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We present a calculation of P → γð�Þγð�Þ processes, where P ¼ π0; η; η0, at the one-loop level up to and
including next-to-next-to-leading order (NNLO) in large-Nc chiral perturbation theory. The results are
numerically evaluated successively at LO, NLO, and NNLO. The appearing low-energy constants are
determined through fits to the available experimental data. We investigate the decay widths to real photons,
the single-virtual transition form factors, and the widths of P → γlþl−, where l ¼ e, μ. Furthermore, we
provide results for the slopes and curvatures of the transition form factors.
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I. INTRODUCTION

In recent years, the two-photon interaction of the light
pseudoscalar mesons has received considerable attention
from both the experimental and theoretical sides [1]. To a
large extent, this renewed interest was triggered by the
muon anomalous magnetic moment discrepancy, which
states a 3.3 sigma deviation between experiment and theory
(see Refs. [1–3] for reviews). On the theoretical side, the
largest uncertainty in the anomalous magnetic moment aμ
originates from the evaluation of hadronic contributions,
namely, the hadronic vacuum polarization and the hadronic
light-by-light (HLbL) scattering [3]. In this context, the
two-photon decays of the light pseudoscalars enter the
HLbL contribution in terms of pseudoscalar-exchange
diagrams (see Fig. 35 of Ref. [2]).
Besides this more phenomenology-driven interest, the

two-photon decays of the light pseudoscalars provide an
ideal laboratory for investigating the symmetry-breaking
mechanisms relevant in quantum chromodynamics (QCD).
To be specific, the low-energy regime of QCD is charac-
terized by an interplay between the dynamical (sponta-
neous) breaking of chiral symmetry, the explicit symmetry
breaking by the quark masses, and the axial Uð1ÞA
anomaly. It is a generally accepted feature of QCD that
the global Uð3ÞL × Uð3ÞR chiral symmetry of the QCD
Lagrangian at the classical level for vanishing up-, down-,
and strange-quark masses is dynamically broken down to
SUð3ÞV × Uð1ÞV in the ground state (see, e.g., Ref. [4] for a

discussion). Naively, one would then expect the appearance
of nine massless pseudoscalar Goldstone bosons [5].
However, because of quantum effects, the singlet axial-
vector current is no longer conserved [Uð1ÞA anomaly], and
the corresponding alleged singlet Goldstone boson acquires
a mass even in the chiral limit of massless quarks [6–8]. At
this stage, the large-number-of-colors (LNc) limit of QCD
[9,10], i.e., Nc → ∞ with g2Nc fixed, provides another
theoretical simplification aside from the assumption of
massless quarks. Since the four divergence of the anoma-
lous singlet axial-vector current is proportional to the
square of the strong coupling constant g [11], it vanishes
in the LNc limit. Therefore, the singlet pseudoscalar is also
a Goldstone boson in the combined chiral and LNc limits,
resulting in total in a pseudoscalar nonet ðπ; K; η8; η1Þ as
the Goldstone bosons [7,12]. Of course, massless LNc
QCD is only an approximation to the real world. However,
one may use it as a starting point for a perturbative
framework, treating the symmetry breaking by the Uð1ÞA
anomaly and by the nonzero quark masses as corrections.
At leading order in the 1=Nc and quark-mass expansion,

the decays P → γγ (P ¼ π0; η; η0) are driven by the chiral
anomaly in terms of the Wess-Zumino-Witten (WZW)
effective action [13,14] (see, e.g., Ref. [4] for an intro-
duction). Corrections to the WZW predictions originate
from the axial Uð1ÞA anomaly and the nonzero quark
masses. Both mechanisms are also responsible for generat-
ing the masses of the originally massless Goldstone bosons
and for the η-η0 mixing. These modifications may be
systematically calculated in the framework of large-Nc
chiral perturbation theory (LNcChPT) [15–17], which can
be viewed as an extension of conventional ChPT [18]
by including, in addition to the pseudoscalar octet, the
pseudoscalar singlet. In LNcChPT, the most general
effective Lagrangian is organized in a combined expansion
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in terms of momenta (derivatives), quark masses, and 1=Nc.
Observables are calculated perturbatively, according to a
power counting with respect to a collective small expansion
parameter δ [15].
In this article, we investigate the P → γð�Þγð�Þ interaction

at next-to-next-to-leading order (NNLO) in LNcChPT. In
Sec. II, we describe the effective field theory we will
consider for our calculation by specifying the Lagrangian
and the power counting. In Sec. III, we define the invariant
amplitude and discuss its perturbative calculation including
the η-η0 mixing. Section IV contains our numerical results
for the decay rates and the transition form factors at LO,
NLO, and NNLO, respectively. In Sec. V, we discuss the
decay rates for single Dalitz decays. Finally, in Sec. VI, we
conclude with a few remarks and an outlook on possible
future work.

II. LAGRANGIANS AND POWER COUNTING

In the framework of LNcChPT, one performs a simulta-
neous expansion of (renormalized) Feynman diagrams
in terms of momenta p, quark masses m, and 1=Nc.

1

Introducing a collective expansion parameter δ, the vari-
ables are counted as small quantities of the order of [15]

p ¼ Oð
ffiffiffi
δ

p
Þ; m ¼ OðδÞ; 1=Nc ¼ OðδÞ: ð1Þ

The most general Lagrangian of LNcChPT is organized as
an infinite series in terms of derivatives, quark-mass terms,
and, implicitly, powers of 1=Nc, with the scaling behavior
given in Eq. (1):

Leff ¼ Lð0Þ þ Lð1Þ þ Lð2Þ þ Lð3Þ þ � � � ; ð2Þ

where the superscripts (i) denote the order in δ.
The dynamical degrees of freedom are collected in the

unitary 3 × 3 matrix

UðxÞ ¼ exp

�
i
ϕðxÞ
F

�
; ð3Þ

where the Hermitian 3 × 3 matrix

ϕ ¼
X8
a¼0

ϕaλa ¼

0
BBBBB@

π0 þ 1ffiffi
3

p η8 þ
ffiffi
2
3

q
η1

ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η8 þ

ffiffi
2
3

q
η1

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η8 þ

ffiffi
2
3

q
η1

1
CCCCCA

ð4Þ

contains the pseudoscalar octet fields and the pseudoscalar
singlet field η1, the λa (a ¼ 1;…; 8) are the Gell-Mann
matrices, and λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
1. In Eq. (3), F denotes the

pion-decay constant in the three-flavor chiral limit and is
counted as F ¼ Oð ffiffiffiffiffiffi

Nc
p Þ ¼ Oð1= ffiffiffi

δ
p Þ2 [7]. In addition

to the dynamical degrees of freedom of Eq. (4), the
effective Lagrangian also contains a set of external fields
ðs; p; lμ; rμ; θÞ. The fields s, p, lμ, and rμ are Hermitian,
color-neutral 3 × 3 matrices coupling to the corresponding
quark bilinears, and θ is a real field coupling to the
winding number density [18]. The external scalar and
pseudoscalar fields s and p are combined in the definition
χ ≡ 2Bðsþ ipÞ [18]. The low-energy constant (LEC) B is
related to the scalar singlet quark condensate hq̄qi0 in the
three-flavor chiral limit and is of OðN0

cÞ [15].
In general, applying the power counting of Eq. (1) to the

construction of the effective Lagrangian in the LNc
framework involves two ingredients. On the one hand,

there is the momentum and quark-mass counting which
proceeds as in conventional SU(3) ChPT [18]: (covariant)
derivatives count as OðpÞ, χ counts as Oðp2Þ, etc. We
denote the corresponding chiral order by Dp. The LNc

behavior can be determined by using the following rules
(see Refs. [16,17] for a detailed account). In the LNc
counting, the leading contribution to a quark correlation
function is given by a single flavor trace and is of the order
of Nc [9,10,19]. In general, diagrams with r quark loops
and, thus, r flavor traces are of the order of N2−r

c . Terms
without traces correspond to the purely gluonic theory and
count at leading order asN2

c. This argument is transferred to
the level of the effective Lagrangian; i.e., single-trace terms
are of the order of Nc, double-trace terms of the order of
unity, etc.3

Introducing ψ ¼ ffiffiffi
6

p
η1=F [17], each power ðψ þ θÞn is

accompanied by a coefficient of the order of OðN−n
c Þ. The

reason for this assignment is the fact that, in QCD, the
external field θ couples to the winding number density with

1It is understood that dimensionful variables need to be small
in comparison with an energy scale.

2Here, we deviate from the often-used convention of indicating
the three-flavor chiral limit by a subscript 0.

3When applying these counting rules, one has to account for
the so-called trace relations connecting single-trace terms with
products of traces (see, e.g., Appendix A of Ref. [20]).
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strength 1=Nc. In a similar fashion, Dμθ (as well as
multiple derivatives) are related to expressions with
OðN−1

c Þ.4 Denoting the number of (ψ þ θ) and Dμθ terms
by Nθ, the LNc order reads [16,17]

DN−1
c
¼ −2þ Ntr þ Nθ: ð5Þ

The combined order of an operator is then given by

Dδ ¼
1

2
Dp þDN−1

c
: ð6Þ

A. Wess-Zumino-Witten effective action

The two-photon decays arise from the odd-intrinsic-
parity part of the effective field theory. At leading order,
they are driven by the chiral anomaly, which is accounted
for by the WZW action [13,14]. In U(3) ChPT, the WZW
action (without external fields) reads

S0ano ¼ NcS0WZW;

S0WZW ¼ −
i

240π2

Z
1

0

dα
Z

d4xϵijklmhUL
i U

L
j U

L
kU

L
l U

L
mi;

ð7Þ

where h…i denotes the (flavor) trace. For the construction
of the WZWaction, the domain of definition of U needs to
be extended to a (hypothetical) fifth dimension:

UðyÞ ¼ exp

�
iα

ϕðxÞ
F

�
; yi ¼ ðxμ; αÞ;

i ¼ 0;…; 4; 0 ≤ α ≤ 1; ð8Þ
where Minkowski space is defined as the surface of the
five-dimensional space for α ¼ 1. The indices i;…; m in
Eq. (7) run from 0 to 4, y4 ¼ y4 ¼ α, ϵijklm is the
completely antisymmetric (five-dimensional) tensor with
ϵ01234 ¼ −ϵ01234 ¼ 1, and UL

i ¼ U†∂U=∂yi. In the pres-
ence of external fields, the anomalous action receives an
additional term [21,22]

Sano ¼ NcðS0WZW þ SextWZWÞ ð9Þ
given by

SextWZW ¼ −
i

48π2

Z
d4xϵμνρσ

× fhZμνρσðU; l; rÞi − hZμνρσð1; l; rÞig; ð10Þ
with

ZμνρσðU; l; rÞ ¼ 1

2
UlμU†rνUlρU†rσ þ UlμlνlρU†rσ −U†rμrνrρUlσ

þ iU∂μlνlρU†rσ − iU†∂μrνrρUlσ þ i∂μrνUlρU†rσ − i∂μlνU†rρU†lσ

− iULμlνU†rρUlσ þ iURμrνUlρU†rσ − iULμlνlρlσ þ iURμrνrρrσ

þ 1

2
ðULμU†∂νrρUlσ − URμU∂νlρU†rσ þ ULμU†rνU∂ρlσ − URμUlνU†∂ρrσÞ

− ULμULνU†rρUlσ þ URμURνUlρU†rσ þ
1

2
ULμlνUULρlσ −

1

2
URμrνURρrσ

þ ULμlν∂ρlσ − URμrν∂ρrσ þ ULμ∂νlρlσ − URμ∂νrρrσ

− iULμULνULρlσ þ iURμURνURρrσ; ð11Þ

where ULμ ≡U†∂μU and URμ ≡U∂μU†. The subtraction
of the hZμνρσð1; l; rÞi term is necessary to satisfy a
boundary condition leading to an action that is consistent
with the conservation of the vector current.

B. Normal-parity Lagrangians

In the NNLO calculation of the two-photon decays,
the LO, NLO, and NNLO Lagrangians of even intrinsic
parity enter as well. The leading-order Lagrangian is given
by [15,17]

Lð0Þ ¼ F2

4
hDμUDμU†i þ F2

4
hχU† þUχ†i − 1

2
τðψ þ θÞ2;

ð12Þ
where the covariant derivatives of U and U† are defined as

DμU ¼ ∂μU − irμU þ iUlμ;

DμU† ¼ ∂μU† þ iU†rμ − ilμU†: ð13Þ
The constant τ ¼ OðN0

cÞ is the topological susceptibility of
the purely gluonic theory [15]. Counting the quark mass as
Oðp2Þ, the first two terms ofLð0Þ are ofOðNcp2Þ, while the
third term is of OðN0

cÞ; i.e., all terms are of Oðδ0Þ.
The normal-parity part of the NLO Lagrangian Lð1Þ was

constructed in Refs. [15–17] and receives contributions of

4Note that we do not directly book the quantities (ψ þ θ) or
Dμθ as OðN−1

c Þ but rather attribute this order to the coefficients
coming with the terms.
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OðNcp4Þ, Oðp2Þ, and OðN−1
c Þ. We display only the terms

relevant for our calculation; in particular, here, we set vμ ≡
ðrμ þ lμÞ=2 ¼ 0 and aμ ≡ ðrμ − lμÞ=2 ¼ 0 in the covariant
derivatives:

Lð1Þ ¼ L5hDμUDμU†ðχU† þUχ†Þi

þ L8hχU†χU† þUχ†Uχ†i þ F2

12
Λ1DμψDμψ

− i
F2

12
Λ2ðψ þ θÞhχU† −Uχ†i þ � � � ; ð14Þ

where

Dμψ ¼ ∂μψ − 2haμi ð15Þ
and the ellipsis refers to the neglected terms. The first two
terms of Lð1Þ count as OðNcp4Þ and are obtained from the
standard SU(3) ChPT Lagrangian of Oðp4Þ [18] by
retaining solely terms with a single trace and keeping only
the constant terms of the so-called potentials which are
functions of ψ þ θ [17]. According to Eq. (15), the
expression DμψDμψ implicitly involves two flavor traces
(see footnote 7 of Ref. [17]), with the result that the
corresponding term is OðN0

cÞ.
The SU(3) Lagrangian of Oðp6Þ was discussed in

Refs. [20,23–25], and the generalization to the U(3) case
has recently been obtained in Ref. [26]. For the present
purposes, at NNLO, the relevant pieces of Lð2Þ can be split
into three different contributions of OðN−1

c p2Þ, Oðp4Þ, and
OðNcp6Þ, respectively:

Lð2;N−1
c p2Þ ¼ −

F2

4
vð2Þ2 ðψ þ θÞ2hχU† þ Uχ†i; ð16Þ

Lð2;p4Þ ¼ L4hDμUDμU†ihχU† þUχ†i þL6hχU† þUχ†i2
þL7hχU† −Uχ†i2 þ iL18DμψhχDμU† −DμUχ†i
þ iL25ðψ þ θÞhχU†χU† −Uχ†Uχ†i þ � � � ; ð17Þ

Lð2;Ncp6Þ ¼ C12hχþhμνhμνi þ C14huμuμχ2þi
þ C17hχþuμχþuμi þ C19hχ3þi
þ C31hχ2−χþi þ � � � ; ð18Þ

where

χ� ¼ u†χu† � uχ†u;

u ¼
ffiffiffiffi
U

p
;

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†� ¼ iu†DμUu†;

hμν ¼ ∇μuν þ∇νuμ;

∇μX ¼ ∂μX þ ½Γμ; X�;

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�: ð19Þ

The coupling vð2Þ2 of Eq. (16) scales like OðN−2
c Þ and

originates from the expansion of the potentials of
Refs. [15,17] up to and including terms of the order of
ðψ þ θÞ2. The first three terms of Eq. (17) stem from the
standard SU(3) ChPT Lagrangian ofOðp4Þ with two traces
and are 1=Nc suppressed compared to the single-trace
terms in Eq. (14). Finally, the Ci terms of Eq. (18) are
obtained from single-trace terms of the SU(3) Lagrangian
of Oðp6Þ [25].

C. Odd-intrinsic-parity Lagrangians

The WZW term accounts for the anomaly. Beyond the
WZW action, the terms of the odd-intrinsic-parity sector
are ordinary local Lagrangians expressible as closed
expressions in U. However, also in this case, the U(3)
unnatural-parity Lagrangian contains additional terms in
comparison with its SU(3) counterpart. At Oðp4Þ, there
exist six independent invariants which obey charge
conjugation invariance, and the effective Lagrangian at
Oðp4Þ reads [17]

Lðp4Þ
ϵ ¼ LWZW þ Ṽ1ihR̃μνDμUDνU† þ L̃μνDμU†DνUi

þ Ṽ2hR̃μνULμνU†i þ Ṽ3hR̃μνRμν þ L̃μνLμνi
þ Ṽ4iDμθhR̃μνDνUU† − L̃μνU†DνUi
þ Ṽ5ðhR̃μνihRμνi þ hL̃μνihLμνiÞ þ Ṽ6hR̃μνihLμνi;

ð20Þ

where

Rμν ¼ ∂μrν − ∂νrμ − i½rμ; rν�;
Lμν ¼ ∂μlν − ∂νlμ − i½lμ; lν�;

F̃μν ¼ 1

2
ϵμνρσFρσ;

ϵ0123 ¼ 1: ð21Þ

Because of parity, all potentials are odd functions of
(ψ þ θ), except for Ṽ4, which is even.
In the combined LNc and chiral expansions, the WZW

term starts contributing at OðNcp4Þ ¼ OðδÞ. Our aim is
the calculation of the two-photon decays at the one-loop
level, which corresponds to a NNLO calculation in the δ
counting. Therefore, we need the odd-intrinsic-parity
Lagrangians at NLO and NNLO. Up to and including
NNLO, the effective odd-intrinsic-parity Lagrangian is
denoted by

Lϵ ¼ Lð1Þ
WZW þ Lð2Þ

ϵ þ Lð3Þ
ϵ ; ð22Þ

where the superscripts (i) refer to the order in δ. The NLO

Lagrangian Lð2Þ
ϵ receives contributions from Oðp4Þ and

OðNcp6Þ. From Eq. (20), one can extract [17]
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Lð2;p4Þ
ϵ ¼ L̃1iðψ þ θÞhR̃μνDμUDνU† þ L̃μνDμU†DνUi

þ L̃2ðψ þ θÞhR̃μνULμνU†i
þ L̃3ðψ þ θÞhR̃μνRμν þ L̃μνLμνi
þ L̃4iDμθhR̃μνDνUU† − L̃μνU†DνUi: ð23Þ

The odd-intrinsic-parity Lagrangian at Oðp6Þ has been con-
structed in SU(3) ChPT in Refs. [23,24]. Reference [26]
provides the full Oðp6Þ Lagrangian in U(3) ChPT. The
OðNcp6Þ contributions are those terms of the Oðp6Þ
Lagrangian which have only one flavor trace and do not

contain the fields (ψ þ θ) orDμθ. TheNNLOLagrangianLð3Þ
ϵ

consists of terms of OðNcp8Þ, Oðp6Þ, and OðN−1
c p4Þ. The

Oðp8Þ Lagrangian has not been constructed so far. Order p6

terms stem from theOðp6Þ Lagrangian containing two flavor

traces or the field Dμθ or are generated when expanding the
potentials of the odd-parity terms of theOðp6ÞLagrangian up
to and including linear order in (ψ þ θ). Terms ofOðN−1

c p4Þ
could arise from the expansion of the potentials in Lðp4Þ

ϵ , but
they do not contribute to the two-photon decays. Since
especially the Oðp6Þ Lagrangian contains a lot of terms,
we display only the terms needed for the calculations in
this work. The relevant terms of the OðNcp6Þ and Oðp6Þ
Lagrangians are shown inTable I. Since there is, at present, no
satisfactory unified nomenclature for the coupling constants,
for easier reference we choose the names according to the
respective references fromwhich theLagrangianswere taken.
The operators with the LECs L6;ϵ

i , which appear in SU(3)
ChPT as well, are taken from Ref. [23]. They are given in
terms of the building blocks

ðAÞ� ¼ u†Au† � uA†u;

Gμν ¼ RμνU þULμν;

Hμν ¼ RμνU −ULμν;

ðDμDνUÞs− ¼ 1

2
ðfDμ; DνgUÞ−

¼ ðDμDνUÞ− þ i
2
ðHμνÞþ; ð24Þ

where A refers to operators transforming under the chiral

group G as A!G VRAV
†
L. The other terms, genuinely related

to the U(3) sector, are taken from Ref. [26]. Here, the
corresponding building blocks are the same as in Eq. (19)
with the additional structures

fμν� ¼ uLμνu† � u†Rμνu: ð25Þ

D. Power counting

In the following, we provide the power-counting rules
for a given Feynman diagram, which has been evaluated by
using the interaction vertices derived from the effective
Lagrangians of Eq. (2). Using the δ counting introduced in

TABLE I. Relevant terms of Lð2;Ncp6Þ
ϵ and Lð3;p6Þ

ϵ .

Lagrangian LEC Operator SU(3)

Lð2;Ncp6Þ
ϵ L6;ϵ

3
ihðχÞþfðGμνÞþðHαβÞþ − revgiϵμναβ ✗

L6;ϵ
8

ihðχÞ−ðGμνÞþðGαβÞþiϵμναβ ✗

L6;ϵ
19

ihðDλGλμÞþfðGναÞþðDβUÞ− þ revgiϵμναβ ✗

Lð3;p6Þ
ϵ L6;ϵ

9
ihðχÞ−ihðGμνÞþðGαβÞþiϵμναβ ✗

L237 ϵμνλρhfþμνihfþλ
σhρσi � � �

L238 ϵμνλρhfþμνih∇σfþλσuρi � � �
L239 ϵμνλρhfþμν∇σfþλσihuρi � � �
L258 iϵμνλρhfþμνihfþλρχ−i � � �
Λ442 ϵμνλρðψ þ θÞhfþμνfþλρχþi � � �

TABLE II. Power-counting rules in LNcChPT. (a) The inverse
of the singlet η1 propagator is of the order of 1=Nc and p2.
(b) The assignment i in LðiÞ receives contributions from both
1=Nc and p2. Recall that powers ðψ þ θÞn come with expansion
coefficients of OðN−n

c Þ even though we count (ψ þ θ) as Oð1Þ.
Quantity Nc p δ

Momenta/derivatives p=∂μ 1 p δ1=2

1=Nc N−1
c 1 δ

Quark masses m 1 p2 δ
Dynamical fields ϕa (a ¼ 1;…; 8Þ ffiffiffiffiffiffi

Nc
p

1 δ−1=2

Dynamical field ψ 1 1 1
External field θ 1 1 1
External currents vμ and aμ 1 p δ1=2

External fields s and p 1 p2 δ
Pion-decay constant F (chiral limit)

ffiffiffiffiffiffi
Nc

p
1 δ−1=2

Topological susceptibility τ 1 1 1
M2

η0 (chiral limit) N−1
c 1 δ

Octet-meson propagator 1 p−2 δ−1

Singlet-η1 propagator (chiral limit) (a) (a) δ−1

Loop integration 1 p4 δ2

k-meson vertex from LðiÞ (b) (b) δiþk=2
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Eq. (1), we assign to any such diagram an order D which
is obtained from the following ingredients: Meson propa-
gators for both octet and singlet fields count as Oðδ−1Þ.
Since meson fields are always divided by F ¼ Oð ffiffiffiffiffiffi

Nc
p Þ ¼

Oðδ−1=2Þ, a vertex with k meson fields derived from LðiÞ is
Oðδiþk=2Þ. The integration of a loop counts as δ2. The order
D is obtained by adding up the contributions of the
individual building blocks. The power-counting rules are
summarized in Table II.

III. CALCULATION OF THE INVARIANT
AMPLITUDE

The invariant amplitude of the two-photon decay of a
pseudoscalar meson P can be parameterized by

M ¼ −iFPγ�γ� ðq21; q22Þϵμναβϵμ1ϵν2qα1qβ2; ð26Þ

where qμ1 and q
μ
2 denote the photon momenta, ϵμ1 and ϵ

μ
2 are

the polarization vectors of the photons, and FPγ�γ� ðq21; q22Þ is
the so-called transition form factor (TFF). In order to
determine the invariant amplitude up to and including
NNLO, we need to calculate the Feynman diagrams shown
in Fig. 1. The vertices are derived from the Lagrangians
given in Sec. II. The coupling of the electromagnetic field
to the mesons is described by introducing an external field
which couples to the electromagnetic current operator

Jμ ¼ q̄Qγμq; ð27Þ

whereQ is the quark-charge matrix. For Nc ¼ 3, the quark-
charge matrix is given by

Qð3Þ ¼ diag

�
2

3
;−

1

3
;−

1

3

�
: ð28Þ

However, as Bär and Wiese pointed out [27], in order for
the Standard Model to be consistent for arbitrary Nc, the

ordinary quark-charge matrix should be replaced by (see
also Ref. [28])

QðNcÞ ¼
1

2
diag

�
1

Nc
þ 1;

1

Nc
− 1;

1

Nc
− 1

�

¼ −
1

6
1þ 1

2
λ3 þ

1

2
ffiffiffi
3

p λ8 þ
1

2Nc
1: ð29Þ

In other words, the quark-charge matrix is split into a
leading-order piece of OðN0

cÞ and a subleading-order piece
of OðN−1

c Þ. For that reason, we investigate two scenarios
for the calculation of the invariant amplitudeM. In the first
case, we considerMðQð3ÞÞ, implying that the perturbative
expansion is solely based on the 1=Nc assignments
associated with the interaction Lagrangians (see Sec. II).
In this context, the external field vμ containing the
electromagnetic four-potential counts as Oðδ1=2Þ (see
Table II). In the second case, we work with QðNcÞ such
that vμ separates into two parts of Oðδ1=2Þ and Oðδ3=2Þ,
respectively. Here, we perform an additional expansion of
MðQðNcÞÞ in 1=Nc up to and including NNLO and then
setNc ¼ 3 at the end. The Feynman diagrams are evaluated
using the Mathematica package FeynCalc [29].
For the decays of η and η0, we take into account the

η-η0 mixing at NNLO.5 A detailed derivation of the η-η0
mixing at NNLO can be found in Ref. [30]. First, we
calculate the coupling of two photons to the octet and
singlet fields ϕb, collected in the doublet ηA ≡ ðη8; η1ÞT ,
at the one-loop level up to and including NNLO in the δ
counting. The result, which should be interpreted as a
Feynman rule, is represented by the “matrix elements”
F b ¼ hγ�γ�jbi. In a next step, we transform the bare
fields ηA to the physical states using the transformation T
in Eq. (51) in Ref. [30]:

FIG. 1. Feynman diagrams for P → γ�γ� up to and including NNLO. Dashed lines refer to pseudoscalar mesons and wiggly lines to
photons. The numbers k in the interaction blobs refer to vertices derived from the corresponding Lagrangians LðkÞ.

5No mixing with π0.
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�
η8

η1

�
¼

�
T8η T8η0

T1η T1η0

��
η

η0

�
: ð30Þ

The resulting (“physical”) matrix elements are then given by

�
Fηγ�γ�

Fη0γ�γ�

�
¼

�
T8η T1η

T8η0 T1η0

��
F 8

F 1

�
: ð31Þ

For the calculation of the loop diagrams, we employ the
LO mixing.
Without the 1=Nc expansion of Q, the results for the

form factors of π0, η, and η0 at LO and NLO read

FLO
π0γ�γ� ¼

1

4π2Fπ
; ð32Þ

FNLO
π0γ�γ� ¼

1

4π2Fπ

×

�
1 −

1024

3
π2M2

πL
6;ϵ
8 −

512

3
π2L6;ϵ

19 ðq21 þ q22Þ
�
;

ð33Þ

FLO
ηγ�γ� ¼

1

4
ffiffiffi
3

p
π2Fπ

½cosðθ½0�Þ − 2
ffiffiffi
2

p
sinðθ½0�Þ�; ð34Þ

FNLO
ηγ�γ� ¼

1

4
ffiffiffi
3

p
π2Fπ

�
cosðθ½1�Þ − 2

ffiffiffi
2

p
sinðθ½1�Þ þ 8ðM2

K −M2
πÞ½

ffiffiffi
2

p
sinðθ½1�Þ þ 2 cosðθ½1�Þ�
3F2

π
L5

þ 1024

9
π2½2

ffiffiffi
2

p
ðM2

K þ 2M2
πÞ sinðθ½1�Þ þ ð4M2

K − 7M2
πÞ cosðθ½1�Þ�L6;ϵ

8

þ
ffiffiffi
2

p
sinðθ½1�Þλ1 −

512

3
π2½cosðθ½1�Þ − 2

ffiffiffi
2

p
sinðθ½1�Þ�L6;ϵ

19 ðq21 þ q22Þ
�
; ð35Þ

FLO
η0γ�γ� ¼

1

4
ffiffiffi
3

p
π2Fπ

½sinðθ½0�Þ þ 2
ffiffiffi
2

p
cosðθ½0�Þ�; ð36Þ

FNLO
η0γ�γ� ¼

1

4
ffiffiffi
3

p
π2Fπ

�
sinðθ½1�Þ þ 2

ffiffiffi
2

p
cosðθ½1�Þ

þ 8ðM2
π −M2

KÞ½
ffiffiffi
2

p
cosðθ½1�Þ − 2 sinðθ½1�Þ�
3F2

π
L5

−
1024

9
π2½ð7M2

π − 4M2
KÞ sinðθ½1�Þ þ 2

ffiffiffi
2

p
ðM2

K þ 2M2
πÞ cosðθ½1�Þ�L6;ϵ

8

−
ffiffiffi
2

p
cosðθ½1�Þλ1 −

512

3
π2½sinðθ½1�Þ þ 2

ffiffiffi
2

p
cosðθ½1�Þ�L6;ϵ

19 ðq21 þ q22Þ
�
; ð37Þ

where θ½i� is the corresponding mixing angle at LO (NLO)
obtained from Eq. (49) in Ref. [30]. The parameter λ1 is a
QCD-scale-invariant combination of parameters violating
the Okubo-Zweig-Iizuka (OZI) rule, given by [17]

λ1 ¼ Λ1 − 2K1 ¼ Λ1 þ 16π2ðL̃2 þ 2L̃3Þ: ð38Þ

Including the 1=Nc expansion of Q, the results at LO and
NLO now take the form

FLO
π0γ�γ� ¼ 0; ð39Þ

FNLO
π0γ�γ� ¼

1

4π2Fπ
; ð40Þ

FLO
ηγ�γ� ¼ −

3
ffiffi
3
2

q
8π2Fπ

sinðθ½0�Þ; ð41Þ

FNLO
ηγ�γ� ¼

3
ffiffi
3
2

q
8π2Fπ

�
− sinðθ½1�Þ

þ 8ðM2
K −M2

πÞ½sinðθ½1�Þ þ
ffiffiffi
2

p
cosðθ½1�Þ�

3F2
π

L5

þ 1024

9
π2½ð2M2

K þM2
πÞ sinðθ½1�Þ

þ 2
ffiffiffi
2

p
ðM2

K −M2
πÞ cosðθ½1�Þ�L6;ϵ

8

þ sinðθ½1�Þ
2

λ1 þ 384
ffiffiffi
2

p
π2 sinðθ½1�ÞL6;ϵ

19 ðq21 þ q22Þ
�
;

ð42Þ

FLO
η0γ�γ� ¼

3
ffiffi
3
2

q
8π2Fπ

cosðθ½0�Þ; ð43Þ
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FNLO
η0γ�γ� ¼

3
ffiffi
3
2

q
8π2Fπ

�
cosðθ½1�Þ

þ 8ðM2
K −M2

πÞ½
ffiffiffi
2

p
sinðθ½1�Þ − cosðθ½1�Þ�
3F2

π
L5

þ 1024

9
π2½2

ffiffiffi
2

p
ðM2

K −M2
πÞ sinðθ½1�Þ

− ð2M2
K þM2

πÞ cosðθ½1�Þ�L6;ϵ
8

−
cosðθ½1�Þ

2
λ1 − 384

ffiffiffi
2

p
π2 cosðθ½1�ÞL6;ϵ

19 ðq21 þ q22Þ
�
:

ð44Þ

At NNLO, the expressions for the form factors are quite
long. Therefore, we do not display all terms explicitly.
The loop contributions corresponding to the loop diagrams
shown in Fig. 1 are provided in Appendix A. The expres-
sions for the full NNLO form factors, with tree-level
contributions, are available as Mathematica notebooks.

A. Observables

The decay amplitude for real photons is recovered by
setting q21 ¼ q22 ¼ 0 in Eq. (26). The decay width is then
given by [31]

Γ ¼ 1

2!2MPð2πÞ2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ½M2

P; 0; 0�
p

2M2
P

Z
dΩ

X
λ1;λ2

jMj2; ð45Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2xz is the
Käellén function, λ1 and λ2 denote the polarizations of the
photons, and dΩ is the solid angle of one of the photons.
Using

P
λ ϵ

�
ðλÞμϵðλÞμ0 ¼ −gμμ0 , one obtains

ΓðP → γγÞ ¼ M3
P

64π
jFPγγj2: ð46Þ

The single-virtual TFF FPγ�γðq2Þ ≔ FPγ�γ� ðq2; 0Þ can be
measured in single Dalitz decays P → γlþl−. The slope of
the TFF is defined as

slope ≔
1

FPγγ

d
dq2

FPγ�γðq2Þjq2¼0
: ð47Þ

One can also define the dimensionless quantity
bP ¼ M2

P × slope. The curvature is given by

curv ≔
1

2

1

FPγγ

d2

dðq2Þ2 FPγ�γðq2Þjq2¼0
; ð48Þ

and the corresponding dimensionless quantity reads cP ¼
M4

P × curv.
Experimental extractions of the slope parameter are

often performed using a vector-meson-dominance model
(VMD) [32] to fit the data. Introducing GPγ�γðQ2Þ ¼
FPγ�γðq2Þ with Q2 ¼ −q2, in this case, the TFF is given
by a normalized single-pole term with an associated mass
ΛP [33]:

GPγ�γðQ2Þ ¼ FPγγð0Þ
1þQ2=Λ2

P
: ð49Þ

Expanding this expression in Q2 leads to

GPγ�γðQ2Þ ¼ FPγγð0Þ
�
1 −

Q2

Λ2
P
þ ðQ2Þ2

Λ4
P

þ � � �
�
: ð50Þ

Now, we can read off the slope and curvature VMD
predictions, which are given by

slope ¼ 1

Λ2
P
; ð51Þ

curv ¼ 1

Λ4
P
: ð52Þ

IV. NUMERICAL ANALYSIS

We perform the numerical analysis of our results
successively at LO, NLO, and NNLO. In the following,
we distinguish between two cases: (a) using the normal
quark-charge matrix for Nc ¼ 3 and (b) taking the 1=Nc
expansion ofQ into account, denoted by Qexp. Performing
the 1=Nc expansion of Q shifts some of the LECs to higher

TABLE III. Results for the two-photon decay widths and the slope parameters at NLO.

Γπ0 [eV] Γη [keV] Γη0 [keV] bπ0 bη bη0

LO 7.79� 0.02 0.62� 0.00 5.03� 0.01 0� 0 0� 0 0� 0
LO, Qexp 0� 0 0.20� 0.00 8.33� 0.02 0� 0 0� 0 0� 0
NLO 1 7.63� 0.16 0.60� 0.27 4.20� 8.36 0.04� 0.02 0.52� 0.31 2.36� 1.39
NLO 2 6.98� 1.50 0.50� 0.93 4.34� 7.30 0.03� 0.07 0.43� 1.03 −1.74� 4.18
NLO 3 7.08� 1.20 0.43� 0.69 4.75� 5.57 0.03� 0.05 0.45� 0.64 −1.63� 2.61
NLO, Qexp 7.79� 0.02 0.52� 7.29 4.36� 56.70 0� 0 0.12� 4.25 −1.49� 52.63
Data [34] 7.63� 0.16 0.51� 0.02 4.36� 0.14 0.034� 0.003 0.59� 0.02 1.49� 0.16
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orders. The LECs L6;ϵ
8 and L6;ϵ

19 , stemming from the NLO
Lagrangian in Table I in Sec. II, appear only at NNLO in
the expression for the two-photon decay of the π0. At LO,
no unknown LECs show up, and we can calculate the
desired quantities directly.

A. NLO

At NLO, we have to determine five LECs. From the
even-intrinsic-parity sector, L5 and the NLO mixing angle
θ½1� contribute. Here, we employ the values for L5 and θ½1�
determined in the NLO analysis of the η-η0 mixing in
Tables II and IV in Ref. [30] labeled NLO I, namely, L5 ¼
ð1.86� 0.06Þ × 10−3 and θ½1� ¼ ð−11.6� 0.6Þ deg. From
the odd-intrinsic-parity sector we have to fix L6;ϵ

8 , L6;ϵ
19 ,

and λ1 ¼ Λ1 − 2K1.

1. Determinations of the parameters

First, we consider the Qð3Þ case. Since the decay width
of the π0 to two photons depends only on L6;ϵ

8 , we start by
fixing L6;ϵ

8 to the experimental value of Γπ0→γγ . We then fit
λ1 simultaneously to the experimental results for Γη→γγ and
Γη0→γγ. The experimental values for the decay widths are
taken from Ref. [34] and are displayed in Table III. Finally,
the parameter L6;ϵ

19 is determined through a simultaneous fit
to the experimental values of the π0, η, and η0 slopes, given
in Table III. For the fits we employ theMathematica routine
NonlinearModelFit. The errors of the fit parameters and of
the results are the ones obtained from the fit routine. The
different steps are performed successively, and we do not
take the errors of LECs determined in a previous step into
account. We also do not consider the errors due to
neglecting higher-order terms. In principle, a systematic
error of at least 10%, corresponding to δ2 ¼ 1=9, should be
added to all quantities determined up to NLO. The results
for the LECs are given in Table IV and the results for the
decay widths and slopes in Table III, labeled NLO 1.
Next, we examine the case where we fit L6;ϵ

8 and λ1
simultaneously to all three decay widths Γπ0→γγ , Γη→γγ , and

Γη0→γγ. The constant L
6;ϵ
19 is then again fixed to the slopes of

π0, η, and η0. The results are shown in Table IV, labeled
NLO 2. To consistently take the errors of L6;ϵ

8 , L6;ϵ
19 , and λ1

into account, we consider another scenario where we
determine these three LECs through a simultaneous fit
to the decay widths of π0, η, and η0 and the slope parameters

of π0, η, and η0. The results are given in Table IV, labeled
NLO 3.
In the QðNcÞ case, the π0 form factor at NLO is

independent of L6;ϵ
8 and L6;ϵ

19 , which are shifted to the
NNLO expression. The width Γπ0→γγ takes the LO value of
the Qð3Þ case, and the slope is equal to zero at NLO.
Therefore, we determine L6;ϵ

8 , L6;ϵ
19 , and λ1 via a simulta-

neous fit to Γη→γγ , Γη0→γγ , bη, and b0η. The results are
displayed in Table IV, labeled NLO, Qexp.
The parameters L5 and θ½1� have been determined in the

NLO analysis in Ref. [30] with a small error. Therefore, we
have not taken these errors into account in the analysis of
the two-photon decays. However, to obtain an estimate of
the effect of the errors, we recalculated the quantities in the
NLO 2 scenario varying L5 and θ½1� within their errors. This
led to only small variations in the last digit of the results for
the decay widths and the slopes. We conclude that the
influence of the errors of L5 and θ1 is very small, and we
omit them in the following.

2. Discussion of the results

In the NLO 1 case, we find quite small values for L6;ϵ
8 and

λ1.However, ifweperforma simultaneous fit to theπ0,η, and
η0 decay widths (NLO 2 and NLO 3, which yield similar
results), the values for L6;ϵ

8 and λ1 become larger, with a
drastic increase of the λ1 value. Phenomenological studies
[35–38] suggest that OZI-rule-violating parameters as, e.g.,
λ1, should be small. For example, Ref. [35] determines6

λ1 ¼ Λ1 − 2Λ3 ¼ 0.25, and Ref. [38] finds Λ1 ¼ 0.21ð5Þ
and Λ3 ¼ 0.05ð3Þ, yielding λ1 ¼ Λ1 − 2Λ3 ¼ 0.11ð8Þ.
These results are in agreementwith theNLO1 case, whereas
the scenariosNLO2andNLO3 indicatevery largeOZI-rule-
violating corrections. The values forL6;ϵ

19 do not exhibit large
variations in thedifferent scenarios.Theycanbecompared to
a VMD prediction yielding L6;ϵ

19 ¼ −1 × 10−3 [31]. Our
absolute values are 30% larger than predicted by VMD
but agree mostly within their errors.
The LO values for the decay widths labeled LO agree

within 20% with the experimental values. The slopes are
equal to zero at that order. At LO, taking the 1=Nc
expansion of Q into account leads to results that are far
from the experimental values. The NLO calculations
improve the description of the decay widths. In the NLO
1 case, the π0 decay width is equal to the experimental
value, because L6;ϵ

8 is fixed to it. In the NLO 2 case, where
the parameters were fitted to all three decay widths, the
description of Γπ0 worsens, while Γη and Γη0 come closer
to the experimental values. Our NLO 1–3 results for the
slope of the η agree well with the experimental value.
The description of the η0 slope, however, is very bad.
Because of the small error of bη, the fit favors this value,

TABLE IV. Results for the LECs determined at NLO.

L6;ϵ
8 ½10−3� L6;ϵ

19 ½10−3� λ1

NLO 1 0.16� 0.17 −1.26� 0.17 0.04� 0.12
NLO 2 0.86� 0.13 −0.94� 0.53 2.59� 0.13
NLO 3 0.76� 0.42 −0.92� 0.44 2.75� 0.39
NLO, Qexp 0.23� 0.42 −0.67� 1.86 2.16� 0.82

6In Ref. [35], the coupling K1 is denoted by Λ3 ¼ K1.
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contributing to the poor description of bη0 . In the simulta-
neous fit to all decay widths and slope parameters (NLO 3),
the results for the decay widths show larger deviations from
the experimental values in comparison to NLO 2, margin-
ally improving the values for the slopes. In the NLO, Qexp
scenario, the π0 decay width is given by the leading-order
value of theQð3Þ case. Since, then, the two parameters L6;ϵ

8

and λ1 need to be fixed by Γη and Γη0 alone, we reproduce
the experimental values for these widths. The results for bη
and bη0 are very poor in this case. In the NLO, Qexp case,
the errors of the LECs and the results for the decay widths
and slopes are very large. This further reflects the fact that
the NLO, Qexp calculation is not appropriate to describe
the data, and the LECs cannot be fixed in a sensible way.
We thus conclude that omitting the 1=Nc expansion of Q
leads to a better description of the experimental data at LO
and NLO. However, in general, the NLO calculation is not
sufficient to adequately describe the decay widths and
slopes of π0, η, and η0, which motivates taking higher-order
corrections into account.

B. NNLO

1. Parametrization of the TFFs and determination
of the parameters

At NNLO, a lot of new LECs appear both from the even-
intrinsic-parity sector and the odd-intrinsic-parity sector.
Moreover, our power counting demands taking terms of
the Oðp8Þ Lagrangian into account, which has not been
constructed yet. We therefore make the following ansatz for
the q2 dependence of the single-virtual TFFs up to and
including NNLO:

Fπ0γ�γðq2Þ ¼ FLO
π0γ�γ þ

1

4π2Fπ
½Aπ0 þ Bπ0q

2 þ Cπ0ðq2Þ2�

þ loopsπ0ðq2Þ; ð53Þ

Fηγ�γðq2Þ ¼ FLO
ηγ�γ þ

1

4
ffiffiffi
3

p
π2Fπ

½Aη þ Bηq2 þ Cηðq2Þ2�

þ loopsηðq2Þ; ð54Þ

Fη0γ�γðq2Þ ¼ FLO
η0γ�γ þ

2
ffiffiffi
2

p

4
ffiffiffi
3

p
π2Fπ

½Aη0 þ Bη0q2 þ Cη0 ðq2Þ2�

þ loopsη0 ðq2Þ: ð55Þ

The AP and BP are combinations of LECs from the higher-
order Lagrangians in Sec. II and, in principle, receive
contributions from the Oðp8Þ Lagrangian as well. The CP

stem solely from the Oðp8Þ Lagrangian, and we assume
them to be independent. The expression loopsPðq2Þ denotes
the q2-dependent part of the loop corrections, while the
q2-independent parts are absorbed in the parameters AP.

We determine the parameters AP, BP, and CP through a
simultaneous fit to the real-photon decay widths ΓP→γγ and
to the experimental data for the TFFs. In the following, we
perform several fits for the π0, the η, and the η0 TFF
considering different NNLO contributions. We start by
fitting the full NNLO expressions. Then, we consider the
case without loops, which means switching off the q2-
dependent pieces loopsPðq2Þ. To study the influence of the
CP terms, we also perform fits where we put CP ¼ 0.
Finally, we discuss the case where both CP and loops are
neglected. In addition, we examine each of these four
scenarios taking the 1=Nc expansion of Q into account,
denoted by Qexp. The fits are performed using the
Mathematica routine NonlinearModelFit, and the errors
of the fit parameters are the ones obtained by this routine. In
all fits, when calculating the fit parameter errors, we take
only the experimental errors into account. To that end, we
put the estimated variance, corresponding to the reduced χ2,
to 1. To evaluate the quality of the fits, we provide the mean
squared error denoted by MSE in the tables for the fit
parameters. The MSE is obtained from the ANOVATable in
Mathematica and defined as

MSE ¼ 1

ndof

XN
i¼1

ðyi − ŷiÞ2
Δy2i

; ð56Þ

where ndof is the number of degrees of freedom, N the
number of data points, yi the value of the ith data point,Δyi
its error, and ŷi the corresponding model prediction.
Furthermore, a systematic error of at least 4%, correspond-
ing roughly to δ3 ¼ ð1=3Þ3, should be added to all results
determined up to NNLO.
The π0 TFF is fitted to both the timelike experi-

mental data in Refs. [39–42] and the spacelike data from
Ref. [1]. For each scenario, we fit the TFF to four different
regions of the photon virtuality q2, which are given
by −0.55 GeV2 ≤ q2 ≤ 0.55 GeV2, −0.5GeV2≤q2≤
0.5GeV2, −0.45GeV2≤q2≤0.45GeV2, and −0.4 GeV2 ≤
q2 ≤ 0.4 GeV2. The results for the fit parameters obtained
in the range −0.5 GeV2 ≤ q2 ≤ 0.5 GeV2 are provided in
Table V, while the results for the other fits are shown in
Table XVI in Appendix B.
The TFF of the η is fitted to the timelike experimental

data obtained in Refs. [42–46]. For each case, we per-
form fits up to three different values of the invariant
mass of the lepton pair, mðlþl−Þ. The maximal mðlþl−Þ
values are m1ðlþl−Þ¼0.47GeV, m2ðlþl−Þ ¼ 0.40 GeV,
and m3ðlþl−Þ ¼ 0.35 GeV. The results for the parameters
fitted up to 0.47 GeV are displayed in Table VI, and the
results of the other fits can be found in Table XVII in
Appendix B.
For the η0 TFF, there are also data points in the spacelike

low-energy region available. Therefore, we fit the TFF to
the spacelike data from Ref. [47] and to the timelike data
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from Ref. [48]. Here, we choose four fit regions for each
scenario. The different fit ranges for the photon virtuality q2

are −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I), −0.53 GeV2 ≤
q2 ≤ 0.40 GeV2 (II), −0.50 GeV2 ≤ q2 ≤ 0.43 GeV2 (III),
and −0.50 GeV2 ≤ q2 ≤ 0.40 GeV2 (IV). Table VII shows
the results for the parameters fitted in the range
−0.53 GeV2 ≤ q2 ≤ 0.43 GeV2, and the results of the
other fits are displayed in Table XVIII in Appendix B.
The q2 dependence of the π0 TFF is displayed in Fig. 2 in

the timelike region and in Fig. 3 in the spacelike region.
Here, the TFF is normalized to 1 at q2 ¼ 0 and plotted
together with the experimental data. In this case, the TFF
was fitted in the range −0.5 GeV2 ≤ q2 ≤ 0.5 GeV2.
The bands show the 1σ error bands obtained by the
Mathematica fit routine NonlinearModelFit.
In Figs. 4 and 5, the results for the different fit ranges are

displayed in the timelike and in the spacelike region,
respectively.

The q2 dependence of the normalized η TFF is shown in
Fig. 6, where the TFF is plotted as a function of the invariant
mass of the lepton pair mðlþl−Þ together with the exper-
imental data. In this case, the TFF was fitted up to 0.47 GeV.
The bands show the1σ error bands. Figure 7 shows the results
of the fits for the different fit ranges. As the fit range is
extended tohighermðlþl−Þvalues, thecurvesbecomesteeper.
The q2 dependence of the normalized η0 TFF, fitted

between −0.53 and 0.43 GeV2, is shown in Fig. 8 together
with the experimental data. The bands are the 1σ error
bands due to the errors of the fit parameters. The results for
the η0 TFF fitted to different ranges are displayed in Fig. 9.

2. Discussion of the results

In the following, we will interpret the results of the
NNLO analysis. We start with the discussion of the LECs
determined at NNLO, shown in Tables V,VI,VII. Switching

TABLE V. Fit parameters for the π0 TFF. The LECs were fitted in the range −0.5 GeV2 ≤ q2 ≤ 0.5 GeV2.

Aπ0 Bπ0 [GeV−2] Cπ0 [GeV−4] MSE

Full −0.01� 0.01 0.91� 0.15 1.40� 0.35 0.33
Without loops −0.01� 0.01 1.28� 0.15 1.62� 0.35 0.33
Cπ0 ¼ 0 −0.01� 0.01 0.34� 0.06 0� 0 0.75
Without loops ∧ Cπ0 ¼ 0 −0.01� 0.01 0.61� 0.06 0� 0 0.88
Full, Qexp 0.99� 0.01 1.25� 0.15 1.60� 0.35 0.33
Without loops, Qexp 0.99� 0.01 1.28� 0.15 1.62� 0.35 0.33
Cπ0 ¼ 0, Qexp 0.99� 0.01 0.60� 0.06 0� 0 0.87
Without loops ∧ Cπ0 ¼ 0, Qexp 0.99� 0.01 0.61� 0.06 0� 0 0.88

TABLE VI. Fit parameters for the η TFF. The LECs were fitted up to 0.47 GeV.

Aη Bη [GeV−2] Cη [GeV−4] MSE

Full −0.17� 0.03 2.32� 0.22 10.51� 1.82 0.42
Without loops −0.17� 0.03 2.98� 0.22 11.35� 1.82 0.41
Cη ¼ 0 −0.17� 0.03 3.41� 0.12 0� 0 0.76
Without loops ∧ Cη ¼ 0 −0.17� 0.03 4.16� 0.12 0� 0 0.80
Full, Qexp 0.66� 0.03 2.39� 0.22 10.59� 1.82 0.42
Without loops, Qexp 0.66� 0.03 2.98� 0.22 11.35� 1.82 0.41
Cη ¼ 0, Qexp 0.66� 0.03 3.49� 0.12 0� 0 0.76
Without loops ∧ Cη ¼ 0, Qexp 0.66� 0.03 4.16� 0.12 0� 0 0.80

TABLE VII. Fit parameters for the η0 TFF. The LECs were fitted in the range −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2.

Aη0 Bη0 ½GeV−2� Cη0 ½GeV−4� MSE

Full −0.06� 0.02 1.08� 0.25 1.18� 0.52 0.52
Without loops −0.06� 0.02 1.23� 0.26 1.30� 0.52 0.51
Cη0 ¼ 0 −0.06� 0.02 0.55� 0.10 0� 0 0.89
Without loops ∧ Cη0 ¼ 0 −0.06� 0.02 0.64� 0.11 0� 0 0.97
Full, Qexp −0.29� 0.02 1.07� 0.25 1.17� 0.52 0.52
Without loops, Qexp −0.29� 0.02 1.23� 0.26 1.30� 0.52 0.51
Cη0 ¼ 0, Qexp −0.29� 0.02 0.54� 0.10 0� 0 0.88
Without loops ∧ Cη0 ¼ 0, Qexp −0.29� 0.02 0.64� 0.11 0� 0 0.97
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on or off the loop contributions corresponds to keeping the
q2-dependent parts, loopsPðq2Þ, or neglecting them, respec-
tively. As a result, the parameters AP remain the same in
both cases. The inclusion of the 1=Nc expansion of Q has
almost no visible effect on the shape of the TFFs. However,
this expansion has an influence on the parameters AP, i.e.,
the absolute normalizations of the form factors, which
change notably, since the LO expressions for the TFF (see
Sec. III) are different with or without the 1=Nc expansion of
Q. The q2-dependent loop corrections loopsPðq2Þ give
numerically quite similar contributions to the TFF with or
without the 1=Nc expansion of Q. Therefore, the param-
eters BP and CP do not vary very much in these two cases.
As Figs. 13–16 in Appendix C show, the influence of the

loop contributions on the shape of the TFFs is very small.
However, the effects of the loops can be seen in the
variation of BP and CP with and without loops, where
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FIG. 2. π0 TFF in the timelike region, fitted in the range
−0.5 GeV2 ≤ q2 ≤ 0.5 GeV2. The solid (red) line is the full
NNLO calculation and the dashed (blue) line the NNLO result
with Cπ0 ¼ 0. The experimental data are taken from Refs. [39]
(Black daimond), [40] (White square), [41] (Black up-pointing
triangle), and [42] (Black circle).
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FIG. 3. π0 TFF in the spacelike region, fitted in the range
−0.5 GeV2 ≤ q2 ≤ 0.5 GeV2. The solid (red) line is the full
NNLO calculation and the dashed (blue) line the NNLO result
with Cπ0 ¼ 0. The experimental data are taken from Ref. [1].

FIG. 4. π0 TFF in the timelike region fitted in the range
−0.55 GeV2 ≤ q2 ≤ 0.55 GeV2 (solid, long-dashed line),
−0.5 GeV2 ≤ q2 ≤ 0.5 GeV2 (dashed, long-dash-dotted line),
−0.45GeV2≤q2≤0.45GeV2 (dash-dotted, double-dotted line),
and −0.4 GeV2 ≤ q2 ≤ 0.4 GeV2 (dotted, long-dotted line). The
red (solid, dashed, dash-dotted, and dotted) lines are the full
NNLO calculations and the blue (long-dashed, long-dash-dotted,
double-dotted, and long-dotted) lines the NNLO results with
Cπ0 ¼ 0. The long-dashed, long-dash-dotted, and double-dotted
curves are indistinguishable at this scale. The experimental data
are taken from Refs. [39] (Black daimond), [40] (White square),
[41] (Black up-pointing triangle), and [42] (Black circle).
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FIG. 5. π0 TFF in the spacelike region fitted in the range
−0.55 GeV2 ≤ q2 ≤ 0.55 GeV2 (solid, long-dashed line),
−0.5 GeV2 ≤ q2 ≤ 0.5 GeV2 (dashed, long-dash-dotted line),
−0.45 GeV2 ≤ q2 ≤ 0.45 GeV2 (dash-dotted, double-dotted
line), and −0.4 GeV2 ≤ q2 ≤ 0.4 GeV2 (dotted, long-dotted
line). The red (solid, dashed, dash-dotted, and dotted) lines are
the full NNLO calculations and the blue (long-dashed, long-dash-
dotted, double-dotted, and long-dotted) lines the NNLO results
with Cπ0 ¼ 0. The long-dashed, long-dash-dotted, and double-
dotted curves are indistinguishable at this scale. The experimental
data are taken from Ref. [1].
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we observe rather small changes. Neglecting the loops
leads to an increase of the values of BP and CP in order to
compensate for the missing contributions, which add
positively to the TFFs.
Table XVI in Appendix B shows the variation of the fit

parameters for the π0 TFF with a decreasing fit range. For
Cπ0 equal to zero, the parameter Bπ0 increases only slightly
if the fit range is decreased. In general, since the Bπ0 term is
not able to provide curvature, the curves are rather flat. If
the Cπ0 term is included, Bπ0 and Cπ0 decrease for the first

three decreasing ranges but increase for the last (smallest)
range. When fewer data points are included, the curves
become less steep, matching the decreasing parameter
values. In the last scenario (IV), however, the fit is
dominated by the single data point in the spacelike region,
leading to more curvature and, therefore, larger parameter
values.

FIG. 6. η TFF fitted up to 0.47 GeV. The solid (red) line is
the full NNLO calculation and the dashed (blue) line the
NNLO result with Cη ¼ 0. The experimental data are taken
from Refs. [42] (Black down-pointing triangle), [43] (Black up-
pointing triangle), [44] (White square), [45] (Black circle), and
[46] (Black daimond).

FIG. 7. η TFF fitted up to 0.47 (solid, long-dashed line), 0.40
(dashed, long-dash-dotted line), and 0.35 GeV (dash-dotted,
double-dotted line). The red (solid, dashed, and dash-dotted)
lines are the full NNLO calculations and the blue (long-dashed,
long-dash-dotted, and double-dotted) lines the NNLO results
with Cη ¼ 0. The experimental data are taken from Refs. [42]
(Black down-pointing Triangle), [43] (Black up-pointing tri-
angle), [44] (White square), [45] (Black circle), and [46] (Black
daimond).

FIG. 8. η0 TFF fitted in the range −0.53 GeV2 ≤ q2 ≤
0.43 GeV2. The solid (red) line is the full NNLO calculation
and the dashed (blue) line the NNLO result with Cη0 ¼ 0. The
timelike data are taken from Ref. [48] (Black circle) and the
spacelike data from Ref. [47] (Black up-pointing triangle).

FIG. 9. η0 TFF fitted in the range −0.53GeV2≤q2≤0.43GeV2

(solid, long-dashed line), −0.53 GeV2 ≤ q2 ≤ 0.40 GeV2

(dashed, long-dash-dotted line), −0.50GeV2≤q2≤0.43GeV2

(dash-dotted, double-dotted line), and −0.50 GeV2 ≤ q2 ≤
0.40 GeV2 (dotted, long-dotted line). The red (solid, dashed,
dash-dotted, and dotted) lines are the full NNLO calculations
and the blue (long-dashed, long-dash-dotted, double-dotted, and
long-dotted) lines the NNLO results with Cη0 ¼ 0. The long-
dashed and long-dash-dotted curves are indistinguishable at this
scale. The timelike data are taken from Ref. [48] (Black circle)
and the spacelike data from Ref. [47] (Black up-pointing
triangle).
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The results for η TFF fit parameters are displayed in
Table XVII in Appendix B for decreasing fit ranges. If Cη is
put to zero, the parameter Bη decreases as the fit range
decreases. This behavior is in accordance with the fact that
the curves become steeper as the fit range is extended to
higher q2 values. If we include theCη term in the fit, there is
an interplay between Cη and Bη. For a decreasing fit range,
the Cη values tend to decrease while Bη increases. In
addition, the errors of Bη and Cη become larger. This is to
be expected, since fewer data points are included in the fit,
there seems to be a correlation between Bη and Cη, and the
Cη term becomes more important at higher values of q2.
In the case of the η0, the fit range is varied both in the

timelike and the spacelike region. The variation of the
parameters is displayed in Table XVIII in Appendix B.
Decreasing the timelike fit range yields smaller values for
both Bη0 and Cη0 . This is to be expected, since the TFF
curves show less curvature as the fit range gets smaller. If
we exclude the last spacelike data point, the values for Bη0

and Cη0 increase. In this case, the fit focuses more on the
timelike region, and the parameters adjust to the steep rise
of the timelike TFF.

3. Slope and curvature

Employing the results for the fit parameters, we calculate
the slopes and the curvatures of the TFFs as defined in
Eqs. (47) and (48). The errors are due to the errors of the fit
parameters. As a first estimate, we assume that the fit
parameters are independent. Taking into account their

correlations is beyond the scope of this work. The main
results are given in Tables VIII,IX,X.
The values for the slopes with and without loop con-

tributions agree within their uncertainties. This is the case,
because the influence of the loops is already compensated
by different values for the fit parameters BP. The 1=Nc
expansion of the quark-charge matrix plays a negligible
role. For Cπ0 ¼ 0, the π0 slope is smaller than in the full
NNLO calculation. This is in accordance with the fact that
the curves are less steep for Cπ0 ¼ 0, since the fit is
dominated by the values at very low q2. If we neglect
the Cη term, Bη compensates for the missing contribution,
and, as a result, the η slope increases. This effect is
diminished if the fit range is restricted to lower q2 values.
In the case of the η0, if we set Cη0 ¼ 0, the slope gets
smaller. This behavior is different from the one of the η
slope due to the inclusion of the spacelike data. As a further
check, we have investigated the case where the fit is
performed only to the timelike data. Then, the η0 slope
increases if we put Cη0 ¼ 0, which is similar to the η case.
Figures 10–12 show the comparison of our results for the

π0, η, and η0 slopes together with other experimental and
theoretical determinations. Our values bη ¼ 0.55ð5Þ from
the fit up to 0.4 GeV and bη0 ¼ 1.47ð31Þ from fit I agree
within the errors with most of the other theoretical and
experimental results. The result bπ0 ¼ 0.025ð3Þ from the fit
up to 0.5 GeV2, however, is smaller than the other
theoretical predictions and most of the experimental results.
This is due to the inclusion of higher-q2 data. Our result for
the fit only up to 0.5 GeV, bπ0 ¼ 0.028ð5Þ, e.g., is closer to
the other predictions. In general, our result for bη is slightly
lower than the other determinations, whereas our value for
bη0 is slightly higher than the other results. From Table IX,
one can observe that a decreasing fit range leads to values
for bη which come closer to the other theoretical and
experimental determinations.
The main results for the curvatures of π0, η, and η0 are

displayed in Tables VIII,IX,X. As the slope, the π0

curvature decreases with a decreasing fit range except

TABLE VIII. Results for the slope and the curvature of the π0

TFF at NNLO, fitted up to jq2jmax.

jq2jmax [GeV2] bπ0 cπ0

Full 0.55 0.031� 0.002 0.0008� 0.0001
Full 0.5 0.025� 0.003 0.0007� 0.0001
Full 0.45 0.023� 0.003 0.0006� 0.0001
Full 0.4 0.028� 0.005 0.0009� 0.0003
Cπ0 ¼ 0 0.55 0.014� 0.001 0.0002� 0.0000
Cπ0 ¼ 0 0.5 0.014� 0.001 0.0002� 0.0000
Cπ0 ¼ 0 0.45 0.014� 0.001 0.0002� 0.0000
Cπ0 ¼ 0 0.4 0.016� 0.002 0.0002� 0.0000

TABLE IX. Results for the slope and the curvature of the η TFF
at NNLO.

mmaxðlþl−Þ [GeV] bη cη

Full 0.47 0.51� 0.04 0.60� 0.10
Full 0.4 0.55� 0.05 0.43� 0.10
Full 0.35 0.57� 0.06 0.36� 0.10
Cη ¼ 0 0.47 0.70� 0.02 0.05� 0.00
Cη ¼ 0 0.4 0.67� 0.02 0.05� 0.00
Cη ¼ 0 0.35 0.65� 0.03 0.05� 0.00

TABLE X. Results for the slope and the curvature of the η0 TFF
at NNLO. The fit ranges are −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I),
−0.53 GeV2 ≤ q2 ≤ 0.40 GeV2 (II), −0.50 GeV2 ≤ q2 ≤
0.43 GeV2 (III), and −0.50 GeV2 ≤ q2 ≤ 0.40 GeV2 (IV).

Fit range bη0 cη0

Full I 1.47� 0.31 1.58� 0.57
Full II 1.32� 0.33 1.30� 0.57
Full III 1.52� 0.28 3.46� 0.58
Full IV 1.42� 0.31 2.95� 0.58
Cη0 ¼ 0 I 0.84� 0.13 0.28� 0.01
Cη0 ¼ 0 II 0.82� 0.13 0.28� 0.01
Cη0 ¼ 0 III 1.11� 0.27 0.28� 0.01
Cη0 ¼ 0 IV 1.04� 0.27 0.28� 0.01
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for the smallest range, where the curvature takes its largest
value. In this case, the TFF is adjusted to the single data
point in the spacelike region leading to a large curvature.
The η curvature is reduced if the fit range is restricted to

smaller q2 values. The η0 curvature decreases if the timelike
range is decreased. As the spacelike fit range becomes
smaller, the fit is dominated by the steeply rising timelike
data and the curvature is almost twice as large. The main
contributions to the curvature stem from the Cη0 terms. If
we put them to zero, the remaining curvature is given by the
loop contributions, which is rather small.
Our values for the curvatures can be compared with

other theoretical determinations. A dispersive analysis
finds cπ0 ¼ 1.14ð4Þ × 10−3 [59], and works using Padé
approximants obtain cπ0 ¼ 1.06ð26Þ × 10−3 [56], cη ¼
0.339ð15Þstatð5Þsys [70], and cη0 ¼ 1.72ð47Þstatð34Þsys
[33]. If we use a simple VMD estimate as given in
Eq. (52) with ΛP ¼ 0.77 GeV [31], we obtain c0π ¼
0.9 × 10−3, cη ¼ 0.26, and cη0 ¼ 2.40. Our results for
cπ0 are slightly smaller than the other predictions, being
closest to the VMD one. For cη, our values are mostly larger
than the other predictions. Only if the fit range is decreased
do our results come to agreement with Ref. [70], whereas
the naive VMD prediction is even smaller. In the cases
including the full spacelike data, the η0 curvature is slightly
smaller than the one from Ref. [33] but shows agreement
within the errors. The VMD prediction for cη0 is larger and
lies on the upper end of the error band in Ref. [33]. None of
our values reaches the VMD value within the error range.
Note that the errors are only the ones provided by the fit.
The results for cη0 in the cases where the spacelike fit range
is restricted are much larger than the ones from the fit to all
spacelike data as well as the ones from the other references.
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FIG. 11. Our result for bη compared to other experimental and
theoretical determinations from Dzhþ 80 [60], Aihþ 90 [61],
Behþ 91 [49], Groþ 98 [62], Arnþ 09 [43], Usaþ 11 [63],
Ber þ 11 [44], Aguþ 14 [45], Adlþ 17, BM 81 [64], Ameþ
83 [65], PB 84 [66], BL 81 [67], Ameþ 92 [54], BN 04 [68],
Czyþ 12 [55], KOT 14 [69], EMS 15 [70], Hanþ 15 [71], and
CKT 18 [58].
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FIG. 12. Our result for bη0 compared to other experimental and
theoretical determinations from Dzhþ 79 [72], Dzhþ 80 [60],
Aihþ 90 [61], Behþ 91 [49], Groþ 98 [62], Ablþ 15 [48],
BM 81 [64], Ameþ 83 [65], PB 84 [66], BL 81 [67], Ameþ 92
[54], BN 04 [68], Czyþ 12 [55], KOT 14 [69], EMS 14 [33],
Hanþ 15 [71], Escþ 16 [38], and CKT 18 [58].
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FIG. 10. Our result for bπ0 compared to other experimental and
theoretical determinations from Behþ 91 [49], Dreþ 92 [50],
Far þ 92 [51], Adlþ 17 [52], Lazþ 17 [53], Tanþ 18 [34],
Ameþ 92 [54], Czyþ 12 [55], Mas 12 [56], Hof þ 14 [57],
CKT 18 [58], and Hof þ 18 [59].
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V. SINGLE DALITZ DECAYS

Having performed the numerical evaluation of the
single-virtual TFFs of π0, η, and η0, we are now able to
calculate the widths of the decays to one photon and a
lepton pair. To obtain the invariant amplitude for the decay
P → γlþl−, where P ¼ π0; η; η0 and l ¼ e, μ, we use
Eq. (26) and therein define qμ1, with q21 ¼ s, and ϵμ1 ¼
ðe=sÞ½ūγμv� as virtual-photon momentum and polarization,
respectively. The momentum of the real photon is denoted
by q2 with q22 ¼ 0, and ϵ2 is its polarization. The decay
width can be written as [31]

ΓðP → γlþl−Þ ¼
Z

M2
P

4m2
l

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ½M2

P; s; 0�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ½s;m2
l ; m

2
l �

q
1024M3

Pπ
4s

×
Z

dΩll

X
jMj2: ð57Þ

Defining the leptonic tensor

Lμν ¼
X
spin

½ūγμv�½ūγνv�� ð58Þ

and employing the identity

Z
dΩll

4π
Lμμ0 ¼

4

3

�
1þ 2m2

l

q2

�
ðqμqμ0 − q2gμμ0 Þ; q2 ¼ s;

ð59Þ

one obtains

ΓðP → γlþl−Þ

¼ e2

384M3
Pπ

3

Z
M2

P

4m2
l

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l
s

q
ðM2

P − sÞ3ð2m2
l þ sÞ

s2

× jFPγlþl− j2: ð60Þ
To evaluate this expression numerically, we make use of the
LECs determined in Secs. IVA and IV B. At NNLO, we
employ the LECs determined from the fit of the π0 TFF up
to 0.5 GeV2, the η TFF up to 0.47 GeV, and the η0 TFF in
the range −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I). The results
for the decay widths to one photon and a lepton pair are
shown in Tables XI and XII. The errors are calculated from
the errors of the LECs which are assumed to be uncorre-
lated. They can be viewed as upper limits for the errors.
Taking the correlations into account is beyond the scope of
this work.
The values for ΓP→γeþe−, P ¼ π0; η; η0, behave like the

corresponding values for the decays to two real photons.
The disagreement of the two-photon-decay widths in some
scenarios and the experimental data is reflected in the
values for ΓP→γeþe− as well. Therefore, we calculate the
relative branching ratios (BRs)

BRrel
P→γlþl− ¼ ΓP→γlþl−

ΓP→γγ
; ð61Þ

TABLE XI. Decay widths and relative BRs for P → γeþe−.

Γπ0→γeþe− [10−2 eV] BRrel
π0→γeþe− ½10−2� Γη→γeþe− [eV] BRrel

η→γeþe− ½10−2� Γη0→γeþe− [eV] BRrel
η0→γeþe− ½10−2�

LO 9.29� 0.02 1.19� 0 10.1� 0.02 1.63� 0.00 90.59� 0.20 1.80� 0.01
LO, Qexp 0� 0 � � � 3.22� 0.01 1.61� 0.00 150.06� 0.33 1.80� 0.01
NLO 1 9.13� 0.19 1.20� 0.04 10.02� 1.46 1.67� 0.79 85.05� 18.52 2.03� 4.05
NLO 2 8.35� 0.14 1.20� 0.26 8.35� 1.05 1.67� 3.11 73.29� 15.74 1.69� 2.86
NLO 3 8.46� 0.45 1.19� 0.21 7.22� 3.02 1.68� 2.78 80.56� 50.58 1.70� 2.26
NLO, Qexp 9.29� 0.02 1.19� 0.00 8.43� 8.19 1.62� 22.79 74.25� 111.89 1.70� 22.29
Full 9.11� 0.19 1.19� 0.04 8.67� 0.33 1.68� 0.09 85.54� 4.98 1.96� 0.13
CP ¼ 0 9.10� 0.19 1.19� 0.04 8.67� 0.33 1.68� 0.09 81.44� 4.67 1.87� 0.12
Experiment [34] 9.18� 0.33 1.19� 0.04 9.04� 0.63 1.75� 0.10 92.71� 7.26 2.13� 0.16

TABLE XII. Decay widths and relative BRs for ηð0Þ → γμþμ−.

Γη→γμþμ− [eV] BRrel
η→γμþμ− ½10−4� Γη0→γμþμ− [eV] BRrel

η0→γμþμ− ½10−3�
LO 0.34� 0.00 0.55� 0.00 8.65� 0.02 1.72� 0.01
LO, Qexp 0.11� 0.00 0.54� 0.00 14.32� 0.03 1.72� 0.01
NLO 1 0.44� 0.06 0.73� 0.34 14.71� 2.67 3.50� 7.00
NLO 2 0.35� 0.06 0.70� 1.31 4.02� 1.76 0.93� 1.61
NLO 3 0.31� 0.12 0.71� 1.17 4.57� 3.83 0.96� 1.39
NLO, Qexp 0.30� 0.29 0.58� 8.17 4.42� 10.54 1.01� 13.41
Full 0.42� 0.02 8.16� 0.48 13.36� 1.43 3.06� 0.34
CP ¼ 0 0.42� 0.01 7.96� 0.34 9.91� 0.63 2.27� 0.16
Experiment [34] 0.41� 0.05 7.87� 1.02 21.36� 5.38 4.91� 1.23

P. BICKERT and S. SCHERER PHYS. REV. D 102, 074019 (2020)

074019-16



using the values for ΓP→γγ obtained in the different
scenarios. The results are shown in Tables XI and XII.
Now, the values for the relative BRs do not vary very much
within the different cases and orders. The π0 relative BRs
for the decay to an eþe− pair agree with the experimental
value, and also the η relative BR is very close to the
experimental one, while the η0 relative BR is somewhat
smaller than the experimental result, especially in most of
the NLO cases. This is related to the value of the η0 slope.
The slope is very large in the NLO 1 case, which leads to a
large relative BR, and the negative values for bη0 in the other
NLO cases are reflected in a reduced relative BR even when
compared to the LO value. The decay width of P → γeþe−
receives its main contribution at values where the virtual
photon is in the vicinity of its mass shell. Therefore, the
relative BRs are well described already at LO. The decay
P → γμþμ− provides a better probe of the virtual behavior
of the TFF at larger photon virtualities. However, the values
for Γη→γμþμ− are still related to the two-photon-decay widths,
but the higher-order corrections in q2, parameterized by
slope and curvature, become important. Here, we calculate
the relative BRs as well. The LO relative BR of the η is
now lower than the experimental value and increases at NLO
and NNLO. Especially at NNLO, we obtain a very good
agreement with the data for both Γη→γμþμ− and BRrel

η→γμþμ− .

The LO relative BR for η0 → γμþμ− is only 30% of the
experimental value. In the NLO scenarios, it becomes even
smaller except for NLO 1. This is related to the slope of
the η0, which is very large in the NLO 1 scenario but poorly
described in the other NLO cases, even cases with negative
values. The full NNLO value is larger than the LO one and
most of the NLO values. However, it is still smaller than the
experimental result. If we neglect the Cη0 term, the relative
BR decreases again. This is connected to the description of
the η0 TFF data. The timelike TFF is underestimated for
higher values of q2 and even more so if one does not take the
ðq2Þ2 term into account. The decay width of η0 → γμþμ−

receives contributions in q2 ranges where vector-meson
resonances become important [73], which are not included
in our framework.
Our full NNLO results for the relative BRs are com-

pared with other theoretical determinations. The compari-
son for the π0, η, and η0 relative BRs can be found in
Tables XIII,XIV,XV.
Our values for BRrel

P→γeþe−, P ¼ π0; η; η0, agree well with
the other determinations. In the case of BRrel

η→γμþμ− , as
already stated, the simple QED prediction is too small.
Here, our result agrees with the other works, except for
Ref. [76], which gives a slightly smaller value. Our result
for BRrel

η0→γμþμ− is smaller than the others. It agrees within
errors with Ref. [73], and the determinations including
vector mesons are larger.

VI. SUMMARY AND OUTLOOK

We have studied the P → γð�Þγð�Þ interaction, where
P ¼ π0; η; η0, at the one-loop level up to and including
NNLO in LNcChPT. Besides the loop corrections, all
contact terms appearing at NNLO have been calculated,
except for those of the Oðp8Þ Lagrangian, which has not
been constructed yet. However, in the expressions for the
form factors describing the decays, possible structures
originating from the Oðp8Þ Lagrangian have been intro-
duced phenomenologically, accompanied by free parame-
ters. Furthermore, the η-η0 mixing at NNLO has been
consistently included. The numerical analyses of the decays
have been performed successively at LO, NLO, and NNLO.
At NLO, we employed the values for the LECs and mixing

TABLE XIII. Comparison of theoretical determinations of the
π0 relative BR.

BRrel
η→γeþe− ½10−2�

QED [74] 1.18� 0
Hidden gauge [75] 1.19� 0
Mod. VMD [75] 1.19� 0
Quark model [76] 1.18� 0
χPTþ VM [77] 1.21� 0
DA [57] 1.19� 0
DS eq. [78] 1.19� 0.03
Pade approximants [73] 1.19� 0.01
RχPT [79] 1.19� 0.03
This work 1.19� 0.04
Experiment [34] 1.19� 0.04

TABLE XIV. Comparison of theoretical determinations of the η
relative BRs.

BRrel
η→γeþe− ½10−2� BRrel

η→γμþμ− ½10−4�
QED [74] 1.63� 0 5.54� 0
Hidden gauge [75] 1.666� 0.002 7.75� 0.09
Mod. VMD [75] 1.662� 0.002 7.54� 0.11
Quark model [76] 1.77� 0 7.48� 0
Pade approximants [73] 1.68� 0.15 8.30� 1.42
RχPT [79] 1.66� 0.06 7.18� 0.63
This work 1.68� 0.09 8.16� 0.48
Experiment [34] 1.75� 0.10 7.87� 1.02

TABLE XV. Comparison of theoretical determinations of the η0
relative BRs.

BRrel
η0→γeþe− ½10−2� BRrel

η0→γμþμ− ½10−3�
Hidden gauge [75] 2.10� 0.02 4.45� 0.15
Mod. VMD [75] 2.06� 0.02 4.11� 0.18
Pade approximants [73] 1.99� 0.16 3.36� 0.26
RχPT [79] 2.00� 0.13 3.67� 1.15
This work 1.96� 0.13 3.06� 0.34
Experiment [34] 2.13� 0.16 4.91� 1.23
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angle determined in the NLO analysis of the η-η0 mixing in
Ref. [30] labeled NLO I. The LECs from the odd-intrinsic-
parity sector were fixed to the experimental data of the decay
widths to real photons and the slope parameters of π0, η, and
η0. We have found that the NLO results are not sufficient to
describe all data simultaneously. If the 1=Nc expansion of
the quark-charge matrix is taken into account, the results
worsen. At NNLO, the LECs have been determined through
a fit to the experimental data for the π0, η, and η0 transition
form factors. We have achieved a good description of the π0

TFF between −0.45 and 0.45 GeV2, of the η TFF up to
0.45 GeV, and of the η0 TFF between −0.25 and 0.3 GeV2,
which is mainly caused by the inclusion of ðq2Þ2 terms,
whereas loops do not play an important role. In addition, we
have calculated the slopes and the curvatures of the TFFs and
the decay widths of P → γlþl−, where l ¼ e, μ, and
compared them to other works. In general, our NNLO
results for those quantities tend to agree with the other
experimental and theoretical determinations.
Our results clearly indicate that a perturbative chiral and

1=Nc expansion has its limitations in the π0-η-η0 system.
While going to even higher orders in the expansion might
result in an improved description of experimental data, this

would involve additional unknown LECs, making the gain
in physical insight questionable. However, with reference
to the transition form factors, an extended theory including
vector-meson degrees of freedom might improve the sit-
uation with respect to larger values of jq2j, in parti-
cular, in the timelike region. In addition to a purely pheno-
menological treatment, one might set up a power-counting
scheme in terms of the complex-mass renormalization [80]
like in the calculation of the vector form factor of the
pion [81].
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APPENDIX A: ADDITIONAL EXPRESSIONS

In the case without the 1=Nc expansion of the quark-
charge matrix Q, the loop contributions to the form factors
of the two-photon decays, given by the loop diagrams in
Fig. 1, read

Fπ0γ�γ� ¼
1

1152π4F3
π
f3ðq21 − 4M2

KÞB0ðq21;M2
K;M

2
KÞ

þ 3ðq22 − 4M2
KÞB0ðq22;M2

K;M
2
KÞ þ 3½ðq21 − 4M2

πÞB0ðq21;M2
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πÞ
þ ðq22 − 4M2

πÞB0ðq22;M2
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πÞ� þ 24A0ðM2
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K þM2
πÞ þ q21 þ q22�g; ðA1Þ
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1

1152
ffiffiffi
3

p
π4F3

π

ð−½sinðθ½0�Þ þ
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Including the 1=Nc expansion of Q, the loop contributions are given by

Fπ0γ�γ� ¼
1

2304π4F3
π
½3ðq21 − 4M2

KÞB0ðq21;M2
K;M

2
KÞ
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KÞ þ 2ð−12M2
K þ q21 þ q22Þ�; ðA4Þ
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Fηγ�γ� ¼
1

4608
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APPENDIX B: FIT PARAMETERS

TABLE XVI. Fit parameters for the π0 TFF.

jq2jmax [GeV2] Aπ0 Bπ0 ½GeV−2� Cπ0 ½GeV−4� MSE

Full 0.55 −0.01� 0.01 1.24� 0.10 1.77� 0.18 0.94
Full 0.5 −0.01� 0.01 0.91� 0.15 1.40� 0.35 0.33
Full 0.45 −0.01� 0.01 0.81� 0.19 1.15� 0.43 0.31
Full 0.4 −0.01� 0.01 1.08� 0.29 2.04� 0.83 0.21
Full, Qexp 0.55 0.99� 0.01 1.57� 0.10 1.95� 0.18 0.92
Full, Qexp 0.5 0.99� 0.01 1.25� 0.15 1.60� 0.35 0.33
Full, Qexp 0.45 0.99� 0.01 1.15� 0.19 1.36� 0.43 0.32
Full, Qexp 0.4 0.99� 0.01 1.43� 0.29 2.29� 0.83 0.22
Without loops 0.55 −0.01� 0.01 1.59� 0.10 1.97� 0.18 0.92
Without loops 0.5 −0.01� 0.01 1.28� 0.15 1.62� 0.35 0.33
Without loops 0.45 −0.01� 0.01 1.18� 0.19 1.39� 0.43 0.32
Without loops 0.4 −0.01� 0.01 1.46� 0.29 2.31� 0.83 0.22
Without loops, Qexp 0.55 0.99� 0.01 1.59� 0.10 1.97� 0.18 0.92
Without loops, Qexp 0.5 0.99� 0.01 1.28� 0.15 1.62� 0.35 0.33
Without loops, Qexp 0.45 0.99� 0.01 1.18� 0.19 1.39� 0.43 0.32
Without loops, Qexp 0.4 0.99� 0.01 1.46� 0.29 2.31� 0.83 0.22
Cπ0 ¼ 0 0.55 −0.01� 0.01 0.33� 0.03 0� 0 2.80
Cπ0 ¼ 0 0.5 −0.01� 0.01 0.34� 0.06 0� 0 0.75
Cπ0 ¼ 0 0.45 −0.01� 0.01 0.33� 0.06 0� 0 0.52
Cπ0 ¼ 0 0.4 −0.01� 0.01 0.42� 0.13 0� 0 0.42
Cπ0 ¼ 0, Qexp 0.55 0.99� 0.01 0.56� 0.03 0� 0 3.11
Cπ0 ¼ 0, Qexp 0.5 0.99� 0.01 0.60� 0.06 0� 0 0.87
Cπ0 ¼ 0, Qexp 0.45 0.99� 0.01 0.59� 0.06 0� 0 0.60

(Table continued)
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TABLE XVII. Fit parameters for the η TFF.

mmaxðlþl−Þ [GeV] Aη Bη [GeV−2] Cη [GeV−4] MSE

Full 0.47 −0.17� 0.03 2.32� 0.22 10.51� 1.82 0.42
Full 0.40 −0.17� 0.03 2.58� 0.26 7.26� 2.59 0.43
Full 0.35 −0.17� 0.03 2.67� 0.35 5.89� 4.29 0.41
Full, Qexp 0.47 0.66� 0.03 2.39� 0.22 10.59� 1.82 0.42
Full, Qexp 0.40 0.66� 0.03 2.66� 0.26 7.34� 2.59 0.43
Full, Qexp 0.35 0.66� 0.03 2.74� 0.35 5.96� 4.29 0.41
Without loops 0.47 −0.17� 0.03 2.98� 0.22 11.35� 1.82 0.41
Without loops 0.40 −0.17� 0.03 3.20� 0.26 8.73� 2.59 0.43
Without loops 0.35 −0.17� 0.03 3.23� 0.35 8.12� 4.29 0.41
Without loops, Qexp 0.47 0.66� 0.03 2.98� 0.22 11.35� 1.82 0.41
Without loops, Qexp 0.40 0.66� 0.03 3.20� 0.26 8.73� 2.59 0.43
Without loops, Qexp 0.35 0.66� 0.03 3.23� 0.35 8.12� 4.29 0.41
Cη ¼ 0 0.47 −0.17� 0.03 3.41� 0.12 0� 0 0.76
Cη ¼ 0 0.40 −0.17� 0.03 3.25� 0.12 0� 0 0.53
Cη ¼ 0 0.35 −0.17� 0.03 3.11� 0.13 0� 0 0.43
Cη ¼ 0, Qexp 0.47 0.66� 0.03 3.49� 0.12 0� 0 0.76
Cη ¼ 0, Qexp 0.40 0.66� 0.03 3.33� 0.12 0� 0 0.53
Cη ¼ 0, Qexp 0.35 0.66� 0.03 3.19� 0.13 0� 0 0.43
Without loops ∧ Cη ¼ 0 0.47 −0.17� 0.03 4.16� 0.12 0� 0 0.80
Without loops ∧ Cη ¼ 0 0.40 −0.17� 0.03 4.00� 0.12 0� 0 0.57
Without loops ∧ Cη ¼ 0 0.35 −0.17� 0.03 3.84� 0.13 0� 0 0.46
Without loops ∧ Cη ¼ 0, Qexp 0.47 0.66� 0.03 4.16� 0.12 0� 0 0.80
Without loops ∧ Cη ¼ 0, Qexp 0.40 0.66� 0.03 4.00� 0.12 0� 0 0.57
Without loops ∧ Cη ¼ 0, Qexp 0.35 0.66� 0.03 3.84� 0.13 0� 0 0.46

TABLE XVI. (Continued)

jq2jmax [GeV2] Aπ0 Bπ0 ½GeV−2� Cπ0 ½GeV−4� MSE

Cπ0 ¼ 0, Qexp 0.4 0.99� 0.01 0.70� 0.13 0� 0 0.47
Without loops ∧ Cπ0 ¼ 0 0.55 −0.01� 0.01 0.58� 0.03 0� 0 3.16
Without loops ∧ Cπ0 ¼ 0 0.5 −0.01� 0.01 0.61� 0.06 0� 0 0.88
Without loops ∧ Cπ0 ¼ 0 0.45 −0.01� 0.01 0.60� 0.06 0� 0 0.61
Without loops ∧ Cπ0 ¼ 0 0.4 −0.01� 0.01 0.71� 0.13 0� 0 0.48
Without loops ∧ Cπ0 ¼ 0, Qexp 0.55 0.99� 0.01 0.58� 0.03 0� 0 3.16
Without loops ∧ Cπ0 ¼ 0, Qexp 0.5 0.99� 0.01 0.61� 0.06 0� 0 0.88
Without loops ∧ Cπ0 ¼ 0, Qexp 0.45 0.99� 0.01 0.60� 0.06 0� 0 0.61
Without loops ∧ Cπ0 ¼ 0, Qexp 0.4 0.99� 0.01 0.71� 0.13 0� 0 0.48

TABLE XVIII. Fit parameters for the η0 TFF. The fit ranges are −0.53 GeV2 ≤ q2 ≤ 0.43 GeV2 (I),
−0.53 GeV2 ≤ q2 ≤ 0.40 GeV2 (II), −0.50 GeV2 ≤ q2 ≤ 0.43 GeV2 (III), and −0.50 GeV2 ≤ q2 ≤ 0.40 GeV2

(IV).

Fit Aη0 Bη0 ½GeV−2� Cη0 ½GeV−4� MSE

Full I −0.06� 0.02 1.08� 0.25 1.18� 0.52 0.52
Full II −0.06� 0.02 0.95� 0.27 0.92� 0.55 0.35
Full III −0.06� 0.02 1.12� 0.23 2.89� 1.05 0.22
Full IV −0.06� 0.02 1.04� 0.26 2.43� 1.23 0.17
Full, Qexp I −0.29� 0.02 1.07� 0.25 1.17� 0.52 0.52
Full, Qexp II −0.29� 0.02 0.95� 0.27 0.91� 0.55 0.35

(Table continued)
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APPENDIX C: ADDITIONAL PLOTS

TABLE XVIII. (Continued)

Fit Aη0 Bη0 ½GeV−2� Cη0 ½GeV−4� MSE

Full, Qexp III −0.29� 0.02 1.11� 0.23 2.89� 1.05 0.22
Full, Qexp IV −0.29� 0.02 1.03� 0.26 2.42� 1.23 0.17
Without loops I −0.06� 0.02 1.23� 0.26 1.30� 0.52 0.51
Without loops II −0.06� 0.02 1.10� 0.27 1.04� 0.56 0.36
Without loops III −0.06� 0.02 1.27� 0.23 3.03� 1.05 0.21
Without loops IV −0.06� 0.02 1.19� 0.26 2.59� 1.23 0.16
Without loops, Qexp I −0.29� 0.02 1.23� 0.26 1.30� 0.52 0.51
Without loops, Qexp II −0.29� 0.02 1.10� 0.27 1.04� 0.56 0.36
Without loops, Qexp III −0.29� 0.02 1.27� 0.23 3.03� 1.05 0.21
Without loops, Qexp IV −0.29� 0.02 1.19� 0.26 2.59� 1.23 0.16
Cη0 ¼ 0 I −0.06� 0.02 0.55� 0.10 0� 0 0.89
Cη0 ¼ 0 II −0.06� 0.02 0.54� 0.10 0� 0 0.59
Cη0 ¼ 0 III −0.06� 0.02 0.78� 0.23 0� 0 0.85
Cη0 ¼ 0 IV −0.06� 0.02 0.72� 0.23 0� 0 0.56
Cη0 ¼ 0, Qexp I −0.29� 0.02 0.54� 0.10 0� 0 0.88
Cη0 ¼ 0, Qexp II −0.29� 0.02 0.53� 0.10 0� 0 0.58
Cη0 ¼ 0, Qexp III −0.29� 0.02 0.77� 0.23 0� 0 0.85
Cη0 ¼ 0, Qexp IV −0.29� 0.02 0.71� 0.23 0� 0 0.56
Without loops ∧ Cη0 ¼ 0 I −0.06� 0.02 0.64� 0.11 0� 0 0.97
Without loops ∧ Cη0 ¼ 0 II −0.06� 0.02 0.63� 0.10 0� 0 0.66
Without loops ∧ Cη0 ¼ 0 III −0.06� 0.02 0.91� 0.23 0� 0 0.90
Without loops ∧ Cη0 ¼ 0 IV −0.06� 0.02 0.85� 0.23 0� 0 0.61
Without loops ∧ Cη0 ¼ 0, Qexp I −0.29� 0.02 0.64� 0.11 0� 0 0.97
Without loops ∧ Cη0 ¼ 0, Qexp II −0.29� 0.02 0.63� 0.10 0� 0 0.66
Without loops ∧ Cη0 ¼ 0, Qexp III −0.29� 0.02 0.91� 0.23 0� 0 0.90
Without loops ∧ Cη0 ¼ 0, Qexp IV −0.29� 0.02 0.85� 0.23 0� 0 0.61
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FIG. 13. π0 TFF in the timelike region, fitted in the range
−0.5 GeV2 ≤ q2 ≤ 0.5 GeV2. The solid (red) line is the full
NNLO calculation, the dashed (green) line the NNLO result
without loops. The blue lines are the NNLO results with Cπ0 ¼ 0
including loops (dark blue, dash-dotted) and without loops (light
blue, dotted). The experimental data are taken from Refs. [39]
(Black daimond), [40] (White square), [41] (Black up-pointing
triangle), and [42] (Black circle).
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FIG. 14. π0 TFF in the spacelike region, fitted in the range
−0.5 GeV2 ≤ q2 ≤ 0.5 GeV2. The solid (red) line is the full
NNLO calculation, the dashed (green) line the NNLO result
without loops. The blue lines are the NNLO results with Cπ0 ¼ 0
including loops (dark blue, dash-dotted) and without loops (light
blue, dotted). The experimental data are taken from Ref. [1].
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