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We calculate finite-Nc corrections to the next-to-leading order (NLO) Balitsky-Kovchegov (BK)
equation. We find analytical expressions for the necessary correlators of six Wilson lines in terms of the
two-point function using the Gaussian approximation. In a suitable basis, the problem reduces from the
diagonalization of a six-by-six matrix to the diagonalization of a three-by-three matrix, which can easily be
done analytically. We study numerically the effects of these finite-Nc corrections on the NLO BK equation.
In general, we find that the finite-Nc corrections are smaller than the expected 1=N2

c ∼ 10%. The
corrections may be large for individual correlators, but have less of an influence on the shape of the
amplitude as a function of the dipole size. They have an even smaller effect on the evolution speed as a
function of rapidity.

DOI: 10.1103/PhysRevD.102.074027

I. INTRODUCTION

In hadronic collisions at high energies, large gluon den-
sities are created by the emission of soft gluons carrying a
small fraction of the longitudinalmomentumof the parent [1].
Nonlinear dynamics of gluons becomes important in such an
environment, where parton densities eventually grow to
become on the order of the inverse of the QCD coupling
αs. To describeQCD in this region, the color glass condensate
(CGC) effective field theory [2] has been developed.
In the CGC framework, cross sections for various

scattering processes can be expressed in terms of correla-
tors of Wilson lines. A Wilson line describes the eikonal
propagation of a parton in the strong color field of the
target. The energy dependence of the target color fields,
and thus cross sections, is obtained by solving the so-
called Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (JIMWLK) equation [3–6]. This is a perturbative
evolution equation that describes the Bjorken-x dependence
of a Wilson line. In phenomenological applications, it is
usually convenient to work directly in terms of the Wilson
line correlators, and to solve instead the Balitsky-Kovchegov
(BK) equation [7,8] for the dipole operator (correlator of two
Wilson lines), which can be obtained from the JIMWLK
equation in the large-Nc limit.
The CGC framework has been used extensively in

phenomenological applications at leading order (LO) in

αs, with the evolution equations resumming contributions
∼αs ln 1=x to all orders. Running coupling effects derived
in Refs. [9–12] (see also [13]) can also be taken into
account. The nonperturbative initial condition for the small-
x evolution is obtained by performing fits to the HERA
structure function data [1,14], for example in Refs. [15–18]
(see also [19,20]). The obtained initial condition can then
be used for various calculations, for example particle
production in proton-nucleus collisions [17,21–27]. In
the future, the nuclear deep inelastic scattering (DIS)
experiments at the Electron Ion Collider (EIC) [28,29] in
the US, at the LHeC [30] at CERN and at the EicC in China
[31] will provide a vast amount of precise data from clean
DIS processes. These experiments will be able to probe the
nuclear structure where nonlinearities are enhanced by
roughly A1=3 higher densities compared to the proton.
Before the EIC, similar studies limited to the photopro-
duction region can be performed in ultra-peripheral heavy-
ion collisions [32,33].
In order to quantitatively study nonlinear dynamics in

high-energy scattering processes (and especially at the
future EIC), it is crucial to move beyond LO accuracy.
The next-to-leading order (NLO) evolution equations are
available: theNLOBKequationwas derived inRef. [34] and
the NLO JIMWLK equation was derived in Refs. [35,36].
Similarly, the impact factors are becoming available at NLO
for some processes: inclusive DIS [37–41] (in the case of
massless quarks), exclusive vector meson production
[42,43] (see also [44]) and particle production in proton–
nucleus collisions [45]. However, the phenomenological
applications of these are still developing [46–51].
The BK equation is usually solved in the large-Nc limit.

In the LO case, the large-Nc limit makes it possible to
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express the four-point correlator of fundamental represen-
tation Wilson lines in terms of the two-point function. In
detailed numerical studies, it has been shown that the finite-
Nc corrections are smaller than the naive expectation of
Oð1=N2

cÞ [52,53]. At NLO, the equation involves six-point
functions of fundamental Wilson lines that must similarly
be expressed in terms of the two-point function in order to
close the equation. The purpose of this work is to see if the
finite-Nc corrections are similarly small in the case of the
NLO equation, where all corrections of the order α2s are
taken into account.
In order to numerically solve the BK equation at finite

Nc, we use the Gaussian approximation [54–56] to derive
analytical parametric equations for the six-point correlators
in terms of the two-point correlators. We study numerically
the finite-Nc corrections to these correlators, and also their
effect on the NLO BK evolution. In addition to the BK
equation, higher-point correlators are needed in the calcu-
lations of multi-particle correlations in the CGC frame-
work, see eg. Refs. [57–60].
The structure of the paper is as follows. In Sec. II,

we introduce the NLO BK equation and provide both the

large-Nc and finite-Nc expressions for the correlators that
will be studied. In Sec. III, we introduce the Gaussian
approximation, explain the diagrammatic notation used in
the rest of the paper and then explain the analytical
calculation done for finding the parametric equations for
the six-point correlators. Section IV contains the numerical
results obtained from using the analytical expressions for
the six-point correlators to solve the BK equation. Finally,
we end with a few concluding remarks and a summary of
our main results.

II. THE BK EQUATION AT NLO

For any product of n=2 pairs of fundamental Wilson lines
UU†, we use the notation

SðnÞx1;x2;…;xn−1;xn ≔
1

Nc
trðUx1U

†
x2…Uxn−1U

†
xnÞ: ð1Þ

The NLO BK equation in the case of zero active quark
flavors (nf ¼ 0) reads [34]

∂YhSð2Þx;yi ¼ αsNc

2π2
KBC

1 ⊗ hD1i þ
α2sN2

c

16π4
K2;1 ⊗ hD2;1i þ

α2sN2
c

16π4
K2;2 ⊗ hD2;2i þOðnfÞ; ð2Þ

where the brackets hi refer to the expectation value over target color field configurations. The kernels are

KBC
1 ¼ r2

X2Y2

�
1þ αsNc

4π

�
β

Nc
ln r2μ2 −

β

Nc

X2 − Y2

r2
ln
X2

Y2
þ 67

9
−
π2

3
−
10

9

nf
Nc

− 2 ln
X2

r2
ln
Y2

r2

��
; ð3Þ

K2;1 ¼ −
4

Z4
þ
�
2
X2Y 02 þ X02Y2 − 4r2Z2

Z4ðX2Y 02 − X02Y2Þ þ r4

X2Y 02 − X02Y2

�
1

X2Y 02 þ
1

Y2X02

�

þ r2

Z2

�
1

X2Y 02
−

1

X02Y2

��
× ln

X2Y 02

X02Y2
; ð4Þ

K2;2 ¼
�
r2

Z2

�
1

X2Y 02 þ
1

Y2X02

�
−

r4

X2Y 02X02Y2

�
ln
X2Y 02

X02Y2
: ð5Þ

The convolutions ⊗ in Eq. (2) denote integrations over
the transverse coordinate z (in KBC

1 ) or z and z0 (in K2;1 and
K2;2). We use the notation r2 ¼ ðx − yÞ2, X2 ¼ ðx − zÞ2,
X02 ¼ ðx − z0Þ2, Y2 ¼ ðy − zÞ2, Y 02 ¼ ðy − z0Þ2 and
Z2 ¼ ðz − z0Þ2. We note that the kernel proportional to
nf is also available [34]. Since the purpose of this work is to
study the importance of the finite-Nc corrections in the
NLO BK equation, we do not include contributions
proportional to nf. The finite-Nc effects could be expected
to be similar to the nf ¼ 0 case.
The Wilson line operators appearing in Eq. (2) are

hD1i ¼ hSð2Þx;zS
ð2Þ
z;y i − hSð2Þx;yi; ð6Þ

hD2;1i ¼ hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi −

1

N2
c
hSð6Þx;z;z0;y;z;z0 i

− ðz0 → zÞ; ð7Þ

hD2;2i ¼ hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi − ðz0 → zÞ: ð8Þ

Although the original NLO BK equation in the form
presented in Ref. [34] does not contain the subtraction
z0 → z in D2;2, we have introduced the subtraction to
improve numerical stability. This subtraction term has no
effect on the final evolution because the integral of K2;2

over z0 vanishes if the Wilson line operator term does not
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depend on z0 (see Ref. [34]). We will refer throughout this
work to two pieces of the right side of Eq. (2) as the

(i) αsNc
2π2

KBC
1 ⊗ hD1i∼ “LO-like” contribution,

(ii) α2sN2
c

16π4
K2;1⊗hD2;1iþα2sN2

c
16π4

K2;2⊗hD2;2i∼ “NLO-like”
contribution.

In other words, we separate the terms in the NLO BK
equation by the types of Wilson line correlators, not by the
order in αs. Thus, the LO-like contribution also includes a
significant α2s correction.
The interpretation of the NLO BK equation is that one

considers all possible ways to emit either one or two
gluons, at transverse coordinates z and z0, from the boosted
dipole consisting of quarks at transverse coordinates x and
y. The effect of the boost is that instead of the original
dipole projectile, the original quarks and the emitted gluons
scatter off the target color field. As such, the evolution can
be seen to describe the evolution of the projectile probing
the target structure. On the other hand, the emitted gluons
can also be taken to be a part of the target wave function, in
which case the boost corresponds to the evolving target
color field as probed by the original projectile. For a more
detailed discussion on the NLO evolution in the projectile
or target wave function, the reader is referred to Ref. [61].
The NLO BK equation is known to be unstable [62] due

to the large contributions enhanced by the large double
transverse logarithm lnX2=r2 lnY2=r2. We resum these
contributions to all orders following the procedure devel-
oped in Ref. [63], which was numerically confirmed in
Ref. [64] to result in a stable evolution (see also Ref. [65]
for an equivalent resummation of the same double loga-
rithms). In addition, we include the running of the QCD
coupling by noticing that the terms proportional to the beta
function coefficient β in Eq. (3) should be resummed into
the running coupling. We implement this resummation by
following the Balitsky prescription from Ref. [12]. Both
running coupling and double transverse logarithm resum-
mations are included by modifying the kernel KBC

1 as

αsNc

2π2
KBC

1 →
αsðrÞNc

2π2
KDLA

�
r2

X2Y2
þ 1

X2

�
αsðXÞ
αsðYÞ

− 1

�

þ 1

Y2

�
αsðYÞ
αsðXÞ

− 1

��
þ Kfin

1 : ð9Þ

The double log corrections to all orders are taken into
account by the factor

KDLA ¼ J1ð2
ffiffiffiffiffiffiffiffiffi
ᾱsx2

p
Þffiffiffiffiffiffiffiffiffi

ᾱsx2
p ; ð10Þ

where ᾱs ¼ αsNc=π. The double logarithm here is
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnX2=r2 lnY2=r2

p
. If lnX2=r2 lnY2=r2 < 0, then

an absolute value is used and the Bessel function is changed

from J1 → I1 (see Ref. [63]). The scale of the coupling in
KDLA is determined by the smallest dipole minfr2; X2; Y2g.
In addition to the double log contributions, one can also

resum a set of higher-order contributions enhanced by
single transverse logarithms, as shown in Ref. [66]. For the
purposes of this paper, this resummation is not necessary
and is excluded for simplicity. In this running coupling
prescription, we keep the order α2s terms in the kernel KBC

1

that are not proportional to the beta function. These are
included in the term Kfin

1 , which reads

Kfin
1 ¼ α2s ðrÞN2

c

8π3
r2

X2Y2

�
67

9
−
π2

3
−
10

9

nf
Nc

�
: ð11Þ

The strong coupling constant in the transverse coordinate
space is evaluated as

αsðrÞ ¼
4π

β lnf½ð μ2
0

Λ2
QCD

Þ
1
c þ ð 4C2

r2Λ2
QCD

Þ1c�cg
; ð12Þ

where β ¼ ð11Nc − 2nfÞ=Nc. We take nf to be zero in both
Kfin

1 and β. We use1 C2 ¼ 1 and μ0=ΛQCD ¼ 2.5 in our
numerical calculations, which freezes the coupling at
αsðr → ∞Þ ¼ 0.762 in the infrared, and c ¼ 0.2 which
controls the transition to the infrared region.
The initial condition for the BK equation is taken from

the McLerran-Venugopalan (MV) model [67,68]. In the
MV model, the color charge density is assumed to be a
random Gaussian variable, with a zero expectation value
and a variance proportional to the local saturation scaleQ2

s .
The dipole correlator in the MV model is written as

hSð2Þx;yiMV ¼ exp

�
−
r2Q2

s0

4
ln

�
1

rΛQCD
þ e

��
: ð13Þ

Here, the constant e acts as an infrared regulator. We use
ΛQCD¼0.241GeV and Q2

s0¼1GeV2 in the numerical ana-
lysis. In analytical studies of the correlators of Wilson lines
in specific “line” coordinate configurations in Sec. IVA, we
use the GBW [69] form for the dipole correlator

hSð2Þx;yiGBW ¼ exp

�
−
r2Q2

s0

4

�
: ð14Þ

In principle, the resummation procedure for the double
transverse logs would also change the initial condition, as
discussed in Refs. [63,64]. However, since the initial
condition is a nonperturbative input for the evolution,
we consider Eq. (13) to be the nonperturbative initial
condition for the resummed evolution as well. For the

1A generic estimate [9,13] would be C2 ¼ e−2γE ≈ 0.32. We
use a larger value C2 ¼ 1 which results in slightly slower
evolution, as the C2 is usually taken to be a free parameter
controlling the coordinate space scale.
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purposes of this paper, the actual form of the initial
condition is not relevant.
We compare the finite-Nc version of the BK equation

presented above to the equation obtained in the large-Nc
limit, which has been studied numerically in Refs. [62,64].
In this limit, one can drop operators suppressed by 1=Nc
and the correlators in Eq. (2) become

hD1i ⟶
Nc→∞hD1iNc→∞ ¼ hSð2Þx;z ihSð2Þz;y i − hSð2Þx;yi; ð15Þ

hD2;1i ⟶
Nc→∞hD2iNc→∞; ð16Þ

hD2;2i ⟶
Nc→∞hD2iNc→∞; ð17Þ

with

hD2iNc→∞ ¼ hSð2Þx;z ihSð2Þz;z0 ihSð2Þz0;yi − hSð2Þx;z ihSð2Þz;y i: ð18Þ

III. SIX-POINT FUNCTIONS IN THE GAUSSIAN
APPROXIMATION

A. The Gaussian approximation

At large Nc, all Wilson line operators present in the NLO
BK equation can be expressed solely in terms of dipole
correlators, as can be seen from Eqs. (15) and (16). At finite

Nc, on the other hand, the higher-point functions hSð2Þx;zS
ð2Þ
z;y i,

hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi and hSð6Þx;z;z0;y;z;z0 i are needed. An expression

for the four-point function in terms of two-point functions
has been derived using the Gaussian approximation (see
e.g., [55]). This makes it possible to obtain a closed form
for the LO BK equation at finite Nc. The purpose of this
work is to compute also the six-point functions using the
Gaussian approximation, in order to obtain a closed finite-
Nc BK equation at NLO accuracy.
In the Gaussian approximation, all correlators are para-

metrized by a single two-point function, and all higher-
point functions can then be expressed in terms of this
function. The initial condition for the small-x evolution is
usually assumed to be Gaussian (e.g., as in the MV model),
but it is not clear a priori that the Gaussian approximation
is valid after the evolution. However, numerical studies of
the JIMWLK equation [70,71] have not found any indi-
cation of major effects breaking the validity of this
approximation.
We use the diagrammatic notation of Refs. [53,55,72], in

which Wilson lines are denoted as

ð19Þ

ð20Þ

The projectile transverse coordinate is x, the lightcone time
axis runs from right to left and the blue vertical line
represents the target background field. In the Gaussian
approximation, the correlator for someWilson line operator
O½U� is approximated as an integral over a parametrization
rapidity η of a single two-point correlator Gu1;u2 :

hO½U�iη ¼ exp

�
−
1

2

Z
η
dη̃

Z
u1;u2

Gu1;u2ðη̃ÞLa
u1L

a
u2

�
O½U�:

ð21Þ

The transverse integrals are denoted as
R
u ¼ R

d2u and La
u

is a Lie derivative that acts on Wilson lines according to

La
uUx ¼ −igδð2Þðx − uÞtaUx ð22Þ

ð23Þ

The structure as an exponential of a two-point function (as
in the MV model [67]) is what makes this a “Gaussian”
approximation. In practice, for gauge invariant (color
singlet) operators, the two-point function Gu1;u2 always
appears in the linear combination

Gu1;u2ðηÞ ≔
Z

η
dη̃

�
Gu1;u2ðη̃Þ −

1

2
ðGu1;u1ðη̃Þ þ Gu2;u2ðη̃ÞÞ

�
:

ð24Þ

For the integrand, we use the notation G0 ≔ ∂ηG. Physical
observables only depend on the integrated G and not on the
integrand G0. Thus, for the purpose of our calculation,
where we need to relate higher-point functions of Wilson
lines to the two-point function, there is some freedom in
choosing the parametrization rapidity. We use this freedom
in such a way that the η and transverse coordinate depend-
ences of G0 factorize,2 as is usually done when employing
the Gaussian approximation (see e.g., [54,56,58,70,74–76])
in phenomenological applications. We henceforth omit the
explicit η dependence of G for brevity.
As an example of the procedure for finding the para-

metric equation for a correlator using Eq. (21), we illustrate

2This assumption has the effect that the transition matrices
MðηÞ [introduced below in Eq. (30)] at different rapidities η
commute with each other. This turns the path ordered exponential
of MðηÞ into a normal exponential. This, in turn, makes it
possible to relate higher-point functions to the two-point function
without any further assumptions about the η dependence of G0. In
the terminology of Ref. [55], we use a “rigid exponentiation”
instead of the “Gaussian truncation.” The “Gaussian truncation”
would imply equating the parametrization rapidity η with the
evolution rapidity Y. See the related discussion in Refs. [72,73].
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the steps for the dipole operator hSð2Þx;yi. A more practical
form of Eq. (21) is to write the integral over the para-
metrization rapidity η in differential form. Then, we have

∂ηhSð2Þx;yi ¼ −MðηÞhSð2Þx;yi; ð25Þ

where M is the so-called transition matrix formed by
operating with the argument of the exponential in Eq. (21)
on the operator of interest. In this case, there are four
contributions from acting with the Lie derivatives on a
product of two Wilson lines:

ð26Þ

ð27Þ

From this sum, we need to factorize out the original
operator Ux ⊗ U†

y, so we use the Fierz identity

ð28Þ

There is only one way to join the endpoints of the Wilson
lines into a singlet operator. This is to trace over them, i.e.,
wedging them between and Doing so and
performing the remaining operations in the exponent of
Eq. (21), we get

ð29Þ

where CF ¼ N2
c−1
2Nc

. Since the operators and were
normalized, the initial condition at η ¼ 0 for the differential
equation (25) is given by trivial Wilson lines equal to the
identity matrix in the absence of a color field. This is the
well-known parametric equation for the dipole correlator
[55] in the Gaussian approximation.
In the case of n-point correlators larger than the dipole,

the operator hO½U�i in Eq. (21) is actually an n × n matrix
of correlators, denoted AðηÞ, and Eq. (25) becomes an
n × n matrix differential equation

∂ηAðηÞ ¼ −MðηÞAðηÞ: ð30Þ

By construction, M is a symmetric matrix, so there are at
most

P
n
i¼1 i ¼ nðnþ 1Þ=2 distinct elements, not n × n.

For example, a product of six Wilson lines is represented
in this notation as

ð31Þ

(the haphazard assignment of coordinate labels is conven-
ient for the NLO BK equation and will become clear when
constructing the transition matrix). The notation here
means that this product is actually a matrix with six open
indices on the left and another six on the right; we denote
them as

Since only singlet states are gauge-invariant, the only
operators of interest here are singlets. There are six pos-
sible ways to join the endpoints of these Wilson lines to
form a singlet. Equation (30) is therefore a six-by-six
matrix differential equation, as opposed to the much
simpler one-dimensional problem illustrated for the dipole
correlator.
In analogy to the procedure for the dipole operator, the

procedure to use Eq. (30) to find parametric equations for
the six-point correlators is as follows:
(1) Choose a multiplet basis, represented as a column

vector B, of n ¼ 6 color structures for the space
of all six-point correlators. Each element will have
six open color indices, which can contract with the
open indices on the left of Uz ⊗ U†

z0 ⊗ Uv ⊗
U†

y ⊗ Ux ⊗ U†
w. For example, one choice for an

element of B could be

ð32Þ

and the corresponding element for the other end of the
Wilson line is then
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ð33Þ

The prefactor is a normalization constant found by squaring
the basis element.
(2) Construct the correlator matrix A by taking

BðUz ⊗ U†
z0 ⊗ Uv ⊗ U†

y ⊗ Ux ⊗ U†
wÞBT. The ele-

ments of B on the left are contracted with the open
color indices on the left of the Wilson lines, and the
elements of BT with the open indices on the right.
For example, using the basis element shown above,
we have for one of the 36 elements in A,

ð34Þ

(3) Construct the transition matrix M by summing (for
each element in A) all possible one-gluon diagrams
obtained with the double Lie derivative operator and
rewriting the result in terms of elements of A.

(4) Solve Eq. (30) by exponentiating M to find ex-
pressions for each element in A, using as an initial
condition the correlator matrix A corresponding to
Wilson lines equal to the identity matrix.

B. Choosing a basis

Starting from a product of six Wilson lines, there are six
ways to form multiplets by joining endpoints in all possible
ways:

ð35Þ

The simplest way to construct an orthonormal basis from
these would be to use color algebra to choose

ð36Þ

The blue lines denote gluons and the last two elements
of B represent the antisymmetric and symmetric structure
constants, respectively, fabc ¼ −2itrð½ta; tb�; tcÞ and
dabc ¼ 2trðfta; tbg; tcÞ. The color factors are dA ¼ N2

c −
1 and Cd ¼ N2

c−4
Nc

. The next step would be to use this basis to
construct the correlator matrix A and the transition matrix
M. However, doing so results in a matrix differential
equation ∂ηAðηÞ ¼ −MðηÞAðηÞ, whose complicated sol-
ution is the matrix exponential of a six-by-six matrix M.
For our case, a better way to proceed is to exploit the

structure of the six-point correlators that are actually
needed for the NLO BK equation. Since there are only
four distinct coordinates in these particular correlators, we
make the coordinate assignments

ð37Þ

It is easy to see from this that there is one way to join the
endpoints such that in the limit v → z0, w → z, four Wilson
lines cancel (due to unitarity). The result simplifies to a
single trace:
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ð38Þ

So choosing as one of our basis elements allows

one dimension of our six-dimensional space of operators to
decouple, giving the equation for the dipole correlator.
Similarly, the choice of two more particular basis elements
results in two correlators that reduce to four-point functions;
one due to the limit v → z0 and the other due to the limit
w → z. Thus, we can expect to choose a further two basis
elements such that two more dimensions decouple from
the remaining five, corresponding to the equation for the

four-point operators. These two basis elements can be
chosen as

and

We will choose the remaining three basis elements such
that they are orthonormal to the three already chosen,
resulting in the final basis vector

ð39Þ

Since this basis is orthonormal, the correlator matrix at the
initial condition Aðη ¼ 0Þ will just be the identity matrix.

C. Constructing the correlator matrix and the
transition matrix

Due to this choice of basis B̃, the full matrix differential
equation (30) now decouples into three independent equa-
tions. This allows us to forego exponentiating a six-by-six
matrix; at most we will need to exponentiate a three-by-
three matrix, which can be done analytically.
To form the correlator matrix A, we take the product

B̃ðUz ⊗ U†
z0 ⊗ Uv ⊗ U†

y ⊗ Ux ⊗ U†
wÞB̃T and set w → z

and v → z0. To form the transition matrix, we act with
the argument of the exponential in Eq. (21) on the operator
Uz ⊗ U†

z0 ⊗ Uv ⊗ U†
y ⊗ Ux ⊗ U†

w, then wedge the result
between the basis vectors and set w → z and v → z0:

B̃

�
−
1

2

Z
η
dη0

Z
u1;u2

Gu1;u2ðη0ÞLa
u1L

a
u2

�

× ðUz ⊗ U†
z0 ⊗ Uv ⊗ U†

y ⊗ Ux ⊗ U†
wÞB̃T

				
w→z
v→z0

ð40Þ

Diagrammatically, this is equivalent to summing all
possible ways of attaching one gluon line on the
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operator , using the Fierz identity to replace the gluon

vertices, and finally closing the Wilson line endpoints on
the left and right using the basis vector. For example, the
element (6, 6) of the correlator matrix A is

ð41Þ

We then sum all the diagrams in which a gluon is attached
to this diagram so that it joins any two of the six Wilson
lines on the right of the target interaction. Using the Fierz
identity in Eq. (28), we may write the resulting expression
in terms of diagrams with no gluons. After making the
substitutions w → z and v → z0, the result will be a linear
combination of elements of the operator matrixAðηÞ. From
this linear combination, one can read off the elements of
column 6 of the transition matrix M. The explicit expres-
sions for the elements of AðηÞ in terms of the Wilson line
correlators are shown in Appendix.
Performing this procedure for each diagram in AðηÞ, we

get the full transition matrix

MðηÞjw→z
v→z0

¼

0
B@

M3 0 0

0 M2 0

0 0 M1

1
CAðηÞ; ð42Þ

where the subscripts refer to the dimension of the
submatrix.
The first (one-dimensional) transition submatrix is

M1ðηÞ ¼ CFGx;y
0 ð43Þ

and upon exponentiation, gives the parametric equation for
the dipole correlator as shown in Eq. (29). When inverted,
this equation can be used to express the two-point function
Gx;y in terms of the dipole correlator. This will be needed to
evaluate the higher-point functions in terms of the

dipole hSð2Þx;yi.
The second (two-dimensional) transition submatrix is

M2ðηÞ ¼
Nc

4

�
M2

ð1;1Þ M2
ð1;2Þ

M2
ð1;2Þ M2

ð1;1Þ

�
ðηÞ; ð44Þ

where

Mð1;1Þ
2 ðηÞ ≔ G0

x;z þ G0
y;z −

2

N2
c
G0
x;y þ G0

x;z0 þ G0
y;z0 ; ð45Þ

Mð1;2Þ
2 ðηÞ ≔ G0

x;z þ G0
y;z − G0

x;z0 − G0
y;z0 : ð46Þ

The matrix differential equation

∂ηA2ðηÞ ¼ −M2ðηÞA2ðηÞ ð47Þ
then gives a coupled system of 2 × 2 differential equations,
out of which 2 are linearly independent, corresponding to
the fact that the same transition matrix operates separately
on each of the two columns ofA2. The exponential solution
for this system of equations gives the known parametriza-
tion for the four-point correlator with one repeated coor-
dinate [55]

hSð2Þx;zS
ð2Þ
z;y i ¼ 1

N2
c
e−CFGx;y þ 2CF

Nc
e−CFGx;ye−

Nc
2
ðGx;zþGy;z−Gx;yÞ:

ð48Þ
The third and final (three-dimensional) transition sub-

matrix is

M3ðηÞ ¼

0
BB@

Nc
4
Γ0
1

ffiffiffiffiffiffiffiffi
NcCd

p
4

Γ0
2 0ffiffiffiffiffiffiffiffi

NcCd
p

4
Γ0
2

Nc
4
Γ0
1 − 1ffiffi

2
p Γ0

2

0 − 1ffiffi
2

p Γ0
2 Γ0

0

1
CCA; ð49Þ

where

Γ0 ≔ CFGx;y þ NcGz;z0 ; ð50Þ

Γ1 ≔ Gx;z þ Gy;z −
2

N2
c
Gx;y þ Gx;z0 þ Gy;z0 þ 2Gz;z0 ; ð51Þ

Γ2 ≔ Gx;z − Gy;z − Gx;z0 þ Gy;z0 ð52Þ
and the primes on the Γ’s in Eq. (49) denote derivatives in η.
Exponentiating this matrix is the last step required to get
expressions for the remaining six-point correlators in A3.

D. Exponentiating the transition matrix M3

In order to obtain the six-point functions, it is necessary
to solve the differential equation

∂ηA3ðηÞ ¼ −M3ðηÞA3ðηÞ: ð53Þ
Solving this equation is equivalent to exponentiating the
matrix M3, as shown above in the cases of the two- and
four-point functions. To exponentiateM3, we consider two
different cases: Γ0

2 ¼ 0 and Γ0
2 ≠ 0. The reason for this will

become clear shortly.
When Γ0

2 ¼ 0,M3 in Eq. (49) becomes diagonal and we
directly obtain

A3ðηÞ ¼

0
B@ e−

Nc
4
Γ1 0 0

0 e−
Nc
4
Γ1 0

0 0 e−Γ0

1
CA: ð54Þ

When Γ0
2 ≠ 0, the matrix elements of A3 are calculated

by matrix-exponentiating the full M3 in Eq. (49), giving
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A3ðηÞ ¼
X3
i¼1

ezi=4

0
BBB@

a11ðziÞ
dðziÞ −

ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
Γ2

a12ðziÞ
dðziÞ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2CdNc

p
Γ2
2
a13ðziÞ
dðziÞ

−
ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
Γ2

a12ðziÞ
dðziÞ

m22ðziÞ
dðziÞ 2

ffiffiffi
2

p
Γ2

a23ðziÞ
dðziÞ

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2CdNc

p
Γ2
2
a13ðziÞ
dðziÞ 2

ffiffiffi
2

p
Γ2

a23ðziÞ
dðziÞ

a33ðziÞ
dðziÞ

1
CCCA: ð55Þ

Here, zi are the roots of the cubic polynomial

pðzÞ ¼ z3 þ 2ð2Γ0 þ NcΓ1Þz2 þ ½NcΓ1ð8Γ0 þ NcΓ1Þ − ðN2
c þ 4ÞΓ2

2�zþ 4½N2
cΓ0Γ2

1 − ððN2
c − 4ÞΓ0 þ 2NcΓ1ÞΓ2

2�: ð56Þ
They are

z1 ¼
1

3

�
−2c1 þ c3 þ

1

c3
½ðc1 − 6Γ0Þ2 þ 3ðN2

c þ 4ÞΓ2
2�
�
; ð57Þ

z2 ¼ −
1

6

�
16c1 þ c3ð1 − i

ffiffiffi
3

p
Þ þ 1

c3
ð1þ i

ffiffiffi
3

p
Þ½ðc1 − 6Γ0Þ2 þ 3ðN2

c þ 4ÞΓ2
2�
�
; ð58Þ

z3 ¼ −
1

6

�
16c1 þ c3ð1þ i

ffiffiffi
3

p
Þ þ 1

c3
ð1 − i

ffiffiffi
3

p
Þ½ðc1 − 6Γ0Þ2 þ 3ðN2

c þ 4ÞΓ2
2�
�
; ð59Þ

where
c1 ¼ 2Γ0 þ NcΓ1; ð60Þ

c2 ¼ ð2c1½c21 − 9ðN2
c − 8ÞΓ2

2�Þ2 − 4½c21 þ 3ðN2
c þ 4ÞΓ2

2�3;
ð61Þ

c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

p
2

þ c1½c21 − 9ðN2
c − 8ÞΓ2

2�
3

r
: ð62Þ

The functions of the roots that appear in Eq. (55) are

a11ðzÞ ¼ 4NcΓ0Γ1 − 8Γ2
2 þ ð2Γ0 þ c1Þzþ z2; ð63Þ

a12ðzÞ ¼ 4Γ0 þ z; ð64Þ
a13ðzÞ ¼ 1; ð65Þ

a22ðzÞ ¼ 4NcΓ0Γ1 þ ð2Γ0 þ c1Þzþ z2; ð66Þ
a23ðzÞ ¼ NcΓ1 þ z; ð67Þ

a33ðzÞ ¼ N2
cΓ2

1 − ðN2
c − 4ÞΓ2

2 þ 2NcΓ1zþ z2 ð68Þ
dðzÞ ¼ 3z2 þ 4c1zþ NcΓ1ð8Γ0 þ NcΓ1Þ − ðN2

c þ 4ÞΓ2
2:

ð69Þ
Notice that c3 may be complex. However, the final
expressions for each element in A3 are in fact real, as
correlators should be. Notice also that c3 appears in the
denominator in the roots. Since c3 ¼ 0 ⇔ Γ2 ¼ 0 and we
have treated the Γ2 ¼ 0 case separately, we need not worry
about dividing by zero where c3 appears in the denominator
in (57)–(59).

E. Extracting six-point correlators needed for NLO BK

Equation (55) gives the analytical expressions for the
correlators formed using basis B̃, solely in terms of the
parameter G [which can be used to relate these expressions
to the dipole via Eq. (29)]. For example,

ð70Þ

However, the two correlators required in Eqs. (7) and (8)
are

ð71Þ

ð72Þ

These are not explicitly any of the elements of matrix A3,
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since and are not basis elements in B̃. Instead, they are

linear combinations of the elements B̃i contained in B̃:

ð73Þ

ð74Þ

Using these two expressions, it is simple to get the final
equations for the two six-point correlators needed. In terms
of the elements of the correlator matrixA3 given in Eq. (55)
(see Appendix for detailed expressions) they are

hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi ¼

1

N2
c
hSð6Þx;z;z0;y;z;z0 i þ

dA
N3

c
ð−

ffiffiffiffiffiffiffiffiffiffiffi
CdNc

p
A3

ð1;2Þ þ NcA3
ð2;2Þ þ

ffiffiffi
2

p
A3

ð2;3ÞÞ ð75Þ

and

hSð6Þx;z;z0;y;z;z0 i ¼ −hSð2Þx;yi þ hSð2Þx;zS
ð2Þ
z;y i þ hSð2Þx;z0S

ð2Þ
z0;yi þ

dA
Nc

�
Cd

2
A3

ð1;1Þ −

ffiffiffiffiffiffiffiffi
2Cd

Nc

s
A3

ð1;3Þ −
Nc

2
A3

ð2;2Þ þ 1

Nc
A3

ð3;3Þ
�
: ð76Þ

Equations (75) and (76) are the final two expressions
needed to solve the NLO BK equation at finite Nc; they are
the main analytical results of this work. It is now possible to
express these six-point functions entirely in terms of dipole
correlators using Eq. (29). This makes it possible to write
the NLO BK equation from Eq. (2) solely in terms of dipole
correlators. In such a closed form, it can be solved directly,
as was done in the large-Nc case in Refs. [62,64].
To verify the validity of Eqs. (75) and (76), we perform

three checks. First, the Gaussian approximation has the
built-in property that it should be consistent in color
algebra. This means that taking any coincidence limit in
which coordinates are made equal in Eqs. (75) and (76),
should reduce them to the relevant expressions for the
lower-point functions Eqs. (29) and (48). For example,
setting z → x and z0 → y in Eq. (75), we reproduce the
equation for the dipole (29), as expected.
Secondly, when Eq. (75) is taken in the dilute limit,

where the Wilson lines are expanded as

Ux ¼ e−λaðxÞta ð77Þ

¼ 1 − λaðxÞta þOðλ2Þ; λaðxÞ ∈ R; ð78Þ

Eq. (75) should be the same up to order λ2 as the parametric
equation for the large-Nc counterpart operator. In the case

of correlator hSð2Þx;zS
ð2Þ
z;z0S

ð2Þ
z0;yi, the large-Nc result is just the

factorized product of dipole correlators

hSð2Þx;z ihSð2Þz;z0 ihSð2Þz0;yi ¼ e−CFðGx;zþGz;z0þGz0 ;yÞ: ð79Þ

After some algebra, Eq. (75) can be shown to give the same
result up to order G.
Finally, we have confirmed that Eq. (76) reproduces the

large-Nc result in the appendix of Ref. [60] in the particular
line configuration of coordinates discussed below in
Sec. IVA. Since our expression is rather complicated
due to the complex roots zi, we have not been able to
analytically take the limit Nc → ∞ of our expression.
Instead we have evaluated our result numerically at very
large values of Nc and checked that the result matches that
obtained using the expression in Ref. [60].
We note that in Ref. [59], correlators of up to eight

Wilson lines have been calculated at finite Nc. The differ-
ence between that work and ours is that the authors there
are solving the system for a general configuration of
coordinates, where it is difficult to find a basis such that
the transition matrix would become block diagonal.
Consequently, an analytical approach as presented in this
paper is not possible. Instead, the authors numerically
exponentiate the transition matrix, which is a much more
expensive computational procedure than what is needed
here.

IV. NUMERICAL RESULTS

We now study numerically the obtained six-point corre-
lators, Eqs. (75) and (76). In particular, we are interested in
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the effects of the 1=N2
c suppressed contributions included in

these six-point correlators, compared to the large-Nc
version in Eq. (16), which was used previously in numeri-
cal studies of the NLO BK equation. We will first study
these operators in a specific coordinate configuration (with
the GBW parametrization for the dipole). We will then
integrate the operators over the gluon coordinates z; z0 and
study the BK evolution starting from an MV model initial
condition.

A. Correlators in a line configuration of coordinates

As a baseline for comparison of the six-point correlators
in the NLO BK integrand, we consider first the four-point

correlator hSð2Þx;zS
ð2Þ
z;y i that appears in the LO BK equation.

We compare the full finite-Nc result to its large-Nc limit

hSð2Þx;z ihSð2Þz;y i. The finite-Nc correlator is evaluated by apply-
ing Eq. (48). For the dipole operator hSð2Þi, we use the
GBW form given in Eq. (14). We consider the following,
specific but not atypical, configuration of coordinates: x; y
and z in a line along the horizontal axis of transverse
coordinate space, as shown in Fig. 1. The distance between
points y and z is denoted by a, the distance between points x
and z is 2a, and the distance between x and y is 3a.
We have confirmed that the rough relative magnitude of

the finite-Nc effects of the results shown in this subsection
are not specific to the actual chosen geometric configura-
tion. To confirm this, we have tested other coordinate
configurations, for example the four coordinates placed at
the corners of a square. The results of these tests were very
similar to the plots shown here for the line configuration.
We therefore consider this particular geometry to be
representative of the typical magnitude of the finite-Nc
corrections.
To show the results as a function of the dimensionless

distance scale aQs, we define the saturation scale Qs as

hSð2Þx;yiðx−yÞ2¼2=Q2
s
¼ e−1=2: ð80Þ

In Fig. 2, the four-point correlator is shown both at finite
Nc and at large Nc as a function of the distance aQs.
Additionally, the magnitude of the finite-Nc correction is
shown as a difference between the finite-Nc and large-Nc

results, denoted by hSð2ÞSð2Þi − hSð2ÞihSð2Þi. The finite-Nc

correction to the four-point correlator hSð2ÞSð2Þi is found to
be negligible. At typical aQs ¼ 1, the relative finite-Nc

correction ðhSð2ÞSð2Þi − hSð2ÞihSð2ÞiÞ=ðhSð2ÞihSð2ÞiÞ is
approximately 5%. The relative correction becomes more
important at large aQs, in the region which gives only a
negligible contribution to the BK evolution. We will return
to the discussion of the finite-Nc corrections at aQs ≳ 1
later, when evaluating the six-point functions. Also shown
in Fig. 2 is the full LO-like operator factor D1 (see Eq. (6)
from the BK equation, both at large and finite Nc. The
difference between the finite-Nc and large-Nc results is the
same as the difference for the four-point correlators. The
fact that the finite-Nc corrections are smaller than ∼1=N2

c is
not surprising, as these corrections to the LO BK equation
are known to be small [53].
Next, we choose for the four coordinates present in the

NLO-like operators in the BK equation a similar line
configuration, shown in Fig. 3. In Fig. 4, the behaviour
of the operator hSð2ÞSð2ÞSð2Þi and the large-Nc counterpart

FIG. 1. Coordinates in the LO-like operators of the BK
equation placed in a line configuration as a function of some
value a.

FIG. 2. Correlators in the LO-like piece of the BK equation (2),
in the line configuration of coordinates as shown in Fig. 1.

FIG. 3. Coordinates in the NLO-like operators of the BK
equation placed in a line configuration as a function of some
value a.
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hSð2ÞihSð2ÞihSð2Þi are plotted as a function of aQs. For the
finite-Nc correlator hSð2ÞSð2ÞSð2Þi, we use our analytical
result Eq. (75). Although the difference between the large-
Nc and finite-Nc results (also shown in the figure) is larger
here compared to the four-point function shown in Fig. 2, it
is still negligible at aQs ≪ 1. On the other hand, the finite-
Nc corrections clearly dominate in the region aQs ≳ 1, the
relative contribution from 1=N2

c suppressed terms being
approximately 40% at aQs ¼ 1. A similar, although
numerically smaller, effect was observed in the four-point
function studied above. This can be understood as follows.
When 2a ≳ 1=Qs, the color fields at points x and z, as well
as at y and z0 are uncorrelated. However, at finite Nc, the
six-point function is also sensitive to the color field
correlations between points x and z0, as well as between
y and z that belong to different dipoles and are thus not
correlated in the large-Nc limit. When jx − z0j ¼ jy − zj≲
1=Qs, these correlations do not vanish and actually domi-
nate the full six-point function.
Also shown in Fig. 4 for comparison is the other 1=N2

c

suppressed six-point correlator 1
N2

c
hSð6Þi present in the NLO

BK integrand at finite-Nc (cf. Eq. (7)). This is plotted using
Eq. (76). We can see that the contribution of the six-point
function Sð6Þ=N2

c to D2;2 is similar in magnitude as that of
the finite-Nc corrections to the dipole cubed opera-
tor Sð2ÞSð2ÞSð2Þ.
In Fig. 5, we use all the above mentioned correlators to

plot the NLO-like factors hD2;1i and hD2;2i, as defined by

Eqs. (7) and (8), respectively. Since both quantities reduce
to the same expression in the large-Nc limit, only one curve
is shown for the large-Nc case. The dashed curves show the
differences, i.e., the finite-Nc corrections to hD2;1i and
hD2;2i. As already seen when studying the six-point
correlators, the finite-Nc corrections are negligible at
aQs ≪ 1, but become numerically important when
aQs ≳ 1. In comparison to the dashed curves in Fig. 2
for the LO-like case, we see that the finite-Nc corrections in
the NLO-like case are larger. At aQs ¼ 1, the finite-Nc
corrections to the operators hD2;1i and hD2;2i are approx-
imately 20% and 16%, respectively. In comparison, the
LO-like operator hD1i shown in Fig. 2 has a finite-Nc
correction of approximately 8%. When considering the full
NLO BK evolution, one should keep in mind that the
evolution is driven by the dipole sizes r≲ 1=Qs. As such,
even though the finite-Nc corrections can be large at
r ¼ 1=Qs, the actual effect of the 1=N2

c suppressed con-
tributions to the small-x evolution can be smaller. The NLO
BK evolution at finite-Nc is studied in the next section.

B. BK evolution at finite Nc

Equipped with the insight gained for the expected
behavior of correlators using the line configuration,
we move on to studying the full BK equation using
the MV model initial condition, shown in Eq. (13), with
Q2

s;0 ¼ 1 GeV2. Since the finite-Nc corrections to the

FIG. 4. Six-point correlators present in the NLO BK equa-
tion (2), in the line configuration of coordinates as shown in
Fig. 3.

FIG. 5. Correlator factors hD2;1i and hD2;2i in the NLO-like
part of the BK equation (2), in the line configuration of
coordinates as shown in Fig. 3. Both factors reduce to the same
expression hD2iLargeNc

in the large-Nc limit, as also shown in the
figure.
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individual operators have been found to be small (except at
large distances which do not significantly contribute to the
BK evolution), we expect the finite-Nc corrections to
remain small when performing integrations over gluon
coordinates z and z0 in Eq. (2).
In Fig. 6, we show the relative evolution speed 1

N ∂YN,
where the dipole amplitude N ¼ Nx;y is defined as

Nx;y ¼ h1 − Sð2Þx;yi. This is obtained by integrating the full
right side of Eq. (2), first using the large-Nc expressions for
the correlators, then again using the finite-Nc expressions.
These are shown separately for the LO-like contribution
[only the term containing D1 in the integrand in Eq. (2)]
and the NLO-like contribution (only the terms containing
D2;1 and D2;2). As expected from the line configuration
studies, we see that the finite-Nc corrections for the NLO-
like terms are slightly larger, but of the same order of
magnitude as the finite-Nc corrections for the LO-like
terms. The finite-Nc corrections vanish when the parent
dipole size r is small, and are most important at rQs ∼ 1, as
expected from the line configuration analysis pre-
sented above.
In Fig. 7, we plot the difference between the large-Nc and

finite-Nc cases, separately for the LO-like and NLO-like
terms. This shows more clearly that the difference for the

NLO-like terms is of the same order of magnitude as for the
LO-like terms. We also note that the difference has the
opposite sign in the LO-like and the NLO-like terms.
Consequently, a part of the difference cancels in the total
evolution speed. At rQs ¼ 1, the relative finite-Nc correction
is approximately 8% in the LO-like contribution and 13% in
theNLO-like contribution. The relativemagnitude of the total

FIG. 6. Evolution speed of the dipole amplitude at the initial
condition at large-Nc and at finite-Nc. We show separately the
contribution from the LO- and NLO-like terms (note that the LO-
like contribution includes the order α2s contribution included in
Kfin

1 ).

FIG. 7. Difference of the evolution speeds at finite Nc and at
large Nc, shown separately for the LO-like, NLO-like and total
(LO-like þ NLO-like) contributions.

FIG. 8. Evolution for the ratio of the dipole amplitudes obtained
by performing the finite-Nc and large-Nc evolutions with the
same initial condition.
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1=N2
c suppressed contribution is 5%, which is somewhat

smaller than the expected correction of 1=N2
c ∼ 10%.

Finally, the last thing left to study is to move beyond the
initial condition and determine how the finite-Nc correc-
tions behave under the NLO BK evolution. In Fig. 8, we
show the ratio of the dipole amplitudes N obtained by
solving the full NLO BK equation at finite Nc to that at
large Nc. At r≳ 1=Qs, when the details of the initial
condition are lost and one enters the geometric scaling
region, the difference between the large-Nc and finite-Nc
cases evolves only very slowly. At small dipoles, the ratio
grows approximately linearly in Y. The fact that the total
finite-Nc correction is positive at small dipole sizes and
negative at large dipoles, as seen in Fig. 7, is found to hold
also asymptotically after many units of rapidity evolution.
The evolution speed of the saturation scale, ∂Y lnQ2

s , is
shown in Fig. 9. Similarly to what is seen in the dipole
amplitude plot in Figure 8, we see from this figure that the
finite-Nc corrections are more important at the initial
condition, slowing down the evolution of Q2

s by approx-
imately 5%. Later in the evolution, where the solution
approaches the asymptotic shape of the BK evolved dipole,
the difference becomes smaller—of the order of 1%.
Consequently, even at the initial condition (and especially
when the details of the initial condition are lost) the finite-
Nc corrections to the evolution speed of Qs are found to be
significantly smaller than the naive expectation of 1=N2

c
at NLO.

V. CONCLUSIONS

In this work, we have studied the six-point correlators in
the NLO BK equation using the Gaussian approximation.

This allowed us to express these higher-point correlators in
terms of the dipole operator. In using our analytical results,
we have seen numerically that the overall finite-Nc cor-
rections to the NLO-like part of the BK equation are
somewhat smaller than what is naively expected. However,
one needs to state the actual quantity being compared in
order to quantify this correction.
When correlators are considered between Wilson lines

separated by large distances relative to 1=Qs, 1=N2
c sup-

pressed corrections may be considerable. Despite these
potentially large corrections to individual correlators, these
configurations do not contribute much to the right side of
the BK equation. Therefore, we find a somewhat smaller,
although still significant, effect on the shape of the dipole
amplitude as a function of r. The finite-Nc corrections are
watered down further when one considers the evolution
speed of Qs as a function of rapidity, especially once the
evolution settles toward its asymptotic form away from the
initial condition. In general, finite-Nc corrections need to be
considered carefully when evaluating the NLO BK equa-
tion, since they may have a non-negligible effect at the
required accuracy.
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APPENDIX: CORRELATOR MATRIX AðηÞ
We give here the explicit expressions for the operators

contained in the correlator matrixAðηÞ. Since the transition
matrix M block-diagonalizes in basis B̃, as explained in
Sec. III C, we are only interested in the corresponding
block-diagonalized matrix

AðηÞ
			
w→z
v→z0

¼

0
B@

A3 0 0

0 A2 0

0 0 A1

1
CAðηÞ: ðA1Þ

The one-dimensional submatrix is

FIG. 9. Evolution speed of the saturation scale Q2
s as a function

of rapidity at large Nc and at finite Nc.
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ðA2Þ

The two-dimensional submatrix is

ðA3Þ

where

ðA4Þ

ðA5Þ

The three-dimensional submatrix is

ðA6Þ

where

ðA7Þ

ðA8Þ

ðA9Þ
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ðA10Þ

ðA11Þ
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