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Hexaquark wave function with the quantum numbers IðJPÞ ¼ 0ð3þÞ, which might be relevant for
d�ð2380Þ, is constructed under an assumption that this is composed only of u, d quarks in an S wave.
By combining three diquarks of either type, (3̄c; I ¼ 1) or (6c; I ¼ 0), we demonstrate that there are five
possible configurations for the six-quark state. The fully antisymmetric wave function is constructed by
linearly combining the five configurations on an equal footing. We then take this wave function as well as
the five configurations to calculate the hexaquark mass using the contact type effective potential consisting
of the color spin, color electric, and constant shift. The mass is found to be the same regardless of the
configurations being used including the fully antisymmetric one. This result can be traced to the fact that
the hexaquark system has a freedom in choosing three diquarks in the construction of its wave function.
The calculated hexaquark mass using the empirical parameters independently fixed from the baryon
spectroscopy is found to be around 2342 MeV, which is indeed very close to the experimental mass of
d�ð2380Þ. Therefore, the hexaquark picture is promising for d�ð2380Þ as far as the mass is concerned.

DOI: 10.1103/PhysRevD.102.074023

I. INTRODUCTION

The d�ð2380Þ resonance with the quantum numbers
IðJPÞ ¼ 0ð3þÞ has been reported recently by the WASA-
at-COSY Collaboration [1] from the exclusive reaction
channel, pn → dπ0π0. Its existence is also supported by
later experiments [2–6]. This resonance, as a state of
double-pionic fusion to deuterium, may provide a plausible
explanation for the substantial enhancement seen long ago
in the 3He missing mass spectrum from the inclusive
reaction, pd → 3HeX [7,8].
Based on the reaction channels that lead to its observa-

tion, d�ð2380Þ is expected to be a six-quark state composed
of u, d quarks only. Then, as is often encountered in the
multiquark studies, one important issue to discuss is
whether d�ð2380Þ is a molecular state of two color-singlet
objects, namely the anticipated dibaryon state, or a hex-
aquark state that has the hidden-color component in
addition. The d�ð2380Þ mass, which is measured to be
around M ≈ 2380 MeV, is about 80 MeV less than the

invariant mass of ΔΔ. In this sense, d�ð2380Þ could be
the dibaryon state predicted long ago by Ref. [9] with
the mass 2350 MeV in the isospin-spin channel of
ðI; JÞ ¼ ð0; 3Þ. The dynamics that leads to this resonance
could be the attractive force between two Δs in the channel
ðI; JÞ ¼ ð0; 3Þ [10].
One problem in this view is the small decay width of

d�ð2380Þ, which is about 70 MeV [1]. Given the fact that
the Δ decay width, ΓΔ ≈ 115 MeV, it is not easy to
understand the small width if d�ð2380Þ is viewed as a
bound state of two Δ s. Alternatively, as advocated in
Refs. [11,12], d�ð2380Þ might be a hexaquark state that is
dominated by the hidden-color component. Indeed, accord-
ing to Refs. [13,14], the six-quark state with all the quarks
in an S wave is found to have more probability to stay in
the hidden-color configuration rather than in the ΔΔ
configuration. In this regard, the hexaquark picture needs
to be investigated more concretely because, after all, it is
more extensive in that this picture can accommodate the
molecular picture as its component.
To investigate the hexaquark possibility, Ref. [15] has

performed a calculation based on a variation method and
concluded that the hexaquark picture is not realistic for
d�ð2380Þ because the calculated mass from this picture is
too large. This conclusion is questioned later by Ref. [16],
which claims that the important medium-range interaction
was missing in that calculation. More recently, Shi et al. [17]
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investigated the hexaquark possibility for d�ð2380Þ in a
model where the spin-1 diquark with the color structure of
3̄c has been adopted in the construction of the hexaquark
wave function. Even though this spin-1 diquark is known to
be the bad diquark [18], their calculation seems to reproduce
the experimental mass and decay width of d�ð2380Þ
relatively well. This result, however, was disputed later by
Ref. [19], which pointed out some problems in calculating
the decay width and an unrealistic nature inherited in the
calculated mass.
The diquark approach, which normally relies on a

compact diquark with a hope to generate an optimal
multiquark configuration, has conceptual problems espe-
cially when it applies to the hexaquark system of qqqqqq
(q ¼ u, d). First of all, such a hexaquark, as it is built from
one diquark type only, cannot satisfy the fully antisym-
metric condition under exchange of any two quark among
the six quarks [15,19]. Second, the resulting hexaquark
configuration does not have a privilege over other possible
configurations constructed from other diquark types as far
as in generating the ground state configuration. The second
statement is closely related to a freedom in dividing the six
quarks into three diquarks. There are various ways to divide
the six quarks into three diquarks1 and, in principle, all of
them must be equivalent to describe the hexaquark system
as it is completely arbitrary to choose any division
especially in the qqqqqq system with q ¼ u, d only. It
turns out that, if all the possible diquarks are considered in
the hexaquark construction, there are five configurations in
each division and, from the freedom mentioned above, it is
possible to show that all the five configurations have the
same expectation value for the potential (see Sec. IV). As a
result, all of the five configurations are equally important,
and none of them are in fact better suited for the hexaquark
description. In other words, there is no compact diquark that
can generate the compact hexaquark configuration. Instead,
the five configurations can participate in constructing the
fully antisymmetric wave function as its components.
Therefore, even though the diquark approach is conceptually
problematic, it still provides one convenient basis to con-
struct a physical wave function for the hexaquark.
In this work, we investigate the hexaquark possibility for

d�ð2380Þ. The hexaquark wave functions will be con-
structed under an assumption that all the quarks are in an S
wave. In our construction, we take all the possible diquarks
as a convenient tool for describing the hexaquark wave
function so the diquark types are not necessarily limited to
the compact one as in the usual diquark models. In this
sense, our approach is different from other studies that rely
on one compact diquark type only. In fact, there are five
possible configurations that can be combined to form a

fully antisymmetric wave function. The resulting hexa-
quark wave function will be tested by calculating its mass
using a semiempirical effective potential of the contact type
composed of color spin, color electric, and some constant
shift, the same potential type that has been used in the
previous studies of tetraquarks [20–24]. The parameters
appearing in this potential will be independently fixed from
the baryon octet and decuplet. Thus, our approach in this
work is different from Ref. [15] in that we use this contact
type potential that freezes the spatial dependence of the
potential by fitting the effective parameters from the baryon
spectroscopy handled in the same footing.
This paper is organized as follows. In Sec. II, we introduce

an effective potential that will be used in our study. In
Sec. III, all the possible hexaquark configurations are
constructed in color, isospin space separately and also in
the combined color-isospin space. We also present explicit
expression for the fully antisymmetric wave function in
Sec. III D. In Sec. IV, we make a few remarks on the
interesting aspect from the expectation value of the effective
potential when it is calculated with respect to the constructed
hexaquark wave functions. The hexaquark mass will be
presented in Sec. V. We provide a summary in Sec. VI.

II. EFFECTIVE POTENTIAL

We begin with an effective potential that will be used to
calculate the hexaquark mass. A hadron in the constituent
quark picture can be described by the Hamiltonian com-
posed of two terms, the quark mass term and the interaction
term among the participating quarks. The interaction can
have two different sources, one-gluon exchange potential
and instanton-induced potential [25,26]. One way to para-
metrize the effective potentials is to write them down in the
contact form composed of the three parts, color spin (VCS),
color electric (VCE), and constant shift [27],

Veff ¼ VCS þ VCE þ constant

¼
X
i<j

v0
mimj

λi · λjJi · Jj þ
X
i<j

v1
mimj

λi · λj þ v2: ð1Þ

Here, λi denotes the Gell-Mann matrix for the color, Ji the
spin, and mi the quark mass. This interaction is a semi-
empirical type which acts on two quarks in one spatial
point. So the spatial dependence of Veff is frozen in an
average sense by fixing the empirical parameters, v0, v1, v2,
from some baryon masses used as inputs.
Hadron mass can be written formally by the mass

formula

MH ≃
X
i

mi þ hVeffi; ð2Þ

where the expectation value needs to be evaluated with
respect to an appropriate wave function constructed for the

1This is in contrast to the tetraquark system qqq̄q̄, which has
only one division qq − q̄q̄ in a diquark model. The other like
qq̄ − qq̄ is not a division based on a diquark model.
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hadron of concern. In the constituent quark picture, the
quark mass used in Eq. (2) should be regarded as an
effective mass that includes the kinetic energy of constitu-
ent quarks [17].
The color-spin interaction VCS alone is often used to

investigate hadron masses [28–32] in the context of Eq. (2).
One advantage of using VCS is that it reproduces quite
well the mass difference among hadrons with the same
flavor content [20,22,33–37] because the other terms in the
potential, the color electric and constant shift, are canceled
away in the mass difference. But in general the other terms
are not negligible in calculating the mass itself. Indeed, the
mass formula, Eq. (2), with all the three terms kept in the
potential, has been applied to the baryon system success-
fully [27] using the three parameters, v0, v1, v2, fitted from
the experimental masses of N, Δ, Λ. To make our
presentation self-contained, this fitting process has been
explained in the Appendix with three different cases:
(I) v0 ≠ 0; v1 ¼ v2 ¼ 0, (II) v0 ≠ 0, v1 ≠ 0, v2 ¼ 0, and
(III) v0 ≠ 0, v1 ≠ 0, v2 ≠ 0. We find that the third case with
the determined parameters

v0 ¼ ð−199.6 MeVÞ3; v1 ¼ ð71.2 MeVÞ3;
v2 ¼ 122.5 MeV; ð3Þ

reproduces the baryon masses very well as shown in Table I
in the Appendix.
The effective potential, Eq. (1), can be simplified further

when it applies to the hexaquark system of our concern. As
mentioned already, we consider in this work the hexaquark
composed of u, d quarks only so we can set all the quark
masses to be equal, mi ¼ mj ≡m. Its value is taken to be
330 MeV as in the previous works on tetraquarks [20–23].
Also, all the six quarks are in the spin-up state in order to
make the total spin J ¼ 3. Hence, the spin-dependent part
in Eq. (1) is trivially evaluated to be hJi · Jji ¼ 1=4 for any
i, j. These two aspects simplify Eq. (1) further into the form

Veff ¼
�
v0
4m2

þ v1
m2

�X
i<j

λi · λj þ v2: ð4Þ

Now only the nontrivial part in evaluating hVeffi is the
color-color part

P
i<j λi · λj with respect to an appropriate

hexaquark wave function that will be constructed in the
next section. Since this effective potential does not depend
on isospin, hVeffi is practically independent of various
isospin configurations that lead to the total isospin, I ¼ 0.

III. HEXAQUARK WAVE FUNCTIONS

In this section, we construct a hexaquark wave function
with the quantum numbers, IðJPÞ ¼ 0ð3þÞ. Since all the
six quarks are assumed to be in an Swave, the spatial part is
fully symmetric under exchange of any two quarks. The
spin part is also symmetric because all the quarks are in the

spin-up state. Then, the rest color-isospin part must be
antisymmetric. To achieve this, we start with all the possible
diquark types that obey the Pauli principle within the two
quarks and use them as a convenient tool to construct the
five possible configurations for qq − qq − qq in the color-
isospin part. The resulting configurations therefore are
antisymmetric only between the two quarks in each diquark.
The fully antisymmetric wave function will be constructed
by linearly combining all the five configurations.

A. Color part

We start with the color part of the hexaquark wave
function by combining three diquarks of all the possible
types. For an illustrative purpose, we label the six quarks by
q1q2q3q4q5q6 and divide them into three diquarks grouped
as (12)(34)(56). The six-quark colors can be expressed by
the diquark colors in this division of (12)(34)(56) as

f½3c ⊗ 3c� ⊗ ½3c ⊗ 3c� ⊗ ½3c ⊗ 3c�g1c
¼ f½6c ⊕ 3̄c� ⊗ ½6c ⊕ 3̄c� ⊗ ½6c ⊕ 3̄c�g1c ; ð5Þ

using the group multiplication of 3c ⊗ 3c ¼ 6c ⊕ 3̄c.
Here the subscript 1c of the total bracket denotes that
the hexaquark is in a color singlet.
It is now easy to see that, among the various terms that

Eq. (5) can generate, only five color configurations can
form a color-singlet state totally. This coincides with the
general statement that a six-quark state has five color
configurations no matter how it is divided into subparts
[38,39]. The five color configurations in this diquark
division can be written explicitly as

f½6c ⊗ 6c�6̄c ⊗ 6cg1c ; ð6Þ

f½3̄c ⊗ 3̄c�3c ⊗ 3̄cg1c ; ð7Þ

f½6c ⊗ 3̄c�3c ⊗ 3̄cg1c ; ð8Þ

f½3̄c ⊗ 6c�3c ⊗ 3̄cg1c ; ð9Þ

f½3̄c ⊗ 3̄c�6̄c ⊗ 6cg1c : ð10Þ

To explain our notation, ½6c ⊗ 6c�6̄c in Eq. (6) denotes
the four-quark state belonging to 6̄c constructed from
the diquark ð12Þ ∈ 6c and the other diquark ð34Þ ∈ 6c.
This four-quark state is then combined with the third
diquark ð56Þ ∈ 6c to form a color-singlet state totally.
The five color configurations above have been expressed

by the two possible diquark types in color, the symmetric
one 6c and the antisymmetric one 3̄c. Both diquarks are of
course in the spin-1 state by construction. Note that the
diquark (6c; J ¼ 1) is lower in potential (i.e., more stable)
than the (3̄c; J ¼ 1Þ diquark if the binding is calculated
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from Veff using the parameter set given in Eq. (3). Thus, the
hexaquark configuration of Eq. (6) is constructed from the
stable diquark 6c only while Eq. (7), which has been used in
Ref. [17], is built from the less stable diquark 3̄c only. The
rest of the three configurations, Eqs. (8), (9), (10) contain
both types, 6c and 3̄c.
For a mathematical convenience, it is useful to represent

the five color configurations Eqs. (6)–(10) by a tensor
notation. In this notation,2 6c and 3̄c are expressed by
individual quark color as

6c∶ Sab ¼
1ffiffiffi
2

p ½qaqb þ qbqa�; ð11Þ

3̄c∶ Ta ¼ 1ffiffiffi
2

p ϵabc½qbqc − qcqb� ¼
ffiffiffi
2

p
ϵabcqbqc: ð12Þ

From this expression, one can explicitly see that Sab is
symmetric and Ta is antisymmetric under exchange of the
quark colors. Their inner products are normalized as

ðSab; ScdÞ ¼ δacδbd þ δadδbc; ð13Þ

ðTa; TbÞ ¼ 4δab; ð14Þ

and they are orthogonal,

ðSab; TcÞ ¼ 0: ð15Þ

Now, it is straightforward to write Eqs. (6)–(10) in terms
of Sab; Ta, namely,

jC1i ¼
1

12
ϵabcϵa

0b0c0 ðS12Þaa0 ðS34Þbb0 ðS56Þcc0 ; ð16Þ

jC2i ¼
1

8
ffiffiffi
6

p ϵabcðT12ÞaðT34ÞbðT56Þc; ð17Þ

jC3i ¼
1

8
ffiffiffi
3

p ðS12ÞabðT34ÞaðT56Þb; ð18Þ

jC4i ¼
1

8
ffiffiffi
3

p ðT12ÞaðS34ÞabðT56Þb; ð19Þ

jC5i ¼
1

8
ffiffiffi
3

p ðT12ÞaðT34ÞbðS56Þab: ð20Þ

On the right-hand side (rhs), we have added the numerical
subscripts in our tensors in order to specify the division
(12)(34)(56) more clearly.3 These five color configurations
are orthonormal, hCijCji ¼ δij.

The division (12)(34)(56) above is just one particular
choice in representing the color configurations of the
hexaquark. Since dividing the six quarks into three
diquarks is completely arbitrary, one can choose a
different division like (13)(24)(56) that can be obtained
from (12)(34)(56) by q2 ↔ q3. The equation, like
Eq. (5), still holds in this new division and one can
get similar five configurations that differ from jCii only
by the numerical subscripts on the rhs. But it is
clear that jCii should be related to these new configu-
rations through some linear combinations or vice versa
because any diquark that is in a definite color state in the
(12)(34)(56) division is in a mixture of 6c and 3̄c when it
is viewed in the different division like (13)(24)(56). This
aspect can be utilized to prove that there are no lowest
configuration among the five. We will come back to this
discussion later when we calculate the expectation value,
hVeffi, in Sec. IV.

B. Isospin part

Next we develop the isospin part of the wave function
that needs to be combined into the color part, jCii, in
Eqs. (16)–(20). The isospin part is crucial for constructing
the fully antisymmetric wave function under exchange of
any two quark among the six quarks but, since the effective
potential Veff is blind on isospin, the isospin part does not
practically participate in calculating hVeffi.
In our construction, we first impose the antisymmetric

constraint only on each diquark in the combined space of
color isospin. Any diquark in the configurations jCii is
either symmetric (Sab) or antisymmetric (Tc) in color. To
make each diquark antisymmetric in the color-isospin
space, the diquark isospin (Idi) is restricted to be Idi ¼ 0
for the Sab diquark and Idi ¼ 1 for the Tc diquark. Then
the total isospins are determined from the multiplication
of three isospins of the diquarks. Specifically, jC1i in
Eq. (16) consists of three diquarks of the Sab type with
the isospin Idi ¼ 0. Consequently, the total isospin of
jC1i is I ¼ 0 only. For jC2i of Eq. (17), each diquark is
in the Idi ¼ 1 state, so possible isospins of jC2i are
I ¼ 0, 1, 2, 3. For jC3i; jC4i; jC5i, possible isospins are
I ¼ 0, 1, 2. This means that the I ¼ 0 is the only
common isospin state that exists in all the five configu-
rations. As we shall see below, since all the five color
configurations are necessary in constructing the fully
antisymmetric wave function, the I ¼ 0 is the only
possible isospin for the hexaquark and this is indeed
consistent with the isospin of d�ð2380Þ. This observation
here provides an alternative explanation why there is
only one isospin state, I ¼ 0, when the six-quark state is
in the spin state J ¼ 3 totally [9].
It is straightforward to derive the five isospin

configurations, with the total isospin I ¼ 0, that can be
multiplied to the corresponding five color configurations,
Eqs. (16)–(20), respectively. They are

2For technical details on this tensor notation, see Ref. [40].
3Our expression for jCii is different from Eq. (21) in Ref. [15]

in that ours are written in a diquark basis.
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jI1i ¼ ½ud�½ud�½ud�; ð21Þ

jI2i ¼
1ffiffiffi
6

p ½ðuufudg − fudguuÞdd − ðuudd − dduuÞfudg

þ ðfudgdd − ddfudgÞuu�; ð22Þ

jI3i¼
1ffiffiffi
3

p ð½ud�uudd− ½ud�fudgfudgþ½ud�dduuÞ; ð23Þ

jI4i¼
1ffiffiffi
3

p ðuu½ud�dd−fudg½ud�fudgþdd½ud�uuÞ; ð24Þ

jI5i¼
1ffiffiffi
3

p ðuudd½ud�−fudgfudg½ud�þdduu½ud�Þ; ð25Þ

where we have introduced the short-hand notations,

½ud�≡ 1ffiffiffi
2

p ðud − duÞ; fudg≡ 1ffiffiffi
2

p ðudþ duÞ; ð26Þ

to represent the antisymmetric (Idi ¼ 0) and symmetric
(Idi ¼ 1) combination, respectively. These five isospin
configurations are also orthonormal, hIijIji ¼ δij.

C. Color-isospin part

The color-isospin part of the hexaquark wave function
can be constructed from the direct product,

jψ ii ¼ jCii ⊗ jIii; ði ¼ 1; 2; 3; 4; 5Þ: ð27Þ

As we have mentioned already, to make each diquark
antisymmetric in the combined space of color-isospin,
the product here must act only between a diquark in color
and the corresponding diquark in isospin; that is, the (12)
diquark in color must be combined only with the (12)
diquark in isospin and so on. To show what we meant
explicitly, jψ5i, which is obtained by multiplying Eqs. (20)
and (25), takes the form

jψ5i ∝ ðTuuÞaðTddÞbðS½ud�Þab − ðTfudgÞaðTfudgÞbðS½ud�Þab
þ ðTddÞaðTuuÞbðS½ud�Þab: ð28Þ

Here ðTuuÞa, ðS½ud�Þab in the first term are defined as

ðTuuÞa ¼ ðT12Þa ⊗ uu ¼
ffiffiffi
2

p
ϵabcubuc; ð29Þ

ðS½ud�Þaa0 ¼ ðS56Þaa0 ⊗ ½ud�

¼ 1

2
ðuada0 þ ua0daÞ −

1

2
ðdaua0 þ da0uaÞ; ð30Þ

and the other terms are similarly defined. Again, the
five color-isospin wave functions are orthonormal,
hψ ijψ ji ¼ δij.

D. Fully antisymmetric color-isospin part

By construction, all the five color-isospin configurations
jψ ii in Eq. (27) are antisymmetric only under exchange of
the two quarks in each diquark. None of jψ ii is fully
antisymmetric under exchange of any two quark among all
the six quarks, and, therefore, none of jψ ii can be regarded
as the physical state. But they constitute the full compo-
nents of the hexaquark wave function because one can
construct the fully antisymmetric wave function jΨi by
linearly combining all the five configurations as

jΨi ¼
X5
i¼1

aijψ ii: ð31Þ

We determine the coefficients ai by two conditions, the
normalization of the full wave function and the antisym-
metric constraint imposed on any two quarks in the six
quarks. This has been worked out explicitly and we find that

a1 ¼ a2 ¼ −a3 ¼ −a4 ¼ −a5 ¼
1ffiffiffi
5

p : ð32Þ

Therefore, the fully antisymmetric wave function in the
color-isospin space is given as

jΨi ¼ 1ffiffiffi
5

p ½jψ1i þ jψ2i − jψ3i − jψ4i − jψ5i�: ð33Þ

From this expression, we see that all the five color-isospin
configurations jψ ii are equally important in making the final
jΨi fully antisymmetric.
Finally, before closing this subsection, we present the

explicit expression of this fully antisymmetric wave func-
tion given as
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jΨi ¼ 1

12
ffiffiffi
5

p ϵabcϵa0b0c0 ðS½ud�Þaa0 ðS½ud�Þbb0 ðS½ud�Þcc0

þ 1

48
ffiffiffi
5

p ϵabc½ðTuuÞaðTfudgÞbðTddÞc − ðTfudgÞaðTuuÞbðTddÞc − ðTuuÞaðTddÞbðTfudgÞc

þ ðTddÞaðTuuÞbðTfudgÞc þ ðTfudgÞaðTddÞbðTuuÞc − ðTddÞaðTfudgÞbðTuuÞc�

−
1

24
ffiffiffi
5

p ½ðS½ud�ÞabðTuuÞaðTddÞb − ðS½ud�ÞabðTfudgÞaðTfudgÞb þ ðS½ud�ÞabðTddÞaðTuuÞb�

−
1

24
ffiffiffi
5

p ½ðTuuÞaðS½ud�ÞabðTddÞb − ðTfudgÞaðS½ud�ÞabðTfudgÞb þ ðTddÞaðS½ud�ÞabðTuuÞb�

−
1

24
ffiffiffi
5

p ½ðTuuÞaðTddÞbðS½ud�Þab − ðTfudgÞaðTfudgÞbðS½ud�Þab þ ðTddÞaðTuuÞbðS½ud�Þab�: ð34Þ

IV. A FEW REMARKS ON hVeffi
To compute the hexaquark mass through Eq. (2), first

we need to calculate the expectation value of Veff [Eq. (4)]
with respect to the fully antisymmetric wave function,
hΨjVeff jΨi. Since Veff is blind on isospin, the orthonormal
condition hIijIji ¼ δij guarantees that

hψ ijVeff jψ ji ¼ 0; ði ≠ jÞ; ð35Þ

and, for i ¼ j,

hψ ijVeff jψ ii ¼ hCijVeff jCii≡ Vi: ð36Þ

The last equation also defines Vi, the expectation values of
Veff with respect to jψ ii.
One important characteristic of hVeffi is that

hΨjVeff jΨi ¼ V1 ¼ V2 ¼ � � � ¼ V5: ð37Þ

This basically says that jΨi as well as jψ ii have the same
expectation value of the potential. This also shows that the
fully antisymmetric state jΨi is not a better configuration as
far as in reproducing the lowest energy.
To prove Eq. (37), one can establish by direct calculation

that the color-color part in Eq. (4) has the same expectation
value,

hCij
X
j<k

λj · λkjCii ¼ −16; ð38Þ

regardless of the color configurations, jCii. The same result
can be seen from Eq. (6) of Ref. [17] where the calculation
has been performed with the configuration jC2i only. SinceP

j<k λj · λk is simply related to Veff as shown in Eq. (4),
Eq. (38) indeed proves V1 ¼ V2 ¼ � � � ¼ V5. The other
relation hΨjVeff jΨi ¼ Vi must follow immediately.
Another aspect that can be seen from Eq. (37) is that a

stable diquark configuration does not necessarily lead to an
optimal hexaquark configuration with the lowest energy.

The jC1i, as is shown in Eq. (16), is the hexaquark
configuration constructed from the stable diquark 6c only
while the jC2i in Eq. (17) is the configuration built from the
less stable diquark 3̄c. One might naïvely expect from a
diquark model that V1 is the lowest and V2 is the highest
among Vi. The others, V3, V4, V5, are expected to lie
between the two as they contain the two diquark types as
their constituents. But, Eq. (37) shows that the jC1i
configuration is not guaranteed to be the lowest energy
state in the hexaquark system. This is certainly different
from the naive expectation from a diquark model. The main
reason behind this is that Veff acts not only on the diquarks
but also on other quark pairs that can be formed from the
six quarks. Similar situation occurs in the tetraquark system
[20–24] where the tetraquark with the spin-1 diquark
configuration turns out to be more stable than the one
with the spin-0 configuration even though the spin-0
diquark is more compact than the spin-1 diquark.
In fact, the result in Eq. (37) is not accidental. As we have

discussed briefly in the last paragraph of Sec. III A, it is a
natural consequence coming from a freedom in dividing the
six quarks into three diquarks in constructing the hexaquark
system. Since Veff acts on all the pairs among the six quarks,
its expectation value must be the same regardless of how the
six quarks are divided into three diquarks.
To put it more explicitly, let us rewrite jC1i in Eq. (16),

which was written in the (12)(34)(56) division, in terms of
the new division (13)(24)(56) by moving q2, q3 in Eq. (16).
We find that

jC1i ⇒
1

24
ϵabcϵa

0b0c0 ðS13Þaa0 ðS24Þbb0 ðS56Þcc0

−
1

16
ðT13ÞaðT24ÞbðS56Þab: ð39Þ

Comparing the rhs with Eqs. (16), (20), we see that the first
term is basically the jC1i type in this new division, which
we denote as jC0

1i, and the second term is the jC5i type,
which we denote as jC0

5i. In other words, Eq. (39) can be
expressed as
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jC1i ¼
1

2
jC0

1i −
ffiffiffi
3

p

2
jC0

5i: ð40Þ

Using this configuration in evaluating hVeffi, we find that

V1 ¼
1

4
V 0
1 þ

3

4
V 0
5; ð41Þ

where V 0
1; V

0
5 are the expectation values of Veff with respect

to jC0
1i; jC0

5i, respectively.4 But, since jC1i; jC0
1i differ only

by the labeling either in (12)(34)(56) or in (13)(24)(56),
both must have the same expectation value for Veff. The
same thing applies also to jC5i; jC0

5i. As a result, we must
have V1 ¼ V 0

1; V5 ¼ V 0
5. We emphasize that this is a

consequence from the arbitrariness in labeling our hex-
aquark system. Utilizing this in Eq. (41), we arrive at

V1 ¼ V5 ð42Þ

as anticipated from Eq. (37). Other relations in Eq. (37) can
be derived also by taking similar steps. Note that the
equation like Eq. (37) may not be satisfied if the strange
quarks are involved in the hexaquark system.

V. HEXAQUARK MASS

We now present and discuss the hexaquark mass calcu-
lated from our wave function. Plugging Eq. (38) into
Eq. (4), we obtain the formula for hVeffi as

hVeffi ¼ −16
�
v0
4m2

þ v1
m2

�
þ v2: ð43Þ

Using the constituent quark mass as m ¼ 330 MeV and
the effective parameters (v0, v1, v2) determined from the
baryon spectroscopy in Eq. (3), we find that

hVeffi ¼ 361.5 MeV: ð44Þ

This value is positive suggesting that this hexaquark is a
resonance state like the Δ baryon whose effective potential
is also positive (see Table I).
By putting Eq. (44) in the mass formula of Eq. (2), we

finally arrive at our prediction for the hexaquark mass,

MH ¼ 2341.5 MeV: ð45Þ

This is indeed very close to the experimental mass of
d�ð2380Þ, which is only 40MeV below. Hence, as far as the
mass is concerned, the hexaquark picture may not be ruled
out from a possible structure for d�ð2380Þ. In addition, as
explained in the previous section, this mass is the same
whether it is calculated with the fully antisymmetric wave
function jΨi, Eq. (33), or with any of the five configurations

jψ ii, Eq. (27). Because of this, Shi et al. [17] could have
gotten the same hexaquark mass if they took our effective
potential, Eq. (4), as well as the mass formula, Eq. (2), in
their calculation that facilitates jψ2i only. Therefore, in our
approach, finding the fully antisymmetric wave function,
even though it is needed as a physical state, is not so crucial
in determining the hexaquark mass.
Our result is very different from Ref. [15] which

performed a variational calculation that takes into account
the spatial dependence of the effective potentials, and
obtained a much larger mass of 2630 or 2809 MeV
depending on the interaction type adopted in the calcu-
lation. The calculated mass there is too large to be a
d�ð2380Þ mass and thus excludes the hexaquark possibility
for d�ð2380Þ. On the other hand, in our approach, we rely
on a simplified effective potential of the contact type, Veff
in Eq. (4), and, as a result, the five configurations jψ ii have
the same expectation value as the full wave function does.
No variation is necessary in our simplified approach as all
the six quarks are assumed to be in one spatial point in an
average sense.
Nevertheless, it is interesting to compare our result with

the mass of the two-baryon state calculated long ago by
Dyson and Xuong [9]. Purely from the SU(6) classification,
they predicted that the two-baryon mass in the ðI; JÞ ¼
ð0; 3Þ channel is around 2350MeV, which is also very close
to the d�ð2380Þ mass. This old prediction therefore can
be used to advocate a different picture for d�ð2380Þ, the
molecular-type resonance composed of two baryons. In this
calculation, there are only two inputs, one is the deuteron
mass and the other is a parameter related to the mass
formula for the baryon multiplet. Their approach, similarly
to ours in sprit, relies also on a simplified picture without
explicit spatial dependence of the potential and so on. Their
mass is only 10 MeV higher than our mass in Eq. (45)
calculated based on the hexaquark picture with constituent
quarks. Therefore, as far as the mass is concerned, the two
pictures can give a reasonable description for the d�ð2380Þ
although they seem conflicting each other for its internal
structure. Maybe one possible way of reconciling the two
pictures can be sought from the fact that the hexaquark
picture is more extensive. In other words, the hexaquark
picture can accommodate the two-baryon picture because it
includes the two-baryon state as its component in addition
to the hidden-color component. The resulting similar mass
can be understood in our terminology as having similar
value for hVeffiwhether it is calculated with the two-baryon
component or with the hidden-color component. Deducing
from Eq. (37), and also as advocated in Sec. IV, it is
certainly possible that the different configurations have the
similar value for hVeffi.

VI. SUMMARY

In summary, we have constructed in this work the
hexaquark wave function that might be relevant for the4The mixing terms like hC0

1jVeff jC0
5i are found to be zero.
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d�ð2380Þ with the quantum numbers of IðJPÞ ¼ 0ð3þÞ.
Our assumption in this construction is that the hexaquark is
composed only of u, d quarks that are all in an S-wave state.
Since the spatial and spin parts of the wave function are
symmetric under any quark exchange, the rest color-isospin
part must be antisymmetric. The color-isospin part of the
hexaquark wave function is constructed first in a diquark
basis where constituting diquarks are being prepared to be
antisymmetric in color isospin. Note that the diquarks in
our work have been adopted as a convenient tool for
describing the hexaquarks so they are not necessarily
restricted to the compact types as in the normal diquark
models. There are five color-isospin configurations in this
construction. We then construct a fully antisymmetric
color-isospin wave function by linearly combining the five
configurations. It turns out that all the five configurations
are equally important to the total wave function. In
particular, all the five configurations were found to give
the same hexaquark mass as the total wave function does.
For the effective potential, we have used the contact type
composed of the color-spin, color-electric and constant
shift, the same type that has been used in the previous
works on tetraquarks [20–23]. The empirical parameters
associated with the potential are determined from the
baryon spectroscopy. Using these parameters, we have
calculated the hexaquark mass to be around 2340 MeV,
which is quite close to the d�ð2380Þ mass, only 40 MeV
below. Therefore, we conclude that the hexaquark picture is
still promising as a possible structure for d�ð2380Þ.
In closing, we want to make two remarks. First is the

advantageous aspect of using the diquark basis in com-
parison with other basis like ð3qÞð3qÞ partition. In par-
ticular, it provides a convenient way to construct the
hexaquark wave function that are totally antisymmetric.
Namely, the color part of wave functions are conveniently
classified according to Eqs. (16)–(20) and these can be
easily incorporated to the isospin parts of Eqs. (21)–(25).
This then straightforwardly leads to an explicit expression
for the fully antisymmetric wave function as given in
Eq. (34). Another thing to mention is the fact that the
diquark approach [17], whose wave function is not fully
antisymmetric, still yields the same hexaquark mass that
can be obtained from the fully antisymmetric wave func-
tion. As discussed in Sec. IV, this result is originated from a
freedom in dividing the six quark into three diquarks in
constructing the hexaquark system.
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APPENDIX: DETERMINATION OF v0, v1, v2
FROM BARYON SPECTROSCOPY

The effective potential, Veff in Eq. (1), contains three
parameters, v0, v1, v2, which are related to the color spin,
color-electric potential, and the constant shift. In this
Appendix, we determine these parameters from the mass
formula Eq. (2) when it is applied to the baryon octet and
decuplet. The inputs in this analysis are the constituent quark
masses,whichwe set asmu¼md¼330MeV,ms¼500MeV.
Using the effective potential Eq. (1) and the appropriate

wave functions constructed for the baryon octet and
decuplet, it is straightforward to derive the mass formulas,

mN ¼ 3mu þ 2
v0
m2

u
− 8

v1
m2

u
þ v2; ðA1Þ

mΔ ¼ 3mu − 2
v0
m2

u
− 8

v1
m2

u
þ v2; ðA2Þ

mΛ ¼ 2mu þms þ 2
v0
m2

u

−
8

3
v1

�
1

m2
u
þ 2

mums

�
þ v2; ðA3Þ

mΣ ¼ 2mu þms −
8

3
v0

�
1

4m2
u
−

1

mums

�

−
8

3
v1

�
1

m2
u
þ 2

mums

�
þ v2; ðA4Þ

mΣ� ¼ 2mu þms −
8

3
v0

�
1

4m2
u
þ 1

2mums

�

−
8

3
v1

�
1

m2
u
þ 2

mums

�
þ v2; ðA5Þ

mΞ ¼ mu þ 2ms −
8

3
v0

�
−

1

mums
þ 1

4m2
s

�

−
8

3
v1

�
2

mums
þ 1

m2
s

�
þ v2; ðA6Þ

mΞ� ¼ mu þ 2ms −
8

3
v0

�
1

2mums
þ 1

4m2
s

�

−
8

3
v1

�
2

mums
þ 1

m2
s

�
þ v2

mΩ ¼ 3ms − 2
v0
m2

s
− 8

v1
m2

s
þ v2: ðA7Þ

The three parameters v0, v1, v2 appearing in Veff will
be fixed in three different scenarios. In the first scenario
(Case I), we consider the color-spin potential only by
setting v0 ≠ 0; v1 ¼ v2 ¼ 0 in Eq. (1). It is well known that
the color-spin potential can explain the mass differences
between the baryons with the same flavor content, namely
ΔMexp ≈ ΔhVCSi (see Table IVof Ref. [41]). Only input in
this case is the mass difference of N, Δ. Taking the
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difference between Eqs. (A1) and (A2), we findmΔ−mN ¼
−4v0=m2

u, which fixes

v0 ¼ ð−199.6 MeVÞ3; ðA8Þ

if we use the experimental masses mΔ; mN as inputs. The
baryon masses determined in this scenario are given in the
third column in Table I. The calculated masses are about
100 MeV less than the experimental masses. So the color-
spin interaction alone, even though it is successful in
reproducing the mass differences, is not precise enough
to generate the experimental masses.
In the second scenario (Case II), we include the color-

electric potential in addition to the color-spin potential
(v0 ≠ 0, v1 ≠ 0, v2 ¼ 0). The additional parameter v1 is
fixed from Eq. (A1) by using mN ¼ 940 MeV as an input.
That is,

−8
v1
m2

u
¼ mN − 3mu − 2

v0
m2

u
¼ 96 MeV

→ v1 ¼ ð−109.3 MeVÞ3: ðA9Þ

The baryon masses determined in this case are given in the
fourth column in Table I. This result is much better than
Case I, although the calculated masses deviate from the
experimental masses maximum up to 100 MeV.
In the third scenario (Case III), we include all the

three potentials, color spin, color electric, and constant
shift, (v0 ≠ 0, v1 ≠ 0, v2 ≠ 0). In this case, we use mΛ ¼
1116 MeV as an additional input. Plugging the input values
of v0; mN;mΛ in Eqs. (A1), (A3), we find these two
constraints,

− 8
v1
m2

u
þ v2 ¼ 96 MeV; ðA10Þ

−
8

3
v1

�
1

m2
u
þ 2

mums

�
þ v2 ¼ 102 MeV; ðA11Þ

which lead to

v1 ¼ ð71.2 MeVÞ3; v2 ¼ 122.5 MeV: ðA12Þ

The baryon masses in this scenario, which are given in the
fifth column in Table I, have an excellent agreement with
Mexpt within 10 MeV. This also shows that the effective
potential, Eq. (1), as well as the empirical parameters v0,
v1, v2 given in Eqs. (A8), (A12) are successful in describ-
ing the baryon spectroscopy.
We also examine the relative importance of each

potential term in Case III by separating the calculated
mass into the quark mass term, color-spin term, color-
electric term, and the constant shift. They are listed in the
last four columns of Table I. A common feature is that the
quark mass term is the biggest as it should be in
the constituent quark picture. The color-spin potential
is the second biggest for N, Δ, but its contribution
becomes less important in the resonances with strangeness
mostly because the color-spin interaction is proportional
to 1=mimj as in Eq. (1). Relating to this is the relative
contribution of the constant shift, which is slightly less
than the color-spin term in N, Δ, becomes the second
biggest in most resonances with strangeness. But in all
resonances, the color-electric term contributes marginally
in generating the baryon masses.
Another thing to mention is that the parameters in

Eqs. (A8), (A12) are determined from a baryon system
of qqq. This system is similar to the hexaquark system in a
sense that both are composed of quarks only without
antiquarks. This is in contrast to the tetraquark system
which is composed of quarks and antiquarks. Indeed, the v0
value determined from the tetraquark system is v0 ≈
ð−193Þ3 MeV3, slightly less than Eq. (A8). Even though
the difference is rather small, our parameters determined
from the baryon system must have better justification when
they are applied to hexaquarks.

TABLE I. Calculated baryon masses in three different cases as well as experimental masses are reported here. See the text for details in
calculating the masses in each case. The last four columns show individual contribution to the baryon mass from the quark mass, color
spin, color electric, and the constant shift in Case III. The constant shift is of course the same in all the channels. All the numbers are
given in MeV unit.

Mtheory Each term in Case III

Baryon Mexpt Case I Case II Case III
P

mq VCS VCE v2

N 940 844 940 (input) 940 (input) 990 −146.0 −26.5
Δ 1232 1136 1232 (input) 1232 (input) 990 146.0 −26.5
Λ 1116 1014 1088 1116 (input) 1160 −146.0 −20.5
Σ 1193 1080 1154 1182 1160 −79.8 −20.5 122.5
Σ� 1385 1273 1279 1375 1160 112.9 −20.5
Ξ 1320 1223 1347 1330 1330 −107.3 −15.5
Ξ� 1531 1415 1472 1522 1330 85.4 −15.5
Ω 1672 1564 1605 1675 1500 63.6 −11.5
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