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We suggest to probe the pion light-cone distribution amplitude, applying a dispersion relation for the
pion electromagnetic form factor. Instead of the standard dispersion relation, we use the equation between
the spacelike form factor FπðQ2Þ and the integrated modulus of the timelike form factor. For FπðQ2Þ, the
QCD light-cone sum rule with a dominant twist-2 term is used. Adopting for the pion twist-2 distribution
amplitude a certain combination of the first few Gegenbauer polynomials, it is possible to fit their
coefficients a2;4;6;::. (Gegenbauer moments) from this equation, employing the measured pion timelike
form factor. For the exploratory fit we use the data of the BABAR collaboration. The results definitely
exclude the asymptotic twist-2 distribution amplitude. Also the model with a single a2 ≠ 0 is disfavored by
the fit. Considering the models with an>2 ≠ 0, we find that the fitted values of the second and fourth
Gegenbauer moments cover the intervals a2ð1 GeVÞ ¼ ð0.22–0.33Þ, a4ð1 GeVÞ ¼ ð0.12–0.25Þ. The
higher moments starting from a8 are consistent with zero, albeit with large uncertainties. The spacelike pion
form factor obtained in two different ways, from the dispersion relation and from the light-cone sum rule,
agrees, within uncertainties, with the measurement by the Jefferson Lab Fπ collaboration.
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I. INTRODUCTION

The light-cone distribution amplitudes (DAs) are the key
elements in several QCD methods used to describe the hard
exclusive scattering and heavy hadron decays. For the
processes involving a pion, the accuracy of this description
depends first of all on our knowledge of the leading
twist-2 pion DA. The expansion of this DA in orthogonal
Gegenbauer polynomials reduces the necessary input
to their coefficients anðn ¼ 2; 4; 6;…Þ known as the
Gegenbauer moments. In many practical applications only
the low moments are retained in the pion twist-2 DA. Such
a parametrization is justified by the fact that the anomalous
dimension of the multiplicatively renormalizable moment
an grows with the number n, so that the contributions of
higher moments to the processes with a large momentum
scale are suppressed. Hence, for an accurate description of
the pion DA, the knowledge of the first few Gegenbauer
moments at a certain normalization scale is of utmost
importance.

In QCD, the Gegenbauer moments are related to the
vacuum-to-pion matrix elements of the local quark-
antiquark operators with polynomial combinations of
derivatives acting on the quark field. Needless to say, these
moments are genuinely nonperturbative objects. Currently,
only the second Gegenbauer moment a2 is accessible in the
lattice QCD. Recently, it was obtained in Ref. [1] with an
unprecedented accuracy (for earlier results see Refs. [2,3]).
The moments with n > 2 are not accessible with these
lattice computations, because of the growing number of
derivatives in the underlying quark-antiquark operators.
Alternative lattice QCD techniques [4,5] avoiding this
problem are being developed.
The method of QCD sum rules [6] based on the two-

point correlation function was pioneered for the calculation
of Gegenbauer moments in Ref. [7] and further used, e.g.,
in Refs. [8,9]. This method is also limited to the lowest
moment a2. Extension to higher moments is possible if a
nonlocal vacuum condensate is introduced and modeled
[10,11]. A different approach employs the pion form
factors obtained from the QCD light-cone sum rules
(LCSRs). Initiated in Refs. [12,13], this technique enables
to calculate both the hard-scattering and soft-overlap
contributions to the pion electromagnetic (e.m.) form factor
[14,15] or to the photon-pion transition form factor [16,17]
at large spacelike momentum transfers, practically at
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jq2j ≳ 1 GeV2. The calculation is based on the light-cone
expansion of a vacuum-to-pion correlation function in
terms of the pion DAs of growing twist. For both form
factors, the dominant part of the sum rule contains the
twist-2 DA convoluted with a calculable function. This
opens up a possibility to estimate or at least to constrain the
Gegenbauer moments, comparing the LCSR result for a
form factor with its measurement in the spacelike region.
For the photon-pion transition form factor this analysis was
done employing several available measurements of the
γ�γ → π0 process (see e.g., Refs. [17,18]).
In this paper, we concentrate on the pion e.m. form factor

denoted as Fπðq2Þ. It is possible to estimate the Gegenbauer
moments, assuming a certain ansatz for the pion DA and
fitting the resulting LCSR for the spacelike form factor
Fπðq2 < 0Þ to its measured values. The most accurate
measurements to date have been performed at Jefferson
Lab [19] extracting the form factor from the cross section
of the pion electroproduction on a nucleon target. An earlier
estimate of a2 and a4 fitting the LCSR to these data was
obtained in Ref. [20] (see also Refs. [21,22]). However,
the Jefferson Lab measurements are limited to relatively
small momentum transfers, jq2j≲ 2.5 GeV2 and depend
on the model description of the intermediate pion coupled
to the nucleon.1

The pion e.m. form factor FπðsÞ in the timelike region
q2 ¼ s > 4m2

π is directly accessible measuring the eþe− →
πþπ− cross section at a given c.m. energy

ffiffiffi
s

p
of the

eþe− collision. In addition to the ρ-resonance domain,
s≲ 1.0 GeV2, which was scanned in great detail in several
experiments, quite accurate data [24] were obtained at
larger energies, up to s ≃ 9.0 GeV2, by the BABAR
collaboration, with the help of the initial-state radiation
technique. One also has to mention the data of Belle
collaboration [25] on the related (via isospin symmetry)
pion weak vector form factor in the τ → ππντ decay.
The purpose of this paper is to demonstrate that the

timelike form factor FπðsÞ can provide an additional
information about the pion DAs. This is achieved by
combining the dispersion relation for the timelike form
factor with the LCSR for the spacelike form factor. Note
however that the standard dispersion relation demands the
knowledge of the form factor imaginary part which is not
directly measured and depends on the parametrization
of FπðsÞ. To avoid the uncertainty induced by the restora-
tion of the imaginary part from the measured modulus of
the timelike form factor, we suggest to use a modified
dispersion relation in which the spacelike form factor is
equal to the integral over jFπðsÞj2. One crucial condition for
the validity of this relation is the (phenomenologically

justified) assumption that the form factor Fπðq2Þ does not
possess zeros in the complex plane of the variable q2.
In what follows, in Sec. II we derive and discuss in detail

the modified dispersion relation used in our analysis. In
Sec. III we present the necessary ingredients of the LCSR
for the spacelike pion e.m. form factor. Section IV contains
the description of the timelike form factor data. In Sec. V
the details of the form factor fit to the dispersion integral
and the resulting estimates of Gegenbauer moments are
presented, and Sec. VI contains our conclusions.

II. DISPERSION RELATIONS FOR THE
PION FORM FACTOR

We use the standard definition of the pion e.m. form
factor in the spacelike region:

hπþðp2Þjjemμ jπþðp1Þi ¼ ðp1 þ p2ÞμFπðq2Þ; ð1Þ

where jemμ ¼ ð1=2Þðūγμu − d̄γμdÞ is the isovector compo-
nent of the quark e.m. current, and q ¼ p2 − p1 is the
momentum transfer. The form factor obeys the normali-
zation condition Fπð0Þ ¼ 1, reflecting the unit electric
charge of πþ. The standard dispersion relation,

Fπðq2Þ ¼
1

π

Z
∞

s0

ds
ImFπðsÞ
s − q2 − iϵ

; ð2Þ

connects the spacelike pion form factor Fπðq2Þ at q2 < 0
with the imaginary part of the timelike form factor FπðsÞ
integrated over s above the two-pion threshold s0 ≡ 4m2

π .
Note that subtractions are not necessary in Eq. (2) due to
the power asymptotics of the pion form factor predicted in
QCD [26–29]:

Fπðq2Þ ∼
1

q2
at jq2j → ∞: ð3Þ

In order to obtain the spacelike form factor Fπðq2 < 0Þ
from the dispersion relation (2), one has to extract the
imaginary part of the timelike form factor from its modulus
squared jFπðsÞj2 measured in eþe− → πþπ−. This extrac-
tion demands a realistic parametrization of FπðsÞ, which
satisfies the hadronic unitarity relation and reflects the
presence of the ρ-resonance and its radial excitations in
the P-wave channel of the pion-pion scattering. Examples
of elaborated parametrizations can be found, e.g., in
Refs. [30–33]. Expressing FπðsÞ in terms of certain
parameters, one has to fit them, comparing the resulting
jFπðsÞj2 to its measured values. Reconstructing ImFπðsÞ in
this indirect way, one eventually introduces additional
uncertainties.
In this work, we suggest to use an alternative dispersion

relation directly expressing the spacelike form factor via the
integral over the modulus of the timelike form factor. In the

1Note that a direct measurement of the pion spacelike e.m.
form factor via the electron-pion scattering exists [23], but only at
very small momentum transfers, that is, in the region where
LCSR is not applicable.
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literature, this relation is called the modulus representation
and goes back to Ref. [34]. To derive it, we introduce the
following auxiliary function:

gπðq2Þ≡ lnFπðq2Þ
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − q2

p : ð4Þ

This function has no singularities in the complex plane of
the variable q2, apart from the region q2 ¼ s > s0 on the
real axis. This statement is only valid under the assumption
that the form factor Fπðq2Þ is free from zeros in the
complex q2 plane,2 so that the logarithm in Eq. (4) does
not diverge at any q2. Note also that gπð0Þ is finite, as
follows from the normalization of the pion form factor at
q2 ¼ 0. Furthermore, since Fπðq2Þ has power asymptotics,
the numerator in Eq. (4) has a logarithmic behavior.
Therefore,

gπðq2Þ ∼
1

ðq2Þα at jq2j → ∞; ð5Þ

where α > 1. This condition enables a dispersion relation
for the function gπðq2Þ which is derived in the same way as
for the form factor. We start from the Cauchy theorem:

gπðq2Þ ¼
1

2πi

Z
C
dz

gπðzÞ
z − q2

; ð6Þ

where the integration contour C circumvents the singu-
larities on the real axis at s > s0. This contour consists of
the two straight lines connected by a large circle with the
radius R and by a semicircle with an infinitesimal radius
ϵ → 0, centered at s ¼ s0. After that, we discard the
integral over the circle at R → ∞, making use of the
asymptotics (5). The integral over the semicircle vanishes
at ϵ → 0. We also use the fact that the function gπðsÞ is
real valued at s < s0 on the real axis and apply the
Schwartz reflection principle:

gπðsþ iϵÞ − gπðs − iϵÞ ¼ 2iIm gπðsÞ; ϵ → 0:

Finally, we are left with the relation

gπðq2Þ ¼
1

π

Z
∞

s0

ds
Im gπðsÞ
s − q2 − iϵ

: ð7Þ

On the real axis, at s > s0, the singularities of the function
gπðsÞ are determined by an overlap of the “dynamical”
poles and branch points contributing to ImFπðsÞ with the

imaginary part of the square root function
ffiffiffiffiffiffiffiffiffiffiffiffi
s0 − s

p
which

has a branch point at s ¼ s0. Note that, due to our
standard choice of iϵ in the dispersion relation,3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − ðsþ iϵÞ

p
jϵ→0 ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p
; s > s0: ð8Þ

Representing

FπðsÞ ¼ jFπðsÞjeiδπðsÞ

and using Eq. (8), we obtain, at s > s0,

Im gπðsÞ ¼ Im

�
lnðjFπðsÞjeiδπðsÞÞ
−is ffiffiffiffiffiffiffiffiffiffiffiffi

s − s0
p

�

¼ 1

s
ffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p Im

�
ln jFπðsÞj þ iδπðsÞ

−i

�

¼ ln jFπðsÞj
s

ffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p : ð9Þ

Finally, substituting this function in Eq. (7), we arrive at

lnFπðq2Þ
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − q2

p ¼ 1

2π

Z
∞

s0

ds ln jFπðsÞj2
s

ffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p ðs − q2Þ ; q2 < s0;

ð10Þ

or, equivalently,

Fπðq2Þ¼ exp

�
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0−q2

p
2π

Z
∞

s0

dsln jFπðsÞj2
s

ffiffiffiffiffiffiffiffiffiffiffi
s−s0

p ðs−q2Þ
�
; q2<s0:

ð11Þ

The above equation represents the modified dispersion
relation we are aiming at. This formula was suggested and
used in Ref. [34]; other applications and modifications
can be found, e.g., in Refs. [35–37]. Note that Eq. (11)
automatically ensures that Fπð0Þ ¼ 1. As demonstrated
in Ref. [34], if, hypothetically, the form factor possesses
zeros in the complex q2 plane, then, instead of the
relation (11), Fπðq2 < 0Þ obeys narrow upper and lower
bounds that are again determined by the modulus of the
timelike form factor. This case deserves a separate
analysis which remains beyond the scope of this paper.

III. LCSR FOR THE SPACELIKE
PION FORM FACTOR

The LCSR for the pion e.m. form factor is derived from
the correlation function:

2The arguments in favor of this conjecture can be found in
Ref. [35], a more recent discussion of form factor zeros including
relevant references can be found in Ref. [36].

3As one can see below, the other branch with the þi
multiplying the square root would lead to an unphysical diver-
gence of the pion form factor, limq2→−∞ Fπðq2Þ ¼ ∞.
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F ρμðp;qÞ¼ i
Z

d4xeiqxh0jTfd̄ð0Þγργ5uð0Þjemμ ðxÞgjπþðpÞi

¼ ipρpμF ððp−qÞ2;Q2Þþ…; ð12Þ

where only the relevant Lorentz structure is shown, and the
others are indicated by the ellipsis. The invariant amplitude
depends on the two kinematical variables ðp − qÞ2 and
Q2 ¼ −q2 and obeys a hadronic dispersion relation in the
variable ðp − qÞ2 at fixed Q2:

F ððp−qÞ2;Q2Þ ¼ 2fπFπðQ2Þ
m2

π − ðp−qÞ2þ
Z

∞

ð3mπÞ2
ds

ρhðs;Q2Þ
s− ðp−qÞ2 ;

ð13Þ

where the lowest pole corresponds to the intermediate
one-pion state interpolated by the axial-vector current. The
residue of the pion pole contains a product of the pion
decay constant and the form factor we are interested in. The
integral over heavier states with the quantum numbers of
the pion or a1 meson will be approximated using the quark-
hadron duality. Note that the lightest continuum state in
this channel consists of three pions.
In the correlation function (12), at large Q2 and

jðp − qÞ2j, the product of the axial-vector and e.m. currents
is expanded near the light-cone x2 ≃ 0 in a series of
nonlocal operators. Their pion-to-vacuum matrix elements
generate contributions of the pion DAs with growing twists
t ¼ 2, 4, 6.4

The leading twist-2 term of the light-cone operator-
product expansion (OPE) contains the pion twist-2 DA
which is defined in a standard way:

h0jd̄ð0Þγμγ5uðxÞjπþðpÞi ¼ ipμfπ

Z
1

0

du e−iupxφπðu; μÞ;

ð14Þ

where μ is the scale determined by the characteristic light-
cone separation μ ∼ 1=

ffiffiffiffiffiffiffi
jx2j

p
. The standard expansion of

the pion DA in Gegenbauer polynomials will be used in the
following form:

φπðu;μÞ ¼ 6uū

�
1þ

X
n¼2;4;…

anðμ0ÞLnðμ;μ0ÞCð3=2Þ
n ðu− ūÞ

�
;

ð15Þ

where ū ¼ 1 − u. The multiplicative renormalization from
the default scale μ0 to the variable scale μ is taken into
account at LO by the logarithmic factor

Lnðμ; μ0Þ ¼
�
αsðμÞ
αsðμ0Þ

�
γð0Þn =β0

; ð16Þ

with the anomalous dimensions given by

γð0Þn ¼ 4CF

�
ψðnþ 2Þ þ γE −

3

4
−

1

2ðnþ 1Þðnþ 2Þ
�
;

ð17Þ

where ψðnÞ is the digamma function and β0 ¼ 11 − 2=3nf
is the QCD beta-function. Since at μ → ∞ all
Lnðμ; μ0Þ → 0, the first term in Eq. (14) determines the
asymptotic shape of the DA.
The correlation function (12) obtained in Ref. [15] (see

also Ref. [21]) includes the twist-2 part consisting of the
leading order (LO) term and the next-to-leading order
(NLO), OðαsÞ radiative corrections. In addition, the sub-
leading twist-4 term at LO and the twist-6 term in the
factorizable approximation are taken into account. Leaving
aside many details, we present the LO twist-2 part of the
invariant amplitude in Eq. (12):

F ðtw2;LOÞððp − qÞ2; Q2Þ

¼ 2fπ

Z
1

0

du
uφπðuÞ

ūQ2 − uðp − qÞ2

¼
Z

∞

0

ds
s − ðp − qÞ2

�
2fπ

Q2

ðQ2 þ sÞ2 φπðuðsÞÞ
�
: ð18Þ

The second equation in the above, obtained by trans-
forming the integration variable: u ¼ Q2=ðsþQ2Þ, has a
form of dispersion relation allowing us to interpret the
expression in the square brackets as the OPE spectral
density. According to the quark-hadron duality prescrip-
tion, the integral over ρhðs;Q2Þ in Eq. (13) is replaced by
the one in the second line of Eq. (18), with the lower limit
equal to the effective duality threshold sπ0. Equating the
two different representations of the correlation function,
Eqs. (13) and (18), subtracting the dual parts from both
sides, performing the Borel transformation and transform-
ing back to the variable u, we reproduce the LCSR for the
form factor in the LO, twist-2 approximation:

Fðtw2;LOÞ
π ðQ2Þ ¼

Z
1

uπ
0

duφπðu; μÞ exp
�
−
ūQ2

uM2

�
; ð19Þ

where uπ0 ¼ Q2=ðsπ0 þQ2Þ. The complete LCSR for the
pion e.m. form factor obtained in Refs. [15,21] can be
presented in a compact form:

FðLCSRÞ
π ðQ2Þ ¼ Fðtw2;LOÞ

π ðQ2Þ þ Fðtw2;NLOÞ
π ðQ2Þ

þ Fðtw4;LOÞ
π ðQ2Þ þ Fðtw6;factÞ

π ðQ2Þ; ð20Þ
4Note that in the chiral symmetry limit adopted here the

contributions of odd twists t ¼ 3, 5 vanish.
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where the second after Eq. (19) important contribution is
the NLO twist-2 term. It has a factorized form with respect
to the pion DA:

Fðtw2;NLOÞ
π ðQ2Þ ¼ αsCF

4π

�Z
1

uπ
0

duφπðu; μÞF softðu; μ;M2; sπ0Þ

þ
Z

uπ
0

0

duφπðu; μÞF hardðu; μ;M2; sπ0Þ
�
;

ð21Þ

where the analytical expressions for the functions F soft and
F hard are given in Ref. [15]. Note that, the first (second)
term in the above equation can be interpreted as the
radiative correction to the soft-overlap part (19) (as the
hard-scattering part) of the form factor.
We substitute the expansion (15) in Eqs. (19) and (21)

and represent the LCSR (20) in a form containing a linear
combination of Gegenbauer moments normalized at the
default scale μ0:

FðLCSRÞ
π ðQ2Þ ¼ Fðtw2;asÞ

π ðQ2Þ þ
X

n¼2;4;::

anðμ0ÞfnðQ2; μ; μ0Þ

þ Fðtw4;LOÞ
π ðQ2Þ þ Fðtw6;factÞ

π ðQ2Þ; ð22Þ

where the coefficient functions

fnðQ2; μ; μ0Þ

¼ 6Lnðμ; μ0Þ
�Z

1

uπ
0

duuūCð3=2Þ
n ðu − ūÞe−ūQ2=ðuM2Þ

þ αsCF

4π

�Z
1

uπ
0

duuūCð3=2Þ
n ðu − ūÞF softðu; μ;M2; sπ0Þ

þ
Z

uπ
0

0

duuūCð3=2Þ
n ðu − ūÞF hardðu; μ;M2; sπ0Þ

��

ð23Þ

include the NLO corrections. The dominant part of the
LCSR (22), describing the twist-2 contribution with the
asymptotic DA, is reduced [15] to a compact expression

Fðtw2;asÞ
π ðQ2Þ

¼6

Z
sπ
0

0

dse−s=M
2 sQ4

ðsþQ2Þ4

×

�
1þαsCF

4π

�
π2

3
−6− ln2

Q2

s
þ s
Q2

þQ2

s

��
; ð24Þ

which is, as expected, independent of the factorization
scale μ. Importantly, apart from the soft-overlap contribu-
tion decreasing as ∼1=Q4, the expression in Eq. (24) also
reproduces the asymptotic regime:

lim
Q2→∞

Fðtw2;asÞ
π ðQ2Þ ¼ 8παsf2π

Q2
; ð25Þ

which coincides with the perturbative QCD factorization
formula [26–29] for the asymptotic pion DAs. As shown
in Ref. [15], Eq. (25) follows from the Q2 → ∞ limit of
Eq. (24), if we use the conventional QCD sum rule [6] for
the square of the pion decay constant,

f2π ¼
1

4π2

Z
sπ
0

0

ds e−s=M
2 þ…;

where the radiative corrections and condensate terms
contain an extra αs and are absent in our approximation.
Importantly, at moderate Q2 the soft-overlap contribution
dominates in the form factor (22).
For the twist-4 contribution to the LCSR (22) we use

the updated result from Ref. [21] obtained assuming
the asymptotic form of all twist-4 DAs entering this
contribution:

Fðtw4;LOÞ
π ðQ2Þ ¼ 40

3
δ2πðμÞ

Z
sπ
0

0

dse−s=M
2 Q8

ðQ2 þ sÞ6

×

�
1 −

9s
Q2

þ 9s2

Q4
−

s3

Q6

�
; ð26Þ

where δ2πðμÞ denotes the normalization parameter of the
twist-4 pion DAs describing the vacuum-to-pion matrix
element of the quark-antiquark-gluon operator

h0jd̄G̃νμγ
νujπþðpÞi ¼ −iδ2πfπpμ: ð27Þ

We also have checked that adding the nonasymptotic
terms [9] to the twist-4 DAs has a negligible numerical
impact on the value given by Eq. (26).
Finally, for the twist-6 term contribution to the form

factor we use the factorization approximation, reduced [15]
to the expression depending on the quark condensate
density:

Fðtw6;factÞ
π ðQ2Þ ¼ 4παsCF

3f2πQ4
hq̄qi2: ð28Þ

It is convenient to represent the complete LCSR (22) for
the spacelike form factor in a more compact form:

FðLCSRÞ
π ðQ2Þ ¼ FðasÞ

π ðQ2Þ þ
X

n¼2;4;…

anðμ0ÞfnðQ2; μ; μ0Þ;

ð29Þ

where we use the notation

FðasÞ
π ðQ2Þ ¼ Fðtw2;asÞ

π ðQ2Þ þ Fðtw4;LOÞ
π ðQ2Þ þ Fðtw6;factÞ

π ðQ2Þ
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and separate the part containing the asymptotic DA from
the contribution generated by nonasymptotic terms in the
Gegenbauer expansion. Below, this expression will be used
in the l.h.s of the dispersion representation (11).
Equation (29) is valid in the spacelike region, practically
at Q2 ¼ −q2 ≳ 1.0 GeV2. We also constrain the momen-
tum transfer from above taking Q2 ≲ 10 GeV2. The rea-
sons are twofold. Firstly, as analyzed in Ref. [15], the
missing higher-order (NNLO) perturbative corrections as
well as the double logarithmic ∼ ln2Q2 terms reminiscent
of the Sudakov logarithms [such a term is already present in
Eq. (24)] may become numerically important in LCSR at
very large Q2. Secondly, as we checked numerically, at Q2

above the adopted upper limit the dispersion integral in
Eq. (11) becomes more sensitive to the timelike form factor
above the region where it is measured (see the next section).
Another important limitation concerns the Borel param-

eter and is common for all QCD sum rules. The truncation
of OPE on one hand and the validity of the duality
approximation on the other hand demand that this param-
eter lies within a certain interval, typically in the ballpark
ofM2 ¼ 1.0 GeV2. Varying this and other input parameters
entering Eq. (29) we estimate the uncertainty of the
spacelike form factor obtained from LCSR.

IV. PION FORM FACTOR IN
THE TIMELIKE REGION

Our remaining task is to specify the modulus of the
timelike pion form factor entering r.h.s. of the relation (11).
To this end we use the rich data set on the eþe− → πþπ−ðγÞ
cross section measured in the range

0.305 GeV <
ffiffiffi
s

p
< 2.95 GeV

by the BABAR collaboration [24]. We denote by smax ≃
8.70 GeV2 the upper boundary of this range and split the
integration region in Eq. (11) into two intervals so that:

jFπðsÞj ¼ Θðsmax − sÞjFðdataÞ
π ðsÞj þ Θðs − smaxÞjFðtailÞ

π ðsÞj:
ð30Þ

The pion form factor extracted from the BABAR data in
Ref. [24] was fitted to a superposition of four ρ resonances,

starting from ρð770Þ, including the three subsequent radial
excitations and taking into account the ρ − ω mixing:

FðdataÞ
π ðsÞ ¼ 1

1þ cρ0 þ cρ00 þ cρ000

×

�
BWGS

ρ ðs;mρ;ΓρÞ
1þ cωBWKS

ω ðs;mω;ΓωÞ
1þ cω

þ cρ0BWGS
ρ0 ðs;mρ0 ;Γρ0 Þ þ cρ00BWGS

ρ00 ðs;mρ00 ;Γρ00 Þ

þ cρ000BWGS
ρ000 ðs;mρ000 ;Γρ000 Þ

�
: ð31Þ

In this expression, all ρ resonances (the ω resonance) are
described by the Gounaris-Sakurai (GS) representation [38]
(the Kühn-Santamaria (KS) representation [39]) of the
Breit-Wigner (BW) function. In all ρ-resonance terms in
Eq. (31), the dependence of the width on the energy is taken
into account and, by construction, the normalization con-
dition Fπð0Þ ¼ 1 is valid. For convenience, in the
Appendix we present the definitions of the BW function
used in Eq. (31). The numerical values of the fit parameters
of resonances are taken from Ref. [24] and shown in
Table I. Note that the fit returns complex valued coefficients
multiplying the BW functions:

cR ¼ jcRjeiϕR ; R ¼ ω; ρ0; ρ00; ρ000;

implicitly reflecting a certain mixing between resonance
contributions. The timelike pion form factor measured by
the BABAR collaboration is shown in Fig. 1.
Since we are only interested in the integral over jFπðsÞj,

the expression in Eq. (31) is merely treated as a fit function
for the data points below smax. Moreover, this formula is not
sufficiently accurate to describe the timelike form factor at
s > smax for the following reasons. Firstly, the hadronic
states above the first four ρ resonances are not taken into
account, and, secondly, as we have checked numerically,
the form factor described by Eq. (31) deviates from the
asymptotic behavior FπðsÞ ∼ 1=s at very large s. Hence,
being continued to large negative s ¼ q2 → −∞ it does not
satisfy the asymptotic QCD regime (25), which is also
obeyed by the LCSR. Therefore, for the high-energy part of
the integrand in Eq. (11) denoted as FðtailÞðsÞ in Eq. (30),
we prefer to use a theory-motivated representation of the

TABLE I. Parameters of the resonances R ¼ ρ;ω; ρ0; ρ00; ρ000 in Eq. (31), obtained in Ref. [24] from the fit to the
data on the timelike pion form factor. The errors are added in quadrature.

R mR (MeV) ΓR (MeV) jcRj ϕR (rad)

ρ 775.02� 0.35 149.59� 0.67 1.0 0
ω 781.91� 0.24 8.13� 0.45 ð1.644� 0.061Þ × 10−3 −0.011� 0.037
ρ0 1493� 15 427� 31 0.158� 0.018 3.76� 0.10
ρ00 1861� 17 316� 26 0.068� 0.009 1.39� 0.20
ρ000 2254� 22 109� 76 0.0051þ0.0034

−0.0019 0.70� 0.51
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pion form factor which supersedes the four-resonance
formula (31).
As such, we adopt the form factor suggested in Ref. [40]

(see also Ref. [41]) and inspired by the dual-resonance
models and Nc ¼ ∞ limit of QCD. The main assumption is
to replace the spectrum of hadronic states contributing to
the pion form factor by an infinite set of equidistant ρ
resonances:

FðNc¼∞Þ
π ðsÞ ¼

X∞
n¼0

cnBWnðsÞ: ð32Þ

Each resonance contribution enters the sum in a simple
Breit-Wigner form:

BWnðsÞ ¼
m2

n

m2
n − s − imnΓn

; ð33Þ

with a weighting coefficient:

cn ¼
ð−1ÞnΓðβ − 1=2Þ

α0m2
n

ffiffiffi
π

p
Γðnþ 1ÞΓðβ − 1 − nÞ : ð34Þ

In the above, the parameter α0 ¼ 1=2m2
ρ is related to the

ρ-meson Regge trajectory, and the masses of equidistant
resonances are

m2
n ¼ m2

ρð1þ 2nÞ:

In addition, in this model the total widths are assumed to
grow linearly with the resonance mass:

Γn ¼ γmn; ð35Þ

and the parameter γ ¼ 0.193 is adjusted to the total width
of ρð770Þ. Assuming that

FðtailÞ
π ðsÞ ¼ FðNc¼∞Þ

π ðsÞ; s ≥ smax; ð36Þ

we fix the remaining parameter β in Eq. (34) by imposing
the matching condition:

jFðdataÞ
π ðsmaxÞj ¼ jFðtailÞ

π ðsmaxÞj; ð37Þ

from which we have fitted

β ¼ 2.09� 0.13: ð38Þ

In the numerical analysis, we use Eq. (32) retaining a
finite sum with 100 resonance terms; we checked that
increasing this number does not produce visible changes in
the integral (11).
The advantage of the model (32) is that it effectively

includes all hadronic states contributing to the form factor.
In particular, the resonance widths partially account for
the continuum of intermediate hadronic states coupled to
the resonances (see Ref. [41] for details). Moreover, if
one introduces the correct threshold behavior, so that at all
Γn ¼ 0 at s < s0 ¼ 4m2

π , then Eq. (32) with vanishing
widths is reduced to the Euler Beta function. It correctly

reproduces the normalization FðNc¼∞Þ
π ð0Þ ¼ 1 and reveals

the asymptotic behavior

lim
s→−∞

FðNc¼∞Þ
π ðsÞ ∼ 1=sβ−1;

which, having in mind the estimate (38), is close to the
QCD asymptotics.
One has to admit that the model (32) does not provide a

sufficiently accurate description of the timelike form factor
in the region below smax where the overlapping pattern of
the lowest ρ resonances deserves a more detailed descrip-
tion, and a small but visible admixture of ω has to be taken
into account (see Table I [24]). In Ref. [41] the Nc ¼ ∞
model was modified by replacing the contributions of the
first few resonances with GS or KS resonance formulas.
However, we do not need such an improvement here

because the form factor FðNc¼∞Þ
π ðsÞ is used only in the

region of large s. In Fig. 2 the modulus of the timelike pion
form factor resulting from Eq. (30) is plotted where
Eqs. (31) and (36) are used.
Our final comment concerns the conventional dispersion

relation (2), which we also have probed, numerically
calculating the imaginary part of the timelike form factor
from Eq. (30). The resulting form factor at q2 < 0 is very
close to the one obtained with the modulus representation.
The difference varies between ≈1% for q2 ¼ −1.0 GeV2

and ≈4% at q2 ¼ −10.0 GeV2. This comparison may
indicate that the zeros of the pion e.m. form factor are
either absent or their influence is beyond the accuracy of
our analysis.

FIG. 1. The pion timelike form factor squared measured by the
BABAR collaboration [24]. The dots with error bars are the data
points and the orange curve is the fit of the data to the resonance
model (31).
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V. ESTIMATES OF THE GEGENBAUER
MOMENTS

Turning to the numerical analysis, our main task is to fit
theGegenbauermoments from the relation (11) rewritten as:

FðLCSRÞ
π ðQ2Þ¼ exp

�
−Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0þQ2

p
2π

Z
∞

s0

dsln jFπðsÞj2
s

ffiffiffiffiffiffiffiffiffiffiffi
s−s0

p ðsþQ2Þ
�
;

ð39Þ

where the l.h.s is given byEq. (29) and the integrand on r.h.s.
by Eq. (30). To specify the parameters of the LCSR,
following Ref. [15], we adopt for DAs a variable normali-
zation scale:

μ2 ¼ ð1 − uÞQ2 þ uM2: ð40Þ

This choice takes into account that a typical factorization
scale in the correlation function is determined by the
interplay of two external variables Q2 and jðp − qÞ2j, the
latter being effectively replaced by the Borel parameter
squared. In Ref. [15], the two fixed scales μ2 ¼ Q2 and
μ2 ¼ sπ0 were also used in LCSR, as extreme alternatives to
the default choice (40). The scale dependence in the region
Q2 ∼ 1 GeV2 was found rather mild (see Fig. 4 there). Here
we only use the scale (40), assuming that it reflects the
average virtuality in the correlation function. A more

detailed analysis of scale dependence will become possible
if in the future the NNLO effects are taken into account. All
other input parameters in LCSR are collected in Table II.
Here we follow the choice in Ref. [21] as far as the

effective threshold and the Borel parameter interval are
concerned. The two nonperturbative parameters, δ2π and
hq̄qi, enter, respectively, the twist-4 and the factorizable
twist-6 terms in Eq. (20). The value of δ2π determining
the vacuum-to-pion matrix element (27), is estimated
from a dedicated QCD sum rule [9,43] (see also
Ref. [21]). It agrees with the first lattice QCD determina-
tion in Ref. [4]. The quark condensate density is ob-
tained from the Gell-Mann-Oakes-Renner relation:
hq̄qi ¼ −f2πm2

π=½2ðmu þmdÞ� taking from Ref. [42]
ðmu þmdÞð2 GeVÞ ¼ 6.9þ1.1

−0.3 MeV. For the quark-gluon
coupling we assume the same normalization scale (40)
and use the average from Ref. [42]: αsðMZÞ ¼
0.1181� 0.0011. For the running of αs and quark masses
we employ the RunDec code from Ref. [44] so that
e.g., αsð1 GeVÞ ¼ 0.486� 0.024.
To illustrate the interplay of twist-2 contributions to the

LCSR (29), in Fig. 3 we plot the form factor FðasÞ
π ðQ2Þ

obtained with the asymptotic DA including the twist-2
NLO as well as the higher-twist contributions. Separately

FIG. 2. The modulus of the pion timelike form factor as defined in Eq. (30).

TABLE II. Numerical values of the parameters used in the
LCSR (29) for the pion spacelike form factor.

Parameter Value Reference

mπ 139.57 MeV [42]
fπ 130.4 MeV [42]

sπ0 ð0.7� 0.1Þ GeV2 [21]

M2 ð1.2� 0.4Þ GeV2 [21]

δ2πð1 GeVÞ ð0.18� 0.06Þ GeV2 [9]

hq̄qið1 GeVÞ −ð269þ15
−4 Þ3 MeV3 [42] FIG. 3. Separate contributions to Eq. (29) calculated at central

values of the input in Table II and at the scale (40).
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plotted are the coefficient functions fnðQ2; μ; μ0Þ at
n ¼ 2, 4, 6, 8. We notice that each function fn vanishes
at n values of Q2 ≥ 0, due to the zeros of Gegenbauer
polynomials.
Having at our disposal the numerical results for both

sides of Eq. (39) at multiple values of Q2 in the adopted
region of validity,

1.0 GeV2 ≲Q2 ≲ 10 GeV2; ð41Þ

one may try to form and solve a system of linear equations
for the moments an. However, this task it is not realistic,
having in mind a limited accuracy of these equations.
Moreover, the LCSR predictions taken at different Q2 are
inevitably correlated.
To proceed, we assume a converging conformal expan-

sion of the DAs, so that

anþ2ðμ0Þ < anðμ0Þ; n ≥ 0: ð42Þ

Under this assumption, it is conceivable to adopt a
certain model for the pion twist-2 DA with only a2 ≠ 0
or only a2, a4 ≠ 0, etc. After that, using Eq. (39), it is
possible to fit the Gegenbauer moments within the
adopted model. Moreover, the zeros of fn provide values
of Q2 at which the contribution of the moment an is
absent. E.g., as seen from Fig. 3, the coefficient function
f4 at Q2 ≃ 2.5 GeV2 vanishes, enabling one to extract a2
in a model with the two nonvanishing Gegenbauer
moments a2, a4 ≠ 0. Furthermore, since the Q2 depend-
ence in Eq. (39) is given in an analytical form, one can
differentiate over Q2 both parts of this relation yielding
additional constraints.
In this paper, we limit ourselves with an exploratory

numerical study of Eq. (39) and only apply a simple fit
procedure, assuming that the pion twist-2 DA consists
of a certain combination of few first Gegenbauer
polynomials.
Before presenting the fit results, let us make the following

observation. In Fig. 4, the l.h.s of Eq. (39) calculated
assuming the asymptotic twist-2 DA (i.e., at all an ¼ 0),
is compared with the r.h.s. obtained from Eq. (30). An
apparent discrepancy clearly indicates that we have to
include nonasymptotic terms in the pion twist-2 DA. To
this end, we consider four different models of this DA,
retaining in the expansion (15) from one to four non-
vanishing Gegenbauer moments. For brevity we denote
these models as

fa2g; fa2; a4g; fa2; a4; a6g; fa2; a4; a6; a8g:
ð43Þ

For each model we introduce the χ2-distribution function:

χ2 ¼
XNp

i¼1

1

σ2i

� Xnmax
n¼2;4;::

anðμ0ÞfnðQ2
i ; μ0Þ

þFðasÞ
π ðQ2

i Þ − FðdispÞ
π ðQ2

i Þ
�
2

; ð44Þ

quantifying the difference between the l.h.s. of Eq. (39)
[decomposed according to Eq. (29)] and the r.h.s of

the same equation denoted as FðdispÞ
π ðQ2

i Þ. In the sum in
Eq. (44), we include Np ¼ 7 “data” points at Q2 ¼
f1.0; 1.5; 2.0; 3.0; 5.0; 7.0; 9.0g GeV2 effectively covering
the region (41). The weighting coefficients σ2i are calculated
according to:

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔFðLCSRÞ

π ðQ2
i ; anðμ0Þ ¼ 0Þ�2 þ ½ΔFðdispÞ

π ðQ2
i Þ�2

q
;

ð45Þ

where the uncertainty ΔFðLCSRÞ
π ðQ2

i ; anðμ0Þ ¼ 0Þ attributed
to LCSR at the point Q2

i is calculated at vanishing values of
the Gegenbauer moments anðμ0Þ, varying all input param-
eters within their intervals. The uncertainties due to the
coefficient functions fn are neglected. We have checked that
their addition to the weighting coefficients produces numeri-
cally insignificant changes in the fit results. The uncertainty

ΔFðdispÞ
π ðQ2

i Þ of the dispersion relation is estimated, varying
the fit parameters quoted in Table I within their errors
(assumed uncorrelated). We also add to this experiment-
induced uncertainty the one due to model-dependence of

the high-energy tail in FðdispÞ
π ðQ2

i Þ. The latter uncertainty
is estimated, artificially continuing the BABAR fit formula

for FðdataÞ
π ðsÞ into the region s > smax and calculating the

variation of the dispersion integral caused by this modifi-
cation. We have found that this variation is limited by �5%.

FIG. 4. The pion spacelike form factor calculated from the
LCSR with the asymptotic twist-2 pion DA (green band) and
from the dispersion relation (11) (blue band) using the timelike
form factor specified in Eq. (30).
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Minimizing the χ2-distribution function (44), we obtain
the estimates of the Gegenbauer moments anðμ0Þ for all
models listed in Eq. (43). Our main numerical results are
presented in Table III and the corresponding plots are
shown in Fig. 5.
We emphasize that the fit procedure employed here is an

exploratory one, with the aim to demonstrate that the new
method of obtaining the pion spacelike form factor works
and being combined with LCSR provides constraints on the
Gegenbauer moments. In particular, we do not take into
account the correlations between “experimental” points in
Eq. (44), stemming from the correlations within the data on
the timelike form factor. The number of degrees of freedom
(ndf) used in the fit is simply equal to the difference of Np

and the number of Gegenbauer moments involved in the

model of the pion DA. IncreasingNp does not influence the
central values of the fitted Gegenbauer moments but leads
to an artificial decrease of χ2min=ndf, due to the growth
of ndf. The selected Np is optimal in this respect and, in
addition, covers the chosen interval ofQ2. Further improve-
ment of the statistical treatment of the relation (39) is
possible provided more detailed data on the timelike form
factor become available.
Several comments regarding the results presented in

Table III are in order:
(i) The minimal model fa2g with a single Gegenbauer

moment is only marginally consistent with Eq. (39).
As can be seen from the right bottom plot in Fig. 5,
this model does not provide an accurate matching
between the LCSR and dispersion relation at all Q2.

FIG. 5. The pion spacelike form factor calculated from the dispersion relation (39) (“data” points with error bars) and from the LCSR
with the Gegenbauer moments obtained from the fit (green bands) for the models fa2; a4; a6; a8g, fa2; a4; a6g, fa2; a4g and fa2g,
shown, respectively, on the top left, top right, bottom left and bottom right panel.

TABLE III. The Gegenbauer moments fitted from Eq. (39) for the models (43) of the pion twist-2 DA. The
correlations between the moments are found at the level of ≈ − 15%.

Model a2ð1 GeVÞ a4ð1 GeVÞ a6ð1 GeVÞ a8ð1 GeVÞ χ2min=ndf

fa2g 0.302� 0.046 4.08
fa2; a4g 0.279� 0.047 0.189� 0.060 0.75
fa2; a4; a6g 0.270� 0.047 0.179� 0.060 0.123� 0.086 0.073
fa2; a4; a6; a8g 0.269� 0.047 0.185� 0.062 0.141� 0.096 0.049� 0.116 0.013
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(ii) The simplest nonminimal model fa2; a4g yields a
satisfactory fit which becomes even better for the
models fa2; a4; a6g and fa2; a4; a6; a8g.

(iii) The fitted value of a8 in the model fa2; a4; a6; a8g is
consistent with zero within uncertainties. In addi-
tion, we have probed models containing moments
with n > 8 and found that this tendency persists: the
fit returns small coefficients an≥8 with large errors,
retaining practically similar ranges of the first three
Gegenbauer moments. The main reason is a strong
and sign alternating oscillation of the coefficient
functions fn at large n.

(iv) Generally, the fitted pattern of Gegenbauer moments
is in accordance with a convergent conformal ex-
pansion (42).

(v) As can be seen from Table III, for all three non-
minimal models that we consider, the fitted values of
the second and fourth Gegenbauer moment cover
approximately the same intervals:

a2ð1 GeVÞ ¼ 0.22–0.33;

a4ð1 GeVÞ ¼ 0.12–0.25: ð46Þ

We refrain from quoting central values and standard
deviations instead of these intervals, having in mind
limitations of our statistical analysis.

It is instructive to compare our results with the pion
spacelike form factor measurements not used in the fit. This
comparison is displayed in Fig. 6 where the two (corre-
lated) results: the spacelike form factor obtained from the
dispersion relation at Q2 ¼ −q2 ≥ 0 and from LCSR in the
region (41) with the fitted Gegenbauer moments (the model
fa2; a4; a6; a8g), are plotted together with the Jefferson Lab
Fπ data [19] at intermediate Q2 and the NA7 data [23] at

very small Q2. We observe an agreement within uncer-
tainties and experimental errors, whereas at Q2 >
1.0 GeV2 the central values of the predicted form factor
lie slightly above the experimental points.
Furthermore, having at our disposal the modulus of the

pion form factor at sufficiently large timelike momentum
transfer

ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffi
jq2j

p
, we compare it with the form factor at

large spacelike
ffiffiffiffiffiffi
Q2

p
¼

ffiffiffiffiffiffiffiffi
jq2j

p
inferred from Eq. (11). In

Fig. 7 the overlap of the two form factors at equal values
of

ffiffiffiffiffiffiffiffi
jq2j

p
is plotted. Note that this comparison does not

involve any LCSR results. At
ffiffiffiffiffiffiffiffi
jq2j

p ≳ 3.0 GeV, above the
region of pronounced resonances, we observe an onset of a
regime in which the timelike form factor approximately
coincides with the spacelike one. Generally, this equality
manifests analyticity of the modulus representation. At the
same time, since the form factor at large Q2 is well
reproduced by the LCSR based on a quark-gluon correla-
tion function (cf. the comparison in Fig. 6), it is conceivable
to interpret this coincidence as the onset of the quark-
hadron duality: calculating the form factor at a sufficiently
large Q2 in terms of the quark-gluon degrees of freedom,
we are able to predict the timelike pion form factor at
s ¼ Q2. Note on the other hand that in this region the form
factor is still far from QCD asymptotics and, as follows
e.g., from LCSR, is dominated by soft overlap contribu-
tions. To see that, we use the well known asymptotic
formula [26–29]:

lim
Q2→∞

FπðQ2Þ ¼ 8παs
9Q2

f2π

�Z
1

0

du
u
φπðu; μÞ

�
2

; ð47Þ

[cf. Eq. (25)]. Adopting for the pion DA, e.g., the model
fa2; a4; a6g with Gegenbauer moments from Table III and

FIG. 6. The pion spacelike form factor calculated from the
dispersion relation (39) (magenta curve; central input) and from
the LCSR with the fitted Gegenbauer moments (orange band; the
model fa2; a4; a6; a8g) compared with the measurements of NA7
[23] (blue data points) and Jefferson Lab Fπ [19] (green data
points).

FIG. 7. The pion timelike form factor measured by the BABAR
collaboration [24] [black points (the central values) and the fit
(blue curve)] and the pion spacelike form factor obtained from the
dispersion relation (11) (green curve). The Jlab data are shown by
green points with error bars.
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the characteristic scale μ ∼
ffiffiffiffiffiffi
Q2

p
, we obtain that in the

ballpark of the “duality” region, at Q2 ¼ 10 GeV2, the
r.h.s. of the above equation is equal to ≃0.019, substantially
smaller than the value FðdispÞ

π ðQ2 ¼ 10 GeV2Þ ≃ 0.05 pre-
dicted by the dispersion relation.
Let us compare our estimates of Gegenbauer moments

with the results of other methods. A useful compilation can
be found in Ref. [1] (see Table IV there). We start from the
determinations of a2 that are independent of the exper-
imental data and not correlated with higher moments. First
of all, the moment a2 is accessible in the lattice QCD. The
most accurate value has been recently obtained in Ref. [1].
Rescaling it to the default scale:

a2ð1 GeVÞ ¼ 0.135� 0.032; ð48Þ

we find that our fitted values in Table III and in Eq. (46)
are noticeably larger. Fixing a2 from the lattice QCD

result (48), we have repeated the fit of Eq. (39). The
results are given in Table IV (see also Fig. 8) for the three
models fa2; a4g, fa2; a4; a6g, fa2; a4; a6; a8g. We notice
that the values of a4, a6 increase and the quality of the
fit becomes worse in comparison with our initial results
in Table III.
Another method [7] to calculate a2 is based on the QCD

sum rules for a two-point vacuum correlation function.
Comparing our results with the estimate a2ð1 GeVÞ ¼
0.28� 0.08 obtained by this method in Ref. [9] (see also
Ref. [8]) we observe a good agreement.
The Gegenbauer moments with n > 2 were obtained

from the QCD sum rules with nonlocal condensates,
predicting a2ð1GeVÞ≃0.20;a4ð1GeVÞ≃−0.14 [11,18].
A striking difference with respect to our estimates is the
negative sign of the fourth Gegenbauer moment. The first
lattice QCD values of a4 obtained with the new method of
Euclidean correlation function in Ref. [4] still have very
large uncertainties.

FIG. 8. The same as in Fig. 5 but with a fixed value of a2 from Eq. (48). The results for the models fa2; a4; a6; a8g, fa2; a4; a6g, and
fa2; a4g are shown, respectively, on the top left, top right, and bottom panel.

TABLE IV. The same as in Table III but with a fixed value of a2 from Eq. (48).

Model a4ð1 GeVÞ a6ð1 GeVÞ a8ð1 GeVÞ χ2min=ndf

fa2; a4g 0.218� 0.059 3.93
fa2; a4; a6g 0.203� 0.060 0.157� 0.086 2.81
fa2; a4; a6; a8g 0.210� 0.061 0.179� 0.095 0.062� 0.116 2.71
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A different strategy is to match an analytical expression
for the pion e.m. form factor in terms of twist-2 DA to the
measured values in the spacelike region. Certainly, the use
of a hard-scattering factorization formula, e.g., of the
asymptotic expression in Eq. (47) is not an adequate
choice, because, as we have convinced ourselves, at large
but finite Q2 the soft overlap part of the form factor
dominates. Instead, in several analyses, the LCSR written
in the form of Eq. (29) was employed. As opposed to the
method we suggest here, this equation was directly fitted to
the measured form factor. E.g., in Ref. [20], the LCSR
with the model fa2; a4g was fitted to the Jefferson Lab Fπ

data [19] in the region 0.6 GeV2 < Q2 < 2.45 GeV2.
The results

a2ð1 GeVÞ ¼ 0.17� 0.08; a4ð1 GeVÞ ¼ 0.06� 0.10

have larger uncertainties than our fit results for the same
model in Table III and marginally agree with the latter
within errors. Certainly, the use of a dispersion relation has
an advantage of giving access to a considerably larger
region of the spacelike momentum transfer.
For convenience, in Table Vwe put together the results on

a2 and a4 obtained with various methods and discussed
above. The most important findings which deserve further
attention and investigations are: 1) our estimated interval for
a2 lies above the lattice QCD prediction, and probably also
above the result from the LCSR fitted to the Jlab data; 2) the
LCSR fits prefer a positive sign of a4, opposite to the one
predicted from the sum rules with nonlocal condensates.
Gegenbauer moments are also constrained from the

photon-pion transition form factor measured in the
γ�γ → π0 process. To calculate this form factor, one uses
the method of Ref. [16], combining a dispersion relation in
the photon virtuality with LCSR. The accuracy of this
method was improved in Ref. [17] calculating important
additional terms in the LCSR. A more recent analysis of
γ�γ → π0 with related methods can be found in Ref. [46].
The main problem of using the photon-pion transition form
factor is a mutual discrepancy between the results of
different experiments, especially at large Q2. We postpone

a more detailed discussion and only mention, for compari-
son, the model fa2; a4; a6; a8g used to fit the data in
Ref. [17] (the model II):

a2ð1 GeVÞ ¼ 0.10–0.14; a4ð1 GeVÞ ¼ 0.10–0.18;

a6ð1 GeVÞ ¼ 0.10–0.23; a8ð1 GeVÞ ¼ 0.034–0.05;

where the upper and lower limits correspond to different
experiments. This model has the same sign pattern as our fit
results but has a smaller second moment and does not
reveal a convergent conformal expansion.

VI. CONCLUSION

In this paper we suggested a new method to probe the
twist-2 pion DA by comparing two independent ways to
calculate the pion e.m. form factor in the spacelike region.
The first one employs the modified dispersion relation
(modulus representation) in which the input is essentially
provided by the direct measurement of the pion e.m. form
factor in the timelike region. The same form factor is
calculated from the LCSR with a linear dependence on
the Gegenbauer moments taken at a certain reference
normalization scale. We performed an exploratory numeri-
cal investigation of the equation between LCSR and
dispersion relation, employing for the latter the BABAR
collaboration data on the pion timelike form factor.
Adopting simple models of the pion DA, we fitted the
first few Gegenbauer moments. This analysis reveals
certain gross features of the pion DA: its form deviates
from the purely asymptotic one; the minimal ansatz with a
single Gegenbauer moment a2 is disfavored and the validity
of a converging conformal expansion is confirmed. Our
main results are given in Table III and yield intervals (46)
for the second and fourth moments. Numerically, our
prediction for a2 is in the same ballpark as the two-point
QCD sum rule estimates, but exceeds the currently most
accurate lattice QCD value. We also found that the space-
like form factor extracted from the dispersion relation is
consistent within errors with the Jlab data. Importantly, this
form factor at large momentum transfers Q2 ∼ 10 GeV2 is
still considerably larger than its perturbative QCD asymp-
totics. This is in accordance with the first lattice QCD
calculations [47,48] of the light meson form factors at large
spacelike momentum transfers.
Turning to future perspectives of the method suggested

in this paper, let us first of all mention possible modifi-
cations of the specific dispersion relation (modulus repre-
sentation) used here. In particular, the role of form factor
zeros should be investigated. Additional subtractions
and/or differentiation in Q2 can provide an effective
suppression of the high-energy tail of the timelike form
factor which is not directly measured. The fit procedure
applied in this paper can further be extended to include
the data on the direct measurements of the spacelike form

TABLE V. Comparison of the second and fourth Gegenbauer
moments obtained with various methods.

Method a2ð1 GeVÞ a4ð1 GeVÞ Reference

Lattice QCD 0.135� 0.032 � � � [1]
QCD sum rule 0.28� 0.08 � � � [9]
QCD sum rule
with nonlocal
condensate

0.203þ0.069
−0.057 −0.143þ0.094

−0.087 [18,45]

LCSR fitted
to Jlab data

0.17� 0.08 0.06� 0.10 [20]

LCSR fitted to
dispersion relation

0.22–0.33 0.12–0.25 this work
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factor. In the timelike region, one may additionally employ
the pion vector form factor measured in τ− → π−π0ντ
decays. Eventually, our analysis should be complemented
with the fit of the measured photon-pion form factor for
which the LCSR-based theoretical expression contains the
same input as the one used for the pion e.m. form factor.
Needless to say, the accuracy of the fit will benefit from

new more accurate data on all types of the pion form factor.
Note that both the region of large Q2 for the photon-pion
form factor and the region of large s for the pion timelike
e.m. and vector form factors are potentially accessible at
Belle II. Finally, we foresee a perspective application of the
same method to the kaon DA, employing the kaon e.m.
form factor as well as the flavor-changing form factors in
τ → Kπlνl decays.
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APPENDIX: RESONANCE FORMULA

Here we present the expression for the Gounaris-Sakurai
resonance formula used in Eq. (31):

BWGS
R ðsÞ ¼ m2

R þmRΓRdðmRÞ
m2

R − sþ fðs;mR;ΓRÞ − imRΓðs;mR;ΓRÞ
;

ðA1Þ

where R ¼ ρ; ρ0; ρ00; ρ000 and the functions entering this
expression are

Γðs;m;ΓÞ ¼ Γ
s
m2

�
βπðsÞ
βπðm2Þ

�
3

; βπðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
q

;

dðmÞ ¼ 3

π

m2
π

k2ðm2Þ ln
�
mþ 2kðm2Þ

2mπ

�
þ m
2πkðm2Þ −

m2
πm

πk3ðm2Þ ;

fðs;m;ΓÞ ¼ Γm2

k3ðm2Þ ðk
2ðsÞðhðsÞ − hðm2Þ þ ðm2 − sÞk2ðm2Þh0ðm2ÞÞ;

kðsÞ ¼ 1

2

ffiffiffi
s

p
βπðsÞ;

hðsÞ ¼ 2

π

kðsÞffiffiffi
s

p ln
� ffiffiffi

s
p þ 2kðsÞ

2mπ

�
; h0ðsÞ ¼ dhðsÞ

ds
;

and the KS representation used for the ω-resonance is given by

BWKS
ω ðs;mω;ΓωÞ ¼

m2
ω

m2
ω − s − imωΓω

: ðA2Þ

[1] G. S. Bali, V. M. Braun, S. Bürger, M. Göckeler,
M. Gruber, F. Hutzler, P. Korcyl, A. Schäfer, A.
Sternbeck, and P. Wein, J. High Energy Phys. 08 (2019)
065.

[2] R. Arthur, P. Boyle, D. Brommel, M. Donnellan, J. Flynn,
A. Juttner, T. Rae, and C. Sachrajda, Phys. Rev. D 83,
074505 (2011).

[3] V. M. Braun, S. Collins, M. Gckeler, P. Prez-Rubio, A.
Schfer, R. W. Schiel, and A. Sternbeck, Phys. Rev. D 92,
014504 (2015).

[4] G. S. Bali, V. M. Braun, B. Glle, M. Gckeler, M. Gruber, F.
Hutzler, P. Korcyl, B. Lang, A. Schfer, P. Wein, and J.
Zhang, Eur. Phys. J. C 78, 217 (2018); Phys. Rev. D 98,
094507 (2018).

[5] R. Zhang, C. Honkala, H. W. Lin, and J. W. Chen, arXiv:
2005.13955.

[6] M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 385 (1979).

[7] V. Chernyak and A. Zhitnitsky, Nucl. Phys. B201, 492
(1982); Phys. Rep. 112, 173 (1984).

CHENG, KHODJAMIRIAN, and RUSOV PHYS. REV. D 102, 074022 (2020)

074022-14

https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1103/PhysRevD.83.074505
https://doi.org/10.1103/PhysRevD.83.074505
https://doi.org/10.1103/PhysRevD.92.014504
https://doi.org/10.1103/PhysRevD.92.014504
https://doi.org/10.1140/epjc/s10052-018-5700-9
https://doi.org/10.1103/PhysRevD.98.094507
https://doi.org/10.1103/PhysRevD.98.094507
https://arXiv.org/abs/2005.13955
https://arXiv.org/abs/2005.13955
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(82)90445-X
https://doi.org/10.1016/0550-3213(82)90445-X
https://doi.org/10.1016/0370-1573(84)90126-1


[8] A. Khodjamirian, T. Mannel, and M. Melcher, Phys. Rev. D
70, 094002 (2004).

[9] P. Ball, V. Braun, and A. Lenz, J. High Energy Phys. 05
(2006) 004 .

[10] S. Mikhailov and A. Radyushkin, JETP Lett. 43, 712
(1986).

[11] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys.
Lett. B 508, 279 (2001).

[12] I. Balitsky, V.M. Braun, and A. Kolesnichenko, Sov. J. Nucl.
Phys. 44, 1028 (1986); Nucl. Phys. B312, 509 (1989).

[13] V. Chernyak and I. Zhitnitsky, Nucl. Phys. B345, 137
(1990).

[14] V. M. Braun and I. E. Halperin, Phys. Lett. B 328, 457
(1994).

[15] V. M. Braun, A. Khodjamirian, and M. Maul, Phys. Rev. D
61, 073004 (2000).

[16] A. Khodjamirian, Eur. Phys. J. C 6, 477 (1999).
[17] S. Agaev, V. Braun, N. Offen, and F. Porkert, Phys. Rev. D

83, 054020 (2011); 86, 077504 (2012).
[18] S. Mikhailov, A. Pimikov, and N. Stefanis, Phys. Rev. D 93,

114018 (2016).
[19] G. Huber et al. (Jefferson Lab Collaboration), Phys. Rev. C

78, 045203 (2008).
[20] A. Khodjamirian, T. Mannel, N. Offen, and Y. Wang, Phys.

Rev. D 83, 094031 (2011).
[21] J. Bijnens and A. Khodjamirian, Eur. Phys. J. C 26, 67

(2002).
[22] S. Agaev, Phys. Rev. D 72, 074020 (2005).
[23] S. Amendolia et al. (NA7 Collaboration), Nucl. Phys. B277,

168 (1986).
[24] J. Lees et al. (BABAR Collaboration), Phys. Rev. D 86,

032013 (2012).
[25] M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78,

072006 (2008).
[26] V. Chernyak, A. Zhitnitsky, and V. Serbo, JETP Lett. 26,

594 (1977).
[27] G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 43, 246

(1979).

[28] A. Efremov and A. Radyushkin, Phys. Lett. B 94B, 245
(1980).

[29] G. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).
[30] A. Pich and J. Portoles, Phys. Rev. D 63, 093005 (2001).
[31] C. Hanhart, Phys. Lett. B 715, 170 (2012).
[32] N. Achasov and A. Kozhevnikov, Phys. Rev. D 83, 113005

(2011).
[33] G. Colangelo, M. Hoferichter, and P. Stoffer, J. High Energy

Phys. 02 (2019) 006.
[34] B. Geshkenbein, Yad. Fiz. 9, 1232 (1969); Phys. Rev. D 61,

033009 (2000).
[35] H. Leutwyler, Electromagnetic form factor of the pion,

in Continuous Advances in QCD 2002 (World
Scientific, 2002), pp. 23–40, https://doi.org/10.1142/
9789812776310_0002.

[36] B. Ananthanarayan, I. Caprini, and I. Imsong, Phys. Rev. D
83, 096002 (2011).

[37] B. Ananthanarayan, I. Caprini, and I. Imsong, Phys. Rev. D
85, 096006 (2012).

[38] G. Gounaris and J. Sakurai, Phys. Rev. Lett. 21, 244 (1968).
[39] J. H. Kühn and A. Santamaria, Z. Phys. C 48, 445 (1990).
[40] C. Dominguez, Phys. Lett. B 512, 331 (2001).
[41] C. Bruch, A. Khodjamirian, and J. H. Kühn, Eur. Phys. J. C

39, 41 (2005).
[42] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018); and 2020 update.
[43] V. Novikov, M. A. Shifman, A. Vainshtein, M. Voloshin,

and V. I. Zakharov, Nucl. Phys. B237, 525 (1984).
[44] K. Chetyrkin, J. H. Kühn, and M. Steinhauser, Comput.

Phys. Commun. 133, 43 (2000).
[45] N. G. Stefanis, Phys. Rev. D 102, 034022 (2020).
[46] Y. M. Wang and Y. L. Shen, J. High Energy Phys. 12 (2017)

037.
[47] J. Koponen, A. C. Zimermmane-Santos, C. T. H. Davies,

G. P. Lepage, and A. T. Lytle, Phys. Rev. D 96, 054501
(2017).

[48] A. J. Chambers et al. (QCDSF, UKQCD, and CSSM
Collaborations), Phys. Rev. D 96, 114509 (2017).

PION LIGHT-CONE DISTRIBUTION AMPLITUDE FROM THE … PHYS. REV. D 102, 074022 (2020)

074022-15

https://doi.org/10.1103/PhysRevD.70.094002
https://doi.org/10.1103/PhysRevD.70.094002
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1016/S0370-2693(01)00517-2
https://doi.org/10.1016/S0370-2693(01)00517-2
https://doi.org/10.1016/0550-3213(89)90570-1
https://doi.org/10.1016/0550-3213(90)90612-H
https://doi.org/10.1016/0550-3213(90)90612-H
https://doi.org/10.1016/0370-2693(94)91505-9
https://doi.org/10.1016/0370-2693(94)91505-9
https://doi.org/10.1103/PhysRevD.61.073004
https://doi.org/10.1103/PhysRevD.61.073004
https://doi.org/10.1007/s100529800938
https://doi.org/10.1103/PhysRevD.83.054020
https://doi.org/10.1103/PhysRevD.83.054020
https://doi.org/10.1103/PhysRevD.86.077504
https://doi.org/10.1103/PhysRevD.93.114018
https://doi.org/10.1103/PhysRevD.93.114018
https://doi.org/10.1103/PhysRevC.78.045203
https://doi.org/10.1103/PhysRevC.78.045203
https://doi.org/10.1103/PhysRevD.83.094031
https://doi.org/10.1103/PhysRevD.83.094031
https://doi.org/10.1140/epjc/s2002-01042-1
https://doi.org/10.1140/epjc/s2002-01042-1
https://doi.org/10.1103/PhysRevD.72.074020
https://doi.org/10.1016/0550-3213(86)90437-2
https://doi.org/10.1016/0550-3213(86)90437-2
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1103/PhysRevD.78.072006
https://doi.org/10.1103/PhysRevD.78.072006
https://doi.org/10.1103/PhysRevLett.43.246
https://doi.org/10.1103/PhysRevLett.43.246
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.63.093005
https://doi.org/10.1016/j.physletb.2012.07.038
https://doi.org/10.1103/PhysRevD.83.113005
https://doi.org/10.1103/PhysRevD.83.113005
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1007/JHEP02(2019)006
https://doi.org/10.1103/PhysRevD.61.033009
https://doi.org/10.1103/PhysRevD.61.033009
https://doi.org/10.1142/9789812776310_0002
https://doi.org/10.1142/9789812776310_0002
https://doi.org/10.1103/PhysRevD.83.096002
https://doi.org/10.1103/PhysRevD.83.096002
https://doi.org/10.1103/PhysRevD.85.096006
https://doi.org/10.1103/PhysRevD.85.096006
https://doi.org/10.1103/PhysRevLett.21.244
https://doi.org/10.1007/BF01572024
https://doi.org/10.1016/S0370-2693(01)00576-7
https://doi.org/10.1140/epjc/s2004-02064-3
https://doi.org/10.1140/epjc/s2004-02064-3
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/0550-3213(84)90006-3
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.1103/PhysRevD.102.034022
https://doi.org/10.1007/JHEP12(2017)037
https://doi.org/10.1007/JHEP12(2017)037
https://doi.org/10.1103/PhysRevD.96.054501
https://doi.org/10.1103/PhysRevD.96.054501
https://doi.org/10.1103/PhysRevD.96.114509

