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We study the Z3 metastable states in the Polyakov loop Nambu-Jona-Lasinio model. These states exist
for temperatures above Tm ∼ 194 MeV and can decay via bubble nucleation. We numerically solve the
bounce equation to compute the nucleation rate. We speculate that, in the context of heavy-ion collisions,
the likely scenario for the decay of the metastable states is via spinodal decomposition.
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I. INTRODUCTION

In pure SU(N) gauge theories, energy density increases
sharply across the critical temperature (Tc). It is believed
that this is due to deconfinement of the constituents
(gluons) of low energy excitations of the theory. This
transition from confined to deconfined state of gluons,
known as confinement-deconfinement (CD) transition, has
been extensively studied in the literature [1–5]. The CD
phase transition is found to be second order for N ¼ 2 [6–
11] and first order for N ≥ 3 [12,13]. The Polyakov loop,
which transforms as a ZN spin, plays the role of an order
parameter. It is real valued for N ¼ 2 and complex for
N > 2. Above the critical temperature, in a deconfined
phase, it acquires a nonzero expectation value, spontane-
ously breaking the ZN symmetry. This leads to N degen-
erate vacua. This nontrivial nature of the deconfined state
allows for the existence of topological defects such as
domain walls for N ¼ 2 and domain walls connected by
strings for N > 2 [14–16].
In a realistic theory such as quantum chromo dynamics

(QCD), there are fermions (quarks) in the fundamental
representation. The presence of these fermions leads to
explicit breaking of the ZN symmetry. The strength of the
explicit symmetry breaking depends on the quark masses as
well as the number of quark flavors [17–21]. It affects the
nature of the CD transition [17,19] as well as the transition
temperature. For large explicit symmetry breaking, the CD

transition turns into a crossover while the transition temper-
ature tends to decrease. Furthermore, there are no N
degenerate vacua in the deconfined phase. Out of the
previous N vacua, all but one becomes the ground state.
With explicit symmetry breaking, the topological defects
can still exist but far above Tc, and most of them are time
dependent (nonstatic) [22].
The explicit breaking of the ZN symmetry due to matter

fields has been studied by calculating the partition function,
or the effective potential of the Polyakov loop, when the
gauge and matter field fluctuations are small [23–26].
These perturbative calculations are reliable for high temper-
atures (T ≫ Tc), when the gauge coupling is expected to be
small. Calculations which include fluctuations up to second
order (one loop) show the presence of metastable states
[20,23,25,27]. These states have been studied extensively
in the context of cosmology. In the early Universe, they are
found to be long lived and can leave observable imprints,
while decaying nucleation of bubbles of true vacuum, as in
a first order transition [27,28]. However, the number of
effective quark flavors is larger than 3, in which case, the
free energies of the metastable states, at one loop, are
positive and hence lead to negative pressure and entropy
[20]. This problem does not arise in QCD near the critical
temperature as the number of flavors is effectively ≤3.
The study of Z3 metastable states for small temperatures,

in particular near Tc, is important as they may affect the
evolution of quark gluon plasma (QGP) in heavy-ion
collision experiments. Near Tc perturbative calculations
are expected to break down due to large gauge coupling
constants and fluctuations. There are very few studies of ZN
symmetry using nonperturbative lattice QCD simulations.
Lattice QCD results for 2 flavors show that out of the
previous three degenerate vacua only one remains stable,
while the other two become metastable states [21]. The two
meta-stable states are degenerate, related via Z2 symmetry.
Furthermore, the metastability depends on the temperature
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with the metastable states becoming unstable below 2Tc
[21]. In general, nonperturbative lattice simulations are
essential for a quantitative estimate of the explicit sym-
metry breaking; however, the mean field approaches
provide a qualitative understanding. In a recent study of
Z3 symmetry in the Polyakov loop quark meson model
[29], it is found that the metastable states exist above
310 MeV.
In heavy-ion collisions, the initial conditions are far

from equilibrium. The system quickly thermalizes in less
than a femtometer. In such a scenario, it is possible that
the whole, or part, of the system can get trapped in one of
the metastable states [28]. Also, if the system somehow
thermalizes to a state of super hot hadron gas, which is a
possibility at high baryon density, it will decay through
bubble nucleation and some of the bubbles will have
metastable cores.
In the present work, the Z3 metastable states are studied

in the Polyakov loop Nambu-Jona-Lasinio (PNJL) model at
zero baryon chemical potential. In this model, they exist
above Tm ∼ 194 MeV. If such a state exists, then it
can either become unstable (when temperature drops
below Tm) or decay through nucleation of bubbles, which
grow in real time converting the metastable state to stable
state. To compute the nucleation rate, the Euler–Lagrange
equation for the bubble/bounce solution [30–33] is numeri-
cally integrated. The action, as well as other properties of
the bounce solution, is found to depend strongly on the
temperature. This study finds that the likely scenario for the
evolution/decay of a metastable state in heavy-ion collision
is spinodal decomposition. This will lead to large oscil-
lations of the Polyakov loop. We mention here that in
heavy-ion collisions the baryon chemical potential is small
but nonzero. At finite chemical potential, the thermody-
namic potential has an imaginary part. There are several
papers that discuss how to include the effect of nonzero μ
[34,35]. With μ, the contribution of the fermions to the free
energy will increase. Since the fermions break the ZN
symmetry, we expect that finite μ will lead to more explicit
breaking. Following Roessner et al., for small μ, we
calculated the thermodynamic potential to the leading
order, i.e., keeping only the real terms and found that
Tm increases slightly with μ [29]. With increase in Tm there
is lesser time available for the nucleation of bubbles, which
enhances the likelihood of metastable states becoming
unstable.
The paper is organized as follows. In Sec. II, Z3

symmetry in pure SUð3Þ gauge theory is discussed. We
briefly go through the explicit breaking of Z3 symmetry
in the PNJL model and compute the thermodynamic
properties of the metastable states in Sec. III. In Sec. IV,
we present the calculation of the bounce solution. In
Sec. V, we discuss the evolution of the metastable states
in heavy-ion collisions and present our conclusions
in Sec. VI.

II. Z3 SYMMETRY IN PURE GAUGE THEORY

In path integral formulation, gauge fields, which are
periodic in the temporal direction, only contribute to the
partition function, i.e.,

Aμðx⃗; 0Þ ¼ Aμðx⃗; βÞ; ð1Þ

where β ¼ 1
T. This boundary condition allows for the gauge

transformations Uðx⃗; τÞ to be periodic up to a factor
z ∈ ZN , such as

Uðx⃗; 0Þ ¼ zUðx⃗; βÞ: ð2Þ

Though the partition function is invariant under the above
gauge transformation, the Polyakov loop transforms as a
ZN spin. The Polyakov loop is defined as

Lðx⃗Þ ¼ 1

3
Tr

�
P exp

�
ig
Z

β

0

dτA0ðx⃗; τÞ
��

: ð3Þ

Here P denotes path order, g is the gauge coupling, and
A0 ¼ Aa

0
τa

2
is the temporal gauge field. Here τa are the Pauli

matrices with a denoting the color indices. Under a Z3

gauge transformation, Eq. (2), the Polyakov loop, trans-
forms as Lðx⃗Þ → zLðx⃗Þ. The thermal, as well as the volume
average of the Polyakov loop Lðx⃗Þ,

LðTÞ ¼
�
1

V

Z
Lðx⃗Þd3x

�
; ð4Þ

is related to the free energy FQ̄QðrÞ of a static (infinitely
heavy) quark-antiquark pair at infinite separation [36]. Note

jLðTÞj2 ¼ exp ½−βFQ̄Qðr ¼ ∞Þ�: ð5Þ

In the following, we briefly describe the Z3 symmetry in
the effective potential for the Polyakov loop, which
describes the CD transition in pure SUð3Þ gauge theory
[37]. We consider the following Landau–Ginsburg effective
potential for a complex field Φ [37–39]:

UðΦ̄;Φ; TÞ ¼ b4T4

�
−
b2ðTÞ
4

ðjΦj2 þ jΦ̄j2Þ − b3
6
ðΦ3 þ Φ̄3Þ

þ 1

16
ðjΦj2 þ jΦ̄j2Þ2

�
: ð6Þ

Different forms of the effective potential, in terms of the
field Φ, have been proposed [38,40–44]. Across the critical
temperature T0, the Polyakov loop expectation value jumps
discontinuously. The Z3 symmetry and the first-order
nature of the CD transition require a cubic term in the
effective potential. The factor T4 takes care of the dimen-
sion of the effective potential [37]. In the mean-field
approximation, the minimum (minima) Φth of the effective
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potential gives the thermal average of the Polyakov loop
LðTÞ. Note that Φth ¼ LðTÞ. In this approximation, the
pressure P is given by

P ¼ −UðΦ̄th;Φth; TÞ: ð7Þ

The above effective potential with the following form
of b2ðTÞ,

b2ðTÞ ¼ ð1 − 1.11T0=TÞð1þ 0.265T0=TÞ2
× ð1þ 0.3T0=TÞ3 − 0.487; ð8Þ

and the coefficients b3 ¼ 2.0 and b4 ¼ 0.6016, reproduces
the pressure of the pure gauge theory computed from
nonperturbative lattice method(s). Following [38], for
QCD, b4 is rescaled as b4 ¼ 0.6061 × 47.5=16. Here,
the coefficients are chosen such that the expectation value
of the order parameter Φ approaches unity for T → ∞.
Hence, the fields and the coefficients in the above potential
are rescaled as Φ → Φ=x, b2ðTÞ → b2ðTÞ=x2, b3 → b3=x,
and b4 → b4=x4, where x ¼ b3=2þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 þ 4b2ðT ¼ ∞Þ

p
for temperature T → ∞. Note that we have used a poly-
nomial form of the Polyakov loop potential, which is
different from the more commonly used form as in [40].
The Tm for the latter case is higher than the initial
temperature of QGP in heavy-ion collisions, which is
not in agreement with lattice study [21]. Also, it is not
clear that these models will be valid at such high
temperatures.
For T > T0, there are three degenerate minima in the

effective potential, which can be seen in Fig. 1(a), the
contour plot of the effective potential in the complex Φ ¼
ðΦ1;Φ2Þ plane at T ¼ 1.3T0. We also plot the variation of
the potential along a circle going through the three minima,
i.e., Φ ¼ jΦthjeiθ in Fig. 1(b). The three degenerate vacua
are situated at θ ¼ 0, 2π

3
, and 4π

3
, related by Z3 rotation.

When dynamical quarks are included, the Z3 symmetry
is broken. While the pure gauge part of the action is Z3

symmetric, the quark part of the action is not invariant under
the Z3 gauge transformations. This is because the gauge
transformed quark fields are no longer antiperiodic along the
temporal direction. The nontrivial Z3 gauge transformations
can act only on the gauge fields. The situation is similar to
the presence of an external (explicit breaking) field in spin
systems. For example, in the presence of an external field the
Isingmodel Hamiltonian has bothZ2 symmetric and broken
terms. As the magnetization still describes the Ising tran-
sition, the fieldΦ too describes the CD transition [45]. In the
following section, we discuss the PNJL model, which
provides a prescription to include the effect of quarks on
the Z3 symmetry and the Polyakov loop effective potential.

III. METASTABLE STATES IN PNJL MODEL

The PNJL model is an extension of the Nambu-Jona-
Lasinio (NJL) model. The NJL model is a phenomenologi-
cal model formulated on the basis of the chiral symmetry of
QCD and describes the dynamics of low energy excitations,
as well as the chiral transition [46–53]. Since there are no
gauge fields in this model, it cannot describe the CD
transition. The PNJL model attempts to include the gauge
fields by adding the effective potential UðΦ̄;Φ; TÞ to the
NJLLagrangian [40,42,54–57]. Furthermore, in the fermion
part of the NJL model, the covariant derivative substitutes
the standard one. The PNJL Lagrangian is given by

LPNJL ¼
X
f

ðΨ̄fðiγνDν −mfÞΨf

þ Gs½ðΨ̄fτaΨfÞ2 þ ðΨ̄fiγ5τaΨfÞ2�Þ
þ UðΦ̄;Φ; TÞ: ð9Þ

Here,Dν is the covariant derivative,Dν¼∂ν−iðgAνþδν0μfÞ,
Aν ¼ Aa

ν
τa

2
. Here, subscript f refers to the u, d quark flavors.

This term takes into account the interaction between the

(a) (b)

FIG. 1. (a) Contour plot for the Polyakov loop effective potential on theΦ1—Φ2 plane at 1.3T0. (b) Thermodynamic potential versus θ
at 1.3T0.
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gauge and quark fields. Note thatmf and μf are quark mass
and chemical potential of quark flavor f, respectively.
Note that Gs is the four quark contact interaction strength.

The thermodynamic potential in the mean-field approxima-
tion for the above theory with two quark (u, d) flavors is
given by [40,44]

Ω ¼ −
X
f¼u;d

Z
∞

0

d3p
ð2πÞ3 ð2T ln½1þ 3Φe−βðEf−μfÞ þ 3Φ̄e−2βðEf−μfÞ þ e−3βðEf−μfÞ�

þ 2T ln½1þ 3Φ̄e−βðEfþμfÞ þ 3Φe−2βðEfþμfÞ þ e−3βðEfþμfÞ�Þ

− 6
X
f¼u;d

Z
d3p
ð2πÞ3 EfθðΛ − jp⃗jÞ þ

X
f¼u;d

Gsσ
2
f þUðΦ̄;Φ; TÞ: ð10Þ

Here, σf ¼ hΨ̄Ψif is the quark condensate. Note that μu
and μd are u and d quark chemical potentials, respectively.
For the present calculations, chemical potentials are set to
μu ¼ μd ¼ 0. The masses of u and d quarks are taken to be

degenerate, i.e.,mu ¼md¼m0. Eu;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Σ2

u;d

q
are the

single particle energies with Σu;d ¼ m0 −Gsσu;d −Gsσd;u,
where Gs ¼ 10.08 GeV−2 and m0 ¼ 5 MeV. For T0 ¼
190 MeV in the effective potential U, the thermodynamic
potential given by Eq. (10) results in qualitatively similar
thermodynamic behavior as that in [40,44].
For the temperature dependence of the quark conden-

sates and expectation value of the Polyakov loop, we
minimize the thermodynamic potential Ωðσ; m; T0; TÞ by
numerically solving the following set of equations:

∂Ω
∂Φ1

¼ 0;
∂Ω
∂Φ2

¼ 0;
∂Ω
∂σ ¼ 0: ð11Þ

Note that Φ1 and Φ2 are real and imaginary parts of Φ.
The numerical program requires initial trial values ofΦ and
σ. It evolves the trial values such that the thermodynamic
potential decreases. The process stops once a minimum is
reached within a certain numerical accuracy. This method
cannot find all the minima at once. For each minima, the
numerical procedure is repeated by suitable choices of
initial conditions.

One can show that in the ground state Φ is real valued,
i.e., Φ2 ¼ 0 (θ ¼ 0). Hence, for the ground state, we solve
the above equations with initial values of jΦj > 0 and
θ ¼ 0. We took the zero temperature value of σ as its initial
value. For the metastable states, the Z3 rotated values of the
ground state Φ as the initial value works well. Since the Z3

symmetry is explicitly broken, Z3 rotated Φ does not solve
the equations. However, the metastable states are found to
be close to Z3 rotations of the stable state. The value of σ in
the metastable state is found to differ from the value in the
stable state.
With the above numerical procedure, in the temperature

range of Tcð170Þ MeV—Tmð194Þ MeV, only one solution
is found with Φ1 > 0 and Φ2 ¼ 0. Note that Z3 rotated
values of this solution as the initial condition does not result
in any new solution. As the temperature is increased for
T > 194 MeV, two local minima appear around θ ¼ 2π

3
and

θ ¼ − 2π
3
. The thermodynamic potentials for these two states

are found to be same but higher than that for the ground state,
for which θ ¼ 0. The values of Φ for the metastable and
stable states are no more related by Z3 rotation.
In Fig. 2, the thermodynamic potential versus θ has been

plotted by fixing jΦj in the stable state (jΦj ¼ 0.79763 for
T ¼ 199.5 MeV and jΦj ¼ 0.92962 for 247 MeV) and
minimizing thermodynamic potential with respect to σ. In
Fig. 2(a) the temperature is close to Tm when the effective

(a) (b)

FIG. 2. Thermodynamic potential versus theta (a) at temperature 199.5 MeVand (b) at temperature 247 MeV. Note that σ value at each
point is the one which minimizes Ω at the given value of θ.
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potential develops two saddle points. Comparing Fig. 2(a)
and Fig. 2(b) one can clearly see signs that the barrier
between metastable and stable states increases with temper-
ature. In Fig. 3, the contour plots of the thermodynamic
potential in theΦ1 −Φ2 plane are shown. At each pointΦ1,
Φ2 in the contour plot, we have fixed σ at the value which
minimises the thermodynamic potential. For temperatures
above Tm, there are two metastable states and one stable
state. We denote the metastable state for which Φ2 < 0 by
M1 and the other by M2. The stable state is denoted by SS.
Subscripts s and ms on variables denote their values in the
stable state and the metastable states, respectively.
Figure 4 shows the difference in the thermodynamic

potential of the metastable to the stable state (Ωms −Ωs) vs
T. This difference increases with temperature, which
suggests enhancement in the explicit breaking for larger
temperatures. In Fig. 5 we show the Polyakov loop in the
M1, M2, and SS states for small values of μ. We find that
with increase in μ the absolute value of the Polyakov loop

(a) (b)

FIG. 3. Contour plot of the thermodynamic potential on the Φ1—Φ2 plane. (a) at temperature 199.5 MeV and (b) at temperature
247 MeV. Note that the σ value at each point is the one which minimizes Ω at the given Φ1, Φ2.

FIG. 4. The thermodynamic potential difference between meta-
stable and stable states vs T.

(a) (b)

FIG. 5. Note μ dependence of the absolute value of Polyakov loop in the stable and metastable states normalized to the corresponding
values at μ ¼ 0 (a) and the phase of the metastable state M2 (b).
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decreases in the metastable states while it increases in the
stable state. Note that the μ contribution effectively tilts the
thermodynamic potential towards the stable state. We find
that the phase of the M2 state shifts toward a higher value.
The phase of M1 decreases as it is the complex conjugate of
M2. We also find that the barrier height between (M1, M2)
and SS decreases, while TmðμÞ increases slightly.

IV. BOUNCE SOLUTION FOR THE DECAY OF
METASTABLE STATES

In the PNJL model with 2 quark flavors, metastable
states exist above Tm ∼ 194 MeV. Even though the value
of Tm in this model is too small compared to the lattice
result [21], we believe that it will give qualitative results for
the effect of metastable states in heavy-ion collisions. We
mention here that with other Polyakov loop potentials,
higher Tm can be achieved by tuning the integration cut off
in Eq. (10) though the results do not qualitatively differ
from the present case.
As mentioned before, if a system is in the metastable

state, then it will eventually decay to the stable state. A
metastable state can either become unstable if the temper-
ature drops below Tm or decay via nucleation of bubbles
like in a first-order phase transition. At finite temperature,
there will be fluctuations in the form of bubbles with stable
states in their core. The free energy of a bubble consists of
two components, the volume component and the surface
component. The volume component comes from the free
energy difference between the stable and the metastable
states. The surface component comes from the fact that the
fields (Φ, σ) have to interpolate between stable values at
the center to metastable values outside. For a critical
bubble, these two components balance, and a small
fluctuation can make it grow or collapse. Thus, the critical
bubble and its nucleation rate play an important role in a
first-order phase transition. For decay of the state M1(M2),
the fields Φ and σ will have values corresponding to the SS
inside the bubble. Both these fields vary smoothly across
the bubble wall and approach the values corresponding to
M1(M2). Given that the free energy does not depend on the
sign of Φ2, the bubbles interpolating M1 and SS will have
the same action as the other interpolating M2 and SS. The
critical bubble is obtained from the bounce solution, which
is a saddle point of the Euclidean action. We must mention
here that the bubble nucleation picture here is not related to
any phase transition but to the fact that the theory allows
existence of metastable states above a certain temperature,
and they can tunnel into the stable state.
The decay rate of the false vacuum (metastable state) can

be calculated in the semiclassical approximation where the
dominant contribution comes from the configurations with
the least action [30,31], i.e., bounce solutions. It is shown
that such configurations at zero temperatures have Oð4Þ
symmetry, reducing the problem to 1 degree of freedom
along the radial direction given by r2 ¼ jxj2 þ τ2 in the

Euclidean space. It has been shown that the problem is
equivalent to calculating the classical evolution of a particle
in the Euclidean space in the presence of the inverted
potential −VðϕÞ, where the particle rolls down from the
stable vacuum and bounces up to the metastable one. The
decay rate then can be written as the summation of all
such “bounces” [30]. At high temperatures, owing to the
periodicity of the field theory in the “time” direction,
the field configurations will haveOð3Þ symmetry on a time
slice [32]. For a single scalar field theory with a metastable
state, the bounce can then be calculated by solving the
equation of motion

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ ∂V
∂ϕ ; ð12Þ

with the boundary conditions ϕ → ϕm as r → ∞, where ϕm

is the value of the field in the metastable state. For r ∼ 0 the
field is expected to be close to the stable state. If r were the
time variable, then Eq. (12) would be the equation of
motion of a particle in an inverted potential with a damping
term. The required boundary conditions are equivalent to
the trajectory of a particle starting from the maximum of the
inverted potential (which corresponds to the stable state),
rolling down, and climbing up to the local maximum,
which corresponds to the metastable point. As the particle
approaches the local maximum, its velocity approaches
zero. The critical bubble nucleation probability rate per unit
of volume at finite temperature is proportional to
expð−S=TÞ, where S is the action of the bounce solution.

A. The bounce

The bounce Eq. (12) is nonlinear in ϕ, which makes
it difficult to solve analytically. Only in the thin-wall
approximation, when the stable and metastable are
almost degenerate, can the bounce be calculated analyti-
cally. Such an approximation will not be valid in the present
case as the difference in the thermodynamic potential
between the stable and metastable states increases with
T and dominates the barrier height. Hence, numerical
integration is the only way to find the bounce/bubble
profile. The numerical integration is straightforward when
there is a symmetry, for example, in Uð1Þ theory where
only the radial mode of the field appears in the bounce
equation. The phase is taken to be uniform, for minimum
action bubble profile.
In the PNJL model there is no such symmetry, the real

and imaginary parts of Polyakov loop field and the sigma
field are expected to have nontrivial profiles. Since evolv-
ing all the three fields simultaneously proved extremely
difficult, we kept the sigma field constant throughout the
trajectory, that is, σ is independent of r. Later we will
consider sample profiles for σ to estimate the corrections to
the action. We also calculate the lower bound of the action.
In the present case, the thermodynamic potential
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ΩðΦ1;Φ2; σÞ replaces VðϕÞ in Eq. (12). The equations to
be solved simultaneously are given by

d2Φ1

dr2
þ 2

r
dΦ1

dr
¼ ∂Ω

∂Φ1

d2Φ2

dr2
þ 2

r
dΦ2

dr
¼ ∂Ω

∂Φ2

: ð13Þ

The boundary conditions are Φi → Φm
i as r → ∞. Note

that Φm
i , i ¼ 1, 2 are the values of Φ1, Φ2 in the metastable

state. For the numerical integration, r is discretized as
r → rn ¼ nδ, where δ is the lattice spacing. Note that δ
must be smaller compared to the length scale of typical
variations ofΦ. The integration starts from r ¼ r0 ∼ 0. Two
types of discretizations of Eq. (13) are considered. In the
first approach, the values of Φ1, Φ2 at r ¼ r0 and r ¼
r0 þ δ are used to generate the trajectory. In the second
approach the two equations are rewritten as 4 first-order
equations. In this case, the values ofΦ1,Φ2, as well as their
derivatives at r0, determine the trajectory. It has been
checked that both of these methods of integration give
the same results. A few other approaches to calculating
bounce solution for multiple field cases are discussed
in [58–65].
In Fig. 6 we show the plot of the inverted potential in the

Polyakov loop plane. There is a ridge which connects the
stable and metastable states. The height of the ridge initially
drops from the stable peak but eventually rises to the
metastable peak. The bounce profile must start near the
stable state and approach the metastable state. This can
happen only for a unique choice of initial conditions, i.e.,
position ðΦ1;Φ2Þ and velocity ðdΦ1

dr ; dΦ2

dr Þ. For wrong
choices, the trajectory will fall off to infinity either through
the center along θ ¼ π or by crossing the ridge to
θ ∼ −π=3. Hence, the initial conditions must be tuned,
which is achieved by a standard bisection method. The
basic idea is that with the given initial conditions, position
(Φ1ðr0Þ;Φ2ðr0ÞÞ and velocity (dΦ1

dr jr0 ; dΦ2

dr jr0), if a trajectory

undershoots (overshoots) the metastable point (peak), then
we start with an initial choice (position) closer to (farther
from) the “global” minimum (global peak). Furthermore,
the bisection method is used to find the direction of initial
velocity such that the undershoot trajectory makes a 180°
turn or the overshoot trajectory passes through the meta-
stable state peak. We have checked that the results do not
change for smaller δ.

B. The bubble

The bubble profiles are computed for temperatures in the
range T ¼ 1.05T0 − 1.2T0, i.e., 199.5 MeV to 228 MeV.
Figure 7 shows the temperature dependence of the
bubble profiles. These bubble profiles represent the decay
of M1 to SS. The values of Φ1 and Φ2 approach
asymptotically to their corresponding metastable values.
For temperatures just above Tm, the barrier between the
stable and metastable states is small compared toΩs −Ωms.
Starting with the initial values of the field close to Φs

i at
r0 ∼ 0 will always lead to overshooting. Hence, the initial
values of the fields (at the center of the bubble) must be
farther away from the stable point. Since the field starts
already on a higher slope for small r, damping dominates
the profile giving a broad “wall” profile for the bounce.
For higher temperatures, the initial point is closer to the
stable point. The force term is small; so is acceleration. The
field gets to spend more time near the stable state.
Therefore, the core radius of the bubble increases as we
go towards higher temperatures. The bubble wall is thinner
because the particle/field spends larger time near the stable
maximum and when it eventually starts rolling, the damp-
ing is small.
Figure 8 shows the radii of these bubbles as a function of

temperature. We define the radius of the bubble as the radial
distance from the center to the point where the field drops
half way to the metastable value. Here, we notice that the
radii for the two different fields are not the same. The radius

FIG. 6. Plot of the inverted potential in the Polyakov loop
plane. The blue trajectory is the bounce solution at 228 MeV.

FIG. 7. Bubble profiles forΦ1 andΦ2 at different temperatures.
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of the Φ2 profile is slightly higher than that of Φ1. This is
because the curvature of the potential along Φ1 and Φ2, or
in other words, their mass scales, are different.

Figure 9 (left) shows a plot of the θ profile of the bubble
at T ¼ 218.5 MeV. We also plot the magnitude of the
Polyakov loop versus radius in Fig. 9 (right).

V. EVOLUTION OF METASTABLE STATE IN
HEAVY-ION COLLISIONS

The decay rate of these metastable states depends on the
bubble action, which is given by

S ¼
Z

4πr2dr

�
1

2
αT2

	�
dΦ1

dr

�
2

þ
�
dΦ2

dr

�
2



þ 1

2
G2

s

�
dσ
dr

�
2

þΩðΦ1;Φ2; σÞ
�
: ð14Þ

Here, α is a constant given by 2N=g2 [38], where N is the
number of colors, and g is the gauge coupling constant. For
g=4π ¼ 0.3, α ¼ 1.6. Figure 10(a) shows the plot of the
bubble action in units of temperature vs T. Let us recall here
that σ was kept constant at the metastable value in the
bubble. For an estimate of the change in the action, an

FIG. 8. Bubble radii vs temperature.

FIG. 9. Plot of θ field for the bubble (left) and modulus of Φ vs radius (right) at 218.5 MeV.

(a) (b)

FIG. 10. (a) Bubble action in units of T and (b) Log of the bubble nucleation rate (per fm3 per fm time) vs T.
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approximate σ profile is computed by minimizing Ω with
respect to σ for a given Φ1, Φ2 profile. With the σ profile
the bubble action decreases slightly. The decrement is
below 10% for all the temperatures calculated. We also
checked with σ profiles scaled like bothΦ1 andΦ2 profiles,
interpolating between σs − σms. In the case where the σ
profile was scaled like Φ1, the action was minimum (less
than 20% decrement).
The bubble nucleation probability per unit time per unit

volume, or in other words, the decay rate of the metastable
state is given by [32]

Γ ¼ T4

�
S

2πT

�
3=2

expð−S=TÞ: ð15Þ

One can see from Fig. 10(b) that this value is as
small as 10−6= fm for the smallest temperature above
Tm (199.5 MeV) and grows insignificantly for higher
temperatures. Though it is difficult to solve for the bubble
in the full case by including an equation corresponding to σ
in Eq. (13), we can compute the lower bound of the full
action. The corresponding nucleation rate will then be the
upper bound. Note that Γ has a peak in S=T. However, for
the range of S=T in our calculation, Γ is a monotonically
decreasing function of S=T. To compute the upper bound
on the nucleation rate, we fix the σ field at the SS value (σs).
To see how σðrÞ ¼ σs leads to this bound, we write the free
energy (Fb) of a critical bubble of radius Rd as

Fb ¼ −
4π

3
ρR3

d þ 4πδR2
d; Rd ¼

2δ

ρ
; ð16Þ

where ρ is the free energy difference between the stable and
metastable state, and δ is the free energy cost (surface
tension) as the fields vary smoothly between the two states.
The position of the metastable state when the σ is fixed at σs
deviates from the full case such that jΦs −Φmsj decreases.
This effectively leads to a decrease in δ. Also with σ ¼ σs,
the metastable states always have higher Ωms compared to
the full case. This leads to an increase in ρ. Hence, the free

energy for σ ¼ σs is lower compared to the full case. Note
that the barrier height also plays a role in determining δ,
which is the reason the bubble action grows with temper-
ature. However, for a given temperature the barrier would
slightly decrease as σ changes from σms to σs.
We do a quick calculation of the decay rate for the case of

heavy-ion collisions, assuming the thermalization time to
be τi ¼ 0.38 fm and the initial temperature of the order of
Ti∼550MeV. We consider the QGP to be cylindrical (the
midrapidity region) with radius 8 fm and length 3 fm. The
number of bubbles nucleated within this volume when
the system cools down to a temperature T is estimated as
follows. The bubble action S as a function of temperature is
obtained by fitting our data points. We used a longitudi-
nally boost invariant 2þ 1D hydrodynamic simulation
with Glauber optical initial conditions following [66], to
fit the temperature evolution. The number of bubbles
nucleated in volume V during the time τ when the temper-
ature drops to T is given by

NðτÞ ¼ V
Z

τ

τi

ΓðtÞdt: ð17Þ

We find that NðTmÞ ¼ NðτmÞ, where τm is the time at
which temperature is Tm, is vanishingly small. Here, we
have used the profile with sigma scaled as Φ1. If any of the
other profiles are used, then this number only decreases.
The value of NðτÞ rapidly decreases for higher temper-
atures. If we assume a larger equilibration time, that is, a
smaller initial temperature, then the value ofNðτÞ decreases
further. We have also computed the free energy of the
bubble (action) and the nucleation rate by fixing σ ¼ σs.
We find that the bubble action is smaller by an average
factor of ∼0.45 compared to the case when σ is fixed at σms.
In this calculation the nucleation rate increases by a factor
of one hundred, though still remaining negligibly small.
We have considered the effects of μ up to ∼100 MeV.
For μ ¼ 100 MeV, Tm increases by ∼2 MeV. Since the
barrier height decreases with μ, the bubble action

(a) (b)

FIG. 11. Evolution of (a) Polyakov loop and (b) σ1=3 after the temperature falls below Tm. Here, τ ¼ 0 corresponds to the time at which
temperature is below Tm.
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SðT; μÞ < SðT; μ ¼ 0Þ. However, the system spends less
time above TmðμÞ, hence the results will not change
qualitatively. Hence, we do not expect any bubble nucle-
ation in heavy ion collisions. This leads to an interesting
scenario known as the spinodal decomposition. When the
metastable states become unstable below Tm, the field will
roll down to the minimum resulting in large angular
fluctuations. Figure 11 shows the evolution of the
Polyakov loop and chiral condensate at the center of the
quark gluon plasma after the temperature falls below Tm at
zero chemical potential. Since the metastable states become
unstable, the fields roll down and oscillate around the
minimum. These oscillations will have interesting conse-
quences in the dynamics of heavy-ion collisions including
flow, jet energy loss [67], and also may possibly lead to
coherent emission of particles. As discussed above, at a
small finite chemical potential, TmðμÞ increases, and
spinodal decomposition is expected to occur earlier.

VI. CONCLUSIONS

We have studied the Z3 metastable states in the PNJL
model. The metastable states exist at and above the
temperature Tm ∼ 194 MeV. For small values of μ, we

found that Tm increases slightly, i.e., by ∼2 MeV at
μ ¼ 100 MeV. The barrier height between the metastable
and stable states decreases. We have discussed the prob-
ability of the decay of these metastable states by calculating
the stable bubble nucleation probability in the metastable
regions using bounce solution. The bubble action measured
in the units of temperature increases roughly linear in
temperature. For small μ, relevant for heavy-ion collisions,
the bubble action decreases slightly though the system
spends lesser time above Tm. Our results suggest that the
probability of these states decaying by tunneling into stable
states is very small in the case of heavy-ion collisions.
Ultimately the metastable state will become unstable, and
the fields will start rolling towards the minimum. This will
lead to large oscillations of the Polyakov loop field, which
may have interesting consequences to the dynamics of flow,
jet energy loss, and also may lead to coherent emission of
particles.
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