12) and its matrix element
defined in Eq. (11), with An

f being the nth moments of the
DPFs. In terms of the distribution on the light-cone, An for
the u and d flavors in the CI are [36]

LP3

NNPDF1.1pol

JAM17

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

x

u
d

(a)

1 0.5 0 0.5 1
2

0

2

4

6

(b)

FIG. 6. Lattice calculation of quasi-PDF with LaMET for the connected insertion (CI). (a) is the polarized Δu − Δd from LP3 at
μ ¼ 3 GeV and (b) is the unpolarized u − d from ETMC at μ ¼ 2 GeV.
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AnðμÞðCIÞ ¼
Z

1

−1
dx xn−1qðx; μÞðCIÞ ð26Þ

In terms of the PDFs defined from the hadronic tensor in
Eq. (24)

AnðμÞðCIÞ ¼
Z

1

0

dx xn−1ðqvþcsðxÞ − ð−1Þn−1q̄csðxÞÞ:

ð27Þ
This is the same as Eq. (16). One can further use inverse
Mellin transform to find qvþcs and q̄cs separately. One can
carry out the inverse Mellin transform for An for even and
odd n and obtain

qvþcsðxÞ ¼
Z

cþi∞

c−i∞
dn x−nAnðn ¼ evenÞ

þ
Z

cþi∞

c−i∞
dn x−nAnðn ¼ oddÞ ð28Þ

q̄csðxÞ ¼
Z

cþi∞

c−i∞
dn x−nAnðn ¼ evenÞ

−
Z

cþi∞

c−i∞
dn x−nAnðn ¼ oddÞ: ð29Þ

They have the same even-odd patterns as those in Eqs. (10)
and (13). Similarly, one can show that in the DI, the x >
0=x < 0 distribution is qds=q̄ds. There are other Feynman-x
approaches to calculating PDFs on the lattice, such as
pseudo-PDF by Radyushkin [32] and lattice cross-section
by Ma and Qiu [33]. After renormalization and matching to
the light-cone, any valid approach will have the CI
moments expressed in Eq. (26) and their parton degrees
of freedom are also identified with those from the hadronic
tensor.
As of now, all the lattice calculaitons with the Feynman-

x approaches report the u − d combination in the CI. As we
have shown in Sec. II C that the glue and DI do not mix into
the CI. Therefore, it is just as meaningful to report the CI u
and d distributions separately.

IV. RESOLVING THE PUZZLES OF THE
VALENCE PARTON DEFINITION

Once we have identified the parton degrees of freedom
from the path-integral formalism of QCD, we are ready to
answer the puzzles about the definition of the valence in
Sec. I. First of all, the quark loops in Figs. 2(c) or 5(b) have
a separate flavor trace from that involving the interpolation
field (uud for the proton in this case) for the nuclear
propagator, the partons in the loops do not have any
knowledge of the content of the interpolation field and
are, thus, not part of the valence. Therefore, the valence
should be defined from the CI in Figs. 2(a) and 2(b), i.e.,

qv ≡ qvþcs − q̄cs ð30Þ

Since the strange and charm partons do not have CI
contributions, they are not part of the valence. The question
whether the strange is part of the valence contribution as
posted in Sec. I is answered by Eq. (30).
Regarding question 2 in Sec. I, we see that the phe-

nomenologically defined q− is not the valence qv. Rather it
also contains DS partons

q− ≡ q − q̄ ¼ qvþcs − q̄cs þ qds − q̄ds ¼ qv þ qds − q̄ds:

ð31Þ
The NNLO evolution equations with separate CS and DS

have been developed for a maximum of 11 parton degrees
of freedom, namely uvþcs; ūcs; uds; ūds; dvþcs; d̄cs; dds;
d̄ds; s; s̄ and g [23]. In view of the fact that q− is made
of qv and qds − q̄ds, we find that Eq. (1) is in fact a linear
combination of two equations,

dqvi
dt

¼ ðPc
qq − Pc

qq̄Þ ⊗ qvi ð32Þ
dðqdsi − q̄dsi Þ

dt
¼ ðPd

qq − Pd
qq̄Þ ⊗

X
k

ðqdsk − q̄dsk Þ

þ ðPd
qq − Pd

qq̄Þ ⊗
X
k

qvk ð33Þ

where we have used Pc
ii ¼ Pc

ī ī ¼ Pc
qq, Pc

iī ¼ Pc
īi ¼ Pc

qq̄,
Pd
ik ¼ Pd

k̄ ī
¼ Pd

qq, and Pd
ik̄
¼ Pd

īk ¼ Pd
qq̄ due to flavor inde-

pendence of the kernel P. We have also relabeled Pv
qq=Ps

qq

which indicates valence/sea in Eq. (1) to Pc
qq=Pd

qq to denote
CI/DI.
It is clear from Eq. (32) that, with the proper definition of

qv in Eq. (30), there is no more valence flavor mixing as for
q− in Eq. (1). The evolution of the nonvalance qdsi − q̄dsi in
Eq. (33) has contributions from qds − q̄ds and the valence qv

with different flavors. Being Oðα3sÞ, the kernel Pd
qq − Pd

qq̄ is
small, but one needs to take into account the possibility of
sizable intrinsic strange [5,6] and charm asymmetries [4,7]
which implies that qds − q̄ds for q ¼ u, d might be non-
zero and larger in magnitude than those of the strange
and charm.

V. ARE STRANGE PARTONS NECESSARILY IN
THE DISCONNECTED INSERTION?

After the puzzles over the definition of the valence parton
are resolved, there is a lingering question as to why the
strange and charm partons appear as the disconnected sea in
the disconnected insertions only. Since the physical mass
and matrix elements do not depend on the interpolation
field, as long as it has the right quantum numbers and a
nonzero overlap with the hadronic state under study, lattice
practitioners usually adopt uud interpolation field with
JP ¼ 1=2þ and I ¼ 1=2 for the proton for simplicity. In
this case, the nonvalence strange and charm partons can
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only appear in DI. However, one could question if this is a
special case due the restricted selection of the interpolation
field. What if s̄s is included in the interpolation field in
addition to uud?Would that entail strange to be a part of the
CI and, perhaps, a part of the valence?
To answer this question, we shall prove that the strange

and charm will necessarily be in DI with the special case of
an interpolation field which includes the strange, i.e.,
O ¼ uuds̄s. We shall first consider the two-point function
C2ptðτÞ ¼ hOðτÞO†ð0Þi. With OðτÞ ¼ eHτOð0Þe−Hτ, the
2-pt function can be written as

C2ptðτÞ ¼
X
n

jh0jOjnij2e−mnτ; ð34Þ

after inserting a complete set of hadron states, such as
N;Nπ; Nππ; NKK̄;ΣK;R, etc. with the nucleon quantum
number. As shown in Fig. 7(a), the two-point function for
uuds̄s has two path-integral diagrams due to the two
Grassmann number contractions. Figure 7(a) in the left
panel has 5 valence quarks at all times between the source
and the sink. When time separation τ ¼ tf − t0 is large, this
part of the 2-pt correlator will have an asymptotic behavior

Ca
2ptðτÞ ¼ W5qe−M5qτ þ � � � ð35Þ

where … represents excited states. Having more valence
quarks (one can count the minimum number of quark
propagators in a time slice) than that of the uud inter-
polation field,M5q, the lowest mass of a state with a baryon
and a meson(or mesons), will be higher than MN , the
nucleon mass. This is so, because the quark counting rule
prescribes ∼300=500 MeV constituent mass for each addi-
tional q=s (q ¼ u, d) quark.1 This is verified with a lattice
calculation with the uuds̄s interpolator, where the s̄s is in
the scalar channel [55]. This is also consistent with the

recent lattice calculation [56] which shows that the renor-
malized quark mass mR in the RI/MOM scheme with
Landau gauge rises up to approach ∼300 MeV for the scale
below ∼500 MeV. It coincides with the trace anomaly
matrix element at different scales. Due to limited statistics,
this is verified down to μ ¼ 1.3 GeV and has prompted the
suggestion that trace anomaly and chiral symmetry break-
ing could be the origin of the constitute quark mass in
the quark model. Therefore, one expects the mass of the
5-quark state to be higher than the nucleon, a 3-quark state,
by about 600 MeV.
The 2-pt function also has a insertion with s̄s annihi-

lations in Fig. 7(b). Since the path-integral includes all
possible paths, there are cases where the two s̄s loops do
not overlap (this happens when the M5q states from the
source and sink are damped away exponentially), leaving a
gap in time which allows the 3-quark nucleon to emerge. In
this the case, the lowest mass state is the nucleon and the
correlator for this part is

Cb
2ptðτÞ ¼ WNe−MNτ þW0

5qe
−M0

5qτ −W5qe−M5qτ þ � � �
ð36Þ

where … includes the nucleon excited states, such as πN,
Roper, etc. The sum is then

C2ptðτÞ ¼ Ca
2ptðτÞ þ Cb

2ptðτÞ
¼ WNe−MNτ þW0

5qe
−M0

5qτ þ � � � ð37Þ

whereM0
5q is the lowest full 5-quark baryonþmeson state

mass of the total C2ptðτÞwhich is still an excited state of the
nucleon. With ΔM ¼ M0

5q −MN > 0, C2ptðτÞ is domi-
nated by the nucleon state at large τ.
The strangeness matrix element hNjs̄jΓsjNi is calculated

from the ratio of the 3-pt function to the 2-pt function.
There are several contributions to the relevant 3-pt function
C3pðtf − t; t − t0Þ as illustrated in Fig. 8. Inserting inter-
mediate states between the source at t0 and the operator s̄Γs
at t and also between t and the sink time tf, the ratio is

(a) (b)

FIG. 7. 2-pt correlators for the uuds̄s interpolation field. (a) for the case where all 5 valence quarks propagate from the source to the
sink; (b) for the case with s̄s annihilations.

1The only exceptions we know are the scalar mesons below
1 GeV, which are believed to be the Q2Q̄2 tetraquark mesoniums
in the MIT bag model [41] and the potential model [42–44]. They
are verified in lattice calculations [45–48]. These nonet meso-
niums are below the qq̄ nonet above 1 GeV [45,49–54].
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C3ptðtf − t; t − t0Þ
C2ptðtf − t0Þ

¼ W5q

WN
h5qjs̄Γsj5qie−ΔMτ þ

ffiffiffiffiffiffiffiffiffi
W5q

WN

s
ðe−ΔMðtf−tÞ þ e−ΔMðt−tiÞÞh5qjs̄ΓsjNi

þ hNjs̄ΓsjNi þ � � � ; ð38Þ

for large time separations. The first term on the right is from
Fig. 8(a), which has 5 valence quarks. Its ratio involves the
matrix element h5qjs̄Γsj5qi and an exponential factor
e−ΔMτ which vanishes at large τ. Similarly, the second
term from Fig. 8(b), where the current is inserted on the s̄s
from the source or the sink, vanishes when tf − t and t − ti
are large. The third term, where the s̄ and s in the current
self contract to a loop, survives large time separation. It is
the nucleon matrix element that we want. It still comes from
the DI and is independent of the interpolation field.
It is straightforward to generalize the proof for a general

interpolation field uudðq̄qÞnfðGÞ, where q is for any quark
flavor, and fðGÞ is a function of the gauge operators, as
long as the interpolation field has the proton quantum
number and has non-zero overlap with the proton state.

VI. SUMMARY

We show, in this work, that the problems posed by the
phenomenological definition of the valence parton as q − q̄
in NNLO evolution is resolved by the appropriate valence
definition which involves only the parton and antipartons in
the connected insertions from the QCD Euclidean path-
integral formulation of the hadronic tensor and the
Feynman-x approaches to PDFs. Since the path-integral
formulation affords the separation of the connected and
disconnected insertions, a salient feature of the formulation,
a total of 11 parton degrees of freedom are revealed, which
are more than the ones (7 which are u; ū; d; d̄; s; s̄, and g)
from the existing global analyses. These parton degrees of
freedom in the hadronic tensor, a Bjorken-x approach, are
shown to be the same as those from the Feynman-x
approaches via OPE (short distance Taylor expansion in

the path-integral formalism). It is further proved that the
nonvalence strange and charm PDFs and their moments
only contribute through the DI.
It is encumbered upon global analyses to disentangle the

connected sea from the disconnected sea through the
extended evolution equations [23], so that lattice results
can be compared to them for each degree of freedom. As
for the moments, where precise lattice results are begin-
ning to be available with all systematic errors taken into
account, it is a good testing ground to make benchmark
comparison between lattice calculations and experiments.
With the CS and DS separated in global fits, the CI
moments for the u and d and DI moments for u, d and s
can be directly compared with lattice calculations, instead
of being restricted to only the isovector and strange matrix
elements.

ACKNOWLEDGMENTS

The author is indebted to S. Brodsky, J. W. Chen,
N. Christ, M. Diehl, T. Draper,Y. Hatta, X. Ji, F. X. Lee,
J. Liang, P. Nadolsky, J. C. Peng, J. W. Qiu, A. Thomas,
Y. B. Yang, and C. P. Yuan for insightful discussions. He
also thanks Huey-Wen Lin and Martha Constantinou for
allowing him to use their figures in Fig. 6. This work is
partially support by the U.S. DOE Grant No. DE-
SC0013065 and DOE Grant No. DE-AC05-06OR23177
which is within the framework of the TMD Topical
Collaboration. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725. This work

(a) (b) (c)

FIG. 8. Path-integral diagrams of 3-pt function with the uuds̄s interpolation field and the insertion of the s̄Γs current. (a) is for the case
where all 5 valence quarks propagate from the source to the sink; (b) is for the case where the current is inserted on the annihilating s̄s
pair from the sink or the source; and (c) is for the case where the current forms a strange quark loop.

KEH-FEI LIU PHYS. REV. D 102, 074502 (2020)

074502-10



used Stampede time under the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation Grant No. ACI-
1053575. We also thank the National Energy Research
Scientific Computing Center (NERSC) for providing HPC

resources that have contributed to the research results
reported within this paper. We acknowledge the facilities
of the USQCD Collaboration used for this research in part,
which are funded by the Office of Science of the U.S.
Department of Energy.

[1] J. C. Peng and J. W. Qiu, Prog. Part. Nucl. Phys. 76, 43
(2014).

[2] K. Gottfried, Phys. Rev. Lett. 18, 1174 (1967).
[3] A. Amaudruz et al. (NMC Collaboration), Phys. Rev. Lett.

66, 2712 (1991); M. Arneodo et al., Phys. Rev. D 50, R1
(1994).

[4] S. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett.
93B, 451 (1980).

[5] S. Davidson, S. Forte, P. Gambino, N. Rius, and A. Strumia,
J. High Energy Phys. 02 (2002) 037.

[6] S. Kretzer, F. Olness, J. Pumplin, D. Stump, W. K. Tung,
and M. H. Reno, Phys. Rev. Lett. 93, 041802 (2004).

[7] R. S. Sufian, T. Liu, A. Alexandru, S. J. Brodsky, G. F. de
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