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Precise knowledge of the nucleon’s axial-current form factors is crucial for modeling GeV-scale
neutrino-nucleus interactions. Unfortunately, the axial form factor remains insufficiently constrained to
meet the precision requirements of upcoming long-baseline neutrino-oscillation experiments. This work
studies the nucleon’s axial and vector form factors using the light-front approach to build a quark-diquark
model of the nucleon with an explicit pion cloud. The light-front wave functions in both the quark and pion-
baryon Fock spaces are first calibrated to existing experimental information on the nucleon’s electro-
magnetic form factors and then used to predict the axial form factor. The resulting squared charge radius of
the axial pseudovector form factor is predicted to be r2A ¼ 0.29� 0.03 fm2, where the small error accounts
for the model’s parametric uncertainty. We use our form factor results to explore the (quasi)elastic
scattering of neutrinos by (nuclei)nucleons, with the result that the widely implemented dipole ansatz is an
inadequate approximation of the full form factor for modeling both processes. The approximation leads to a
5%–10% overestimation of the total cross section, depending on the (anti)neutrino energy. We project
overestimations of similar size in the flux-averaged cross sections for the upcoming DUNE long-baseline
neutrino-oscillation experiment.
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I. INTRODUCTION

Modern investigations along the intensity frontier [1]
aim to test the StandardModel (SM) and explore the origins
of neutrino mass through a dedicated series of neutrino-
oscillation searches, which rely on the scattering of high-
intensity neutrino beams by nuclear targets. At the present
time, the dominant limitations in these experiments are
an imperfect determination of the neutrino flux and
imprecision in theoretical predictions for neutrino-nucleus
cross sections, both of which are necessary to extract the
neutrino (dis)appearance rates between the near and far
detectors in long-baseline measurements. Improving the
theoretical description of neutrino-nucleus reactions in the
multiple-GeV neutrino-energy region is therefore critical
for the next-generation long-baseline neutrino-oscillation

experiments [2]. In most theoretical frameworks [2], the
neutrino-nucleon interaction is the most basic input to the
calculation, such that the neutrino-nucleon scattering/
reaction is the fundamental kernel. As such, the nucleon-
level kernels must be carefully investigated in order to
understand their accuracy and potential model uncertain-
ties, as well as to the resulting implications for calculations
of nucleus-level scatterings/reactions. Such an understand-
ing can then provide guidance for further improvements. In
those regions of the neutrino energy (Eν) for which the
neutrino-nucleus cross section is dominated by quasielastic
(QE) scattering and resonance production [3], the nucleon-
level kernel requires detailed knowledge of the (in)elastic
nucleon form factors of the electroweak (EW) current,
including the axial-current component [4] (the axial form
factor). Unfortunately, the axial-current component of the
EW form factors remains insufficiently understood to meet
the precision objectives of the coming neutrino-oscillation
experiments [2,5].
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In principle, lattice QCD calculations could provide
reliable results about these EW form factors [2,6–14].
However, these calculations are restricted to a finite
window of momentum transfer, Q (i.e., Q2 ∼ 1 GeV2).
Beyond this, a systematic description of the higher Q2,
several GeV2 regime—a region in which the form factors
are unlikely to achieve their asymptoticQ2 dependence—is
still needed. Moreover, lattice QCD calculations for the
axial form factor remain generally challenging, with the
inelastic form factors expected to be all the more so.
Other currently available frameworks are mainly com-

posed of phenomenological fits of data such as polynomial-
based fits (see, e.g., Ref. [15]), the z-expansion method,
which entails minimal model dependence [5,16,17], quark-
hadron-duality constrained fits [18], and recent neural-
network based fits [19]. In addition, there are dispersion
analyses mixed with the meson-dominance picture [20,21],
effective field theory approaches focused on the low-Q2

region [4,20,22–27], and various quark models [20]. In this
work, we start with the last approach, in particular, the
light-front quark model [28–38]. It is well known that
pionic degrees-of-freedom are important aspects of the
dynamics of the strong interaction, being responsible for
the long-distance structure of the nucleon’s charge struc-
ture. For this reason, we manifestly include contributions
from the nucleon’s pion cloud [31,32,35,36,39] in our
model. With this approach, the nucleon’s wave function is
governed by a mixture of contributions from a quark-
diquark core and pion cloud, the latter due to the recon-
figuration of the nucleon into pion-baryon intermediate
modes [see Eq. (1)].
In contrast to the other nonlattice approaches we noted,

our model is capable of simultaneously describing the
elastic electromagnetic (EM) and axial form factors in the
Q2 ∼ few-GeV2 range. (The framework can also be gen-
eralized to study the inelastic form factors.) It thus unifies
these various form factors in a single approach, which is
valuable considering the large amount of experimental
information for the EM elastic form factors, which
might be exploited to improve the axial form factors. To
realize and demonstrate these connections, our model,
including the quark’s light-front wave function, is first
calibrated against the better-determined nucleon elastic
EM form factors and then used to predict the elastic axial
form factors.
By evaluating the first derivative with respect to Q2 of

the axial pseudovector form factor [F̃1N , see the definition

in Eq. (3)], i.e., r2A ≡ − 6
F̃1N

dF̃1N
dQ2 jQ2¼0, we obtain the

nucleon’s axial-charge radius, r2A ¼ 0.29� 0.03 fm2,
which should be compared to r2A ¼ 0.46� 0.16 fm2 from
a combined analysis [5] of neutrino-nucleon scattering data
and the singlet muonic hydrogen capture-rate measure-
ment, and also to current lattice QCD results, which range
from r2A ¼ 0.2 to 0.45 fm2. If we match our form factor and

its derivative to a dipole parametrize, gAG̃DðQ2Þ≡
gA=ð1þQ2=M2

AÞ2, at Q2 ¼ 0, the single mass-parameter,
MA, is then given as

ffiffiffiffiffiffiffiffiffiffiffiffi
12=r2A

p
, and for it, we pre-

dict MA ¼ 1.28� 0.07 GeV.
We stress, however, that such an approximation would

seriously overestimate the (anti)neutrino-nucleon cross
sections compared to calculations based on the full expres-
sion of the form factor, by 5%–10% for Eν ≳ 0.5 GeV.
Consequently, fitting the dipole approximation to the full
form factor over a range ofQ2 (MA is then not related to rA)
would be expected to produce an effectiveMA smaller than
∼1.28 GeV. Nevertheless, it will still be larger than the
central value of the recent analysis: 1.01� 0.17 GeV2,
based on their r2A results [5,17], since the (anti)neutrino-
nucleon cross section given by the full form factor is
intermediate between the results using the two dipole
approximations with MA ¼ 1 and 1.28 GeV (see Fig. 10).
To further assess how these discrepancies with the

dipole approximation can be expected to impact neutrino
cross sections, we implement the axial form factors in a
simulation of neutrino-40Ar QE scattering using the GiBUU

event generator [40] and compute the flux-averaged
cross sections based on the energy distribution of the
projected neutrino flux at DUNE [41]. Here, we again find
that the discrepancy leads to 5% overestimate of the cross
sections for both neutrino and antineutrino scatterings at
Q2 < 0.2 GeV2—the peak location of the flux-averaged
differential cross section, dσ=dQ2—and climb to 10%–
15% at larger Q2 (see Fig. 12). Meanwhile, the overesti-
mation of the neutrino and antineutrino scattering cross
section is similar at Q2 < 0.5 GeV2, but still differs at the
few-percent level at larger Q2.
In the remainder of this article, we detail in Sec. II, the

theory formalism for our pion-cloud-augmented light-front
quark model. Section III discusses the input parameters for
the model, while Sec. IV presents our procedure for
constraining the unknown parameters in the model via
measurements of the nucleon’s EM form factors and the
resulting predictions for the axial-current form factor F̃1N.
In Sec. V, we first discuss these form factors’ impacts on the
single-nucleon cross sections and then their impacts on the
flux-averaged cross sections for neutrino-40Ar QE scatter-
ing. A short summary with conclusions is provided in
Sec. VI. Readers interested mainly in the final analysis for
neutrino-nucleus scattering can directly consult Sec. V and
possibly Sec. IV, which demonstrate the success of our
model in reproducing the EM form factors. Explanations of
relevant notation can be found in Sec. II.

II. FORMALISM

A. The model

The nucleon’s wave function in the framework of the
light-front quark model [30–32,35,36] can be schematically
written as
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jpN; λN ;Ni ¼
ffiffiffiffi
Z

p
jpN; λN ;Niq⊗d þ jpN; λN ;NiB⊗π; ð1Þ

with the first component being in terms of quark-diquark
(q ⊗ d) degrees-of-freedom, and the second in terms
of hadronic (i.e., baryon and pion, B ⊗ π) degrees-of-
freedom. In this work, we simplify the quark-level descrip-
tion of the nucleon as consisting of a quark and a two-body
quark ⊕ quark spectator, known as a diquark [36]. The
second component of Eq. (1) accounts for contributions from
the pion cloud, which is known to accompany the nucleon
and Δ resonances [31,32,35,36]. These two components are
orthogonal, i.e., B⊗πhpN;λN ;NjpN;λN ;Niq⊗d¼0.
The nucleon’s EW current form factors can be extracted

from the corresponding EM and axial current matrix
elements,

hλ0Np0
N ;NjJμEMð0ÞjpN; λN ;Ni

≡ ūðp0
N; λ

0
NÞ
�
F1Nγ

μ þ F2N
iσμνqν
2MN

�
uðpN; λNÞ; ð2Þ

and

hp0
Nλ

0
N ;NjJμAð0ÞjpN; λN ;Ni

≡ ūðp0
N; λ

0
NÞ
�
F̃1Nγ

μγ5 þ F̃2N
qμγ5
2MN

�
τ
2
uðpN; λNÞ: ð3Þ

Here, the momentum transfer is qν ≡ ðp0
N − pNÞν with

Q2 ≡ −qνqν, and N denotes either a proton or neutron. The
form factors F1, F2, F̃1N , and F̃2N are all functions of Q2.
We also note that the axial current, JμA, is a vector in isospin
space. In the following, we especially focus on F̃1N , while
F̃2N can be related to F̃1N via the Goldberger-Treiman
relation [4].
Relying on the methods of light-front quantization

[30,36], the form factors can be extracted from the matrix
elements of Eqs. (2)–(3) by simply studying the plus-
components of the currents as

F1N ¼ 1

2pþ
N

�
p0
N; λ

0
N ¼ 1

2
;NjJþEMjpN; λN ¼ 1

2
;N

�
; ð4Þ

F2N ¼ −
ffiffiffi
2

p
MN

qR
1

2pþ
N

×

�
p0
N; λ

0
N ¼ −

1

2
;NjJþEMjpN; λN ¼ 1

2
;N

�
ð5Þ

F̃1N

�
N

����τ2
����N

�
¼ 1

2pþ
N

�
p0
N;λ

0
N ¼ 1

2
;NjJþA jpN;λN ¼ 1

2
;N

�
:

ð6Þ

In the light-front quantization, the time and longitu-
dinal components of four-vectors (such as current and

momentum) are now transformed to the � components,
e.g., for qμ, q� ≡ q0 � qz [30]; for the transverse compo-
nents, a specific index notation is introduced [35]: e.g.,qR ≡
−ðqx þ iqyÞ= ffiffiffi

2
p

and qL ≡ ðqx − iqyÞ= ffiffiffi
2

p
.

We point out that other combinations of initial/final
nucleon helicities are trivially related to those given in the
equations above [35,36].
On the basis of the wave function decomposition in

Eq. (1), the form factor calculations—equivalent to the
above matrix-element calculations—can be represented in
terms of the diagrams shown in Fig. 1, each of which
represents a distinct contribution to the form factor model.
Diagram (I) represents the contributions from the bare the
quark-diquark configuration terms in Eq. (1), while dia-
grams (II) and (III) are from the other Fock space
components, in which the nucleon dissociates into pion-
baryon states. The external EW probe is allowed to couple
to either the intermediate baryon [in diagram (II)] or the
recoiling pion [in diagram (III)], and both processes
contribute to the full model. A possible additional graph
involving the direct coupling of the external boson to the
πN vertex is effectively included when the pseudoscalar
pion-nucleon coupling [see Eq. (29) below] is used. This is
because the isovector combination of the γN → πN Born
terms that is included in our calculation reproduces the
direct γπN coupling.
The current set of interactions is consistent with the

partially conserved axial vector current within our approxi-
mation scheme [31,32,36,42]. An additional term involving
a direct aNπ coupling, with a denoting an external axial
source, may also contribute [43]. Previous experience
[31,32,36,42] indicates that possible effects of such direct
terms are approximately accounted for within the parameter
variations to be discussed below.
In the following subsections, we proceed in order,

relying on the diagrams (I)–(III) to compute the required
matrix elements in the light-front quantization. Thus, in
Sec. II B, we first compute the bare quark-diquark con-
tributions contained in diagram (I) and present in Sec. II C
the pion-cloud pieces from diagrams (II) and (III).

B. Diagram (I)

The quark Fock-space wave function has two compo-
nents each in spin and flavor space, and we therefore use an

FIG. 1. The diagrammatic representation of the form factor
calculations. In (II) and (III), B and B0 represent baryon, which
can be N orΔ. In (II), B and B0 can be different, meaning that both
inelastic and elastic form factors can contribute here.
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SU(4) ansatz to combine these two spaces [36,44]. For
instance, for the proton, the spin-flavor wave function is

jλP;Piq⊗d ¼
1ffiffiffi
2

p jλP;Pif:s:jλP;Pis:s:jCMi

þ 1ffiffiffi
2

p jλP;Pif:t:jλP;Pis:t:jCMi: ð7Þ

Here, f.s. and f.t. refer to the flavor-singlet and flavor-
triplet states of the diquark system, while s.s. and s.t.
represent its spin-singlet and spin-triplet states, respec-
tively. The degrees-of-freedom identified with the center-
of-mass (CM) motion are manifestly factorized in this
definition, such that the other components are associated
with the relative motion degrees-of-freedom. In the spec-
tator picture, supposing the quark interacting with the
current is a u quark, for instance, we then have

jλP;Pif:s: ¼
1ffiffiffi
2

p ðjuudi − juduiÞ≡ juðudÞsi ð8Þ

jλP;Pif:t: ¼
1ffiffiffi
6

p ðjuudi þ judui − 2jduuiÞ

≡
ffiffiffi
1

3

r
juðudÞt;0i −

ffiffiffi
2

3

r
jdðudÞt;1i: ð9Þ

Meanwhile, we assume the wave functions in spin space,
“s.s.” and “s.t.” are associated with the scalar and axial-
vector diquark, respectively, [36,45]. The diquarks have
definite masses, ms and ma, and furthermore, their wave
functions are independent of quark flavor. They can be
written as

jpþ
N;pN⊥;λN ;Nis:s

¼
Z

dxdk⊥
16π3xð1−xÞ

X
λq

ϕλN
λq
ðx;k⊥Þjx;k⊥;λq;q;d¼ si ð10Þ

jpþ
N;pN⊥;λN ;Nis:t

¼
Z

dxdk⊥
16π3xð1−xÞ

X
λqλd

ϕλN
λqλd

ðx;k⊥Þjx;k⊥;λq;λd;q;d¼ ai:

ð11Þ

Note the normalization of a single-particle state is
hpþ0

p0⊥jpþ;p⊥i¼ð2πÞ32pþδðpþ−pþ0Þδðp⊥−p⊥Þ, so the
two-particle state’s normalization can be written in a
fashion with the CM motion manifestly factorized out:
hp0

1;p
0
2jp1;p2i¼ ð2πÞ32PþδðPþ−Pþ0ÞδðP⊥−P0⊥Þð2πÞ3×

2xð1−xÞδðx−x0Þδðk⊥−k0⊥Þ. Since the CM is already
factorized out in Eq. (7), the normalization of the quark-
Fock-space basis for relativemotion is hx0; k0⊥; λ0q; λ0d; q; djx;
k⊥; λq; λd; q; di ¼ 16π3xð1 − xÞδλqλ0qδ

λd
λ0d
δðx − x0Þδðk⊥ − k0⊥Þ.

Moreover, the convention for kinematic variables is that the
struck quark carries momentum fraction x, and transverse
momentum k⊥, with the spectator having 1 − x and −k⊥ in
the CM frame. The intrinsic wave function, e.g., ϕλN

λqλd
, are

boost invariant and rotational invariant (manifestly in the
transverse plane) and thus independent of the nucleon
momentum pN .
The wave functions involving scalar diquark are

ϕλN
λq

¼ ūðk; λqÞ
�
φs
1 þ

MNγ
þ

pþ
N

φs
2

	
uðpN; λNÞ; ð12Þ

which is the same as in Ref. [36], while the axial-diquark is
different,

ϕλN
λqλa

¼ ūðk; λqÞε̄�μðq; λaÞ
�
φa
1γ

μγ5 þ φa
2

qμ

MN
γ5

	
uðpN; λNÞ:

ð13Þ

For the axial-diquark, we use the modified vector intro-
duced in [46] for its ε̄μ. It is related to the usual definition of
a polarization vector εμ (satisfying qμεμ ¼ 0), through
ε̄μ¼εμ−εþqμ=qþ. By choosing an appropriate frame such

that qμ¼ðqþ;m2
a

qþ ;0⊥Þ, we have εμðλa ¼�1Þ¼ ð0;0;εð�1ÞÞ,
εμðλa ¼ 0Þ ¼ ðqþma

;− ma
qþ ; 0⊥Þ, and thus ε̄μðλa ¼ �1Þ ¼

ð0; 0; εð�1ÞÞ and ε̄μðλa ¼ 0Þ ¼ ð0;−2 ma
qþ ; 0⊥Þ.

The intrinsic wave functions, φs;a
1;2, in Eqs. (12) and (13),

are scalar functions of intrinsic variables, x, k⊥ (their details
are discussed in Sec. III), while ϕλN

λqλa
are functions of x, k⊥

and helicities of participating d.o.f. including diquarks and
nucleon. The relationships between φ and ϕwave functions
are collected in Appendix A and Tables IV and V.
With the wave functions set up, we first define the current

matrix elements between spin states, not worrying about
flavor space for the moment, e.g., s:shλN ;NjJþEMjλN ;Nis:s,
and define f1s, f2s as

f1s ≡
s:s
�
1

2
;NjJþEMj

1

2
;N

�
s:s
; ð14Þ

−
qRffiffiffi
2

p
MN

f2s ≡
s:s
�
−
1

2
;NjJþEMj

1

2
;N

�
s:s
; ð15Þ

f̃s ≡
s:s
�
1

2
;NjJþA j

1

2
;N

�
s:s
; ð16Þ

and similarly, for f1a, f2a, and fAa in terms of jλN ;Nis:t. In
the above three equations, JμEM ¼ q̄γμq, JμA ¼ q̄γμγ5q, with
q fixed as the struck quark. The isospin dependence will be
discussed later. The 1=ð2pþ

NÞ is already canceled out by the
overlap of CMmotion state, as compared to Eqs. (4)–(6). By
using the Lepage-Brodsky convention for the Dirac spinors
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[30], we can express these quantities in terms of overlap of
light-front wave functions,

f1s ¼
Z

dμ
X
λq

ϕ
1
2
�
λq
ðx; k0⊥Þϕ

1
2

λq
ðx; k⊥Þ ð17Þ

f1a ¼
Z

dμ
X
λq;λa

ϕ
1
2
�
λqλa

ðx; k0⊥Þϕ
1
2

λqλa
ðx; k⊥Þ ð18Þ

f2s ¼ −
ffiffiffi
2

p
MN

qR

Z
dμ

X
λq

ϕ
−1
2
�

λq
ðx; k0⊥Þϕ

1
2

λq
ðx; k⊥Þ ð19Þ

f2a ¼ −
ffiffiffi
2

p
MN

qR
×
Z

dμ
X
λq;λa

ϕ
−1
2
�

λqλa
ðx; k0⊥Þϕ

1
2

λqλa
ðx; k⊥Þ; ð20Þ

for the EM current, while for the axial current, we get

f̃s ¼
Z

dμ
X
λq

ð−Þλq−1
2ϕ

1
2
�
λq
ðx; k0⊥Þϕ

1
2

λq
ðx; k⊥Þ ð21Þ

f̃a ¼
Z

dμ
X
λq;λa

ð−Þλq−1
2ϕ

1
2
�
λqλa

ðx; k0⊥Þϕ
1
2

λqλa
ðx; k⊥Þ: ð22Þ

Inside these integrands, dμ≡ dxdk⊥
16π3xð1−xÞ, k

0⊥¼k⊥þð1−xÞq⊥,
λq ¼ �1=2 and λa ¼ 0;�1. It should be pointed out that
the second-class axial current is zero here [47], because
isospin symmetry is respected in this model. The detailed
expression of these form factors in terms ofφs;a

1;2 can be found
in Appendix A.
To compute the current matrix elements with wave

functions jλP;Piq⊗d, we need to sum up the contributions
from the struck quarks (three for nucleon) and take into
account the flavor structure of the quark-diquark wave
function and the charges of the struck quarks. We then get
the form factor from the nucleon’s bare quark-diquark core,

F0
1p ¼ 3

2
euf1s þ

�
1

2
eu þ ed

	
f1a ¼ f1s ð23Þ

F0
2p ¼ 3

2
euf2s þ

�
1

2
eu þ ed

	
f2a ¼ f2s ð24Þ

F0
1n ¼

3

2
edf1s þ

�
1

2
ed þ eu

	
f1a ¼

1

2
f1a −

1

2
f1s ð25Þ

F0
2n ¼

3

2
edf2s þ

�
1

2
ed þ eu

	
f2a ¼

1

2
f2a −

1

2
f2s ð26Þ

F̃0
1p ¼ 3

2
eAuf̃s þ

�
1

2
eAu þ eAd

	
f̃a ¼

3

2
f̃s −

1

2
f̃a ð27Þ

F̃0
1n ¼

3

2
eAdf̃s þ

�
1

2
eAd þ eAu

	
f̃a ¼ −F̃0

1p: ð28Þ

In the above expressions, eq and eAq are the EM and axial
charges of the quarks with the latter eAq ¼ �1 for the u and
d quark, respectively. However, since the axial current is
not conserved, the axial charge of a constituent quark, as
employed in our model, is not expected to be exactly �1.
Therefore, the size of eAq will be adjusted later so that our
predicted nucleon axial charge, F̃1Nð0Þ, agrees with the
experimental value.

C. Pion cloud diagram (II) and (III)

1. Preparations

To simplify the following presentations, a series of
definitions of the EW current matrix elements and strong
interaction matrix elements, i.e., the vertices of diagrams
(II) and (III) in Fig. 1, need to be constructed. The
calculations of those diagrams are based on the strong
interaction terms quantized on the light front,

V int ¼ −
Z

dxþdx⊥
�
gA
fπ

N̄γμγ5∂μπ
τ
2
N

þ hA
fπ

Δ̄a
μT

1;i;1
2
;σ

3
2
;a

∂μπiNσ þ H:c:

�

¼ −
Z

dxþdx⊥
�
gπNNN̄iγ5π · τN

þ hA
fπ

Δ̄a
μT

1;i;1
2
;σ

3
2
;a

∂μπiNσ þ H:c:

�
: ð29Þ

Here, N, Δ, π are the fields of the nucleon, Δ resonance,
and pion; the pion decay constant is fπ ≈ 94 MeV, nucle-
on’s axial charge gA ¼ 1.27; in the N − Δ − π coupling, a,
σ, i are the isospin indices for the representations of isospin

3=2, 1=2, and 1 multiplets; T
1;i;1

2
;A

3
2
;a

is the C-G coefficients

combining isovector current and isospin 1
2
to form isospin

3=2 [48]. The pseudovector N-N-ππ coupling is connected
to the pseudoscalar coupling for on shell nucleons,
gπNNN̄iγ5πτN, and gπNN ¼ MN

fπ
gA ≈ 13.5 [36].

We use the second expression appearing in Eq. (29)
because gπNN more accurately represents the empirical
pion-nucleon coupling constant for on-mass-shell nucleons
relative to gA=fπ . We also emphasize that the direct γNπ
contact interactions are implicitly included using the
pseudoscalar Lagrangian. Moreover, among the pion-cloud
contributions, the most important piece comes from the γπ
interaction in diagram (III) of Fig. 1. Given that this latter
graph is correctly evaluated by keeping the pole term in
which the spectator nucleon is on its mass shell, there is no
important difference between the two forms in Eq. (29)
beyond the noted choice of coupling constant.
As noted above, a possible term involving a direct

aNπ coupling is not included. It is possible that including
the neglected term along with the effects of using a
pseudovector coupling could bring the computed value
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of gA (to be discussed below) into better agreement with
experiment.
The matrix elements of V int as needed in the diagram

calculations can be presented with isospin structure explic-
itly factorized out,

hλNf;Nσf ;πijV intjλNi;Nσii≡gπNNðτiÞσiσfVλNf;λNi
ðx;k⊥Þ

ð30Þ

hλΔ;Δa; πijV intjλN ;Nσi≡ hA
fπ

δijT
1;j;1

2
;σ

3
2
;a

VλΔ;λN ðx; k⊥Þ: ð31Þ

Note the two sets of matrix elements are Lorentz-boost and
transverse-rotation invariant; they are functions of the
intrinsic kinetic variables, x and k⊥. These matrix elements,
when multiplied by the appropriate energy denominators

(see, e.g., Ref. [36]), represent Fock-space components of
the nucleon wave function. We compute these matrix
elements, assuming the baryon in the final state in the
CM frame carry momentum fraction x and transverse
momentum k⊥, while the accompanying π carrying 1−x
and −k⊥. This is in parallel to the assignment in the quark-
diquark wave function definitions [cf. Eqs. (10) and (11)].
The detailed results are gathered in Tables VI and VII in
Appendix B, where a few details for the calculation can
also be found including the convention for spin 3

2
spinor.

The results are consistent with those in Ref. [35].
Moreover, we need to set up the convention for the

current matrix elements involving Δ. We use the Lorentz-
covariant basis from Ref. [49] for the EM current and the
basis from Ref. [50] for the axial current,1

hpΔ;ΔajJμEMjpN ;Nσi≡ T
1;i¼0;1

2
;σ

3
2
;a

ūαðpΔ; λΔÞΓαμ
γN;Δðq; pN ;pΔÞuðpN; λNÞ ð32Þ

hpΔ;ΔajJi;μA jpN ;Nσi≡ T
1;i;1

2
;σ

3
2
;a

ūαðpΔ; λΔÞΓαμ
AN;Δðq; pN ;pΔÞuðpN; λNÞ ð33Þ

Γαμ
γN;Δðq; pN ;pΔÞ≡ iFM

NΔε
αμρσpΔρqσ − FE

NΔðqαpμ
Δ − pΔ · qgαμÞγ5 − FC

NΔðqαqμ − q2gαμÞγ5 ð34Þ

Γαμ
AN;Δðq; pN ;pΔÞ≡ CA

3

MN
ðgαμ=q − qαγμÞ þ CA

4

M2
N
ðpΔ · qgαμ − qαpμ

ΔÞ þ CA
5 g

αμ þ CA
6

M2
N
qαqμ: ð35Þ

Here, q≡ pΔ − pN . In the expressions above, we point
out the EM current’s isospin projection of i ¼ 0; in
contrast, the axial current’s isospin projection can
assume values of i ¼ �; 0, but, in the following calcu-
lations of the axial current’s matrix elements, we always
take i ¼ 0 without loss of generality. That being said, in
the eventual charge-current calculations shown later in
this analysis, it is the i ¼ � spherical combinations
of the axial isospin components, which are relevant.
Our convention for the Levi-Civita tensor is ε0123 ¼ 1
[30,49], while the metric gμν ¼ Diagð1;−1;−1;−1Þ
[30,49]. With this convention, under light-front quantiza-
tion, εþ12− ¼ − 1

2
.2 Then, Hermiticity of JμEM dictates that

hpN ;NσjJμðqÞjpΔ;Δai ¼ ðhpΔ;ΔajJμð−qÞjpN ;NσiÞ�, but
with q≡ pN − pΔ.
For form factors at spacelike momentum transfer, i.e.,

Q2 ≥ 0, we can always boost the system to a frame with
qþ ¼ 0, where the matrix element of Jþ=2pþ

N (a Lorentz

invariant) can be computed more easily. In the following,
the matrix elements will be defined with the isospin
structure manifestly factorized out:

J ð0ÞV
λΔ;λN

ðqÞ≡ ūαðpΔ;λΔÞΓαμ¼þ
γN;Δ ðq;pN ;pΔÞuðpN;λNÞ=ð2pþ

NÞ
ð36Þ

J ð0ÞA
λΔ;λN

ðqÞ≡ ūαðpΔ;λΔÞΓαþ
AN;Δðq;pN ;pΔÞuðpN;λNÞ=ð2pþ

NÞ:
ð37Þ

Note the superscript “V” for the EM current is due to the
fact that only the isovector component of the EM current
participate in the N ↔ Δ transitions. Both quantities are
functions of momentum transfer q. Carrying λΔ, λN indices
suffice to indicate they are for the inelastic transition

current. The results for both J ð0ÞV
λΔ;λN

ðqÞ and J ð0ÞA
λΔ;λN

ðqÞ are
collected in Tables VIII and IX.
For the EW elastic current matrix elements of the Δ

baryon, we follow the conventions in Refs. [49,51],2This is different from the one mentioned Ref. [30].

1A pure imaginary factor is absorbed into definition of Γαμ
γN;Δ as

compared to its definition in Ref. [49]; and a real factorffiffiffiffiffiffiffiffi
3=2

p
is absorbed in Γαμ

AN;Δ. See discussions in Sec. III B.
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hp0
Δ;Δa0 jJμEMjpΔ;Δai≡

�
1

2
þ t0

	
a

a0
ūαðp0

Δ; λ
0
ΔÞΓαμβ

Δ;γΔðq; pΔ;p0
ΔÞuβðpΔ; λΔÞ

hp0
Δ;Δa0 jJ0;μA jpΔ;Δai≡ ðt0Þaa0 ūαðp0

Δ; λ
0
ΔÞΓαμβ

Δ;AΔðq; pΔ;p0
ΔÞuβðpΔ; λΔÞ

Γαμβ
Δ;γΔðq; pΔ;p0

ΔÞ≡ −
�
F1Δgαβ þ F3Δ

qαqβ

4M2
Δ

	
γμ −

�
F2Δgαβ þ F4Δ

qαqβ

4M2
Δ

	
σμνiqν
2MΔ

ð38Þ

Γαμβ
Δ;AΔðq; pΔ;p0

ΔÞ≡ −
�
F̃1Δgαβ þ F̃3Δ

qαqβ

4M2
Δ

	
γμγ5 −

�
F̃2Δgαβ þ F̃4Δ

qαqβ

4M2
Δ

	
qμ

2MΔ
γ5: ð39Þ

Here, t0 is the isospin group generator along the third direction in the isospin ¼ 3=2 representation. Again, a and b are the
isospin projection of theΔ states. For the axial current, only the first two terms, F̃1Δ and F̃3Δ, contribute in diagrams (II) and
(III). We separate the isospin structure and define

J ð0ÞEM
λ0Δ;λΔ

ðqÞ≡ ūαðp0
Δ; λ

0
ΔÞΓαþβ

Δ;γΔðq; pΔ;p0
ΔÞuβðpΔ; λΔÞ=ð2pþ

ΔÞ; ð40Þ

J ð0ÞA
λ0Δ;λΔ

ðqÞ≡ ūαðp0
Δ; λ

0
ΔÞΓαþβ

Δ;AΔðq; pΔ;p0
ΔÞuβðpΔ; λΔÞ=ð2pþ

ΔÞ: ð41Þ

The corresponding matrix elements can be found in Tables X and XI.

2. Previous calculations

By computing diagrams (II) and (III) on the light front with pion-baryon intermediate states [30,35,36,52], we get their
contributions to the nucleon form factors. The EM expressions have been derived in Refs. [35,36], while the axial current
was also studied in Ref. [35]. Our results are consistent with those in Ref. [36]. Here, we present them together for a self-
contained discussion and pay attention to the isospin structures.
Diagram (II) gives

FðIINÞ
1 ¼

�
3

2
ðF0

1p þ F0
1nÞδσiσf −

1

2
ðF0

1p − F0
1nÞðτ0Þσiσf

�
F ðIINÞ

11 þ
�
3

2
ðF0

2p þ F0
2nÞδσiσf −

1

2
ðF0

2p − F0
2nÞðτ0Þσiσf

�
F ðIINÞ

12 ð42Þ

FðIINÞ
2 ¼

�
3

2
ðF0

1p þ F0
1nÞδσiσf −

1

2
ðF0

1p − F0
1nÞðτ0Þσiσf

�
F ðIINÞ

21 þ
�
3

2
ðF0

2p þ F0
2nÞδσiσf −

1

2
ðF0

2p − F0
2nÞðτ0Þσiσf

�
F ðIINÞ

22 ; ð43Þ

with σi and σf as the isospin projection of the initial state and final state nucleon in current matrix element
calculations, and

F ðIINÞ
11 ¼ g2πNN

Z
dxdk⊥

16π3x2ð1 − xÞ
½k2⊥ − ð1−xÞ2

4
Q2 þ ð1 − xÞ2M2

N�FπNNðx; kf⊥ÞFπNNðx; ki⊥Þ
½M2

πNðx; kf⊥Þ −M2
N�½M2

πNðx; ki⊥Þ −M2
N�

ð44Þ

F ðIINÞ
12 ¼ −g2πNN

Z
dxdk⊥
32π3x2

ð1 − xÞQ2FπNNðx; kf⊥ÞFπNNðx; ki⊥Þ
½M2

πNðx; kf⊥Þ −M2
N�½M2

πNðx; ki⊥Þ −M2
N�

ð45Þ

F ðIINÞ
21 ¼ −g2πNN

Z
dxdk⊥
8π3x2

ð1 − xÞM2
NFπNNðx; kf⊥ÞFπNNðx; ki⊥Þ

½M2
πNðx; kf⊥Þ −M2

N�½M2
πNðx; ki⊥Þ −M2

N�
ð46Þ
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F ðIINÞ
22 ¼ g2πNN

Z
dxdk⊥

16π3x2ð1 − xÞ
½k2⊥ þ ð1−xÞ2

4
Q2 − ð1 − xÞ2M2

N − 2ðk⊥·q⊥Þ2
Q2 �FπNNðx; kf⊥ÞFπNNðx; ki⊥Þ

½M2
πNðx; kf⊥Þ −M2

N�½M2
πNðx; ki⊥Þ −M2

N�
: ð47Þ

In the above equations, the N-N-ππ interaction includes a form factor to regularize the loop integration:

FπNNðx; k⊥Þ≡ exp ð−M2
πNðx;k⊥Þ−ðMNþmπÞ2

2Λ2
N

Þ with M2
πNðx; k⊥Þ≡ k2⊥þM2

N
x þ k2⊥þM2

π

1−x ; ki⊥ ≡ k⊥ − 1−x
2
q⊥, and kf⊥ ≡ k⊥ þ 1−x

2
q⊥

are the momentum carried by nucleon line—in the π-N CM frame—in the vertices on the two sides of the current vertex [cf.
diagram (II)].
Similarly, for the isovector axial current,

F̃ðIINÞ
1 ¼ F̃0

1pðQ2Þðτ0Þσiσf F̃ ðIINÞ
1 ð48Þ

F̃ ðIINÞ
1 ≡ g2πNN

Z
dxdk⊥

16π3x2ð1 − xÞ
½k2⊥ − ð1−xÞ2

4
Q2 − ð1 − xÞ2M2

N�FπNNðx; kf⊥ÞFπNNðx; ki⊥Þ
½M2

πNðx; kf⊥Þ −M2
N�½M2

πNðx; ki⊥Þ −M2
N�

: ð49Þ

Note in the EM and axial form factors’ definitions, the bare quark form factors from Eqs. (23)–(28) are
used. The requirement of gauge invariance is such that using form factors generates contact diagrams in
addition to the “rainbow” graphs—diagram (II) and (III)—shown in Fig. 1. It has been argued [31] that the
momentum dependence in the relevant kinematic region is relatively mild, and their effect is likely to be absorbed
into the fitting parameters developed in this analysis. That being the case, we compute with the dominant contributions
from the graphs shown in Fig. 1 and leave the more complicated calculations including these additional terms to
future works.
Diagram (III) with πN intermediate states gives

FðIIINÞ
1;2 ¼ FπðQ2Þðτ0ÞσiσfF ðIIINÞ

1;2 ; ð50Þ

in which FπðQ2Þ represents the pion’s EM form factor (see Sec. III B) and

F ðIIINÞ
1 ¼ g2πNN

Z
dxdk⊥

8π3x2ð1 − xÞ
½k2⊥ − x2

4
Q2 þ ð1 − xÞ2M2

N�FπNNðx; kf⊥ÞFπNNðx; ki⊥Þ
½M2

πNðx; kf⊥Þ −M2
N�½M2

πNðx; ki⊥Þ −M2
N�

ð51Þ

F ðIIINÞ
2 ¼ g2πNN

Z
dxdk⊥
4π3x

M2
NFπNNðx; kf⊥ÞFπNNðx; ki⊥Þ

½M2
πNðx; kf⊥Þ −M2

N�½M2
πNðx; ki⊥Þ −M2

N�
: ð52Þ

It should be emphasized that M2
πNðx; k⊥Þ and FπNNðx; k⊥Þ are the same as defined for the results of diagram (II), but

ki⊥ ≡ k⊥ þ x
2
q⊥, and kf⊥ ≡ k⊥ − x

2
q⊥ in the results for diagram (III), because the external electroweak current transfers its

momentum to π instead of N. Also note that diagram (III) does not contribute to F̃1N .

3. Delta contribution

Diagram (II) with N-current-Δ configuration gives

�
JþEM;A

2pþ
Ni

�
≡ 4

3
ðτ0ÞσiσfJ V;A

ðIINΔÞðqÞλNf;λNi

J V;A
ðIINΔÞðqÞλNf;λNi

≡ gπNNhA
fπ

Z
dμ

X
λΔ;λN

V†ðx; kf⊥ÞλNf;λΔ
J ð0ÞV;AðqÞλΔ;λNVðx; ki⊥ÞλN;λNi

FπNΔðx; kf⊥ÞFπNNðx; ki⊥Þ
½M2

πΔðx; kf⊥Þ −M2
N�½M2

πNðx; ki⊥Þ −M2
N�

: ð53Þ

Meanwhile, diagram (II) with the Δ-current-N configuration yields
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�
JþEM;A

2pþ
Ni

�
¼ 4

3
ðτ0ÞσiσfJ V;A

ðIIΔNÞðqÞλNf;λNi

J V;A
ðIIΔNÞðqÞλNf;λNi

≡ gπNNhA
fπ

Z
dμ

X
λΔ;λN

V†ðx; kf⊥ÞλNf;λN
J ð0ÞV;A†ð−qÞλNλΔVðx; ki⊥ÞλΔ;λNi

FπNNðx; kf⊥ÞFπNΔðx; ki⊥Þ
½M2

πNðx; kf⊥Þ −M2
N�½M2

πΔðx; ki⊥Þ −M2
N�

: ð54Þ

In the two results above, another form factor for the N-Δ-π interaction has been introduced:

FπNΔðx; k⊥Þ≡ exp ð−M2
πΔðx;k⊥Þ−ðMΔþmπÞ2

2Λ2
Δ

Þ with M2
πΔðx; k⊥Þ≡ k2⊥þM2

Δ
x þ k2⊥þM2

π

1−x . Moreover, FπNN , ki⊥ ≡ k⊥ − 1−x
2
q⊥, and

kf⊥ ≡ k⊥ þ 1−x
2
q⊥, are the same as those for diagram (II) with the N-current-N configuration. Now let us define quantities

with the isospin structure factorized away,

F ðIINΔÞ
1 ¼ J V

ðIINΔÞðqÞ12;12 þ J V
ðIIΔNÞðqÞ12;12; ð55Þ

F ðIINΔÞ
2 ¼ ð−Þ

ffiffiffi
2

p
MN

qR
½J V

ðIINΔÞðqÞ−1
2
;1
2
þ J V

ðIIΔNÞðqÞ−1
2
;1
2
�; ð56Þ

F̃ ðIINΔÞ
1 ¼ J A

ðIINΔÞðqÞ12;12 þ J A
ðIIΔNÞðqÞ12;12: ð57Þ

Then diagram (II) with both the NΔ and ΔN configurations contributes to the nucleon form factors as

FðIINΔÞ
1;2 ¼ 4

3
ðτ0ÞσiσfF ðIINΔÞ

1;2 ; ð58Þ

F̃ðIINΔÞ
1 ¼ 8

3
ðτ0Þσiσf F̃ ðIINΔÞ

1 : ð59Þ

Now for diagram (II) with the Δ-current-Δ configuration, the matrix elements are

�
JþEM
2pþ

Ni

�
¼

�
δσiσf þ

5

3
ðτ0Þσiσf

	
J EM

ðIIΔΔÞðqÞλNf;λNi

J EM
ðIIΔΔÞðqÞλNf;λNi

≡
�
hA
fπ

	
2
Z

dμ
X
λΔ;λ0Δ

V†ðx; kf⊥ÞλNf;λ0Δ
J ð0ÞEMðqÞλ0Δ;λΔVðx; ki⊥ÞλΔ;λNi

FπNΔðx; kf⊥ÞFπNΔðx; ki⊥Þ
½M2

πΔðx; kf⊥Þ −M2
N�½M2

πΔðx; ki⊥Þ −M2
N�

; ð60Þ

for the EM current and

�
JþA
2pþ

Ni

�
¼ 5

3
ðτ0ÞσiσfJ A

ðIIΔΔÞðqÞλNf;λNi

J A
ðIIΔΔÞðqÞλNf;λNi

≡
�
hA
fπ

	
2
Z

dμ
X
λΔ;λ0Δ

V†ðx; kf⊥ÞλNf;λ0Δ
J ð0ÞAðqÞλ0Δ;λΔVðx; ki⊥ÞλΔ;λNi

FπNΔðx; kf⊥ÞFπNΔðx; ki⊥Þ
½M2

πΔðx; kf⊥Þ −M2
N�½M2

πΔðx; ki⊥Þ −M2
N�

; ð61Þ

for the axial current. The definition of FπNΔ, ki⊥ ≡ k⊥ − 1−x
2
q⊥, and kf⊥ ≡ k⊥ þ 1−x

2
q⊥, are the same as those for diagram

(II) with the N-current-Δ configuration. After defining

F ðIIΔΔÞ
1 ¼ J EM

ðIIΔΔÞðqÞ12;12; ð62Þ

F ðIIΔΔÞ
2 ¼ ð−Þ

ffiffiffi
2

p
MN

qR
J EM

ðIIΔΔÞðqÞ−1
2
;1
2
; ð63Þ

F̃ ðIIΔΔÞ
1 ¼ J A

ðIIΔΔÞðqÞ12;12; ð64Þ

the contribution of diagram (II) with the ΔΔ configuration to the form factors can be written as
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FðIIΔΔÞ
1;2 ¼

�
δσiσf þ

5

3
ðτ0Þσiσf

	
F ðIIΔΔÞ

1;2 ; ð65Þ

F̃ðIIΔΔÞ
1 ¼ 10

3
ðτ0Þσiσf F̃ ðIIΔΔÞ

1 : ð66Þ

For diagram (III) with a Δ baryon in the intermediate state,

�
JþEM
2pþ

Ni

�
¼ −

2

3
ðτ0ÞσiσfFπðQ2ÞJ V

ðIIIΔÞðqÞλNf;λNi
; ð67Þ

J V
ðIIIΔÞðqÞλNf;λNi

≡
�
hA
fπ

	
2
Z

dμ

P
λΔ
V†ðx; kf⊥ÞλNf;λΔ

Vðx; ki⊥ÞλΔ;λNi
FπNΔðx; kf⊥ÞFπNΔðx; ki⊥Þ

½M2
πΔðx; kf⊥Þ −M2

N�½M2
πΔðx; ki⊥Þ −M2

N�
: ð68Þ

Here, M2
πΔðx; k⊥Þ and FπNΔðx; k⊥Þ as for the diagram (II) results, but ki⊥ ≡ k⊥ þ x

2
q⊥, and kf⊥ ≡ k⊥ − x

2
q⊥ are different.

We can then define

F ðIIIΔÞ
1 ¼ J V

ðIIIΔÞðqÞ12;12; ð69Þ

F ðIIIΔÞ
2 ¼ ð−Þ

ffiffiffi
2

p
MN

qR
J V

ðIIIΔÞðqÞ−1
2
;1
2
: ð70Þ

Diagram (III) in the Δ-current-Δ configuration contributes to the nucleon form factors as

FðIIIΔÞ
1;2 ¼ −

2

3
ðτ0ÞσiσfFπðQ2ÞF ðIIIΔÞ

1;2 : ð71Þ

Note this diagram does not contribute to the axial current form factor.
After summing over all the diagrams, we have

F1p ¼ ZF0
1p þ ðF0

1p þ 2F0
1nÞF ðIINÞ

11 þ ðF0
2p þ 2F0

2nÞF ðIINÞ
12 þ FπF

ðIIINÞ
1 þ 4

3
F ðIINΔÞ

1 þ 8

3
F ðIIΔΔÞ

1 −
2

3
FπF

ðIIIΔÞ
1 ;

F1n ¼ ZF0
1n þ ðF0

1n þ 2F0
1pÞF ðIINÞ

11 þ ðF0
2n þ 2F0

2pÞF ðIINÞ
12 − FπF

ðIIINÞ
1 −

4

3
F ðIINΔÞ

1 −
2

3
F ðIIΔΔÞ

1 þ 2

3
FπF

ðIIIΔÞ
1 ;

F2p ¼ ZF0
2p þ ðF0

1p þ 2F0
1nÞF ðIINÞ

21 þ ðF0
2p þ 2F0

2nÞF ðIINÞ
22 þ FπF

ðIIINÞ
2 þ 4

3
F ðIINΔÞ

2 þ 8

3
F ðIIΔΔÞ

2 −
2

3
FπF

ðIIIΔÞ
2 ;

F2n ¼ ZF0
2n þ ðF0

1n þ 2F0
1pÞF ðIINÞ

21 þ ðF0
2n þ 2F0

2pÞF ðIINÞ
22 − FπF

ðIIINÞ
2 −

4

3
F ðIINΔÞ

2 −
2

3
F ðIIΔΔÞ

2 þ 2

3
FπF

ðIIIΔÞ
2 ;

F̃1p ¼ ZF̃0
1p þ F̃0

1pF̃
ðIINÞ
1 þ 8

3
F̃ ðIINΔÞ

1 þ 10

3
F̃ ðIIΔΔÞ

1 ;

F̃1n ¼ −F̃1p: ð72Þ

III. MODEL INPUTS

This section summarizes the inputs we used for various
components in our model, including for quark-diquark
Fock space wave functions and for Baryon-π Fock space
wave functions.

A. The quark-diquark wave function

We consider the quark-diquark wave functions
[cf. Eqs. (12) and (13)] depending only on the invariant
mass of the quark-diquark system, through a modified
Gaussian form [30],

φs
i ¼

�
csi0þcsi1

M2
qs−ðmqþmsÞ2

M2
N

�
exp

�
−
M2

qs−ðmqþmsÞ2
β2si

�
ð73Þ

φa
i ¼

�
cai0 þ cai1

M2
qa − ðmq þmaÞ2

M2
N

�

× exp

�
−
M2

qa − ðmq þmaÞ2
β2ai

�
; ð74Þ

with i ¼ 1, 2 and
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M2
qs ≡ k2⊥ þm2

q

x
þ k2⊥ þm2

s

1 − x
ð75Þ

M2
qa ≡ k2⊥ þm2

q

x
þ k2⊥ þm2

a

1 − x
: ð76Þ

Note we can always pull out the overall normalization
factor such that cs10 ¼ ca10 ¼ 1; the normalization factors
are not shown explicitly here but always implemented in
our numerical calculation. Naively, we consider the dimen-
sionful quantities, such asmq,ms, andma, βs1;2, and βa1;2 to
be at typical hadronic scale, i.e., OðGeVÞ, while dimen-
sionless parameters, including cs;a1;1, cs;a2;0, and cs;a2;1, to
be Oð1Þ.

B. Pion-cloud contributions

In the pion-cloud contributions, as shown in Eq. (72),
diagram (II) with nucleon and pion intermediate states
depend on nucleon bare form factors constructed from
nucleon’s quark-diquark wave functions. Diagram (III)
with either nucleon or Δ intermediate states, which only
contribute to the EM form factors, is proportional to the
pion’s EM form factors, FπðQ2Þ. For this quantity, we
chose FπðQ2Þ ¼ ð1þQ2=Λ2

πÞ−1, as done in Ref. [36],
which successfully used the same form, taking Λ2

π ¼
0.5 GeV2 as also done here. This selection provides
a robust description of the pion form factor in the
kinematical region of greatest relevance to the present
study (Q2 ≤ 1 GeV2), while similarly agreeing with a
range of experimental data at both low [53,54] and some-
what higher [55–57] values ofQ2; all of which favor values
of Λ2

π similar to our choice of 0.5 GeV2.
For diagram (II) with ΔðsÞ in the intermediate state,

the same type of quark-diquark wave functions in
principle can be constructed for the Δ, which dictates
its bare N → Δ inelastic and elastic form factors.
However, to simplify the current work, we instead
use the physical form factors to approximately take
into account their contributions. Since the Δ contribu-
tion plays a minor role in the full form factors, we
expect its error to be less relevant than the error due to
the uncertainty in the nucleon’s quark wave function.
A full and consistent study of this will be left for the
future investigation. Inside Δ’s contribution, e.g., J V;A

IINΔ
and J V;A

IIΔN [cf. Eqs. (53) and (54) and Tables VIII and
IX], we need inputs for transition form factors FE

NΔ,
FM
NΔ, and FC

NΔ to compute the diagram’s contribution
to the nucleon EM current, and CA

3;4;5 to the axial form
factor.
For FE

NΔ, F
M
NΔ, and FC

NΔ, we use information extracted
from the measurements of electroproduction and photo-
production of pions [58],

FM
NΔ ¼ 3

2MNQþ
½GM

NΔ−GE
NΔ�

FC
NΔ ¼ 3

2MNQþ

�
4M2

Δ
Q2

−
GE

NΔþ
Q2þM2

N−M2
Δ

Q2
−

GC
NΔ

�

FE
NΔ ¼ 3

2MNQþ

�
2ðQ2þM2

N−M2
ΔÞ

Q2
−

GE
NΔ−

2Q2

Q2
−
GC

NΔ

�
;

ð77Þ

with Q� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ ðMΔ �MNÞ2

p
; we also use the para-

metrization of the Ash form factors in Ref. [58],

GEðMÞ
NΔ ¼ gEðMÞΔð1þ βEðMÞQ2Þe−γEðMÞQ2

GDðQ2Þ

GC
NΔ ¼ gCΔ

1þ βCQ2

1þ dC
Q2

4M2
N

4M2
Δ

M2
Δ −M2

N
e−γCQ

2

GDðQ2Þ: ð78Þ

The coefficients involved in the parametrizations are given
in Table I3; GDðQ2Þ≡ ½1þQ2=ð0.71 GeV2Þ�−2.
For the axial-transition form factors, the Adler para-

metrization appearing in Ref. [50] is used,

CA
3 ðQ2Þ ¼ 0;

CA
5 ðQ2Þ ¼

ffiffiffi
3

2

r �
1.17

�
1 −

0.25Q2

ð0.04þQ2Þ
	�

1þ Q2

0.952

	−2�
;

CA
4 ðQ2Þ ¼ −

CA
5 ðQ2Þ
4

: ð79Þ

The factor
ffiffi
3
2

q
is due to the definition of the isospin

structure in Eq. (33).
For theΔ elastic form factors needed in the calculation of

diagram (III) [see Eqs. (60) and (61), and Tables X and XI],
information is limited. The results from existing LQCD
calculations [59] are implemented,

F1Δ ¼ GE0
ΔΔ

τ þ 1
−

2GE2
ΔΔτ

3ðτ þ 1Þ þ
GM1

ΔΔτ

τ þ 1
−

4GM3
ΔΔτ

2

5ðτ þ 1Þ ð80Þ

TABLE I. Parameter values used for the Ash form factors
from Ref. [58].

M1 E2 C2

gα 3 0.0637 0.124
βαðGeV−2Þ 0.0095 −0.0206 0.120
γαðGeV−2Þ 0.23 0.16 0.23
dα 0 0 4.9

3Our definition of FM
NΔ, F

C
NΔ, F

E
NΔ differ from the correspond-

ing ones in Ref. [49] by absorbing the factor 3ðMNþMΔÞ
2MNQ2

þ
into these

form factors.
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F2Δ ¼ −
GE0

ΔΔ
τ þ 1

þ 2τGE2
ΔΔ

3ðτ þ 1Þ þ
GM1

ΔΔ
τ þ 1

−
4τGM3

ΔΔ
5ðτ þ 1Þ ð81Þ

F3Δ ¼ 2GE0
ΔΔ

ðτ þ 1Þ2 −
2ð2τ þ 3ÞGE2

ΔΔ
3ðτ þ 1Þ2 þ 2τGM1

ΔΔ
ðτ þ 1Þ2

−
2τð4τ þ 5ÞGM3

ΔΔ
5ðτ þ 1Þ2 ð82Þ

F4Δ ¼ −
2GE0

ΔΔ
ðτ þ 1Þ2 þ

2ð2τ þ 3ÞGE2
ΔΔ

3ðτ þ 1Þ2 þ 2GM1
ΔΔ

ðτ þ 1Þ2

−
2ð4τ þ 5ÞGM3

ΔΔ
5ðτ þ 1Þ2 ; ð83Þ

with τ≡ Q2

4M2
N
. We set GE2

ΔΔ ¼ GM3
ΔΔ ¼ 0, and

GE0
ΔΔ ¼

�
1þ Q2

1.0652

	−2
ð84Þ

GM1
ΔΔ ¼ 3.12 exp

�
−

Q2

0.92352

	
: ð85Þ

The above parametrizations are the fits to the mπ ¼
353 MeV results in Ref. [59]. For the Δ’s axial elastic
form factors, we use the given parametrizations for the
“mπ ¼ 0.411 GeV with quenchedWilson fermions” results
in Ref. [51] (see Tables III and VI therein),

F̃1Δ ¼ ð0.40þ 1.98Q2Þ
ðQ2 þ 0.942Þ3 ; ð86Þ

F̃3Δ ¼ F̃1Δ
3.8

Q2 þ 0.12
: ð87Þ

Finally, all the pion-cloud diagrams involve strong-
interaction form factors (cf. the definitions in Sec. II C),

FπNNðx; k⊥Þ ¼ exp

�
−
M2

πN − ðMN þmπÞ2
2Λ2

N

	
ð88Þ

FπNΔðx; k⊥Þ ¼ exp

�
−
M2

πΔ − ðMΔ þmπÞ2
2Λ2

Δ

	
; ð89Þ

with unknown ΛN;Δ.
In short summary, we have 15 unknown parameters,

including mq, ms, ma, cs11, βs1, c
s
20, c

s
21, βs2, c

a
11, βa1, c

a
20,

ca21, βa2, ΛN , and ΛΔ, which need to be calibrated against
experiment data.

IV. MODEL CALIBRATIONS AND PREDICTIONS

To calibrate our model, we rely on a recent analysis of
the nucleon’s elastic EM form factors in Ref. [60]. The
study applied the z-expansion approach to parametrize the

form factors’ Q2 dependence with minimal model assump-
tions, and then fitted them to the existing measurements.
The predicted form factors and their error bars are used as
“data” to constrain the aforementioned model parameters.
Specifically, we pick 16 different Q2 values for each of
nucleon’s four EM form factors,

GEp;nðQ2Þ≡ F1p;n − τF2p;n ð90Þ

GMp;nðQ2Þ≡ F1p;n þ F2p;n: ð91Þ

Eight of them are evenly distributed in the 0.01 ≤ Q2 ≤
1.5 GeV2 region, with the other eight also evenly distrib-
uted in 1.5 < Q2 ≤ 10 GeV2.
The Bayesian inference [61] is then used to compute the

posterior probability distribution function (PDF) of the
unknown parameter vector, schematically labeled as vector
g, given the existing “data” D, our theory T, and prior
information I. According to the Bayes’ theorem [61], the
desired PDF is related to the likelihood function through

prðgjD;T; IÞ ¼ prðDjg;T; IÞprðgjIÞ: ð92Þ

The first term on the right side is proportional to the
likelihood,

ln prðDjg;T; IÞ ¼ c −
XN
j¼1

½Fðg;Q2
jÞ −Dj�2
2σ2j

; ð93Þ

where Fðg;Q2
jÞ is the form factor prediction atQ2

j of the jth
data pointDj, and σj is the statistical uncertainty associated
with Dj. The constant c ensures prðgjD;T; IÞ at the right
side is properly normalized. The second term in the right
side of Eq. (92), prðgjIÞ, is the prior for all the parameters g.
It is separable: the priors for cs;a1;1, c

s;a
2;0, and c

s;a
2;1 are Gaussian

distributions centered at 0 and with a width equal to 5,
while the priors for other parameters are uniform distribu-
tions requiring all the βs between 0 and 2 GeV,
0.1 ≤ mq ≤ 0.6 GeV, ms and ma between 0 and MN, ΛN

and ΛΔ between 0 and 1.5 GeV. It should be pointed out
that in this work, the errors of “data” at our picked Q2

values are treated as uncorrelated, considering the corre-
lation information for the “data” are not available in public.
This simplification needs to be further improved in a
future study.
The Markov chain Monte Carlo method is then

employed to sample the posterior PDF in the 15 dimension
space. The particular sampling algorithm is the so-called
emcee sampler [62] coupled with parallel tempering [63].
The sampler has been extensively used in, e.g., astronomy
for the same purpose [62,63]. The detailed 2-dim and 1-dim
projections of this PDF can be seen in Fig. 13. The central
values and 68% degrees-of-belief error bars of the model
parameters can be found in Table II. The cs;a1;1, c

s;a
2;0, and cs;a2;1
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parameters are constrained to regions with widths at most
about half of the Gaussian prior widths, while the other
parameters are very localized within the windows of their
uniform priors. Therefore, enlarging the prior windows for
these parameters will not significantly modify the posterior
PDF, prðgjD;T; IÞ. It is also interesting to note that the
preferred parameter values are consistent with the naive
expectation raised in the previous section.
With the samples of the posterior PDF, we can compute

the central value and error bar for any quantity as a function
of g. Figs. 2, 3, and 4 plot our error bands (the red curves)
for the nucleon EM form factors—normalized against the
GDðQ2Þ—and proton’s form factor ratio, to be compared

with the results (the green bands) from Ref. [60]. Note the
normalizations for magnetic form factors μp ¼ 2.793 and
μn ¼ −1.913 are from the Supplemental Material of
Ref. [60]. The model results are in good agreement with
the “data.” In particular, the Gp

E − Gp
M ratio as shown in

Fig. 4 agrees very well with the extraction from Ref. [60] in
the shown Q2 window, which is an improvement over the
previous calculations using similar approach [31,52].
However, the difference between our Gn

E result and the
“data,” as shown in Fig. 3, shows that our model prefer
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FIG. 2. Proton electric and magnetic form factors. The green
band is the 1-σ error band of the results from Ref. [60] with its
central value somewhere in the middle of the band. The three red
solid curves are the central value and error band of our model
results.

0 2 4 6 8 10

0.2

0.0

0.2

0.4

0.6

0.8

1.0
(a)

LFQM

0 2 4 6 8 10

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
(b)

LFQM

Z exp. fit

Z exp. fit

FIG. 3. Neutron electric and magnetic form factors. See the
caption of Fig. 2 for the illustrations of the legends used here.

TABLE II. Parameter mean values and their error bars corre-
sponding to 68% degree of belief.

cs11 βs1 cs20 cs21 βs2
0.29þ0.67

−1.00 0.47þ0.05
−0.05 −0.32þ0.06

−0.07 −3.5þ0.5
−0.4 0.352þ0.008

−0.007

ca11 βa1 ca20 ca21 βa2
0.072þ0.24

−0.32 0.52þ0.03
−0.04 6.4þ1.6

−1.7 0.5þ2.2
−2.6 0.51þ0.04

−0.05

mq ms ma ΛN ΛΔ

0.32þ0.01
−0.01 0.14þ0.02

−0.02 0.35þ0.03
−0.05 0.49þ0.03

−0.04 0.43þ0.02
−0.02

0 2 4 6 8 10

0.0
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0.6
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1.0
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FIG. 4. The ratio between proton’s electric and magnetic form
factors. The legend is the same as that in Fig. 2.
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smaller values forGn
E at momentum transfer above 4 GeV2.

Moreover, our error bars are consistently smaller than those
from Ref. [60]. Possible reasons include missing correla-
tion between “data” in our inference, and/or the absence of
theoretical uncertainty of our quark-diquark model.
Turning to the axial form factor F̃1N : the 1-dim posterior

PDFs for F̃1NðQ2 ¼ 0Þ and the MA value extracted from
the first derivative of F̃1N at Q2 ¼ 0 are plotted in Fig. 5.
Our prediction for F̃1NðQ2 ¼ 0Þ is 1.06� 0.04, which is
somewhat smaller than gA ¼ 1.27; r2A ¼ 0.29� 0.03 fm2

and the associated MA ¼ 1.28� 0.07 GeV. The r2A is
smaller than r2A ¼ 0.46� 0.16 fm2 from a recent analysis
[5] (the associated MA ¼ 1.01� 0.17 GeV2) based on
existing neutrino-nucleon scattering and muon weak cap-
ture data, and closer to current lattice QCD results having
r2A ranging from 0.2 to 0.45 fm2. Although our r2A is within
the 1-σ band of the recent analysis [5], the uncertainty
assigned for our r2A prediction is too small to cover the
latter’s central value. However, our error bar only accounts
for that within our model parameter space, while the
theoretical uncertainty of the current model is difficult to
estimate and not included in the error bar.
The F̃1NðQ2Þ’s central value and its 1-σ lower and

upper bounds are shown in Fig. 6, rescaled by G̃D≡
ð1þQ2=M2

AÞ−2 with MA ¼ 1 GeV [panel (a)] and MA ¼
1.28 GeV [panel (b)]. The latter MA value is the central
value of our analysis. Panel (a) shows two sets of curves:
the “LFQM” (red curves) are our predictions while each of
the “LFQM0” (blue curves) rescale the corresponding
“LFQM” curves by a constant such that the Q2 ¼ 0 value
agrees with gA ¼ 1.27. The global rescaling is equivalent to
treating the size of quark axial charge eAq as a fitting
parameter, because the contributions from both bare quark
and pion cloud originate from quark’s axial charge. [As
pointed out in Sec. III B, the contributions from diagram
(III) with Δ in the loop are normalized by eAq, although
they are approximated by the physical inelastic form
factors.] In the following calculations of cross sections,
the rescaled axial form factors are always implicitly
assumed. In panel (b), only the corresponding “LFQM0”

results are plotted. We do see a significantly different Q2

dependence from G̃D with MA ¼ 1 GeV; and more impor-
tantly, that our F̃1N differ from its dipole approximation by
about 10% at Q2 between 1 and 2 GeV2. The latter
suggests the necessity of using the full form factor instead
of a simple dipole approximation for modeling neutrino-
nucleus QE scatterings in the coming neutrino-oscillation
experiments.
Figure 7 compares our F̃1N with the z-expansion-based

fit from Ref. [17]. The comparison in the low-Q2 region is
consistent with the discussion above concerning r2A,
whereas forQ2 beyond 0.5 GeV2, our form factor becomes
increasingly larger than that obtained using the z expansion
of Ref. [17]. As a compelling extension of this work, it
would be interesting to investigate the theoretical descrip-
tion of previous neutrino-deuteron scattering measurements
(cf. Refs. [5,17]), by combining the LFQM calculations
in this analysis with a systematic treatment of deuteron-
structure effects and the subtleties associated with
these experiments [17]. We reserve such an undertaking
to future efforts.
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FIG. 5. 1-dim PDFs forMA (blue curve in the unit of GeV) and
F̃1Nð0Þ (red curve) from our Bayesian inference.
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FIG. 6. The model prediction of F̃1N and its error band. Panel
(a) normalizes form factor against G̃D with MA ¼ 1 GeV, while
panel (b) uses MA ¼ 1.28 MeV. Panel (a) shows two sets of
curves: “LFQM” (red curves) are the model’s original prediction,
and the “LFQM0” (blue curves) re-scale the curves such that the
Q2 ¼ 0 value agrees with gA ¼ 1.27. The inset in panel (b) dem-
onstrates that when Q2 ∼ 0, the full form factor is close to the
corresponding dipole parametrization.
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We can also parametrize our F̃1NðQ2Þ=F̃1Nð0Þ by
employing the z-expansion form from Ref. [17]. With
tcut ¼ 9m2

π , t0 ¼ −1.19263 GeV2, and

zðQ2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut − t0
p ; ð94Þ

the central value of our axial form factor can be para-
metrized as

F̃1NðQ2Þ
F̃1Nð0Þ

¼
X11
k¼0

akzkðQ2Þ: ð95Þ

This parametrization reproduces the full F̃1NðQ2Þ with
better than 0.1% error for Q2 between 0 and 10 GeV2. The
numerical values of the ak coefficients can be found in
Table III.

V. IMPACTS

In order to quantify the impact of the difference between
our full F̃1N and the commonly used dipole approximation,
we first calculate the cross sections for the charged-current
(CC) (anti)neutrino–nucleon scattering and then the (anti)
neutrino–40Ar QE scatterings relevant for the coming
DUNE experiment.

A. The single-nucleon cross section

The single-nucleon scattering cross section differentiated
against Q2 at given neutrino energy Eν can be written
as [64]

dσνðν̄Þ

dQ2
≡G2

Fcos
2θcM2

N

8πE2
ν

�
A∓B

s−u
M2

N
þC

ðs−uÞ2
M4

N

�
; ð96Þ

with GF as Fermi constant, θc as Cabibbo angle; mμ as the
charged lepton mass; s − u ¼ 4EνMN −Q2 −m2

μ; the sign
of B: (−) for the neutrino scattering and (þ) for the
antineutrino scattering; and
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FIG. 7. Comparison between LFQM0 F̃1NðQ2Þ and the same
form factor fitted based on the z-expansion approach of Ref. [17].

TABLE III. The fitted values for ak as used in the z-
parametrization in Eq. (95) for the central value of
F̃1NðQ2Þ=F̃1Nð0Þ.
k ¼ 0 1 2 3 4 5
0.299145 −1.18966 1.16692 0.763023 −0.39146 −2.45022

6 7 8 9 10 11
−8.74781 23.8158 48.8291 −126.237 −103.061 259.714
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FIG. 8. Differential cross section for neutrino scattering at Eν ¼ 0.5 and 2 GeV. In the upper panels, three different calculations are
plotted with different axial form factor, while the lower panels show the ratio between the result using our full form factor and the one
using gAG̃D with MA ¼ 1.28 GeV.
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A¼ðm2
μþQ2Þ
M2

N



−ð1− τÞF2

1V þ4τF1VF2V

þð1− τÞτF2
2V þð1þ τÞF̃2

1N

−
m2

μ

4M2
N
½ðF1V þF2VÞ2þðF̃1N þ F̃2NÞ2− F̃2

2Nð1þ τÞ�
�

B¼ 4τF̃1NðF1V þF2VÞ

C¼ 1

4
ðF̃2

1N þF2
1V þ τF2

2VÞ:

Here, F1V ≡ F1p − F1n, F2V ≡ F2p − F2n are the form
factor for the isovector component in the EM current.
When integrating the differential cross section over the Q2

to get the total cross section, the range of Q2 depends on
neutrino lab energy Eν; its lower and upper limits are

2E2
ν

ð1þ 2 Eν
MN

Þ

"
Rþ 1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − 1Þ2 −m2

μ

E2
ν

s #
−m2

μ; ð97Þ

with R≡ m2
μ

2MNEν
. Meanwhile, the threshold for Eν is

Eν ≥ mμ þ
m2

μ

2MN
: ð98Þ

Figures 8 and 9 compare differential cross section due to
three different axial form factors in the CC-induced (anti)
neutrino scatterings. Two different Eν ¼ 0.5 and 2 GeVare
chosen. We see that even havingMA ¼ 1.28 GeV such that
the dipole parametrization agrees with the full form factor
at Q2 ∼ 0, their cross section results can differ up to 5%–
10% in the dominating Q2 regions. Figure 10 shows the
total cross sections vs Eν based on those form factors: the
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FIG. 9. Differential cross section for anti-neutrino scattering atEν¼0.5 and2GeV.See the caption of Fig. 8 for the illustrations of the legends.
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FIG. 10. Total cross section for CC-induced neutrino and antineutrino scattering off nucleon. In the upper panels, three different
calculations are plotted with different axial form factor, while the lower panels show the ratios between the results using the full F̃1N and
the one using gAG̃D and MA ¼ 1.28 GeV (red dotted curve) and with the results using gAG̃D and MA ¼ 1 GeV.
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difference between the full-form-factor based calculations
and the dipole-parametrization based (MA ¼ 1.28 GeV)
increases to around 5% at about Eν ∼ 0.5 GeV and mildly
increase to a little below 8% with Eν ¼ 10 GeV. This Eν

range covers the dominating region of the DUNE’s neutrino
spectra. As such, we conclude that controlling these effects
within the QE cross section will be critically important to
further strengthening the interpretation of results from the
upcoming DUNE program. Of course, the difference
between the full calculation and the MA ¼ 1 GeV, one
is much larger than the previous ones, reaching to 20%
above 1 GeV neutrino energy. Note in all the figures, the
EM form factors are the full form factor from our model.

B. Neutrino-nucleus cross sections

To study the form factor’s impact on the neutrino-
nucleus cross sections relevant for the DUNE experiment
[41], we use the GiBUU package to compute the νðν̄Þ − 40Ar
inclusive QE scattering [40,65]. The initial state nuclear
effects, including Fermi motion, are automatically taken
into account, while the final state interaction is not relevant
and thus turned off in the simulations. The two-particle-
two-hole process, resonance and pion productions, and
deep inelastic scatterings are not studied here. The neutrino
fluxes (see Fig. 11) in our calculation are the so-called
“reference, 204x4 m DP” from Ref. [41]. Note that in the
calculations here, we simply use the vector current form
factors [18] native to the GiBUU package.
Panel (a) and (b) in Fig. 12 show the DUNE flux-

averaged differential cross section vs Q2 for both neutrino
and antineutrino scatterings. Panel (c) shows the ratios
between the full-axial-form-factor based and the dipole-
parametrization-based (with MA ¼ 1.28 GeV) calcula-
tions. Indeed the difference is about 5% in the dominant
Q2 region around 0.2 GeV2 and increases to about 10% at
Q2 ∼ 1 GeV2 and beyond. The wiggles in the tails of the
ratio plot is due to the diminishing simulation statistics in
the large Q2 region. It is worth noting that, in panel (c), for
Q2 below 0.5 GeV2, the differences between the two
calculations in both neutrino and antineutrino scatterings
are almost the same, but then differ at a few percent level
with Q2 a little above 0.5 GeV2.
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FIG. 11. The νμ and ν̄μ fluxes in neutrino and antineutrino mode
in the DUNE experiment’s near detector [41]. The units are
irrelevant in this work.
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FIG. 12. The DUNE-flux averaged νðν̄Þ − 40Ar scattering differential cross section. The lower panel again shows the ratio between the
result using our model form factor and the one using its dipole approximation with MA ¼ 1.28 GeV.
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VI. SUMMARY

In this work, the light-front quarkmodel with pion cloud is
employed to correlate the nucleon’s EM form factors with its
axial form factors. The model is calibrated to the EM form
factors’ measurements and then used to predict the axial
form factor F̃1N. We found our form factor’s r2A ¼ 0.29�
0.03 fm2; its central value is smaller than the one resulted
from a recent analysis [5] neutrino-nucleon scattering data
and the singlet muonic hydrogen capture rate measurement,
r2A ¼ 0.46� 0.16 fm2, although the former’s central value is
within the latter’s1-σ error bar.Meanwhile, our value is closer
to the current lattice QCD results from 0.2–0.45 fm2,
although these lattice calculations still have room to be im-
proved [5]. Note the correspondingMA ¼ 1.28� 0.07 MeV
(based on the form factor’sQ2 derivative at zero) is larger than
MA ¼ 1.01� 0.17 GeV2 from Refs. [5,17]).
More importantly, we found the widely used dipole

approximation to our full F̃1N overestimates the (anti)
neutrino scattering cross sections, as compared to the
calculation using the full expression, by about 5% at
neutrino energy around 0.5 GeV and reaches about 10%
at 10 GeV. By using the GiBUU simulation package,
we studied how this discrepancy could impact the (anti)
neutrino inclusive QE cross sections (without short-range-
correlation’s contribution and pion productionmechanisms)
for the coming DUNE experiment. The flux-averaged
differential cross section vs Q2 could get overestimated

by 5% at the Q2 ∼ 0.2 GeV2 and reaches around 10% at
1 GeV2. The difference between the overestimation in the
neutrino scattering and that in the antineutrino scattering
increases to a few percent level when Q2 goes above
0.5 GeV2, which could be relevant for the neutrino-
oscillation measurements interested in the difference
between neutrino and antineutrino.
In the current work, fitting model parameters was

simplified by using the results of the data analysis (based
on the z expansion) from Ref. [60]. For simplicity, the
correlations between their extracted form factors—not
available in public—are ignored in our model calibration.
In the future, our model calibration can be improved either
by directly using the experimental cross section measure-
ments or by including the correlations among the form-
factor errors at different Q2 from Ref. [60]. Moreover, the
theoretical uncertainty of our quark model is not fully
explored, even though we have used a somewhat flexible
parametrization of the quark-diquark wave functions.
In the pion-cloud calculation, the Δ resonance’s con-

tribution is computed by using its form factors either from
lattice QCD calculations or experimental measurements.
However, a more consistent approach would be to base the
inelastic form factor used in the pion-cloud calculations on
the Δ’s light-front wave functions. This will also allow
studying the axial inelastic form factors, which are also
poorly constrained but important for understanding the
pion productions in the coming neutrino experiments,
within the same framework.

ACKNOWLEDGMENTS

X. Z. would like to thank Ulrich Mosel for his help with
running the GiBUU package. We are also thankful to I. Cloët
for useful discussions. X. Z. was supported by the US
Department of Energy under Contract No. DE-FG02-
97ER-41014, the US Institute for Nuclear Theory, and
the National Science Foundation under Grant No. PHY-
1614460 and the NUCLEI SciDACCollaboration under US
Department of Energy MSU Subcontract No. RC107839-
OSU. T. H. was supported by the US Department of Energy
under Contract No. DE-SC0010129 and also acknowledges
support from a JLab EIC Center Fellowship. G. M. was
supported by the US Department of Energy under Contract
No. DE-FG02-97ER-41014.

APPENDIX A: QUARK WAVE FUNCTIONS

The scalar-diquark wave functions have already been
computed in Ref. [36], but we present them here for the
sake of completeness. We note that the notation used here is
somewhat different from that in Ref. [36]. Our choices for
the metric and Dirac spinors follow the Lepage-Brodsky
conventions in Ref. [30]. The expression for the bare-quark
form factors [cf. Eqs. (14), (15), and (16)] in terms of the
quark light-front wave function are

TABLE IV. ϕλN
λq
=

ffiffiffi
x

p
for quark scalar diquark configuration.

λN

λq − 1
2

1
2

− 1
2 φs

1ðMN þ mq

x Þ þ 2MNφ
s
2 φs

1

ffiffi
2

p
kR
x

1
2 φs

1

ffiffi
2

p
kL
x

φs
1ðMN þ mq

x Þ þ 2MNφ
s
2

TABLE V. ϕλN
λqλa

=
ffiffiffi
x

p
for quark axial diquark configuration.

λN

λq, λa − 1
2

1
2

− 1
2
;−1 −φa

1
2kR

xð1−xÞ 0

− 1
2
; 0 φa

1
2ma
1−x − φa

2
ma
MN

ðMN − mq

x Þ −φa
2

ma
MN

ffiffi
2

p
kR
x

− 1
2
;þ1 −φa

1
2kL
1−x φa

1

ffiffiffi
2

p ðMN þ mq

x Þ
1
2
;−1 −φa

1

ffiffiffi
2

p ðMN þ mq

x Þ φa
1
2kR
1−x

1
2
; 0 φa

2
ma
MN

ffiffi
2

p
kL
x

−φa
1
2ma
1−x þ φa

2
ma
MN

ðMN − mq

x Þ
1
2
;þ1 0 φa

1
2kL

xð1−xÞ
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f1s¼
Z

dxdk⊥
16π3x2ð1−xÞ



φs0
1 φ

s
1

�
ðmqþxMNÞ2þk2⊥−

ð1−xÞ2
4

Q2

�
þðφs0

1 φ
s
2þφs0

2 φ
s
1Þ2xMNðmqþxMNÞþφs0

2 φ
s
24x

2M2
N

�
ðA1Þ

f2s ¼
Z

MNdxdk⊥
8π3x2ð1 − xÞ



φs0
1 φ

s
1ðmq þ xMNÞð1 − xÞ þ ðφs0

1 φ
s
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2 φ
s
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1 φ
s
2 − φs0

2 φ
s
1Þ2xMN

k⊥ · q⊥
Q2

�
ðA2Þ

fAs¼
Z

dxdk⊥
16π3x2ð1−xÞ



φs0
1 φ

s
1

�
ðmqþxMNÞ2−k2⊥þð1−xÞ2

4
Q2

�
þðφs0

1 φ
s
2þφs0

2 φ
s
1Þ2xMNðmqþxMNÞþφs0

2 φ
s
24x

2M2
N

�
ðA3Þ

f1a ¼
Z

dxdk⊥
16π3x2ð1 − xÞ



2φa0

1 φ
a
1

��
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4
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2x2m2

a
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4

Q2
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f2a ¼
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a
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a
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xm2

a

MN
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a
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�
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fAa ¼
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dxdk⊥
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1 φ
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2x2m2
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Note the expressions in these form factor involving φa
2 are

different, as well as the φa0
1 φ

a
1. The former is because

we use a different wave function for φa
2, while the latter is

because we use ε̄ instead of ε in defining wave functions
involving axial diquark (cf. the discussion in Sec. II B). To
simplify the presentation, the quark wave functions’
dependence on the integration variables are implicit: φs

1 ≡
φs
1ðx; ki⊥Þ and φs0

1 ≡ φs
1ðx; kf⊥Þ with kf⊥ ≡ k⊥ − 1−x

2
q⊥

and kf⊥ ≡ k⊥ þ 1−x
2
q⊥. Here the integration variable k⊥ is

shifted from the k⊥ in Eqs. (17)–(22) by − 1−x
2
q⊥. In these

expressions, mq, ms, and ma are the masses of the quark,
scalar, and axial-vector diquarks.

APPENDIX B: HADRONIC INTERACTION AND
ELECTROWEAK CURRENT MATRIX

ELEMENTS

The results for N-N-π interaction vertices can be found
in Table VI. The assignment of intrinsic kinetic variables
has been discussed in Sec. II C 1. The metric and Dirac
spinor convention used again follows the Lepage-Brodsky
in Ref. [30].
To calculate matrices elements for N-Δ-π interaction, we

need a convention for spin-3=2 Rarita-Schwinger spinors,

uμ

�
3

2

	
¼ εμðþ1Þu

�
1

2

	

uμ

�
1

2

	
¼

ffiffiffi
1

3

r
εμðþ1Þu

�
−
1

2

	
þ

ffiffiffi
2

3

r
εμð0Þu

�
1

2

	

uμ

�
−
1

2

	
¼

ffiffiffi
2

3

r
εμð0Þu

�
−
1

2

	
þ

ffiffiffi
1

3

r
εμð−1Þu

�
1

2

	

uμ

�
−
3

2

	
¼ εμð−1Þu

�
−
1

2

	
: ðB1Þ

TABLE VI. VλNf;λNi
using helicity basis. Note

V−λNf;−λNi
ðx; kx; kyÞ ¼ −VλNf;λNi

ðx;−kx; kyÞ. Changing the sign of
kx leads to kL ↔ kR. This property can be used to infer the matrix
elements with positive λNi based on given matrix elements with
negative λNi.

λN

λ0N − 1
2

1
2

− 1
2

iMNð1−xÞffiffi
x

p − i
ffiffi
2

p
kRffiffi
x

p
1
2

i
ffiffi
2

p
kLffiffi
x

p iMNðx−1Þffiffi
x

p
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TABLE VII. VλΔ;λN using helicity basis. Note V−λΔ;−λN ðx; kx; kyÞ ¼ þVλΔ ;λN ðx;−kx; kyÞ. Changing the sign of kx

leads to kL ↔ kR. This property can be used to infer the matrix elements with positive λN based on given matrix
elements with negative λN .

λN

λΔ − 1
2

− 3
2 ix−3=2kRðMΔ þMNxÞ

− 1
2 − ix−3=2ffiffi

6
p

MΔ
½ðMNx −MΔÞðMΔ þMNxÞ2 − 2kLkRð2MΔ þMNxÞ�

1
2

ikLx−3=2ffiffi
3

p
MΔ

½2kLkR − ðMNx − 2MΔÞðMΔ þMNxÞ�
3
2 i

ffiffiffi
2

p
x3=2ðkLÞ2

TABLE VIII. J ð0ÞV
λΔ;λN

ðqÞ≡ ūαðpΔ; λΔÞΓαþ
γN;Δðq; pN ;pΔÞuðpN; λNÞ=ð2pþ

NÞ using helicity basis. Note

J ð0ÞV
−λΔ;−λN ðqÞðqx; qyÞ ¼ −J ð0ÞV

λΔ;λN
ðqÞð−qx; qyÞ. Changing the sign of qx leads to qL ↔ qR. This property can be

used to infer the matrix elements with positive λN based on given matrix elements with negative λN .

λN

λΔ − 1
2

− 3
2 − qR

2
½FE

NΔðMN −MΔÞ þ FM
NΔðMN þMΔÞ�

− 1
2

qLqRffiffi
6

p
MΔ

½ðFE
NΔ − FM

NΔÞMΔ þ 2FC
NΔðMN −MΔÞ�

1
2 − qL

2
ffiffi
3

p
MΔ

½FE
NΔMΔðMN −MΔÞ − FM

NΔMΔðMN þMΔÞ þ 4FC
NΔq

LqR�
3
2

ðqLÞ2ffiffi
2

p ðFE
NΔ þ FM

NΔÞ

TABLE IX. J ð0ÞA
λΔ;λN

ðqÞ≡ ūαðpΔ; λΔÞΓαþ
AN;Δðq; pN ;pΔÞuðpN; λNÞ=ð2pþ

NÞ using helicity basis. Note

J ð0ÞA
−λΔ;−λN ðqÞðqx; qyÞ ¼ J ð0ÞA

λΔ;λN
ðqÞð−qx; qyÞ. Changing the sign of qx leads to qL ↔ qR. This property can be used

to infer the matrix elements with positive λN based on given matrix elements with negative λN

λN

λΔ − 1
2

− 3
2 − qR

2M2
N
½CA

4MΔ þ ð2CA
3 þ CA

4 ÞMN�
− 1

2
1ffiffi

6
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MΔM2
N
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5M
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3q
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2
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4

TABLE X. J ð0ÞEM
λΔ;λΔ

using helicity basis. Note J ð0ÞEM
−λ0Δ;−λΔ

ðqx; qyÞ ¼ J ð0ÞEM
λ0Δ;λΔ

ð−qx; qyÞ. Changing the sign of qx leads to qL ↔ qR. This
property can be used to infer the matrix elements with positive λΔ based on given matrix elements.

λΔ
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2
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2 F1Δ þ F3ΔqLqR
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Δ

qRðM2
Δð8F1Δ−4F2ΔÞþð2F3Δ−F4ΔÞqLqRÞ

4
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TABLE XI. J ð0ÞA
λΔ;λΔ

using helicity basis. Note J ð0ÞA
−λ0Δ;−λΔ

ðqx; qyÞ ¼ −J ð0ÞA
λ0Δ;λΔ

ð−qx; qyÞ. Changing the sign of qx leads to qL ↔ qR. This
property can be used to infer the matrix elements with positive λΔ based on given matrix elements.

λΔ
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2
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2
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FIG. 13. The 2-dim and 1-dim projection of the 15-dim PDF, as computed through Bayesian inference.
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Here, the spin projections/helicity projections are labeled as
the numbers in parenthesis. Note the vector εμ is different
from the one used in axial-diquark wave function: it
satisfies pμ

Δεμ ¼ 0 [35]. The results are collected in
Table VII. To compute the current matrix elements,
we always choose a frame with qþ ¼ 0. The results
in Tables VIII–XI are of course boost and rotation

invariant (in the transverse plane). To reduce space for
presentations, only a subset of the matrix elements men-
tioned here are shown, while the others can be inferred
using the mirror transformation (with respect to the y-z
plane) of these elements (i.e., parity transformation multi-
plied by proper rotation). See the captions of the tables for
the details.
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