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The cross section for coherent elastic neutrino-nucleus scattering (CEvNS) depends on the response of
the target nucleus to the external current, in the Standard Model (SM) mediated by the exchange of a
Z boson. This is typically subsumed into an object called the weak form factor of the nucleus. Here, we
provide results for this form factor calculated using the large-scale nuclear shell model for a wide range of
nuclei of relevance for current CEvNS experiments, including cesium, iodine, argon, fluorine, sodium,
germanium, and xenon. In addition, we provide the responses needed to capture the axial-vector part of the
cross section, which does not scale coherently with the number of neutrons, but may become relevant for
the SM prediction of CEvNS on target nuclei with nonzero spin. We then generalize the formalism allowing
for contributions beyond the SM. In particular, we stress that in this case, even for vector and axial-vector
operators, the standard weak form factor does not apply anymore, but needs to be replaced by the
appropriate combination of the underlying nuclear structure factors. We provide the corresponding
expressions for vector, axial-vector, but also (pseudo)scalar, tensor, and dipole effective operators,
including two-body-current effects as predicted from chiral effective field theory (EFT). Finally, we update
the spin-dependent structure factors for dark matter scattering off nuclei according to our improved

treatment of the axial-vector responses.

DOI: 10.1103/PhysRevD.102.074018

I. INTRODUCTION

CEvNS, suggested as a probe of the weak current as
early as 1974 [1], was finally observed by the COHERENT
collaboration in 2017 [2]. After the initial detection in CslI,
also the scattering off argon has just been observed [3,4].
With future advances in COHERENT and other experi-
ments [5—13], the CEvNS process will soon develop into
another sensitive low-energy probe of physics beyond the
Standard Model (BSM) [14].
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A crucial input in interpreting the measured cross section
is the response of the nucleus. If BSM constraints are to be
extracted, the nuclear structure has to be provided from
elsewhere. In fact, since the weak charge of the proton is
small, the SM CEvNS process mainly probes the nuclear
neutron distribution, which is significantly less constrained
experimentally than the electromagnetic charge distribution.
Apart from CEuvNS, the only direct information of the
neutron distribution comes from parity-violating electron
scattering (PVES) off lead [15,16]. Accordingly, assuming
the absence of a significant BSM signal, the measured
CEwNS cross section could be used to constrain the neutron
distribution instead [17-21]. Currently, the nuclear input
used in the interpretation of CEvNS experiments is mainly
derived from relativistic mean-field methods (RMF)
[22,23], even though results based on nonrelativistic
energy-density functionals are also available [24-26]. For
argon, there is a recent first-principles calculation based on
coupled-cluster theory [27].
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Here, we provide nuclear structure results for CEvNS,
extending large-scale nuclear shell model calculations
developed in the context of nuclear structure factors in
direct-detection searches for dark matter [28—36]. First, the
level of agreement between the shell-model, the RMF, and
coupled-cluster results suggests that the form factor uncer-
tainties are not as severe as claimed in Ref. [37], but in
addition the shell-model approach also allows us to address
the spin-dependent (SD) responses, which are similar, but
somewhat different to the ones in SD dark matter searches.

To this end, we first derive the decomposition of the
cross section into Wilson coefficients of effective operators,
hadronic matrix elements, and nuclear structure factors.
In the SM the effective operators just parametrize the
Z-boson exchange, but this approach can be conveniently
extended to include BSM effects. The hadronic matrix
elements determine the hadronization of these operators
at the single-nucleon level, and finally the nuclear structure
factors take into account the many-body nuclear matrix
element of these single-nucleon currents. As a first step,
we demonstrate how the standard weak form factor
emerges when combining all these ingredients into a single
object. However, this analysis shows that even for the
coherent part of the nuclear response four different under-
lying structure factors contribute to the cross section.
Therefore, in principle the weak form factor needs to be
modified as well when allowing for BSM effects in the
Wilson coefficients, since their contribution does not
factorize.

While for the dominant vector operators corrections
beyond the single-nucleon currents are small [38,39],
since the magnetic-moment form factors happen to be
kinematically suppressed, this is no longer true for the
axial-vector [29] or for scalar currents, see [32-34,36,
40-45] for the analogous effects in the case of dark matter
scattering off nuclei. As long as the SM dominates, such
effects will only become relevant for CEvNS once experi-
ments become sensitive to SD responses. Otherwise,
mainly the limits on scalar operators would be affected,
but in CEvNS such contributions are suppressed due to the
need for right-handed neutrinos and lack of interference
with the SM.

The paper is organized as follows: in Sec. II we first
review the necessary formalism, regarding effective oper-
ators, hadronic matrix elements, and nuclear responses,
with some details of the multipole expansion and nuclear-
structure calculations summarized in the Appendices. In
Sec. III we first introduce the charge and weak form factors
in the context of electron scattering, before discussing
the application to CEvNS. In particular, we present an
improved treatment of the axial-vector responses both for
CEvNS and dark matter. In Sec. IV we discuss how the
nuclear responses need to be adapted when considering
SM extensions, before concluding with a summary in
Sec. V.

II. FORMALISM

A. Effective Lagrangians

As a first step, we review the operator basis for CEUNS
[36,46]'

E(S) = CFDG'MDPLI/FMD,

£06) — Z(C}I/Dy”PLUQqu + CADy" Prugy,ysq
q

+ Clo6* P vgo,,q),

8
£ = z <C§ + Eﬂ C;.S> DPvm,qq
q

871
+ ZCgﬂPLumqZ]iysq - ?C;SEPLI/QM, (1)
q

where we adopted the following conventions: neutrino
indices are suppressed throughout, indicating that oscil-
lation effects are usually negligible at the scale of CEVNS
experiments, so that incoming and outgoing flavors are
understood to be identical. In comparison to the case of a
dark-matter spin-1/2 particle [36] the number of operators
is reduced by a factor of 2 when assuming that the neutrino
is left handed. This is implemented in Eq. (1) in terms of
projectors P; = (1 —y5)/2, and given that observing
chirality-violating effects would require right-handed neu-
trino beams (suppressed by tiny neutrino masses), we will
not consider the opposite chirality in the following.

With these conventions the set of operators is then
similar to the dark-matter case: at dimension-5 level there
is a single (dipole) operator involving the photon field
strength tensor F,. At dimension-6 we have the vector and
axial-vector operators already present in the SM, as well as
the tensor operator. Introducing quark masses for renorm-
alization-group invariance, the scalar and pseudoscalar
operators would be counted as dimension-7. The operator
involving the QCD trace anomaly ), would also be of
dimension-7. We have already rewritten the gluon term
G4,G4" in terms of this operator (we will not consider the
operators involving the dual field strength tensor G,‘j,, or the

photon field strength). In particular, we already integrated
out the heavy quarks [47] and absorbed their effect into

1
C)S =3 —Egzb Ccy. (2)
=c,b,t

where C5 is the original coefficient of the 0P, va,G%, G4’
gluon operator and we used the relation

"This definition strictly applies to Dirac neutrinos, while in the
Majorana case a symmetry factor of 2 would arise in the
amplitudes. To avoid this complication, an additional factor of
1/2 is implied in the definition of the effective operators for
Majorana neutrinos, in which case also the diagonal vector and
tensor currents vanish.
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quqq

in the transition. Elsewhere, the sum over ¢ in principle refers
to all quark species, but in practice we will restrict the analysis
to the light quarks ¢ = u, d, s. Finally, there are operators with
derivatives acting on the neutrino fields (in analogy to the
spin-2 operator for dark matter), but we will concentrate on
the more frequently considered operators in Eq. (1). We note
that the dimensional counting is not unambiguous regarding
the quark mass m,, e.g., sometimes the tensor operator is
introduced at dimension-7 by adding a factor m, in this
operator as well [46] [the notation in Eq. (1) follows
Ref. [48]]. Finally, we stress that the chirality-flipping
operators, with scalar and tensor operators on the neutrino
bilinear, require the presence of (final-state) right-handed
neutrinos. In SMEFT [49] such operators are suppressed
beyond dimension-6 level. In addition, the dipole operator
leads to a new long-range interaction, and therefore Cr is
strongly constrained by astrophysical observations [50,51].
However, such operators have been suggested as a potential
BSM explanation of the excess of electronic recoil events
observed by XENONIT [52].

In the SM all Wilson coefficients except for Cy and C4
vanish, with Z exchange leading to the matching relations

G 8
cy=--L (1 —sin2€W>,

aG“G””JrO( 2) (3)

V2 3
Gr 4
Ch=cy= 1 ——sin?@y |,
V2 ( 3
Gr
Ci=—Ch=-C4= 7 (4)

with Fermi constant Gy = 1.1663787(6) x 107> GeV~2
[53,54]. In the notation of Refs. [2,3,14], the deviations
from these SM values are often expressed as

CV CVlSM - _\/’GFSEE = _\/'GF(eee )
q - CélSM = \/_GFeee = \/EGF(ege - €e§>’ (5)

where the sign of eZ? has been chosen in accordance with
Ref. [14]. Finally, we can define dimensionless Wilson
coefficients C; = C;/A”", where A either corresponds to the
respective BSM scale, or, in the SM, to the Higgs vacuum

expectation value A = (v2Gy)~"/? = v = 246 GeV.

B. Dimension-5 matrix elements

Having defined the operator basis (1), the second step
concerns the nonperturbative input required to define
amplitudes at the hadronic level. We will largely follow
the conventions of Refs. [32,36], but for completeness
review here the respective hadronic matrix elements.

For the dimension-5 operator only the electromagnetic
form factors of the nucleon are required, without the need

for a flavor decomposition. With N = {p, n}, we thus have
the usual Dirac and Pauli form factors F; and F,,

Nl (p) = 1(0) | Y0 = Y () 5 u(p),
(©

where jem=)_,_,4,9947"q, Q = diag(2,~1,~-1)/3, and
g = p — p'.For smallmomentum transfer t = (p’ — p)?,itis
sufficient to consider the expansion around ¢ = 0:

FY(t) = 0N + {ri 26> 1+ O(),
FY (1) =N + O(1), (7)

with charge OV, anomalous magnetic moment ", and

3KN

(i) = (rp) - g (8)

in terms of the charge radius (r%)" . We will use the numerical
values given in Table I. In particular, we will use the proton

TABLE 1. Values of the hadronic matrix elements.
kP 1.79284734462(82) [54,55]
K" —1.91304273(45) [54,56]
(r2)P [fm?] 0.7071(7) [57]
(r2)" [fm?] —-0.1161(22) [54,58,59]
Ky —-0.017(4) [60,61]
(r2 WV [fm?] —0.0048(6) [60,61]
Ja 1.27641(56) [62]
ay7 0.842(12) [54,63]
¢ —-0.427(13) [54,63]
@y —0.085(18) [54,63]
(ri> [fm?] 0.46(16) [64]
F{R(0) 0.784(28) [65]
th:;(o) —0.204(11) [65]
F}h(0) —0.0027(16) [65]
F37.(0) —-1.5(1.0) [66]
F;’;(o) 0.53) [66]
F;’f; (0) 0.009(5) [66]
F37(0) 0.12) [66]
F{2(0) —0.6(3) [66]
FY(0) —0.004(3) [66]
5 [1073] 20.8(1.5) [67]
711073 41.1(2.8) [67]
(1073 18.9(1.4) [67]
111073 45.1(2.7) [67]
N 11073 43(20) [68-71]
v [1077] 68(1) [34,72]
& [GeV] 0.27(1) [33,73,74]
&, [GeV™!] 0.3(2) [33,73,74]
;: 0.315(14) [32,75]
z 0.685(14) [32,75]
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charge radius from muonic atoms (ra)p =

0.84087(39) fm [57,76], in line with most recent electron
spectroscopy measurements [77-79], the PRad electron
scattering data [80], and the expectation from dispersion
relations [81,82]. For the neutron, we use the charge radius
from Ref. [54], but note that a recent extraction from the
deuteron points to a slightly smaller value [83].

C. Dimension-6 matrix elements

At dimension-6 we first need the vector matrix elements
for each quark flavor separately:

(N(p")lar*qIN(p))

.
= a(p') |[FI™ () — FON (1) 2

u(p).  (9)

2mN

To perform the flavor decomposition, we will assume
isospin symmetry (see Ref. [84] for corrections), which
leads to

F{P (1) = F{"(1) = 2F (1) + F (1) + F™ (o),
Fid(n) = F" (1) = FP(0) + 2F} (1) + FY (),
FN(0). (10)

F37 (1) = F3"(1)

1

Information on the strangeness form factors has tradition-
ally been extracted from PVES, but the uncertainties are
sizable [85]. More recently, it has been shown in lattice
QCD that the strangeness contribution is very small; in
Table I we quote the naive average of Refs. [60,61].

The second dimension-6 operator requires input on the
axial-vector form factors, as they appear in the decom-
position

(N(p")|gr*rsqIN(p))

_ ) q" )
=u(p') [?’%GZN(O -7s Z—G;N(t)
my

- 4G 0] (o) (1)

where, for completeness, we included the second-class
current G%"(r) [86], but will not further consider its
contribution in the following. The normalization is deter-
mined by the axial-vector charges

G3M(0) = gi" = Ag". (12)
Assuming again isospin symmetry

d.n d,p u,n

g’ =g =g gl =g =g (13)

these couplings are constrained by

g + gy — 295" =3F - D,
(14)

u,p dp _
gA - gA = 9a,

in terms of the axial-vector coupling of the nucleon g4 =
1.27641(56) [62] and the SU(3) couplings D and F that
can be extracted from semileptonic hyperon decays. In
combination with the singlet combination from Ref. [63],
this leads to the couplings listed in Table I. These values are
in reasonable agreement with lattice QCD [87],

Ny=2+1+1[88]: ¢4” = 0.777(39),

¢ir = —0.438(35), ¢V = -0.053(8).
N;=2+1[89]: 4" = 0.847(37),

gir = —0407(24), &N =—-0.035(9), (15)

but in view of the present uncertainties we adopt the
phenomenological determination. However, while part of
the difference to phenomenology could be due to the scale
dependence of the singlet combination, both lattice calcu-
lations point to a smaller strangeness coupling than
extracted from the spin structure functions.

The triplet and octet components of the induced pseu-
doscalar form factor Gp(t) are constrained by Ward
identities, whose manifestation at leading order in the
chiral expansion becomes

Gz(t) = Ga, Gi(l‘) = \/§ Egi,

4my,ga 4m2g8
Gy(t) = NI2 G3(1) = NZA (16
Ho=-7E G =-7100 (0

Finally, for the triplet component there is also experimental
information on the momentum dependence. Defining the
axial radius by

2
G3(1) = gy (1 +%t+0(r2)>, (17)
a simple dipole ansatz
g
Gi(1) = W7 (18)

with mass scale M, around 1 GeV [90], implies
(r3) = 12/M3 ~ 0.47 fm?. The central value agrees with
Ref. [64], a global analysis of muon capture and neutrino
scattering, but the uncertainties are substantial, see Table I.
To ensure that the Ward identity is satisfied up to higher
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orders, the pseudoscalar form factor needs to be modified
according to [91]

dmyg.nnFr 2
Gh(r) = = NI g (R) + O ME) (19)

when including the radius corrections (17). The full zN
coupling constant g,y has been introduced as a convenient
way to capture all chiral corrections at O(1). In the
numerical analysis we will use F, = 92.28(9) MeV [54]
and ¢2yy/(47) = 13.7(2) [92-96]. With this input, the
Goldberger—Treiman discrepancy becomes

= 1.0(7)%, (20)

demonstrating that the chiral corrections are rather small.

The final matrix elements in the dimension-6 Lagrangian
concern the tensor operator go**q, for which we use the
decomposition

(N(p")|ge"qIN(p))

_ i i )
=a(p') |6 F{7 (1) - — (g - 7" F37 (1)
N

i
—— (Phq = P¢")F§3 (1) [u(p). (21)
N

The tensor charges ¢7” = F{7(0), as given in Table I,
are taken from lattice QCD [65]. The other form-factor
normalizations come from Ref. [66] (with strangeness input
updated to Ref. [61]).

D. Dimension-7 matrix elements

At dimension-7 we first need the scalar matrix elements
of the nucleon:

(N(p")Im,qqIN(p)) = myfy (a(p u(p). (22)
To separate the momentum dependence we define

cf

@) =+ = 5 1 O(s2),
N
= £+ *5"‘1 51+ 0(2).
m
0 =+ 2 o). (23)
my

The scalar couplings f» , are largely determined by the
pion-nucleon o-term o,y [97], up to isospin-breaking
corrections that can be extracted from the proton-neutron
mass difference [98—-102]. The numbers given in Table I
follow from o,y as extracted from data on pionic atoms
[93,94,103—-105] when used as input for a dispersive

analysis of pion-nucleon scattering [67,106]. This result
has been confirmed using independent input from scatter-
ing data [107], but there is a persistent tension with lattice
QCD that still has not been resolved [68-71,108,109].
Accordingly, we have increased the error in £V given that in
this case all phenomenological extractions are subject to
large SU(3) uncertainties. The heavy-quark couplings f
effectively describe the matrix element of the trace anomaly

at O(ay):

i - 2 (2

05 (1) =

- ¥ no).

g=u,d,s

(N(P")|0uIN(p)). (24)

with normalization 6)(0) = my, while perturbative cor-
rections especially for the charm quark lead to additional
uncertainties [72]. For the momentum dependence, & and
o, are taken from Refs. [33,73,74], and [75,87],

mg—m,

Sud = = 0.35(2), (25)

my + my,

which also determines the scalar couplings of the pion

(nlmyqqlz) = fiM. (26)
according to
m 1
T=—Ft —=—(1- =0.315(14
fu m, + my 2 ( fud) ( )
mgy 1
=—== = 0.685(14 27
= =5 (1 £) = 0685(14). (27

These matrix elements arise in two-body corrections to
scalar currents and are also included in Table I.

Finally, we parametrize the pseudoscalar matrix ele-
ment as

(N(p")lmyairsqIN(p)) = myGE™ (na(p)iysu(p). (28)

For the nonsinglet component the new form factor is related
to the axial-vector ones by the Ward identity

G (1) = GqN(t)Jr G " (1), (29)

but in the singlet case this relation is broken by the anomaly
contribution from G, GZ , similarly to the gluonic con-
tribution to the trace anomaly. For a consistent treatment
of singlet effects one would thus have to extend the
operator basis in Eq. (1) accordingly. In the past, the
singlet pseudoscalar matrix element has often been esti-
mated by assuming [110,111]

074018-5



HOFERICHTER, MENENDEZ, and SCHWENK

PHYS. REV. D 102, 074018 (2020)

TABLE II. Nomenclature for the nuclear structure factors. The
second column gives the leading operators on the single-nucleon
level, the third one indicates the extent to which the response
scales coherently with nucleon number, and the fourth column
gives its physical interpretation. The axial responses include
longitudinal, transverse electric, and transverse magnetic multi-
poles. Sy =o6y/2 denotes the nucleon spin operator and the
momenta are defined as in Sec. IIL

Responses Operator Coherence Interpretation
FM 1 Coherent Charge
F¥ Sy - (qxP) Semicoherent Spin orbit
Sy Sy Not coherent Axial
(NI )" girsqIN) =0, (30)
q=u.d.s

but the analogous relation for the axial-vector singlet
combination > _, , Aqg does not display the expected
1/N, suppression. The matrix element of the gluon
anomaly could be extracted with similar techniques as
used for lattice calculations of the QCD @ term [112].

E. Nuclear responses

As a final step, the nucleon-level matrix elements need to
be convolved with the nuclear states. Formally, the decom-
position into distinct nuclear responses requires a multipole
decomposition, see Refs. [113—118], which in full general-
ity becomes very complex. Here, we concentrate on the
most relevant contributions, with the main features sum-
marized in Table II, and review some of the details needed
later in Appendix A.

By far the most important response is related to the
charge operator, it is denoted by the structure factors
FM(q*) normalized by

FMO0)=N+Z=A, FM0)=Z-N. (31)
This is the only response that is fully coherent. In addition
to FY, we also need the so-called F&" structure factor,
which can be interpreted in terms of spin-orbit corrections.
This response vanishes for q2 = 0, but it interferes with F i”
and receives some coherent enhancement, especially for
heavy nuclei. This is because in the relevant nuclei
nucleons tend to occupy orbitals with spin parallel to the
angular orbital momentum (lowered in energy by the
nuclear spin-orbit interaction) and high-energy orbitals
with antiparallel spin, which would cancel %', remain
mostly empty. The interference with FY and partial
coherence make the ®” response the most relevant cor-
rection. In principle, both F¥, F®" may contribute beyond
the leading L = 0 multipole, but such effects are not
coherent, vanish at q2 = 0, and without interference with
the leading multipole effectively become negligible. Due to

this we will continue to identify both responses with their
L = 0 multipole.

Finally, there are several responses that emerge from the
axial-vector operator. Their contribution again is not
coherent, but remains finite at q> = 0. In these cases,
several multipoles and responses become relevant, but we
will continue to use a notation in which these effects are
subsumed into structure factors §;; (with indices i, j = 0, 1
corresponding to isoscalar/isovector combinations). We

keep the induced pseudoscalar form factors G%", whose
contribution is enhanced by the presence of the pion pole,
but do not consider any other subleading noncoherent
responses. Further aspects of the multipole decomposition
are discussed in Sec. III whenever necessary to introduce
the nuclear responses for a given process.

III. NUCLEAR RESPONSES
IN THE STANDARD MODEL

In this section we will collect the nuclear responses as
they appear in electron-nucleus and neutrino-nucleus scat-
tering. In particular, we demonstrate how the traditional
charge and weak form factors emerge in the formalism
established in Sec. II. In either case, the kinematics are
defined by

¢(k)+N(p) - £(K)+N(p).  efe.v}. (32)

with

q=kK-k=p-p (33)
and invariants
s=(p+k?* t=(p-p) u=(p-K)? (34

fulfilling s + ¢t +u = 2m§. Here, m, refers to the mass of
the nucleus and lepton masses are neglected throughout.
We also define P = p + p’ and write t = ¢> = —Q°.

A. Parity-conserving electron scattering

For electron scattering, the invariants (34) are conven-
tionally replaced in favor of

t 2mAt
- z=cosf=1- A
4dm

G

NS

where @ is the scattering angle in the laboratory frame. In
this frame the relation of the spin-averaged scattering
amplitude |M|? to the cross section becomes
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do _ P £
dQ  64z’my(my + E(1-2)) E
do E 2IM?
=|— X —=X—F—F"r,
dQ) vow  E  de*(mh — su)

(36)

where the last relation defines the Mott cross section

do B e*(m} — su)
dQ) o 1672 my(my + E(1 = 2))
2 cos??

a” COS

= 4E s 37)

The incoming and outgoing electron energies are given by

:s—mf\ E,:mi—u' (38)

E
ZmA ’ 2mA

For the parity-conserving case, the amplitude becomes

_ 1
2 2
M| T 2027 + U;JM ’

2

M= _eTﬁ(k’)yﬂu(k)<N(p')|jgm|N(P)>v (39)

and at the single-nucleon level the hadronization follows
from Eq. (6). The leptonic trace

L =Tr(fryfy”) = 4(k"KY + K*k* — ¢k - k), (40)

fulfilling k,L* = k;L”” = 0, needs to be contracted with
the nuclear amplitude, which we express in terms of
multipoles according to Sec. IIE, see Ref. [117] and
Appendix A. The leading terms can be read off from the
nonrelativistic expansion of the single-nucleon current,

FY(0)+2F3 (1)

8m12V

FY (1) +2F} (1)
4m3 ’

(N(P")ljemN(p)) =FY (1) +

—iSy-(gxP) (41)

where we dropped the remaining two-component spinors
and the spacelike components do not contribute to the M
and @” responses. After the multipole decomposition, the
first line of Eq. (41) will contribute to FM, the second to
F®' and the combination to an interference term between
the two responses. Concentrating on the L = 0 multipole,
the result takes a very compact form and is typically
expressed as

do do E
— =5 X —xZ*x[Fa(q?))?  (42)
a0~ \dQ) o, " E

with the charge form factor defined by

1 ra\p 1
Fen(q?) =7 Kl +< ? t+8mzf>f’,‘f(q2)
N

2\n
A i)

6

1—|—2KP " 2K "

— tF® (q?) = —2tF® (¢?)]. 43
o L) oY )| (6

The proton/neutron combinations are related to the isospin
components by

Fi(q*) = ¥ (q?) £ Fil(q?).
F¥(q?) =7 (¢®) £ F¥ (). (44)

and we have replaced the full form factors in Eq. (41) by the
first terms in the expansion (7). The charge form factor
fulfills the normalization F,(0) = 1, and the correspond-
ing representation (42) is exact for spin-O0 nuclei. For
nonvanishing spin, there are further form factors, e.g.,
the magnetic form factor for spin-1/2 in analogy to the
nucleon, but for the reasons given in Sec. IIE these
contributions are small in heavy nuclei. In addition, two-
body effects only enter at loop level, so that in contrast to
the magnetic form factor two-body modifications of the
charge form factor are also small. Finally, we give the
corresponding expansion for the charge radius

N 3
RG, = Ry + (rg)? +§<r2E>" +W+ ()00
N

<r2>SO =

~377 ((1+2,)F2(0) + 26,72 (0)),  (45)
N

where Rf, is the so-called point-proton radius defined as

M (2
R?, ——— E&gq) , (46)
Z dq *=0
and (r?),, represents the spin-orbit contribution encoded in
@" [119]. In the case of Eq. (43) the matching of matrix
elements and Wilson coefficients is trivial, since so far only
the long-range contribution in the SM has been taken into
account. A potential modification would be provided by the
electron analog of £0) given in Eq. (1). In the next step, we
extend the discussion to short-range contributions from Z
exchange, which are responsible for PVES in the SM.

B. Parity-violating electron scattering

The central observable in PVES is the asymmetry

Apyps — (@)r — (@8 (47)
(e + (),
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where the cross sections involve left- or right-handed
initial-state electrons, respectively. The corresponding
lepton traces are

leb/R = Tr(x” 7MPL/Rk/7/ (99 — ga7rs))
=2(gy £44%)
X (K'Y 4+ K"k — "k - k' £ ie"”“ﬂkak’ﬁ), (48)
where
=120y, gh—-2  (49)
gv - 2 Sin Ws gA = 2

are the vector and axial-vector weak charges of the electron
in the normalization of Ref. [54]. The terms in Eq. (48)
involving an € tensor will lead to SD corrections, which we
will study below in the context of CEvNS, while the
remainder follows in close analogy to the parity-conserving
case, the only difference being that the electromagnetic
form factor needs to be replaced by its weak analog. With
quark-level Wilson coefficients as in the SM and matrix
elements from Eq. (10), the result takes the simple form

GFt QWFW (qZ)

A = , 50
" d4rav2 ZFa(@?) 0
where the weak charge
O, = ZQO\ +NQ3,
R =1—4sin’0y, o =-1, (51)

has been separated from the weak form factor Fy(q?).
However, we note that, in contrast to the electromagnetic
charge and F,(q?), Q,, does not actually factorize. The
explicit definition reads

2
Folq) =Q1 KQ@ <1 + <rg>pz+8;12z)
w N

2 n+ 2SN
+Qrvlv<rE> 6<rE,> t)]_—pM(qz)

+ <Q& (1 + (ri)? +6<r%J>Nt+8ri12V t>
+Q"< 2" )fM(q)

_Q@(1+2KP)+2Q3V(K"+K§’)

17y (a?)
4m?, P
2(1+2kP +26N) + 205" "
W22 ) 200 <q2>], (52)
4my

where we have used that in the SM the Wilson coefficients
for d- and s-quarks are identical to write the strangeness

contribution in terms of Q7. The corresponding weak
radius reads

)4 n
R — 22 (R%,+< 297+ 2 (2

Oy Ow
42w NOg (Rz + <r2>p + <r2 >N ‘]:’ <r2>n>
QW E E,s Q(l;v E
3
+4—2+ < >so’ (53)

with spin-orbit contribution [120]

304 o, "
2y = — 1+ 2xP 42 "+ &) ) F2N 0
Plo=-gome (1420 12550 +x)) 72 O
301 Qw "
- Y (142« 42 2="4 ) FON0).
2m%va< R T ) = 0)
(54)
Numerically, we use the values [54]
2
Q§:—£(2Cl‘f CY) =0.0714,
Gr
2
or = _G£ (CY +2CY) = —0.9900, (55)
F

and accordingly for Q,, because the process-dependent
radiative corrections [54,121,122] as for atomic parity
violation or PVES are not yet available.

We have calculated the nuclear responses F¥(q),
F%'(q), and the corresponding nuclear radii for isotopes
relevant for experiment with the nuclear shell model. The
calculations use the same configuration spaces and nuclear
interactions as in previous works [29,33,36]. In particular,
the shell-model interactions used are USDB for '°F and
»Na [123] (with Ods/5, 15y, and Ods,, single-particle
orbitals), SDPESM [124] for “Ar (0ds 5, 1sy/5, 0dss,
0f7/2, 1p3)2, 1p1/2, and Ofs), space), RG [125] for *Ge
(1p3/2, Ofsj2, 1p3sn, and gg/, orbitals), and GCN5082
[126] for ', 133Cs, and '"®3Xe (0gy/5, 1ds), 1sy)2,
Ods/», and hy;/, space). The notation for harmonic oscil-
lator orbitals is nl;, where n is the principal quantum
number, and [/, j denote the orbital and total angular
momentum. For additional details on the calculations,
see Refs. [29,33,36]. The nuclear-structure calculations
have been performed with the shell-model code ANTOINE
[127,128].

While the phenomenological character of the nuclear
interactions used in our work prevents the assessment of
reliable nuclear-structure uncertainties, the shell-model
results agree very well with experiment. For instance,
our calculations reproduce well the energies of the
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e 1 T
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Y
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lal [GeV]
FIG. 1. M and ®@” responses for cesium.

lowest-lying excited states of these nuclei [29,31,36] and
the electromagnetic transitions between them, including for
the ground states involved in CEvNS [36]. The magnetic
moments of the ground states of odd-mass nuclei, and the
quadrupole moments of first excited states are also in good

agreement with experiment [36]. From all these isotopes,
only '33Cs is presented here for the first time, compared to
our previous works. This calculation was carried out
without truncations in the configuration space, and the
quality of the '33Cs results is illustrated by the energy
spectrum discussed in Appendix C.

As an example, Fig. 1 shows the M and ®” responses for
133Cs. The coherent and partially coherent characters of M
and @”, respectively, are clearly observed at q = 0, where
about 20%-25% of the nucleons contribute coherently for
F3'(0). The minimum of F} at lower |q| compared to F
indicates a larger neutron than proton radius. Explicit
parametrizations of all nuclear structure factors are pro-
vided in Appendix E.

We obtain the charge and weak radii given in Table III. In
addition, Table III also shows the so-called neutron skin,
defined as the difference between neutron and proton point
radii, R, — R,,. Calculated charge radii are in good agreement
with experiment, similar to other approaches [17,25,27]. The
disagreement between calculations increases for predictions
of the weak radii and neutron skin. The shell model generally
predicts larger weak radii and especially larger neutron skins
than other many-body approaches [17,23-25,27,129,130].

TABLE III.  Shell-model charge and weak radii (in fm). The experimental data for the charge radii are from
Ref. [131]. The table also includes our results for the neutron skin R, — R,,.
197 23Ny 407y 0Ge

Ry Th 2.83 3.01 343 4.06
Ry Exp 2.8976(25) 2.9936(21) 3.4274(26) 4.0414(12)
Ry, Th 2.90 3.06 3.55 4.14
R,-R, Th 0.06 0.04 0.11 0.08

2Ge 3Ge "Ge 75Ge
R Th 4.07 4.08 4.08 4.08
R Exp 4.0576(13) 4.0632(14) 4.0742(12) 4.0811(12)
R, Th 4.20 4.23 4.26 4.31
R,-R, Th 0.13 0.14 0.17 0.21

1271 1330
Ry Th 4.73 4.78
Ry Exp 4.7500(81) 4.8041(46)
R,, Th 5.00 5.08
R,-R, Th 0.26 0.27

128y 0 1290 130%0 131xe
R Th 4.75 4.75 4.76 4.77
R Exp 4.7774(50) 4.7775(50) 4.7818(49) 4.7808(49)
R, Th 5.01 5.03 5.04 5.06
R,-R, Th 0.24 0.26 0.26 0.27

132 134y 13650
Ry Th 4.77 4.78 4.79
Ra Exp 4.7859(48) 4.7899(47) 4.7964(47)
Ry Th 5.08 5.10 5.13
R,—R Th 0.28 0.30 0.32

n 4
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10° =

0 0.04 008 012 016 020
lq| [GeV]

10°

FIG. 2. Shell-model results for the weak form factor of '°F,
2Na, 71, and '33Cs.

The corresponding results for the weak form factors are
shown in Figs. 2-5. In each case, we show the shell-model
results for the modulus of the weak form factor including
all corrections given in Eq. (52). Coherence is kept until
larger momentum transfers in lighter nuclei with smaller
neutron radius, see Fig. 2. For germanium and xenon
isotopes, Figs. 4 and 5 show the difference between the
weak form factors of stable isotopes.

In the case of *°Ar, Fig. 3 compares our results to the
RMF calculation of Ref. [23] as well as ab initio results
from coupled-cluster theory [27]. All calculated weak form
factors give similar results, within the uncertainty band
estimated in Ref. [27]. This suggests that uncertainties in
the neutron distribution are relatively small, in contrast to

10—

Z L (EM)-(PWA)

= 10F . NNLOu N

— ANNLOgo(450) \

-- RMF i

— This work
1 0-2 L L L | L L | L L | L | L L L
0 0.04 0.08 0.12 0.16 0.20
laf [GeV]

FIG. 3. Shell-model results for the weak form factor of “°Ar, in

comparisonto RMF [23] and coupled-cluster [27] results. The curves/
bands labeled (EM)-(PWA), NNLO,,, and ANNLOg (450) refer to
the chiral interactions considered in Ref. [27].

|

0.20

L | L L | L
008 012
a| [GeV]

0.16

- P T L
10 0 0.04

FIG. 4. Shell-model results for the weak form factor of
germanium.

the assumptions in Ref. [37]. We stress that apart from the
nuclear structure, minor differences in the weak form factor
arise from the precise input for the hadronic matrix
elements and weak charges, primarily the proton charge
radius, for which Refs. [23,27] use (r2)? ~0.77 fm?.

C. Neutrino scattering

The dominant contribution to the CEvNS cross section in
the SM involves the same nuclear form factor as in the case
of PVES, since apart from overall prefactors the combi-
nation of Wilson coefficients, hadronic matrix elements,
and nuclear structure factors remains unchanged. This
dominant piece of the differential cross section takes the
form

)
L‘L? 10 ]
1 0-2 L L L | L L | L L | L L L L L
0 0.04 0.08 0.12 0.16 0.20
lq| [GeV]
FIG. 5. Shell-model results for the weak form factor of xenon

(we only show selected isotopes for better visibility).
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doy
dr

2

. (56)

_G%mA 2
T 4 < 2E2>Q IFu(a?)

where E, is the energy of the incoming neutrino and the
nuclear recoil,

coherent

t
_ /!

T=E -FE = o, (57)
takes valuesin [0, 2E2/(m, + 2E,)]. Terms of order T/E, <
2E,/m, are usually neglected due to typical neutrino
energies £, < 50 MeV. The cross section in Eq. (56) rep-
resents the truly “coherent” contribution, in the sense that the
nuclear structure factors that enter the definition of F,,, see
Eq. (52), indeed scale with Z and N (F™) or at least can
receive some partial coherent enhancement with respect to
closed shells (F®"). Two-body corrections to Eq. (56) again
only arise at the loop level, and are thus significantly
suppressed in the chiral expansion.

Before extending Eq. (56) to the axial-vector responses,
we comment on some details of the derivation as well as
subleading kinematic effects. The starting point is the
leptonic trace,

L =Tr(K'Y" Py Py)
=2(kMK" + K"K — ¢k - K + ie"”“ﬂkak},), (58)

whose components determine the spin sums:

T 2T
Zlo 5= Log = 2E2 (2 - mEA > +O(1?),

spins v El/
§ * 2 r 2
131—; = L33 == 2Ey7+ O(T ),
- N mpy
spins

> _lo
T 2T
dIIr= ii_2E5(2+mL——> +0(T?),

spins
—4iE,\/2m,T + O(T?/?). (59)

Z(l x 1" )3 - €3l] ij —

spins

2T
Iy = Loz = 2E2 [— 4+ O(T?/?),
- - mA
spins

The spherical components are defined with respect to the

direction of q = k’ — k, e.g.,
7kqi_ T(mA—FE,/)
> TQm,+ 1)
k’- T T-E
v Ka_Tom+T-E) (60)
lq| T(2m, +T)

In particular, the combination Lsj is strongly suppressed by
T/my < 2EZ/m3, while Ly or the additional terms in Ly
and L; are only suppressed by T/E, <2E,/my. In
consequence, the longitudinal multipoles in Eq. (A1) can
be safely neglected. The interference with the Coulomb

multipoles could in principle become relevant, but the
longitudinal multipoles involve an additional suppression
by ¢°/|q| = —/T/(2m,) < —E,/m, from the application
of current conservation, see Eq. (A3). Accordingly, all
potentially relevant subleading kinematic effects can be
taken into account by

mAT mAT T
1- 61
( 2ﬁ>ﬁ( MZE) (D)

in Eq. (56).

Next, there could be interference terms between the
vector and axial-vector responses. The vector contributions
to the transverse multipoles vanish for 7 — 0 and are not
coherent, so the only potentially relevant interferences arise
from the longitudinal and Coulomb multipoles. However,
all such interferences vanish due to Eq. (A3).

Therefore, the dominant correction to Eq. (56) comes
solely from the axial-vector part of the interaction. This
contribution becomes relevant for precision studies of
nuclei with nonvanishing spin, especially, because in
contrast to other less relevant corrections their contribution
remains finite in the limit 7 — 0. The SD structure factors
are obtained by adapting the formalism from Ref. [29],
most notably, by only keeping the transverse electric
multipoles, due to the strong suppression of the longi-
tudinal ones (transverse magnetic multipoles do not con-
tribute to elastic scattering due to time reversal). Collecting
the kinematic factors, the resulting contribution to the
CEvNS cross section takes the form

2 T 2T
— <2 + A >
o 2/+1 E2 E,

x ((93)25%(a%) + 65953, (@%) + (g})

doy
dr

28T (q%)),
(62)

where the structure factors Sg(qz) are the same as for dark

matter except that longitudinal multipoles need to be
omitted, see Sec. IIIE as well as Appendices A and B
for the precise definitions. In particular, the normalizations
are related to (Sy), the nucleon (proton and neutron) spin
expectation values™:

70 = vario = 3/ 2 g,

*Note that Eq. (63) includes an additional factor 1,/2 compared
to the q =0 limit of the standard definitions of the ¥/, X"
operators in Eqs. (B2) and (B3) [the same is true for the full

F ,%,/L (q®), F EZ (q?)]. This factor is compensated by the factor 2 in
Egs. (83) and (84), which is needed for consistency with the
definition of S;; in Eqs. (80)—(82) in the literature.
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TABLE IV.  Shell-model proton ({(S,)) and neutron ((S,,)) spin
expectation values for the odd-mass isotopes considered in this
work.

19F 23Na 73GC 1271
S,) 0.478 0.224 0.032 0.346
(S,) ~0.002 0.024 0.439 0.031
129Xe 13 IXC 133Cs
S,) 0.010 —0.009 —0.343
(S,) 0.329 —0.272 0.001

We have obtained the nuclear responses }"ﬁ/‘ (q) and

> . . .
Fy (q) and the corresponding spin expectation values
with the nuclear shell model calculations described in
Sec. III B. The results for the spin expectation values are
given in Table IV, see also Refs. [28,29]. The isoscalar/
isovector coefficients are

is the axial-vector analog of |Fy(q?)|>. As expected, the
dominant SD correction arises from the isovector compo-

nent, with the normalization

4,041

FAl0) = SR~ (S, = (S0P (68)

when strangeness and two-body corrections are neglected.
The induced pseudoscalar form factor Gp(t) only contrib-
utes to the longitudinal multipoles, see Eq. (A3). Since g4
factorizes, the radius corrections from Eq. (17) are usually
absorbed into the structure factors, as are corrections from
two-body currents, to which we will turn in the next
subsection.

D. Improved treatment of axial-vector
two-body currents

Axial-vector currents are responsible for SD scattering.

0 _ gh+ i | dh— gt (64) In the nonrelativistic limit the leading one-body (1b)
9a 2 7 9a 2 currents are given by
where g = >~ Cj g%N . In the SM we have, using Egs. (4),
(13), and (14), 1 G3.(q?
=17 (G - M (g 0)q). (69)
2 4m
Gr N Gr N N
Gh="5a=90)  di=——2(gatagi)
V2 V2
P = _Gr g gl = Gr g (65) so that axial responses are driven by the nucleon spin
A 57A AT R S; = 6,/2, as indicated by Table II.
) ) A sizable correction to the leading one-body terms
so that the full expression for the cross section becomes comes from subleading axial-vector two-body currents
do G% - m,T T ) - [32]. In medium-mass anq heavx nuclei, .these contribu-
9 = 4 ~SE & Ou|Fw(q?)] tions have been evaluated in previous studies of § decays
7 v v [132,133] and WIMP-nucleus scattering [28,29]. However,
N Gamy | myT T Fa(q?) (66) the studies of SD WIMP scattering off nuclei focus on pion-
Az 2E2 E, A\, exchange two-body currents proportional to the low-energy
couplings c3, ¢4, and c¢ [28,29] and neglected the contact
where two-body axial-vector current proportional to the couplings
87 N N d,, d, [32], which is only included in the |q| = 0 limit in $
Fa@?) = 5577 (937 )S50(a%) = 949 S61(a) decay [132,133].
P Here we improve previous studies by including all pion-
+(94)*S1:(a%)) (67) exchange, pion-pole, and contact terms derived in Ref. [32]:
|
5 9a q Ce P +Pi] 62k,
Ji 2—17,2,[71 x 1, |:C4 (1 _qur—M,z,q) (61 x ky) +Z(°'1 Xq)+i dmy | M2 2
da ;3 q q 6k,
R [C3 (1 s +M%q') ka2 +M%] M;+ 1
—di7} (1= 5 q oy + (1 2) = dy(m x )6y x 02) [ 1 =g ). (70)
q* + M; q + M?
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where k; = p} — p;,q = —k; — k,, and (1 < 2) applies to
the entire expression except for the last term. Relativistic
1/my corrections to Eq. (70), besides the term proportional
to p; +p}. can be absorbed into ¢4 — ¢4 + 1/(4my),
¢ — cg + 1/my, where we use a dimensionful ¢4 for
consistency with the previous literature on the axial current
(note that our choice of ¢4 corresponds to cq/my in the
conventions of Ref. [134]). In the counting of Refs. [32,135]
these relativistic corrections are formally of higher order,
but we keep them both for consistency with Ref. [133] and
in analogy to our treatment of higher-order effects in the c;,
see below.

®i52r2\ 73

eff.o 7 p [ 1 1
I (p.q.P) = —g, < —(%—m)[l‘{(p, [P —q|) +I{(p. |P +q])]

Following Refs. [28,29] we approximate the two-
nucleon currents by a normal-ordering approximation
with respect to spin-isospin symmetric reference state with
density p = 2ki/(37%) (kg is the Fermi momentum)

J =Y (1= PR, (71)
J

where P;; is the exchange operator and the sum is
performed over the second nucleon j.

As a result, axial-vector two-body currents transform
into effective one-body currents [29,136]:

C
+ 21 (. [P - al) = (. IP — a)

(P q)
+ 315(p. [
Q'(P‘HI)} Cp )
_Ic P - ’ 72
ol ) (P+aq)? | 2040, 72)
3 2 P r
off. P T p M2 1 L\ (e [P—q|) +17(p. [P+ q|)
T 0P = =0 o (e 200 Gt 5 (e e, ) ¢
1 1 q*1"(p. ), @1I"(p. [P +dq])
- ——— | I%(p,|P - I7(p,|P
Fylest e o [P =l + 15 P+ g + PR ST
1
—c4m[lg(p, )+ 15(p, [P +q)]
n 6 2 oMz [Les(p. P~ Ls(p. P +4q|) ¢p 1 (73)
12 3M;+¢*)[ (P-q) (P +q)? 2040, M7 + @7 )

These two effective currents have the same structure as the
two terms in the leading one-body current, Eq. (69), so they
can be treated in the same way.

The currents in Egs. (72) and (73) depend on the nuclear
density p, the momentum transfer ¢, and the combined
momentum P. Because the dependence on P is small [29],

summation over occupied states in the exchange terms
in Eq. (71). They can be expressed as integrals, with
analytical expressions given in Ref. [29].

In the P =0 approximation, the combined effective
currents can be written in analogy to Eq. (69):

in practice we evaluate the expressions taking P = 0. oif 7 sar(q?)
Likewise, we neglect additional effective one-body currents I (P 4) = g4~ 2 da(q’)o; + e (q-0i)q|, (74)
proportional to P and P-6;. The functions I§(p,K),
I5p,K), I"(p,K), and I.(p,K) appear due to the  where
|
sala) = 2, (%313, al) ~ 1700, laD] =5 (3 = 7 ) 1500 lal) =5 Lo lal) - (75)
FZ 3R e 3\ " amy o leslp 4gA
Mzig? 1 1 ce 2 cM:
saP (%) = 2 |=2(cy = 2¢)) 50— 4 = -— 1" (p.la) - (2 -3+
) = £ |-2les = 260) i (et g ) Pdal) - (T =55 ) 1)
2 2
q P Cy Cp q
- 15 (p, 1 —I9(p, = 3I5(p, - — . 76
a2 o la) + 7o la]+ 5 o ) =350 )| -2t 0
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For f decays q ~ 0, and axial-vector two-body currents
have been studied beyond the normal-ordering approxi-
mation in Eq. (71) [133]. The approximation for Jffsz was
found to be very good when taking p ~ 0.10 fm~>, which is
a typical value for the density of the nuclear surface. Based
on this, for our evaluation of the nuclear structure factors
we consider the density range p = 0.09...0.11 fm™3. This
range includes slightly lower densities, but is consistent
with the one considered in Refs. [28,29].

The contributions from two-body currents in Egs. (72)
and (73) depend on the low-energy couplings c¢;, cs,
¢4, Cg, and cp. Due to antisymmetrization of the currents,
the two couplings of the contact two-body term com-
bine into a single contribution proportional to
cp = —4(d, +2d,)/(F2A,). The values of c;, cp to be
used should in principle be given by the nuclear interaction
used to solve the many-body problem for the nucleus of
interest. However, accurate many-body calculations using
chiral interactions that depend explicitly on ¢;, ¢ are still not
available for all nuclei discussed in this work. Instead, our
results are based on many-body calculations that use shell-
model Hamiltonians, which, despite being based on nucleon-
nucleon interactions, are modified by phenomenological
adjustments in order to improve their description of the
nuclear structure of selected regions of nuclei. Therefore,
we cannot use consistent c¢;, ¢p couplings between the
nuclear interactions and the two-nucleon currents given in
Egs. (72) and (73).

Our strategy is as follows. First, we use the values for ¢,
c3, and ¢4 determined in the Roy-Steiner equation analysis
of zN scattering [106,137]. This improved determination of
the ¢; values allows us to obtain results with reduced
theoretical uncertainties compared to Refs. [28,29], which
considered a broad range of c¢; and c; (the smaller c,
contributions are included for the first time in this work). In
fact, at a given chiral order the uncertainties in the c; are
now negligible, with the main uncertainty arising from the
chiral expansion. Strictly speaking, one should use the
next-to-leading-order values from Refs. [106,137] to be
consistent with the chiral order we use for the axial-vector
current, but this assumes that the latter is affected by large
loop corrections in the same way as zN scattering, which is
known not to be the case. Instead, we make use of the fact
that the two-nucleon axial-vector current is matched to the
three-nucleon force [135], in such a way that the leading
loop corrections in the axial-vector current coincide with
the ones in the three-nucleon force [138,139]. These
corrections can be represented by a simple shift dc; [140]:

(77)

The values shown in Table V are then obtained as the
combination of the next-to-next-to-leading-order values
from Refs. [106,137] in combination with these dc;

TABLE V. Nuclear density p and low-energy couplings ¢; and
cp used in this work. The smallest (largest) value of cp is only
reached for the lowest (highest) density p = 0.09 fm™3
(p = 0.11 fm™?) and 30% (20%) contribution of two-body axial
currents at |q| = 0. The values for ¢/ ; 46 include the leading-loop
effects and relativistic corrections as described in the main text.
The chiral scale in the definition of ¢, is set to A, = 700 MeV.

¢, [GeV™] —-1.20(17)
c3 [GeV™!] —4.45(86)
cq [GeV™!] 2.96(70)
ce [GeV™!] 5.01(1.06)
cp —6.08...0.30
p [fm~3] 0.09...0.11

(as well as the relativistic correction for c¢,), and the
uncertainties represent the shifts between the two chiral
orders. The value of cg is related to the isovector magnetic
moments via [134]

GaM,
mpy 471'F72[ ’

kP — K"
Cq =

(78)

where we have indicated the leading loop correction.
Similarly to the other c;, this correction is large despite
being formally of higher order (in part due to the enhance-
ment by a factor of z [141]). However, similar corrections
arise from chiral loops in the axial-vector current
[135,142], the dominant of which can again be represented
as a shift in cg,

(79)

and cancels the matching correction in Eq. (78). Including the
relativistic corrections discussed before, we will thus equate
ce = (kP —k" 4+ 1)/my = 5.01, as given in Table V.

We then fix the value of the contact coupling c¢p, while at
the same time correcting for the shortcomings of our
phenomenological calculations.  Shell-model nuclear
matrix elements involving the axial-vector current typically
overestimate experiment [143] by about 20% to 30%.
Recently, Ref. [133] showed for f decay (where it is
sufficient to take |q| =0) that this is because of a
combination of missing two-body axial-vector currents,
see Eq. (70), and additional nuclear correlations that are
beyond the standard shell-model approach. In order to
account for this, we adjust the value of ¢p so that our shell-
model calculations receive a contribution from two-nucleon
currents such that, at |q| = 0, Eq. (72) reduces the leading
term in Eq. (69) in the range 20% to 30%. The ¢
dependence of the effective two-body currents is the one
predicted by Egs. (72) and (73). Since the leading con-
tribution from two-body axial-vector currents comes from
the pion-exchange part proportional to c¢; and c,, the part
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considered in Refs. [28,29], our results are consistent with
these previous calculations.

The values of ¢; and ¢ used in this work are summa-
rized in Table V, where the extreme values ¢, = —6.08
(cp = 0.30) only correspond to the low density p =
0.09 fm™3 (high density p = 0.11 fm™3). In practice, we
neglect the remaining uncertainties in the ¢; due to effects
from higher chiral orders not captured here, as those
are subleading compared to the uncertainty in the
range of cp values, which also depend on the nuclear
density p. Ultimately, our uncertainty depends on the range
imposed on the impact of the two-body currents at |q| = 0,
20%-30%, as estimated from S decay [133,143].

E. Spin-dependent responses for CEvNS
and dark matter

The nuclear responses for CEvNS and SD dark matter
scattering off nuclei can be expressed in terms of the

o >
transverse and longitudinal SD structure factors F.*(q?)

and F iZ (q?), respectively. For CEUNS, only the transverse
component contributes, while for dark matter scattering
both longitudinal and transverse parts need to be taken into
account.

The expressions are given by

SOI = Sg] + S(l):l
= 37201 + (@) F () F (@)

A

2//
+ (q2>]_-

+ 21 +5"(q)]F “(q?).  (82)

which can be expressed in terms of the proton/neutron
instead of the isoscalar/isovector basis as

S, =87 +58%
= Z 2FH(a?) + 8 (62 (Frt(a2) — Fot(a2))]?
+22fp + 5" (@)(FrH(a2) = Ft (@),

(83)

S, =Sy +S§
=Y RFH@) - 5 (@) (Fr (@) - Fa (@)
YR ) = 8@ (F @) - F (@),

(84)

where the proton/neutron combinations are related to the
isospin ones analogously to Eq. (44),

=3

5 5 5
FH@) = FH@) £ 5 @)
FL@) = FH (@) £ o (¢P). (85)
The terms &' (q?), 8" (q?) encode the corrections beyond
the leading SD coupling to the transverse and longitudinal
SD responses, respectively. They capture the combined
effect of the pseudoscalar form factor, radius corrections,
and two-body currents. They are given by

2/,2
5(0) = - 4 (),
F, ¢
5'(q?) = = Tx b sa(q?) + 6a”(q?). (86
@) === e @ o) (%), (86)

where the two-body current contributions éa(q?) and
da®(q?) are defined in Egs. (75) and (76).

Note that currents proportional to (q-6;)q only con-
tribute to the longitudinal multipoles. Moreover, their
contribution can be treated similarly to terms proportional
to o, because

(q-6,)4 =q%; +qx (qx0;), (87)

where the second term is perpendicular to q and vanishes
for longitudinal multipoles.

As a first application we show the results for the structure
factors Sy(q?) for xenon, in comparison to our previous
work from Ref. [29], see Fig. 6. There is good consistency
within the earlier theoretical band. As expected, recent
progress in the understanding of low-energy constants and
two-body currents in S decays allows us to reduce the
theoretical uncertainties. Figure 6 shows that for xenon this
is especially the case for S, as this response is dominated
by two-body contributions. In general, uncertainty bands
are reduced most for the smaller structure factors corre-
sponding to the species with an even number of nucleons.

Second, we show the variant of the SD structure factors
required for CEvNS, see Figs. 7 and 8. As discussed in
Sec. III C, only the transverse multipoles contribute to the
final expression in Eq. (66), but unless the strangeness
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FIG. 6. Structure factors Sy(q?), as defined in Egs. (83) and
(84), for xenon. The dark bands refer to the results from this
work, the light bands to the ones from Ref. [29].

contribution is neglected all isospin components enter. The
figures show our shell-model results, including two-body
currents and form factor corrections represented by &'(q?),
5"(q%) in Eq. (86). For a given nucleus, the shape of the
isovector and isoscalar responses is similar because all of
them are ultimately dominated by either S,(q?), if the
nucleus has an unpaired proton, or S,(q?), for nuclei with
odd number of neutrons. A comparison between the '3'Xe
structure factors in Figs. 6 and 8 shows that the shape of the
transverse component may differ significantly from the
total structure factor (dominated by the longitudinal com-
ponent in that case, see Ref. [29]). According to Eq. (63),
the normalization of the transverse contribution differs
by 2/3 from the sum. Moreover, as can be seen from
Figs. 7 and 8, the isovector combination SlTl, which is most
relevant for Eq. (66), is the smallest of the isospin

———
— || #*Na
_ ST 23Na
1 | 11
10 F _ |S(']71| 23Ng =
S0l ™ Ge
. 7| T Ce
e 561 7Ge
o
10
10°F
0 0.04 0.08 0.12 0.16 0.20
laf [GeV]
5T s
10" — S]] Cs 4
. |S(']71| 133 (g E
|Sg(']| 1271
|Sl71 1271
ig B |Sgi| 1271
= 10°F
w0
10° E
L L L | L L | L L | L L | L L L
0 0.04 0.08 0.12 0.16 0.20
la| [GeV]
FIG. 7. Transverse SD structure factors for CEvNS, as required

for Eq. (66). The figure includes all isospin channels, for sodium
and germanium (top) and cesium and iodine (bottom).

components. This is partly because of the reduction caused
by axial-vector two-body currents, which are isovector, as
one-body S;; and S, structure factors are of similar size.

IV. NUCLEAR RESPONSES BEYOND THE
STANDARD MODEL

A. Vector and axial-vector operators

As a first step, we generalize Eq. (66) to include
scenarios in which still only vector and axial-vector
operators are present, but whose Wilson coefficients are
allowed to deviate from the SM. Especially the case with
BSM contributions only to the vector operators is a
frequently studied scenario [2,3].

To collect the combination of Wilson coefficients and
hadronic matrix elements, we define
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L. .oy ey
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FIG. 8. Same as Fig. 7, for the two odd-mass xenon isotopes.
N .
A= ciFrNn.  ie{1.2}
q=u,d,s
N
= > GG, (88)
q=u,d,s

as well as the short-hand notation

91\\/’ = 9@/’,1 (0), 91\\/],2 = gl“,”z(O),
gy (1) = gy + gt + O(7), (89)

where

2\p P 2\n n
-p __ P <rE> _ K n <rE> _ K
I = gv( 6 4m,2\,) + gv( 6 4m3

(PR

4my,

Gya = gk’ + guk" + gyky, (90)

and the neutron equations follow by g¢i =2C}+
CY < gt = C) +2C). For the strangeness contribution
we have introduced the “baryon-number” coupling

g= > ¢ (91)

q=u,d,s

In the SM, where C = CY, this new coupling coincides
with g, and was therefore not needed in Eq. (52).
Collecting all terms, the generalization of Eq. (66) becomes

dGA my mAT T ~ ~
——=-"11- F
dr 2ﬂ< 2F? EV>Q IFu(a )|
mAT T ~
— Fy 2
+27z< 22 E, (@), (92)
where
- 87
2y _
@) =577

(95287, (a%)).
(93)

x ((92)°S50(a?) + 2945 (¢*) +

The isoscalar and isovector couplings for the axial-vector

part are defined as in Eq. (64), so that F, — G%/2F , in the
SM. Similarly, the new “weak charge,”

reduces to —GF/\/EQW in the SM, see Eq. (51), and the
new “weak form factor” becomes

N 1 ) b + 245
Fo(q®) = o [<9v+g’&t+7V8m vz )f’”( 2)
w N

v + 29y, )
+ <g + it + ) F ()
vy 8m%
+2 . +2
gv gvz ]:(D( 2) v )

F¢H
4m? v 4m> ~ (a )]

(95)

Modifications due to BSM physics thus affect the CEVNS
cross section in two ways: the normalization at q> = 0
changes, visible as the change in the weak charge, but in
addition the weak form factor changes as well, which is due
to the fact that Q,, does not actually factorize, but emerges as
a sum of different underlying nuclear responses. Only in
special cases in which the shifts in the Wilson coefficients are
aligned with the SM, i.e., all coefficients are modified by the
same relative factor, would F,(q?) remain unaltered.

To quantify the changes with respect to Fy,(q?), the new
form factor is shown in Fig. 9 for several points in the BSM
parameter space. These contributions to the u- and d-quark
vector Wilson coefficients, defined as in Eq. (5), are large
but realistic in view of current bounds from CEvNS [2,3].
By definition, the deviations vanish at |q| = 0, and they
become most visible in the vicinity of the zeros. The second
point is illustrated in Fig. 10, which shows that sufficiently
far away from the zeros the changes are at the few-percent
level, while the relative deviations are enhanced once the
process becomes less coherent. The relative changes to
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FIG. 9. Changes in the weak form factor for '33Cs in the
presence of BSM contributions to the u- and d-quark vector
Wilson coefficients (5).

F.(q?) in Fig. 10 are comparable to the current nuclear-
structure uncertainties suggested by Fig. 3.

B. Operators not present in the Standard Model

Next, we turn to the operators in Eq. (1) not present in
the SM. At dimension-5 there is only the dipole operator,
leading to the lepton trace

L = =Tr(K"[y*, v*|PLKY . v*PR) 404
= —81(k"K" + KkY), (96)

where we dropped terms that vanish upon contraction with
the nuclear matrix element due to gauge invariance. Since
the interference terms with the SM contribution vanish, the

10
8L 133 (g
X
R 6,
ol
oz
2 ar L eV =€y =0.25
o — €& =—€e =-0.25
oL — eV =—€ =025
eV =¢y =—025
0 = . | . . . | v o1
0 0.04 0.08 0.12 0.16
laf [GeV]

FIG. 10. Relative changes in the weak form factor for '33Cs, for
the same scenarios shown in Fig. 9.

presence of a dipole contribution would manifest itself as a
new, long-range interaction,

doy 4aC 2
—£ = Z*|F
dT ldipole T | Ch(

HEF+OT). (97)

One power of 1/t from the photon propagator in the
squared matrix element cancels with the lepton trace in
Eq. (96), but the second remains and leads to the divergence
for T — 0, due to the relation between momentum transfer
and nuclear recoil given in Eq. (57).

Next, the lepton trace for the scalar operator is

L =Te(K'PkPg) = 2k - K = —1. (98)

The diagonal term in the cross section can be expressed as

doy
dr

T
= T |Fs(a)P (59)

scalar

This expression vanishes for 7 — 0, but otherwise there is
no kinematic suppression compared to the vector contri-
bution due to the scaling m,T/(2E2) <1. We have
collected all the relevant couplings and form factors in
the scalar combination Fg, which is defined as

Fs(@) = 3 (1 +milzva)f%<q2>

N=n,p
+ (fr + 279 F(a%) + f2Fu(q?).  (100)

with F¥ given in Eq. (44), the two-body contributions
F.(q?), Fy(q?) from Ref. [36], and the following combi-
nations of Wilson coefficients and hadronic couplings:

e mN< S Cspy - 1zﬂfgc'g),

q=u,d,s
fN _ Ci‘ 2§ud CS +2§ud + Cf 5.,
=M,y <C5+ C’S)
qg=u,d
0 87[ 1S
fo=-M5CYy (101)

Again, there is no interference with the SM, but the scalar
contribution does interfere with the dipole, leading to
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doy - miT
dT dipole-+scalar 4”E12/
2E, - T 2
x|Fs(q?) + H:A ZeCrFu(q?)

(102)

For the pseudoscalar operator there is also no interfer-
ence with the SM, and due to the SD nature of the nucleon
matrix elements such a response should be even further
suppressed than in the scalar case. To corroborate that
expectation we rewrite the operator by means of the axial
Ward identity,

_ _. i
oPLvm,giysq = == 4,0PLvar'ysq. (103)
so that we can define a leptonic trace,
1 t
L = L ¢ Tr(RPLIPR) = = ¢ (104)

to be contracted with the same nuclear responses already
studied for the axial-vector case. The relevant spin sums are
given by Ls; = L;; = 1*/4, leading to a kinematic sup-
pression with respect to the axial-vector contribution that
scales as

2 272 2
! mil” _Ey

16E2m3,  4E2m% ~ m3’

(105)

The scale m, emerges assuming that the formal difference
between the dimension-7 and dimension-6 operators is
mainly due to hadronic scales [as is manifest for the matrix
elements of the scalar operator, see Eq. (22)], and for higher
scales the suppression would be even stronger. In either
case we conclude that pseudoscalar contributions to
CEvNS are negligible.

For the tensor operator, the most relevant contributions
are expected from the spacelike components 6;;, because
only those are momentum independent and not suppressed
by 1/my in the nonrelativistic expansion. For the same
reason, the induced terms in Eq. (21) are subleading. The
result of the multipole decomposition for tensor currents,
see Appendix D, then leads to the following expressions:
defining the couplings via

N
Hi)= > CIFIF(0), g, =¢),(0), (106)
q=u,d,s
and
P n P n
9r1 + 97 911 — 9121
g(T)‘,l = = 2 ’ g%w,l = L 2 ’ (107)

the cross section becomes

doy
dr

SmA mAT 2T -

— 72— _= 0 \2Q7 (2
2]+1 ( E;% Ey)[(gT,l) SOO(q )
+97191.58, (@) + (97.1)*87, (@?)]

32mA T -

- 0 \2TL (2
27+ 1 < Ev> [(gm) So0(a”)

+ 9(%.1917.13([):1 (q%) + (917,1)23'{:1 (q?)].

tensor

+

(108)

Contrary to the axial-vector response, there is now also a
contribution from the longitudinal multipoles, S‘fj(qz).

These response functions are identical to the ones derived
for the axial-vector case only at leading order, i.e., the two-
body corrections for the tensor current would take a
different form and likewise the corrections from the
induced pseudoscalar and the axial-vector radius need to
be removed:

35((12) = SZ(qz) |5’(q2)=07 Sﬁ(qz) = Siﬁj(qz) |5”(q2)=0-
(109)

There are again no interference terms with the SM, but
the lepton traces do allow for potential interference terms
with scalar, pseudoscalar, and dipole operators. In addition,
there would be additional contributions from the oy;
components of the tensor current as well as the induced
form factors in Eq. (21). In case such contributions became
relevant, the formalism could be extended accordingly.

V. SUMMARY

In this paper we have provided a detailed account of the
CEwNS cross section both within the SM and beyond. To
this end, we started from a decomposition into effective
operators, hadronic matrix elements, and nuclear structure
factors, including both the vector and axial-vector operators
already present in the SM, but also considering the effects
of (pseudo)scalar, tensor, and dipole operators. Light BSM
degrees of freedom could be included along similar lines.

As a first step, we introduced the charge and weak form
factors as typically defined in electron scattering, to
exemplify their decomposition in terms of underlying
nuclear structure factors, but also hadronic matrix elements
and Wilson coefficients. The analogous decomposition for
CEvNS is then used to address the question how, e.g., the
weak form factor needs to be modified once BSM con-
tributions are permitted, and to derive master formulas for
the cross section in the various cases.

Our results for the nuclear structure factors are based on
the large-scale nuclear shell model. In addition to the
coherent part of the response, which is largely determined
by charge operators, radius and relativistic corrections, as
well as spin-orbit contributions, we have also performed a
detailed study of the typically neglected axial-vector
responses. While the general formalism is similar to the
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spin-dependent responses for dark matter scattering off
nuclei, there are key differences. Most notably, only the
transverse multipoles contribute to CEvNS due to the lepton
trace. We have also calculated updates for the structure
factors relevant for spin-dependent dark matter scattering.3

Our calculation of the spin-dependent responses takes
advantage of several developments in recent years that allow
us to improve the treatment of two-body currents as
predicted from chiral EFT. These include improved deter-
minations of the relevant low-energy constants from pion-
nucleon scattering, the calculation of one-loop corrections to
the nuclear axial-vector current, and insights from ab initio
studies of two-body effects in medium-mass and heavy
nuclei. While the nuclear interactions used in this work are
still phenomenological, this strategy allows us to incorporate
as many constraints from chiral EFT as possible, including,
for the first time, the effect of contact operators and pion-
pole contributions to the two-body currents.

Finally, we provide further details of the multipole
expansion of the nuclear responses, tailored towards the
aspects relevant for the CEvNS application and making the
connection to the notation in the nuclear-physics literature.
Together with the fits of the resulting nuclear responses as
well as the EFT decomposition of the cross section, this
defines general CEUNS responses for a wide range of
isotopes and effective operators.

Future precision studies of CEvNS will require improved
nuclear responses, especially those involving neutrons. As
CEvNS may, in fact, be the most promising probe of the
neutron responses of atomic nuclei, a global analysis of
multiple targets will be required to disentangle nuclear-
structure and potential BSM effects.
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APPENDIX A: MULTIPOLE EXPANSION

In this Appendix we review the main features of the
multipole expansion, following closely Refs. [113,118].
The starting point is the leptonic current /,, which is
decomposed into the temporal component [, and the
spatial, spherical components [;, A = &+, 3 with respect to
the reference vector q, where the latter index is chosen to
avoid confusion with the temporal component. The spin
sum takes the form

D WALIHP = 4my (Z[l3l§|<~’f|£L + L1 + bl UM + M)

spins spins \L>0

— 2Re (315 (J || L1 + £i||Ji><Jf||ML + M3 17:)%)]

1 m m
b3 S U IGATE + T5 + AT+ TP (A1)

A==l L>1

where the reduced matrix elements refer to the longitudinal (£), Coulomb (M), transverse electric (7°), and transverse
magnetic (7 ™€) multipoles. The latter can be simplified to

Y WALl =2my > (AT = BE) AT + TR + (AT + TR

spins spins L>1

= 2i(1x I)3Re((J /| T5 + TN AT + T 7)) (A2)

The single-nucleon contributions, obtained by nonrelativistic expansion of Egs. (9) and (11), can then be expressed in terms
of fundamental multipole operators according to

3Our results for the nuclear structure factors, as can be reconstructed from the fits for the nuclear responses in Appendix E, are also
available as text files upon request.
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2 1 where we dropped the quark labels for the form
N pAgM q_ N N "M PP q
Muim = Fy M +4 % (F{ +2F )<q> L 2MLM>’ factors, terms suppressed by ¢°/m,, and several subleading
0 multipoles in the axial-vector contribution. The explicit
Liv = 9 M, expressions for the multipoles in harmonic oscillator
lq| basis are given in Ref. [113], where an additional
Tel lq| [FN am  FYHFY FY +F) ZM] operator Q) = A} — @/ is introduced. Not all multipoles
M~ P12 L ill be needed in the analysis, the most important ones are
m 2 w1 ysis, p
N FN F M and ®” for the vector responses and X/, X" for the SD
T?ff — |q| [FN A gz/M} ones. The nuclear responses X;, A}, as well as the
’|"1\|/ | 2 combinations (A} —1My), (€ + 1X]) vanish for elastic
5 _ —'iGN oM 4 Lymm scattering.
Mim l e ZA [ Lt y&L }
Ly = i<Gg <1 - —q22 ) —q2 GY ) =,
8my)  Amy APPENDIX B: NUCLEAR RESPONSES
2
TS = iGN (1 — q_z) .8 The nuclear responses associated to the M, ¥/, X", and
8my ®" operators are defined as
2
mag5 _ N _ q M . R
Tim =Gy <1 8m12v> XL (A3) M; = ZJJ(QV:')YJ(’[)’ (B1)
i

Zm (~VTjr(qr)[Y s #)e) + VT + 1y (qr) Y- (#)e)], (B2)
Iy = Zm VT + g (qr)lY o Fel + V-1 (qr) [Y oo (#)e)]. (B3)

Q) = izlvi(jj(qri)yl(fi)) : <O'i X évl)

=3 B o) (59, 2 tana o (s gw) | e

where [0, 0,)’ indicates the coupling of operators O, and O, to a tensor of rank J, and tensor projections are omitted. The
single-particle harmonic-oscillator matrix elements needed for the calculation of the nuclear responses are

1
i
(13

o=

nl%j> = <n'l’|j/(qri)nl>(—1)j+1/2+1\/g[(2j’ + 1)(2j + D27 + 1) (21 + 1)(20' + 1))
rJoIN(l ] %
X(o 0 0>{j l J}’ (B3)

EHE i ar ) (-1 S a1+ )@ + 1+

Jr(pr)lYy (i'i)ﬁi]J

1
<l’ll§

! J/
, JSUT
<[@r+nEIEDE( )3 (B6)
joiJ
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(W@ |nlj) = (=1)" ——= /(2] + D)(2j + )(2I' + 1)

6
Var

I+l J+1 1 L L
{ 2]+3)Z(—1)’+L(2L+1){ } SR
— 1 J 1 o
i J
J+1 1 L I J+1 1+1 B !
)(20+3 ar N N\
[\ﬁ T >{ A l+1}<0 A )<n |J,+1<qu>(a(qri) Cm)|n>
J+1 1 L I J+1 1—-1 o 1+1
— 121 =1 aar . /
< >{l . 1_1}(0 o )<n rml(qr,)(a(%ﬁ qri)mﬂ
I | L
J J-1 1 L
+VI2I=1) > (-1)F2L + 1) PRI
L=J-1 j/ ] J
J-1 1 L I J—1 1+1 ) l
I+ (20 +3 ar . /
x{ (I+1)(21+ ){l y l—l—l}(O 0 0 ><” |Jj_l(qr’)<8(qr) qr)' )
J-1 1 L J-1

120 - 1){

(¢

APPENDIX C: NUCLEAR STRUCTURE
CALCULATION OF !3Cs

) U

In order to illustrate the quality of the shell-model
calculations for '33Cs, Fig. 11 compares the calculated
and experimental low-energy excitation spectrum of '3Cs.
Even though our calculation incorrectly predicts a ground
state with angular momentum and parity J* = 5/2%, the
difference with the 7/27% state is only 10 keV. The angular
momentum and parity of the lowest energy levels is
predicted well, even though the energy of the calculated
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FIG. 11. Calculated '*3Cs spectrum compared to experiment.
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second 3/2" state is lower than in experiment. Overall the
agreement with experiment is similar as in other odd-mass
nuclei with similar mass number.

APPENDIX D: Multipole decomposition
for tensor currents

Including the tensor operator from Eq. (1) into the
analysis requires a generalization of the multipole decom-
position reviewed in Appendix A. Here we follow closely
the original derivation in Refs. [144—-146], including the
lepton trace

L = Tr(fo" P ko™ Pg)
_ 2[<gyﬂgva _ ngwl)k Ny ieﬂyﬂakak/a
— "ok, — i€k, + i€ kP K,
— ¢HRK + K)o (KK K
+ (kK + KPEO) — ¢ (KK + K#EY)],  (D1)

and then specify the spin sums relevant for CEvNS. The key
idea in the generalized multipole expansion is then that the
antisymmetric tensor current j** essentially admits two
vectorial components, jgo) = jo; and jl(-l) = —%eijkjjk, in

terms of which the analog of Egs. (A1) and (A2) becomes
[144,146]
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STHALIP = 423 STV AL 1T P+ 40 L1 2
spins spins L>0
1) ,(0)* 1 0 *
+aRe (I 1 T AL TN AL )]

* 1 1)x 1(1 m 1
o I QT AT VNI + 1A T 1) R)

+27y > [am ¢

spins L>1
+ 41O 0 — O (TN TN P+ [T A TTEO ) R)
+ 400 O = SO (T ||J><Jf||irel 1.7 + (AT TN AT 057

3
—2i(00 x D) Re((J A T3V NI ATV ]17,)7)
—8i(10 x 107, Re((J | T5 NI (AT 1))
—4i(0D x 10 Re((J | T3 O NN ANTTE 7 + TATFENIN T A TS 7)), (D2)

where we dropped the distinction between the two parities in each multipole. Since the nonrelativistic reduction of ¢(; only
starts at O(1/my) and depends on momenta, the most interesting tensor contribution originates from the 6;; — €; ;04

components, contained in j(!). The relevant spin sum reads

Zl

spins

lklejanklmn =

with projections

(1) (1) ) r
I — g2 (1 - =),
W D( E)

oDy myT 2T
;ﬂs(l(l)-l“) ~ 0y >4Eg< ul -2,
2T
D AW x 1)y = —8iE? . (D4)

spins

In contrast to Eq. (59), the longitudinal multipole is no
longer kinematically suppressed, but instead the interfer-
ence term between electric and magnetic multipoles can be
dropped. In our normalization the hadronic current starts

~215;; + 4(5;k - K/ — kK,

with — f €;jk0jk = —iv/20;, so that, up to the prefactor and

the different lepton traces, the remainder of the calculation
follows along the same lines as for the axial-vector
response.

APPENDIX E: PARAMETRIZATIONS OF THE
NUCLEAR RESPONSES

In this Appendix we provide explicit parametrizations
for the M and ®” responses not already given in previous
work [33], see Tables VI and VII. The parametrizations for
the ¥’ and X" responses are given in Tables VIII-XI.
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TABLE VL

nuclear response functions % and F®'. The fit functions are F¥(u)

co = Z— N, respectively) and F&'(u) = e™%

Nyt @”i
i=0 Ci

1= 1

Spin/parity J¥ of the nuclear ground states, harmonic-oscillator length b, and fit coefficients for the
=e2y M MEul (with ¢g=A and

u', with u = q?b?/2. These forms correspond to the

analytical solution in the harmonic-oscillator basis [115,147], with n;, and ng- as implied by the table. Our results
for xenon are given in Ref. [33], the ones for germanium in Table VIIL

Isotope 19F 23Na 40Ar 1271 133CS

JP 1/2+ 3/2+ 0+ 5/2+ 7/2+

b [fm] 1.7623 1.8048 1.9399 2.2821 2.2976

cﬂ”* —6.00039 —8.66651 —20.9778 —125.164 —134.2

c’z"’+ 0.317846 0.555305 2.41486 35.3993 38.9577

cé"” —0.0368597 —3.62687 —4.12938

e 0.125083 0.151119

c’s"’Jr —0.000670162 —0.00103353

- 0.666687 0.666658 3.42422 30.4307 33.9495

M= —0.102251 —0.0655647 -0.618209 —12.321 —13.9502

M- - o 0.0268957 1.78131 2.04567

M= e —0.0870947 —0.102733

M- 0.000697815 0.000944352

cg’”* —0.764186 —2.89325 —4.79093 —26.1218 —28.2527

c?”* 0.152842 0.578667 1.4068 18.1692 20.4868

cg"“r —0.0683192 —3.50413 —4.09303

cg’”* 0.223523 0.275572

cf”+ —0.00360552 —0.0051254

cg"’* 0.36285 0.336942 0.326509 3.58476 8.98993

- —0.0725723 —0.0673903 —0.452519 —4.58091 -8.67714

cg"’* 0.0589909 1.46191 2.21868

cg’”— —0.139708 —0.189453

cj’”* 0.0035109 0.00473947
TABLE VII. Same as Table VI, for germanium isotopes.
Isotope "Ge Ge Ge "4Ge "Ge
JP 0+ 0+ 9/2+ 0+ 0+
b [fm] 2.0952 2.1035 2.1076 2.1117 2.1120
clllH —51.2373 —53.5901 —54.7404 —55.9913 —58.3541
et 9.61013 10.2948 10.6249 10.9743 11.6381
013‘” -0.515768 —0.57547 —0.603598 —0.634449 —0.691196
cﬁ’” 0.0039318 0.0050503 0.00552928 0.00632403 0.00747821
M= 6.06953 8.67126 9.80348 11.356 13.9175
M= -1.71276 —2.51496 —2.84183 —3.34586 —4.13067
cg"’_ 0.130409 0.20692 0.234571 0.287529 0.361556
M= —2.22453 x 107* —0.00213335 —0.00255345 —0.0043077 —0.00609108
Cg’“r —14.7388 —15.3806 —15.5467 -16.2171 —16.7737
C‘II’”+ 7.10953 7.53352 7.6085 8.07754 8.59006
cg)"* —0.811295 —0.869702 —0.875102 —0.951994 —1.04772
Cg’”+ 0.0193996 0.0219601 0.0220616 0.0252548 0.02986
cg’”— —3.27309 —0.924438 —0.848625 2.04591 4.22205
L-‘II’”* 1.25408 —0.166778 —0.302814 —1.90271 —3.22233
cg’”— —0.0487671 0.146851 0.177212 0.388221 0.576533
cg)”* —8.74439 x 1074 —0.00851802 —0.0101962 -0.017214 —0.0243454
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. . . b3 b4 . . .

TABLE VIII.  Fit coefficients for the nuclear response functions F %, and F ", for the relevant isotopes of fluorine, sodium, and xenon.
In analogy to Table VI, the fit functions are F (u) = e™% >, c;u’, with nonzero coefficients as indicated. The results for the other isotopes
considered in this work are listed in Tables IX—XI.

Isotope 19g 2Na 129% e 13I%e

L 1 1 3 1 1 3

K 0.269513 0.132973 e 0.00576416 —-0.00511011 oy

P —0.18098 —0.104393 0.0899535 —0.0069211 0.00702863 —0.0000968882
v 0.0296873 0.00909271 —0.0142746 0.00450247 —-0.00156217 0.000171958
el —0.000867868 0.0000331178 —0.0000934431
P 0.000038544 3.08471 x 107° 7.87133 x 1076
v 9.80727 x 107° —1.94585x 1078 —1.56561 x 1078
cEn —0.00113172 0.0141201 . 0.185828 —0.161697 e

cEn 0.00038188 —0.00774151 —0.000878018 —0.267263 0.334948 0.0364067
&n 0.000744991 0.000326936 —0.000231297 0.149565 —0.174187 —0.079646
En e —0.0274886 0.0310707 0.022489
" 0.00173304 —0.00151254 —0.00171746
cZn —3.87392 x 1077 —3.84408 x 1077 —4.0527 x 1077
e 0.190574 0.0940265 . 0.00407586 —0.00361339

P —0.125204 —0.0404172 0.0779019 —0.00646161 0.00442108 —0.0000839117
P 0.0206132 —0.000254736 —0.00592251 0.00321675 —0.00205213 0.000213614
' —0.000582408 0.000349931 —0.0000258884
27 0.0000294951 —0.0000169039 2.73765 x 1077
E'r 3.82107 x 10~ —3.20028 x 1079 —4.49323 x 107°
g —0.000800244 0.00998438 .. 0.131401 —0.114337 .

' 0.00106046 —0.00902057 —0.000760388 —0.150054 —0.0175951 0.0315279
&' —0.000167277 0.00180209 —0.000223599 0.0820897 0.0321689 0.0476438
X e —0.0148368 —0.00881948 —0.0170447
En 0.000990728 0.000540511 0.00152533
cZ'n —1.50839 x 1078 -3.05396 x 1078 —1.37901 x 1077
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TABLE IX. Same as Table VIII, for cesium.

Isotope 133Cs

L 1 3 5 7

Cg’p —0.253012 e

cli’p 0.483027 0.104388

c?” —0.164531 —0.08238 —0.0150628 e

C;Z’p 0.0168134 0.0118925 0.00856552 0.000657954
6,42’17 —0.00048879 —0.000423071 —0.000519134 —0.000651735
c?’P —5.62349 x 1078 —3.52071 x 1078 2.07474 x 1078 4.02019 x 1078
CEI" 0.00070445 e

cf’" —0.00520619 —0.00507773 e

c?" 0.00351738 0.00295876 0.000728257 e

c?” —0.00069372 —0.000444073 —0.000228224 —0.0000513882
cf" 0.000060668 0.0000235555 0.000018572 6.60564 x 107°
c?" —1.0888 x 107° —-9.09827 x 1077 —4.68954 x 1077 —2.43844 x 1077
C(Z)”p —0.178908

C?”p 0.0320074 0.0904055

C?”P 0.0211378 0.0034629 —0.0137503 e

C?/P —0.00419937 —0.00308878 —0.00344057 0.000615352
Cf”p 0.000173592 0.000141839 0.000290862 0.000607814
C?’l’ —6.77831 x 1078 —2.95736 x 1078 1.61033 x 1078 1.93527 x 1078
c%”" 0.000498115 e

CIZ”" —0.000408223 —0.00439751 e

cg”" —0.000741592 0.00230722 0.000664811 e

c?"" 0.000215744 —0.000355182 —0.000138555 —0.0000480682
c42”" —0.0000124709 0.0000227478 8.67291 x 10~ 6.82111 x 107°
cE'n —1.28214 x 1077 —2.62241 x 1077 —2.143 x 1077 —1.52006 x 1077
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TABLE X. Same as Table VIII, for iodine.

Isotope 1271

L 1 3 5

(2P 0.231258 e

I —0.374391 —0.153173

P 0.195962 0.105378 0.0743581
P —0.0342014 —0.0228849 —0.0234546
(ZP 0.00162438 0.00130854 0.00188104
TP —3.37595 x 1077 —2.56507 x 1078 —9.24252 x 107%
Zn 0.0205005 e

3 —0.0362175 —0.00369561 S

& 0.0174239 0.00235829 0.0000803278
I —0.00285902 —0.000383903 —0.0000110023
X 0.000174649 0.0000204291 2.57961 x 1078
cEn —2.13335 x 107 —6.28715 x 1077 —4.55316 x 1078
P 0.163523

el —0.125749 —0.132651

I 0.0450115 0.0668207 0.0678788
P —0.00624361 —0.0124938 —0.0207994
P 0.000245811 0.000614695 0.00171886
37 —1.85038 x 1077 —1.48556 x 107 —3.6698 x 1078
' 0.0144959 e

el —0.017996 —0.00320049 S

& 0.00679698 0.00161307 0.0000733265
o —0.000985306 —0.000240205 —0.0000296856
& 0.0000461489 0.0000177136 2.66146 x 1076
cE'n —2.6458 x 1077 —1.81495 x 1077 —2.07467 x 1078
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TABLE XI. Same as Table VIII, for germanium.

Isotope BGe

L 1 3 5 7 9

& 0.0257064 e

P —0.0418759 —0.00920991

v 0.015169 0.00417235 0.000347229 e

el —0.00163883 —0.000562315 —0.0000416612 —0.0000106207 .

P 0.000045204 0.0000198897 3.28572 x 1076 7.80947 x 1077 0.0000282336
cEn 0.353305 .

cEn —0.562061 —0.233908 e

En 0.181791 0.117078 0.0549077 e

En —0.0180905 —0.0142114 —0.0112771 —0.00718702 e

X 0.00051239 0.000451122 0.000469159 0.000528465 0.000752534
P 0.0181769 e

' —0.0174535 —0.00797608 .

2 0.00405522 0.00361834 0.000316977

TP —0.00028759 —0.000359967 —0.0000879456 —9.93462 x 107°

& 6.37115 x 107° 6.89172 x 107° 1.79986 x 107° 5.84383 x 1077 0.0000267843
cEn 0.249824 .

cXn —-0.205762 —0.202568 .

E'n 0.045436 0.0675417 0.0501235 .

5" —0.00335668 —0.00613658 —0.00769287 —0.00672282 e

E'n 0.0000723721 0.00015611 0.000256944 0.000395465 0.000713918
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