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Initial conditions for relativistic heavy-ion collisions may be far from equilibrium (i.e., there are large
initial contributions from the shear-stress tensor and bulk pressure), but it is expected that on very short
timescales the dynamics converge to a universal attractor that defines hydrodynamic behavior. Thus far,
studies of this nature have only considered an idealized situation at LHC energies (high temperatures T and
vanishing baryon chemical potential μB ¼ 0), but in this work, we investigate for the first time how far-
from-equilibrium effects may influence experimentally driven searches for the quantum chromodynamic
critical point at the Relativistic Heavy Ion Collider. We find that the path to the critical point is heavily
influenced by far-from-equilibrium initial conditions where viscous effects lead to dramatically different
fT; μBg trajectories through the QCD phase diagram. We compare hydrodynamic equations of motion with
shear and bulk coupled together at finite μB for both Denicol-Niemi-Molnar-Rischke and phenomeno-
logical Israel-Stewart equations of motion and discuss their influence on potential attractors at finite μB and
their corresponding fT; μBg trajectories.
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I. INTRODUCTION

One of the major thrusts of the nuclear physics com-
munity is to map out the phase diagram of QCD—
specifically, the transition between a hadron gas and a
deconfined state of matter composed of strongly interacting
quarks and gluons, known as the quark-gluon plasma
(QGP). While it is known from first-principle lattice
QCD calculations [1–3] that a crossover phase transition
existed in the early Universe and in high-energy nuclear
collisions, only conjectures and effective models provide
indications that a real phase transition (i.e., first or second
order) may exist at large baryon chemical potentials [4–13].
This phase transition would be separated from the cross-
over by a critical point. Nuclear physicists are searching for
evidence of such a critical point in heavy-ion collisions, and
astrophysicists are searching at much lower temperatures
and larger baryon densities for evidence of phase transi-
tions in neutron star mergers [13–20].
The crucial observable to search for the QCD critical

point is the study of susceptibilities of baryon number (i.e.,
net-proton fluctuations, which are measured by STAR [21]
and HADES [22]) because higher-order susceptibilities are
increasingly sensitive to the correlation length and are thus
expected to diverge at the critical point [23]. However,
direct comparisons to experimental data are complicated
because of finite volume, lifetime, size effects, and accep-
tance cuts [24–32]. Therefore, the best tool to search for the

QCD critical point would be event-by-event relativistic
viscous hydrodynamics that includes three conserved
charges (baryon number, strangeness, and electric charge)
and that also incorporates stochastic fluctuations at the
critical point. In such a fully dynamical framework, one
could take into account all acceptance cuts and finite
volume/size/lifetime effects. While a large number of
theoretical efforts are underway to create such a model
[33–49], no such framework is currently at one’s disposal.
Many of the needed advancements are outlined in Ref. [50].
In fact, even very simplistic studies of this baryon dense
region are still in their infancy and have not gone through
the same rigorous studies to constrain initial conditions
[51], the equation of state [52–55], and transport coef-
ficients [56–58] that have already been performed at the
μB ∼ 0 region of the QCD phase diagram.
Already at μB ∼ 0, a large amount of uncertainty remains

when describing the initial state shortly after two heavy
ions collide, and only more recently have theorists [59–90]
begun to systematically study the effects of far-from-
equilibrium behavior at μB ∼ 0. Looking toward the baryon
dense region, there has not yet been a single study of the
influence of a far-from-equilibrium initial state on the
search for the critical point, and in fact, most hydrody-
namical models have assumed only ideal hydrodynamic
equations of motion [91–94] with just a handful of models
that incorporate viscosity or diffusion in the last couple of
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years [42,43,95–99]. In the baryon dense region, we are
unaware of any initial conditions that include an initialized
shear-stress tensor or bulk pressure (although this may be
possible using SMASH [100], URQMD [101], or NEXUS
[102], but these are currently coupled to ideal hydro-
dynamic models). Therefore, there is no real understanding
of how far-from-equilibrium initial conditions would in-
fluence the ability of different beam energies to approach
the QCD critical point (musings that it may affect the search
for the critical point can be found in Ref. [103]).
While astrophysical searches for a first-order phase tran-

sition also utilize relativistic hydrodynamics [19,20,104] (in
this context coupled to general relativity), the current models
do not incorporate shear and bulk viscosities; nor do they
have diffusion currents due to conserved charges (such as
baryon number). Current efforts are underway to incorporate
bulk viscosity into suchmodels [105–110].Wenote that if the
initial contribution from bulk viscosity is large immediately
after the two neutron stars collided similar issues when
determining their trajectories through the QCD phase dia-
gram will arise.
Typically, in most studies of large baryon density effects

in heavy-ion collisions, there is an underlying assumption
that the QGP is a nearly perfect fluid so that there is almost
no entropy production. If one assumes that entropy is not
produced at all, then the ratio of total entropy to baryon
number (S=NB) is fixed throughout the collision, the
subsequent expansion, and cooling throughout the phase
diagram.1 These trajectories, known as isentropes, have
been studied in a number of recent papers [112–117] and
are used extensively to understand equilibrium properties
of QCD at large baryon densities. However, since hydro-
dynamic models require both shear and bulk viscosity to
reproduce experimental data, entropy production must
occur, and deviations from the isentropic trajectories are
expected. This may be exacerbated at large μB since a
number of studies have suggested the viscosity could
increase in this region [35,36,118–121]. Thus, large devia-
tions from isentropic trajectories may be possible, espe-
cially at the critical point.
In this paper, we perform the first study of the effects of

far-from-equilibrium initial conditions (arising from a fully
initialized shear-stress tensor and bulk pressure) on the
search for the QCD critical point. We find large deviations
from isentropic trajectories, especially near the critical
point. We show this in both Israel-Stewart and Denicol-
Niemi-Molnar-Rischke (DNMR) hydrodynamic equations
of motion and elaborate on difficulties in ensuring positive
entropy production throughout the evolution. Furthermore,
we find that Israel-Stewart and DNMR do not traverse
the QCD phase diagram in the same manner, which
implies that the specific way such approaches implement

second-order corrections matters for the evolution of the
baryon-rich fluid. This means that special attention must be
paid when selecting the hydrodynamic equations of motion
in the presence of phase transitions. The sensitivity to the
initial conditions indicates that they play a crucial role in
determining the trajectory of the QGP through the QCD
phase diagram and significant efforts must be made to
constrain initial conditions before a fully dynamical model
can properly describe heavy-ion collisions at finite baryon
densities. Furthermore, if there are significant event-by-
event fluctuations in the initial conditions of shear and bulk,
certain events may pass through the critical points, while
others can miss it entirely (even starting from the same
initial energy density and baryon density).
This paper is organized as follows. In Sec. II, we outline

our hydrodynamical model, the transport coefficients, and
equation of state. In Sec. III, we calculate the fT; μBg
trajectories across the QCD phase diagram for fixed ρ and ε
in Sec. III A and fixed freeze-out point in Sec. III B. The
indirect effects of the critical point on shear viscosity are
shown in Sec. III C. Then, the potential existence of
attractors for shear and bulk channels are discussed in
Sec. IV. Section V discusses the influence of a critically
scaled bulk viscosity in our results. Our conclusions in
Sec. VII explore the consequences of our calculations on
the search for the QCD critical point (potential conse-
quences to neutron star mergers are also discussed). In
Appendix A, we study the influence of the _β terms present
in Israel-Stewart theory to the evolution of the fluid at large
baryon chemical potentials.

II. HYDRODYNAMICAL SETUP

In the past years, a significant effort has been made to
incorporate at least one conserved charge (baryon density)
and more recently two (strangeness) in event-by-event
relativistic viscous hydrodynamics codes [42,43,98,99].
Additionally, transport coefficients can also depend on
fT; μBg [35,36,96,118–122], and they are also sensitive to
the presence of critical fluctuations [123], which should
influence final-state observables. In the following, we only
consider the effects from one conserved charge (baryon
number), but we point out that a more realistic description
of trajectories on the QCD phase diagram would require
effects from the conservation of baryon number, strange-
ness, and electric charge, which would severely complicate
the type of analysis done here.
In this first study of how the viscous fluid traverses the

QCD phase diagram, we use a simplistic, highly symmetric
Bjorken flow [124] picture where the hydrodynamic
equations of motion are greatly simplified [125]. We use
two different formulations of relativistic viscous hydro-
dynamics, DNMR [126] and Israel-Stewart [127], in order
to determine how assumptions regarding the derivation of
the equations of motion, and their choices of second-order

1This is the same underlying assumption made when using
partial chemical equilibrium for hadronic decays, e.g., Ref. [111].
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transport coefficients, affect the evolution of the baryon-
rich viscous fluid.
Both DNMR and Israel-Stewart are based on the idea

that the dissipative currents, such as the shear-stress tensor
πμν and bulk scalar Π, evolve according to relaxation
equations that describe how such quantities deviate from
their relativistic Navier-Stokes values. Using hyperbolic
coordinates with the metric gμν ¼ diagð1;−1;−1;−τ2Þ, the
underlying symmetries of Bjorken flow imply that all
dynamical quantities depend only on the proper time
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

. Furthermore, in Bjorken flow, the state of
the fluid is described by only four dynamical variables: the
proper energy density εðτÞ, the baryon number density ρðτÞ,
ΠðτÞ, and πηηðτÞ (where η here stands for the spacetime
rapidity). For DNMR, the equations of motion in Bjorken
flow become [126,128]

_ϵ ¼ −
1

τ
½ϵþ pþ Π − πηη� ð1Þ

τπ _π
η
η þ πηη ¼ 1

τ

�

4η

3
− πηηðδππ þ τππÞ þ λπΠΠ

�

ð2Þ

τΠ _Πþ Π ¼ −
1

τ

�

ζ þ δΠΠΠþ 2

3
λΠππ

η
η

�

ð3Þ

_ρ ¼ −
ρ

τ
; ð4Þ

where _ϵ ¼ dϵ=dτ, p is the equilibrium pressure defined by
the equation of state, ζ is the bulk viscosity, and the
remaining second order transport coefficients are taken
from Ref. [129]. We note that in Bjorken flow the particle
diffusion contribution vanishes, and thus the baryon density
equation can be readily solved to give ρðτÞ ¼ ρ0ðτ0=τÞ,
where ρ0 and τ0 are the initial baryon density and time,
respectively.
We make the point of including second order transport

coefficients terms that couple the shear and bulk contri-
butions (e.g., λπΠ and λΠπ) since there should be a nontrivial
coupling between the two [130]. The transport coefficients
for DNMR used in this paper are defined as

τπ ¼
5η

ϵþ p
ð5Þ

τΠ ¼ ζ

15ðϵþ pÞð1
3
− c2sÞ2

ð6Þ

λπΠ ¼ 6

5
τπ ð7Þ

δππ ¼
4

3
τπ ð8Þ

τππ ¼
10

7
τπ ð9Þ

λΠπ ¼ τΠ
8

5

�

1

3
− c2s

�

τΠ ð10Þ

δΠΠ ¼ 2

3
τΠ; ð11Þ

where the speed of sound squared is c2s ¼ dp=dϵ (com-
puted at constant entropy). Given η=ðϵþ pÞ and ζ=ðϵþ pÞ
as functions of T and μB, all the second-order transport
coefficients (such as the bulk and shear relaxation times, τΠ
and τπ , respectively) can be readily obtained. For the Israel-
Stewart case, the energy density and baryon density
evolution remain the same (as they stem from the con-
servation laws), while the relaxation equations for shear
stress and bulk viscous pressure evolution are given by

τπ _π
η
η þ πηη ¼ 4η

3τ
−
ηTπηη
2

�

βπ
τ
þ _βπ

�

ð12Þ

τΠ _Πþ Π ¼ −
ζ

τ
−
ζTΠ
2

�

βΠ
τ
þ _βΠ

�

; ð13Þ

where we defined

βπ ¼
τπ
2ηT

ð14Þ

βΠ ¼ τΠ
ζT

: ð15Þ

When the Israel-Stewart equations were first derived in
Ref. [127], the terms in Eqs. (12) and (13) that contain _βπ
and _βΠ were left off, since these derivatives were presumed
to be small on the scales they were interested. This is
certainly not true in heavy ions where early in the
expansion these terms can be quite large. Thus, to gauge
the importance of these terms and also the possibility of
needing to include higher-order terms in the power count-
ing scheme of DNMR [126], we will also make compar-
isons with and without including the _β terms. This
comparison is shown in Appendix A. However, for the
rest of the main text, we will only show results comparing
DNMR and Israel-Stewart including the _β terms because
they play an important role in the system’s evolution.
The shear viscosity used in this paper was derived from

an excluded hadron resonance gas model similarly to what
was done in Ref. [131]. Then, this hadronic shear viscosity
was coupled to a simplistic parameterized QGP phase
(based on the parametrization in Refs. [132,133]) and was
matched at T ∼ 0.195 GeV at μB ¼ 0, similarly as in
Refs. [122,132,133]). The finite μB behavior is determined
by the change in ηT=w (where w ¼ ϵþ p is the enthalpy)
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in the excluded volume hadron resonance gas model and
the switching temperatures between the hadron resonance
gas where the QGP phase is adjusted to match the critical
point at finite μB. The variation of ηT=wðT; μBÞ is shown in
Fig. 1 for various values of μB. Note that no critical
behavior is incorporated in the shear viscosity. Rather,
the μB dependence is driven entirely by the matching to the
hadron resonance gas at lower and lower values of the
temperature with increasing μB. Generally, lower temper-
atures lead to a large shear viscosity, and therefore this
quantity increases with increasing μB. A forthcoming paper
will appear shortly about this work with further details.
For the bulk viscosity, two different parametrizations

were used, both of which are scaled up from one that is in
the same ballpark as the ζ=s extracted from Bayesian
analysis [58,134] that is also consistent with that from
holographic models [122,135] and quasiparticle models
[136,137]. This base parametrization of the bulk viscosity
is given by

ζT
w

¼ 36 ×
1=3 − c2s

8π
; ð16Þ

where the factor of 36 is included to obtain a maximum
ζT
w ∼ 0.2 similar to the maximum value employed in certain
hydrodynamic simulations [138]. Given that this quantity
depends on c2s , there is at least some sensitivity to the
critical point (since the critical point has a vanishing c2s).
As previously mentioned, in the Bjorken picture, the

baryon density evolution is trivial, as seen in Eq. (4). This is
because the baryon diffusion can only be included in less
symmetrical evolution dynamics, which we will consider in

a future work. However, the nontrivial time evolution of the
energy density due to viscous effects as well as the
nontrivial mapping of fϵ; ρg → fT; μBg due to the equation
of state lead to unique trajectories in the QCD phase
diagram. These trajectories are necessarily off of the
isentropes calculated in equilibrium, such as those from
lattice QCD, and should be associated with some amount of
entropy production.
To close the hydrodynamic equations of motion, we

use the lattice QCD–based equation of state (EOS) from
Ref. [114] that is coupled to a parametrized three-
dimensional (3D) Ising model. This equation of state
allows us to test the influence of a critical point on the
T − μB trajectories. Since we do not, in fact, know the
location (or even the existence) of the QCD critical point,
the results are simply to test the qualitative influence of the
critical point. Thus, we only consider one readily available
parametrization of the EOS from Ref. [114] where the
critical point is located at fT; μBg ¼ f143; 350g MeV. In
this EOS, the critical point always lies on the chiral phase
transition line, which is currently known up to Oðμ2BÞ,

T ¼ T0 þ κ2T0

�

μB
T0

�

2

þOðμ4BÞ; ð17Þ

where we use T0 ¼ 0.155 GeV and the central value of
κ2 ¼ 0.0153 from Ref. [139].
At this point in time, we do not have the necessary

framework to include critical fluctuations (see Refs. [6,37,
39,48,140–142]). The only contribution from criticality
arises in the EOS itself and the influence on the parametrized
bulk viscosities because of either a sharp dip in the speed of
sound at the critical point or a large increase in bulk viscosity
due to the critical scaling.
One final remark on the limitations on the EOS derived in

Ref. [114] is in order. Because the 3D Isingmodel is coupled
to the lattice QCD reconstructed EOS up to Oðμ4BÞ, the
absolute maximum that we can reasonably extend the EOS
out to in μB along the phase transition is μB ∼ 450 MeV.
Beyond this point, pathologies begin to appear in theEOS.At
high temperatures, we have a slightly higher reach, and we
can extend the phase diagram out to μB ∼ 600 MeV.
However, because a number of trajectories that pass through
the critical point begin at relatively low temperatures but high
μB (and the time evolution is nearly flat in T), we are limited
in the phase space that we can explore our initial conditions.
This is especially problematic for the Israel-Stewart equa-
tions of motion, which appear to prefer these type of
trajectories.

III. T − μB TRAJECTORIES ACROSS
THE QCD PHASE DIAGRAM

Up until this point, there have been two main approaches
to studying the evolution of a hot and baryon-rich QGP
through the QCD phase diagram. On one hand, a significant
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FIG. 1. Our phenomenological ηT=wðT; μBÞ across the phase
diagram. The critical point is shown in red (note that no critical
scaling was included in the shear viscosity).
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part of the community assumes that the system can be
described as an ideal fluid such that one can follow lattice
QCD–computed isentropes (where the total entropy-to-
baryon-number ratio is fixed throughout the expansion
S=NB ¼ const) throughout the QCD phase diagram. To
determine the correct S=NB ratio, one determines it from
freeze-out properties (typically comparing net-charge fluc-
tuations at freeze-out) and works backward from the freeze-
out point to extract these trajectories; see Refs. [11,115,
143–145] for recent examples of this approach.
The second approach has been to study full-scale 3þ 1-

dimensional hydrodynamic simulations such as in
Refs. [46,101,146,147] and concentrate on the central cells
passage through the QCD phase diagram. In Ref. [101],
ideal hydrodynamic equations of motion were used, and
unsurprisingly, the T − μB evolution of the central cell
closely followed that of isentropes. However, in Ref. [147],
full viscous simulations (but assuming the initialization
πμν ¼ Π ¼ 0) were used, and cells from the center certainly
pass through a wide swath of the phase diagram throughout
the hydrodynamic evolution. As far as we know, there has
yet to be a study on the influence of viscosity (or better put,
entropy production) on the T − μB trajectories; nor are we
aware of any initial conditions that initialize the full energy
momentum tensor (Tμν) at finite baryon densities that are
coupled to viscous hydrodynamic codes which would thus
allow one to explore the influence of far-from-equilibrium
behavior on the T − μB evolution.
One has no reason to believe that initial conditions at the

beam energy scan should be close to equilibrium (in fact,
very little is known about initial conditions at the beam
energy scan, and they have not gone through nearly as many
rigorous checks aswhat has beenperformed at LHCenergies
[51], and the idea of baryon strangeness and electric charge
eccentricities is still being developed [44,45]). Thus, it is
necessary to include this systematic uncertainty in our
calculations. For this study, we perturb the initial state
between χ0 ¼ �0.5 and Ω0 ¼ �0.5, where we define

χ ≡ πηη=ðϵþ pÞ ð18Þ

Ω≡ Π=ðϵþ pÞ; ð19Þ

which are, respectively, the inverse Reynolds numbers, Re−1
for shear and bulk viscosity [126]. We then systematically
run a large number of initial baryon densities. Because we
run a large number of trajectories, we have employed a color
scheme to denote the initial conditions used in our model, as
shown in Fig. 2. In Sec. VI, we touch on some physical
constraints in allowed choices for the initial Re−1 for both
shear and bulk.

A. Trajectories for fixed initial ρ and ε

To demonstrate how strong of an effect far-from-
equilibrium behavior can have from the initial conditions

on the trajectory through the QCD phase diagram, we pick
three different initial conditions in ρ0 at a fixed initial
energy density and then vary χ0 and Ω0, as shown in Fig. 3.
At the lowest baryon density of ρ0 ¼ 0.5 fm−3, we already
see a wide spread in the fT; μBg trajectories, and around the
chiral phase transition, they cover a swath in baryon
chemical potential of about ΔμB ∼ 200 MeV. Thus, even
far from the critical point, it is extremely important to know
the initial conditions for χ and Ω. One can also see an
interesting dependence on the range of chemical potentials
at the chiral phase transition, depending on the choice of ρ0.
For the intermediate baryon density initial condition of
ρ0 ¼ 1 fm−3, we find a range of chemical potentials at the
chiral phase transition to be even larger, on the order of
ΔμB ∼ 250 MeV. However, at our maximum initial baryon
density of ρ0 ¼ 1.5 fm−3, we begin to see a bend in all the
trajectories and what may even be some hints of an
attraction toward the critical region. The chiral phase
transition range in initial chemical potential range is smaller
than for ρ0 ¼ 1 fm−3 and is again ΔμB ∼ 200 MeV. We
also do not obtain trajectories that pass far to the right of the
critical point. Unfortunately, we cannot explore this trend
further because of the limits of our EOS.
In Fig. 4, we directly compare the phase diagram

trajectories generated by hydrodynamic runs of the same

FIG. 2. Figure showing how to distinguish between different
initial conditions in the various plots presented in this work.

FIG. 3. Trajectories produced using DNMR equations of
motion, for the same initial energy density, with ρ0 ∈
f0.5; 1; 1.5gfm−3 and with χ0, Ω0 ∈ f−0.5; 0.5g.
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initial conditions, comparing DNMR and Israel-Stewart
equations of motion. When the initial conditions for the
shear-stress tensor and bulk pressure are all set to zero, then
the two trajectories are relatively similar to each other
(although not identical). However, if we consider far-from-
equilibrium initial conditions, specifically χ0 ¼ 0.5 and
Ω0 ¼ −0.5. The differences between Israel-Stewart (IS)
and DNMR and are very pronounced, especially where the
trajectories cross the chiral phase transition where DNMR
appears to freeze out at a lower μB compared to IS. A more
interesting comparison can be made when one finds the
range of initial conditions which lead to the same freeze-out
point, that is, a degeneracy in the final-state thermodynamics
when attempting to trace back to the initial state. This is the
approach that we shall take for the rest of this paper.

B. Trajectories for a fixed freeze-out

While the initial state is certainly unknown at the beam
energy scan, freeze-out has been well studied with both
thermal fits [148–155] and fluctuations of conserved
charges [113,156–162]. Some tension still exists between
the freeze-out estimates in terms of T and μB from thermal
fits versus fluctuations, although reasonable agreement
exists when two separate freeze-out temperatures are used
for light and strange hadrons [163]. Therefore, in this study,
we require that our hydrodynamic evolution must pass

approximately2 through the light hadron freeze-out point
from Ref. [156] and can then determine the range in initial
conditions that lead to that point.
In Fig. 5, we study the intermediate beam energy of
ffiffiffiffiffiffiffiffi

sNN
p ¼ 27 GeV as well as a hypothetical lower beam
energy which would have an isentrope that passes through
the critical point, for DNMR and Israel-Stewart equations
of motion. The freeze-out region is defined at some point
along the green isentrope lines by choosing a reasonable
temperature at which to freeze out. We then select hydro-
dynamic trajectories that pass through a circular region
centered on the freeze-out point, with a radius of 2.5 MeV
(we motivate this value by the approximate order of
magnitude of the error bars on the extracted freeze-out
points from thermal fits and fluctuations).
At some point, we expect standard relativistic hydro-

dynamics to breakdown sufficiently close to the critical
point. However, the point where this occurs is still unclear.
However, the point where this occurs is unclear and the
critical point may have limited influence due to finite time
and volume effects. So, as a first step we believe one is
justified in running hydrodynamics at the critical point
without critical fluctuations.
We find that, regardless of the choice of equations of

motion, contributions coming from viscous effects play an
important role in determining the trajectory of the system
through the phase diagram. For our range of χ0 and Ω0, the
possible initial conditions that lead to the same freeze-out
conditions are widespread in chemical potential for the
same initial energy density, as shown in Fig. 5. In the Israel-
Stewart case, away from the critical point, the initial
chemical potential can lie in a range of nearly ΔμB ∼
200 MeV and still make it to the same freeze-out region.
Closer to the critical point, the range increases to approx-
imately 300 MeV. The DNMR trajectories have the same
characteristics; only the initial conditions appear to con-
verge closer to the isentrope (solid green line) more quickly
at least far from the critical point. It is interesting to note
that trajectories that go through or near the critical point
accept a larger range of initial conditions. This is, again,
indicative of some attractivelike behavior, specific to this
EOS, and the question remains as to whether this behavior
persists upon inclusion of the necessary critical fluctuation
framework previously mentioned. It should be the case that
the behavior of the trajectories before entering the critical
region will be the same. However, the dynamics within the
critical region will surely be modified.
The solid black lines in Fig. 5 are the points where the

initial shear and bulk are set to zero but where the transport
coefficients are still turned on, i.e., πηη;0 ¼ Π0 ¼ 0. One can
see that for DNMR the effect of the transport coefficients
alone is smaller (transport coefficients lead to initial

FIG. 4. Here, we compare the T − μB trajectories for DNMR
and Israel-Stewart equations of motion, with different initial
conditions. The legend is the same in both figures.

2Since we only include one conserved charge, the isentropes
are slightly different.
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conditions that start at ΔμB ∼ 50 MeV larger than for the
isentropes) than for Israel-Stewart, where we find that the
effect of transport coefficients alone increases the initial
baryon chemical potential by ΔμB ∼ 100 MeV. This dem-
onstrates that the trajectories through the QCD phase
diagram are strongly dependent on the choice of second-
order hydrodynamic equations of motion. Since those
theories only differ in the transient regime (given that both
approaches have the same relativistic Navier-Stokes limit),
our results indicate that transient hydrodynamic effects
must be taken into account when determining the path
traversed by the QGP on the QCD phase diagram.
Finally, we find that the sign of the initial conditions

plays a large role if the trajectories are to the left or the right
of the isentropes. Generally, values for the initial conditions
with Π ≤ 0 and πηη ≥ 0 push the trajectories toward larger
μB, whereas initial conditions with Π ≥ 0 and πηη ≤ 0 push
the trajectories to smaller μB.

C. Viscous effects

Figure 6 plots different trajectories of our shear viscosity
over enthalpy ratio for DNMR equations of motion for
trajectories both far from and near to the critical point. We
note that our construction of shear viscosity does not
incorporate any critical scaling since it does not scale as

strongly with the correlation length [123]. The time
evolution of ηT=w varies with the choice in the initial
π and Π, which sends the hydrodynamical expansion
along different trajectories. Since ηT=w depends on both
T and μB, different values of ηT=w as a function of time are
probed depending on the initial conditions.
We then compare the bulk viscosity in Eq. (16) to its

critically scaled form proposed in Ref. [35]. The form of
this bulk viscosity is then

�

ζT
w

�

CS
¼ ζT

w

�

1þ
�

ξ

ξ0

�

3
�

; ð20Þ

where ξ is the correlation length and ξ0 sets the scale for the
critical region. When not including the critical component,
we simply set ξ to 0.
Because the bulk viscosity depends on c2s , the nontrivial

structure that arises in its dependence over time is due to the
change of degrees of freedom. When plotted on trajectories
close to μB ¼ 0 (i.e., far from the critical point), a bump is
seen as the quarks and gluons transition into hadrons, as
seen in Fig. 7(a). The different lines demonstrate how
different trajectories probe different values of ζT=w at
different times. However, at the critical point, the speed of
sound goes to zero, which produces a spike in ζT=w as one
passes through it. In this paper, we compare two scenarios,
one where ζT=w only scales with c2s across the critical

FIG. 6. Time evolution of ηT
w for different initial conditions in

DNMR, close to the critical point (top) and away from the critical
point (bottom).

FIG. 5. Trajectories in the QCD phase diagram for different
hydrodynamic equations of motion. The green lines are isen-
tropes and are the same in each figure. The freeze-out region is
shown as a green circle centered along the freeze-out point on the
isentrope.

FAR-FROM-EQUILIBRIUM SEARCH FOR THE QCD CRITICAL … PHYS. REV. D 102, 074017 (2020)

074017-7



point, which is shown in Fig. 7(b) and another where the
correlation length affects the ζT=w, as shown in Fig. 7(c).
When incorporating the critical scaling through the

correlation length into the bulk viscosity, there is some
freedom in choosing the scaling constant, ξ0, such that
ζT=w is smaller outside the critical region, and much larger
inside. In this work, it was chosen so that the peak in ζT=w
increases by a factor of 3 close to the critical point. The
correlation length is calculated using a formula found in
Ref. [35] that calculates the equilibrium value as

ξ2 ¼ 1

H0

�∂Mðr; hÞ
∂h

�

r
: ð21Þ

As is done in Ref. [35], we use the linear parametrization
model [164,165], but instead derive an expression to fifth

order in θ. This is consistent with the accuracy of our EOS.
The expression to fifth order in θ is then

�∂Mðr; hÞ
∂h

�

r
¼ M0

H0Rβðδ−1Þ

�

1þ θ2ð2β − 1Þ
2βδθh̃þ h̃0ð1 − θ2Þ

�

ð22Þ

with

h̃ ¼ θð1þ aθ2 þ bθ4Þ; ð23Þ

where the coefficients a, b are accessible output from our
EOS, and the critical exponents are taken as their mean
field approximate values. We leave for future work the
study of consequences of changing the strength and shape
of the critical region, which should change the peak in
ζT=w, accordingly.
A crucial piece to understanding χ at the critical point in

Israel-Stewart is to observe the ηT=w trajectories at the
critical point, as shown in Fig. 8. Because of the rather
nontrivial trajectories across the critical point for Israel-
Stewart equations of motion, ηT=w inherits a nontrivial
time dependence even though no critical behavior was built
into the transport coefficient. One can see in Fig. 5(b) that
many lines traverse the chemical potential in a complicated
and nontrivial way (specifically the red line). It is this
chemical potential dependence that produces the peak
behavior seen in Fig. 8. Comparing the red lines with a

FIG. 7. Time evolution of ζT
w for different initial conditions in

DNMR, away from the critical point (top), near the critical point
(middle), and critically scaled (bottom).

FIG. 8. Time evolution of ηT
w for different initial conditions in

Israel-Stewart, with _β terms that go through the critical region,
without critical scaling (top) and with (bottom).
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spike to Fig. 5(b), we find that this is caused by trajectories
that begin at high T and low μB that then pass through the
critical point and continue onto low T and high μB
trajectories. Eventually, these lines end abruptly because
they have reached the edge of our EOS. Also worth noting
is the increased sensitivity of the shear viscosity to critical
scaling shown in the bottom of Fig. 8 compared to the
noncritically scaled runs shown in the top.
In the case of the DNMR equation of motion, the T − μB

trajectories behave much more smoothly, and thus no spike
is seen in Fig. 6.

IV. POTENTIAL ATTRACTORS

In this paper, we do not attempt to systematically inves-
tigate the presence of attractors for these rather nontrivial
transport coefficients and complex equation of state. How-
ever, we can check for a convergence of χ ¼ πηη=ðϵþpÞ in
Fig. 9 and Ω ¼ Π=ðϵþ pÞ in Fig. 10 on timescales normal-
ized by their respective relaxation times. The points observed
in Figs. 9 and 10 are those passing through the freeze-out for
ffiffiffiffiffiffiffiffi

sNN
p ¼ 27 GeV and the critical point, respectively.
In Fig. 9, the inverse Reynolds numbers for shear

viscosity are shown both far from the critical point and
at the critical point. The shape of χ over time is rather
complicated because of the minimum of ηT=w at the phase
transition, which leads to this bending backward in χ since

τπ depends on the shear viscosity (similar to what was
found in Ref. [166]). For both DNMR and Israel-Stewart,
we immediately note that, due to the short lifetime of our
hydrodynamic runs, none of our trajectories converges to a
single line by freeze-out. However, we also plot the
direction of the derivative at the freeze-out point, and it
does appear that in all cases that an attractor could be
reached if hydrodynamics would run for a longer period of
time. From now on, we will refer to this as a “potential
attractor” because we are not certain if this is an attractor
but it certainly hints at one.
One curious difference between DNMR and Israel-

Stewart is that for DNMR the potential attractor appears
to always sit on a nearly flat line in χ. However, for Israel-
Stewart equations of motion, the potential attractor line has
a clear slant far from the critical point. At the critical point,
the potential attractor for Israel-Stewart is even more
bizarre in that it appears to be growing in χ and then
potentially flattening out. Unfortunately, we cannot inves-
tigate this further with our current EOS due to its
limitations in μB. In fact, due to the limitations in the
EOS, we are not even able to obtain the Π0 ¼ πηη;0 ¼ 0

curves because they would begin at much larger values
of μB.
The bulk pressure is more intuitive to understand, and

we find that, despite a wide range of initial conditions

FIG. 9. Shear inverse Reynolds number χ ¼ πηη=w trajectories far from the critical point (left) and at the critical point (right) using
DNMR (top) and Israel-Stewart (bottom) equations of motion. The solid black lines assume that the initial Re−1 ¼ 0 for both shear and
bulk (the band demonstrates the width of our range of the freeze-out fT; μBg).

FAR-FROM-EQUILIBRIUM SEARCH FOR THE QCD CRITICAL … PHYS. REV. D 102, 074017 (2020)

074017-9



(and multiple different combinations for the initial shear
and bulk), all curves quickly collapse onto a universal
scaling behavior. While the timescale may appear to be
long, we note that this is because the bulk relaxation time is
quite significant [due to the small bulk viscosity used here;
e.g., see Eq. (6)].
In Fig. 10, we find that far from the critical point both

equations of motion quickly converge to what appears to be
an attractor, although it appears that Israel-Stewart takes
longer to converge. At the critical point, we find that the
DNMR equations of motion are more well behaved and
generally do not have large inverse Reynolds numbers even
though the critically scaled ζT=w is quite large. On the
other hand, the Israel-Stewart equations of motion diverge
quite dramatically when passing through the critical point,
but despite this effect, they manage to converge afterward.

V. CONSEQUENCE OF ζT=w DIVERGING DUE TO
THE CRITICAL POINT

In the previous section, we always assumed that ζT=w
scaled with the correlation length, according to Eq. (20). In
this section, we will compare this assumption to the regular
ζT=w that only scales with the speed of sound, as shown in
Eq. (16). We note that outside of the critical region our
choice of the inclusion of critical scaling is irrelevant since
this only affects ζT=w near to the critical point.

In Fig. 11, we plot the inverse Reynolds numbers of both
shear and bulk viscosity comparing with and without
critical scaling of ζT=w. In the shear Re−1 trajectories,
we see very little difference if the bulk viscosity has critical
scaling or not. This is not entirely unexpected because,
while there are coupling terms between shear and bulk
viscosity in DNMR, they are nonlinear terms and, thus,
they do not affect χ very strongly. Additionally, the large
peak in ζT=w only appears close to freeze-out, and there-
fore the χ trajectory has already converged much closer to
its potential attractor at that point.
As expected, the bulk Re−1 is more affected by critical

scaling of ζT=w. In fact, one can see quite clearly in the
plots the point where the peak in ζT=w is reached.
However, despite a brief interruption in the approach to
the potential attractor in Ω, the curves quickly fall on top of
each other in both scenarios. It is clear from these results
that the potential bulk attractor is quite large for heavy-ion
collisions—likely because bulk only plays a role briefly
around the phase transition.
In Fig. 12, we observe the fT; μBg trajectories across the

critical point when ζT=w does not have critical scaling.
When comparing these trajectories to the critically scaled
ones in Fig. 5, we find that there are not very large
differences. However, for Israel-Stewart equations of
motion at low temperatures, both scenarios seem like they
might run along the first-order phase transition line for a bit

FIG. 10. Bulk inverse Reynolds number Π=w trajectories far from the critical point (left) and at the critical point (right) using DNMR
(top) and Israel-Stewart (bottom) equations of motion. The solid black lines assume that the initial Re−1 ¼ 0 for both shear and bulk (the
band demonstrates the width of our range of the freeze-out fT; μBg).
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before the system turns into hadrons. The biggest difference
with and without critical scaling is that the critically scaled
ζT=w then jumps up to the left of the phase diagram
(toward higher temperatures) within the hadron gas phase,
whereas the regular ζT=w scenario exhibits a more regular
trajectory and always progresses downward (toward low
temperatures) in the phase diagram.

VI. ENTROPY PRODUCTION AND
TRAJECTORY CONSTRAINTS

It has so far been demonstrated that, due to the existence
of a potential attractor for the time evolution of χ and Ω,
there may be a degeneracy in the final freeze-out state of the
system. That is, many different trajectories in the phase
diagram that are initially very different come extremely
close to each other at late times. We have put an emphasis
on entropy production as a conceptual basis for under-
standing the deviations from isentropes. However, we are
currently unaware of any rigorous calculation of entropy
production for DNMR (or Israel-Stewart when derived
from kinetic theory).
This sort of calculation would be extremely useful in

allowing for quantitative cuts on what kinds of initial
conditions and trajectories are possible, via the second law
of thermodynamics. We note that it is clear that, due to the
deviation of our results from the isentropes, there must be a
large effect on the entropy production due to our choice in

FIG. 11. Shear (top) and bulk (bottom) inverse Reynolds number trajectories at the critical point for DNMR equations of motion where
either ζT=w only scales with c2s (left) or also scales with the correlation length (Right). The solid black lines assume that the initial
Re−1 ¼ 0 for both shear and bulk (the band demonstrates the width of our range of the freeze-out fT; μBg).

FIG. 12. Trajectories in the QCD phase diagram for different
hydrodynamic equations of motion. For these trajectories, the
bulk viscosity does not include critical scaling.
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initial conditions and transport coefficients. We point out
that our chosen transport coefficients are reasonable and not
unrealistic since current relativistic viscous hydrodynamic
models used within heavy-ion collisions are based on the
DNMR formalism [138].
One can also put some constraints on the choices of

initial viscous conditions by taking an approach similar to
what was done in Ref. [167]. In that paper, the weak energy
condition is used to put physical bounds on possible values
for the shear stress throughout the evolution, in a system
that undergoes Bjorken flow. The weak energy condition is
the condition that

Tμνtμtν ≥ 0; ð24Þ

where tμ is any timelike vector. This condition has the
simple interpretation that the energy density of the fluid
should be non-negative for any observer. Using this
constraint, one can extend further the work done in
Ref. [167] to put constraints on a nonconformal system.
Then, instead of a constraint on just χ, the constraints
involve both χ and Ω. Doing the derivation, one finds

χ

2
þ Ω ≥ −1 ð25Þ

Ω − χ ≥ −1; ð26Þ

which must be satisfied simultaneously throughout the
evolution. Notice that none of our choices of initial χ and Ω
violates these bounds, but the choice fχ;Ωg ¼ f0.5;−0.5g
does hit the bound in Eq. (26).

VII. CONCLUSIONS

In this paper, we analyzed how far-from-equilibrium
initial conditions of heavy-ion collisions could affect the
search for the QCD critical point. For a single freeze-out
point, there exists a multitude of potential trajectories that
could have lead to that point because of the entropy that is
produced when one considers realistic transport coeffi-
cients. Each trajectory is defined by its initial conditions
that includes not only the initial energy density and baryon
density but also its initial shear-stress tensor and bulk
pressure. These trajectories diverge far from isentropes,
which are calculated along lines of constant S=NB, and
depend strongly on the sign of the initial Π and πηη. The
nonuniqueness of a freeze-out point with respect to a given
initial condition presents an interesting problem in both
determining the initial state given the final-state freeze-out
conditions as well as in determining the possible late-time
properties of the fluid (e.g., the possibility of only certain
events passing through the critical point for a fixed beam
energy).
The criticality included is implemented through a lattice

QCD equation of state coupled to a parametrized 3D Ising

model [114] giving thermodynamic consistency and ensur-
ing one can always calculate thermodynamic critical
behavior given the energy and baryon densities. As the
system passes through the critical region, critical behavior
shows up through a calculation of the resulting correlation
length. The hydrodynamic dependence on criticality shows
up explicitly through the divergence of the correlation
length dependent bulk viscosity in the critical region, which
also leads to a diverging bulk relaxation time (which can be
interpreted as one mode of critical slowing down).
We studied both DNMR and Israel-Stewart equations of

motion. Perhaps, unsurprisingly, we find that DNMR is
better equipped to handle larger initial inverse Reynolds
numbers, and we did not find any trajectories that led to
runaway trajectories, which we interpret as a consequence
of DNMR having a more well-controlled expansion
[126,166]. Within DNMR, the potential attractors appeared
to be relatively flat in χ and Ω even at the critical point. In
contrast, the Israel-Stewart equation of motion also appear
as if they will eventually reach an attractor. However, at the
critical point, a large, negative spike in Ω was seen, well
outside the range of applicability for hydrodynamics.
Despite this spike, the solutions still returned to a potential
attractor by freeze-out (we emphasize potential because,
due to the finite lifetime of hydrodynamics, this would
occur beyond our freeze-out point). We note, however, that
the potential attractor line appears significantly different in
Israel-Stewart and is no longer flat but rather looks like a
hill at the critical point. For phenomenological purposes,
this work indicates that codes that solve Israel-Stewart
versus DNMR equations of motion should expect different
results when exploring the QCD phase diagram at large
baryon densities. Therefore, since the main difference
between DNMR and Israel-Stewart lies only in how they
treat far-from-equilibrium transient effects (since they have
the same Navier-Stokes limit), our results indicate that the
out-of-equilibrium properties of the hot and baryon-rich
QGP must be taken into account in experimentally driven
attempts to locate the QCD critical point using heavy-ion
collisions.
Related to the applicability of hydrodynamics is the

notion of cavitation within the fluid, or the nucleation and
formation of bubbles. A traditional signal of cavitation
occurs when a region of the fluid falls below its vapor
pressure. Within the QGP, the closest analog is the pressure
of vacuum, so dropping below zero pressure is typically
taken as an indicator of cavitation. Recent studies have
explored this effect [168–170] in the context of a large bulk
viscosity. However, to study this in more detail, a full
stability analysis would be required, as is done in
Refs. [171,172]. This becomes particularly important for
systems close to a critical point. Such a study is, however,
beyond the scope of the present paper.
On an event-by-event basis, each event may pass through

the QCD phase diagram in radically different ways, even if
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hydrodynamics is only initialized at very low temperatures,
as was shown here. Additionally, it was previously pointed
out [97] that viscosity affects the timescale of the phase
transition (across a first-order line). Instead, we suggest that
one should think of observables that could tag individual
events (or groups of events) by similar trajectories through
the phase diagram in order to better understand the QCD
equation of state at large baryon densities. The next step in
our future studies involves going beyond Bjorken flow,
taking into account a more realistic spacetime evolution of
the medium. This would then allow us to incorporate the
effects of baryon diffusion, which would lead to further
entropy production and likely cause an even larger diver-
gence from isentropes.
Additionally, it has been shown that μB can vary with

rapidity [173,174] even at LHC collisions, so this would
provide a new knob to turn in this type of analysis. Further
obvious extensions of this work would be to include
multiple conserved charges, which has already been shown
to shift the path of the isentropes even for ideal hydro-
dynamics [115,116], as well as critical fluctuations and
critical slowing down [6,37,39,48,140–142] (although
there is currently no consensus on the proper way to
include them in the context of Israel-Stewart and DNMR
equations of motion). With respect to diffusion, it is
important to note that these can only be fully implemented
in a hydrodynamic code that is at least (1þ 1) dimensional.
Additionally, at lower beam energies, the fluid is fully
three-dimensional, and therefore more definitive studies in
3þ 1 dimensions are warranted but are beyond the reach of
our current framework. We would also would like to
mention the additional complications that arise when
including a diffusion current in an Israel-Stewart–like
formulation of hydrodynamics. That is, in principle, one
could run a (albeit higher-dimensional) study similar to
what is done here, just using the entire diffusion matrix
[43], since those viscous currents are also initialized
independently. The interplay between far-from-equilibrium
initialization in the charge sector along with the energy-
momentum sector is still an open question that we are not
yet able to answer.
This work also presents a direct challenge for the

extraction of the QCD equation of state from relativistic
heavy-ion collisions at large baryon densities. In fact, far-
from-equilibrium effects are likely even larger at low beam
energies (regardless of if the degrees of freedom are
hadrons or quarks/gluons), which makes previous claims
of an EOS extracted from heavy-ion collisions probably
unrealistic [175] (especially considering this previous work
assumed T ¼ 0, whereas these beam energies have now
experimental evidence of temperatures greater than T >
70 MeV [176]). Thus, heavy-ion collision constraints on
the EOS can, at best, be applicable only to the neutron star
mergers themselves (as was discussed extensively in
Refs. [19,104,176]). This means that one should not use

a heavy-ion extracted EOS, which includes temperature
effects even at low center-of-mass collision energies, when
placing constraints on the EOS of cold neutron stars
(i.e., T ∼ 0 MeV) [177] (for a detailed understanding of
the EOS relevant for neutron stars see, for instance,
Ref. [178]).
While the original intention of our work was to focus on

low-energy heavy-ion collision energies relevant to the
RHIC Beam Energy Scan, HADES, FAIR, and NICA, a
similar study to show the connection between viscosity and
the EOS may also be relevant to explore in neutron star
mergers. Our results do indicate that the inclusion of
viscosity can dramatically change the trajectories through
the QCD phase diagram, and it would be very interesting to
see similar studies of this nature in neutron star mergers.
We emphasize here, however, that the bulk viscosity in
neutron star mergers arises from weak interactions
[107,108,179–181], so their values and consequences are
not the same as in the present study. Additionally, it is not
clear how the presence of general relativity would affect the
overall evolution of the viscous fluid [109,182] or the
existence of an attractor; nor are we aware of estimates of
the magnitude of the initial shear-stress tensor or bulk
pressure in realistic neutron star merger conditions, which
could affect their trajectories across the low-temperature,
high-baryon-density region of the QCD phase diagram.
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APPENDIX: ISRAEL-STEWART AND _β TERMS

In the following section, we will study the influence of
the _β terms in the Israel-Stewart equations of motion. In
Fig. 13, one can see the effects on the fT; μBg trajectories
when the _β terms are removed from the Israel-Stewart
equations. We generally find that Israel-Stewart equations
of motion without _β terms lead to an extremely wide spread
across μB for the initial conditions that freeze-out far from
the critical point. The initial conditions that start at large μB
trajectories are in fact ones that would not be particularly
atypical for heavy-ion collisions (they start with an initial
bulk pressure Π ≤ 0 and a positive contribution to πηη ≥ 0).
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This demonstrates that, even for high beam energies, initial
conditions that begin at large μB may be needed. At the
critical point, we are limited to only initial conditions that
have a positive initial Π and a negative initial πηη because all
other initial conditions would start at too large of μB for our
EOS to handle.
In Sec. II, we explained that in the original Israel-Stewart

paper [127] they neglected terms that incorporated the
gradients of the temperature. Below, we study the effect of
these terms and generally find that the inclusion of the _β
terms lead to better (and more well-behaved) inverse
Reynolds numbers for both shear and bulk viscosity.
First, we explore the Re−1 of shear and bulk viscosity far

from the critical point (close to μB → 0). The shear Re−1 is
shown in Fig. 14 with and without the _β terms. In both
cases, we scale the time evolution by the shear relaxation
time. One can quickly see that the inclusion of _β leads to a
smaller range of Re−1 numbers and that those Re−1 appear
to converge to a line on a relatively short timescale. The
arrows at the end of the lines point in the direction of the
derivative, which implies that, given a long enough

hydrodynamic expansion, they would eventually converge
to a singular point. We caution, though, that we stop our
hydrodynamic expansion once the trajectories reach our
freeze-out temperature, and therefore it appears due to the
limited run times of hydrodynamics in heavy-ion collisions
at the beam energy scan that the timescales are not long
enough to converge to a single point in χ.
In contrast, the Re−1 of shear for Israel-Stewart without

the _β terms produces a much large Re−1 and even has
trajectories that appear to diverge in χ (the solid lines),
becoming ever more negative with time. These trajectories
are initialized to have a large, negative χ, and a large
positive Ω.
The bulk Re−1, as shown in Fig. 15, does not appear to

be as sensitive to the inclusion of _β terms, which is likely
because the ζT=w is relatively small at initial times such
that Ω quickly drops to a potential attractor. However, even
in the case of bulk viscosity, we find that the same extreme
initial conditions (solid red line) that were problematic in
Fig. 14 also produce a very large Re−1 > 1 for the bulk
viscosity. Additionally, the lifetime of hydrodynamics is
shorter than the other runs such that there is not enough
time for Ω to reach the attractor.
Overall, we find that, even far from the critical point,

Israel-Stewart codes that neglect the _β terms may run into
problems for initial conditions that begin far from equi-
librium and especially may see a shear-stress tensor that has
runaway behavior. This is bound to lead to causality
problems [87]. Thus, any exploration of the QCD phase
diagram using Israel-Stewart theory in the far-from-
equilibrium regime should, at the bare minimum, include
the _β terms.
Next, we explore the influence of the inclusion of the _β

terms when the trajectories pass through (or very close) to
the critical point. First, we consider the Re−1 for shear
viscosity in Fig. 16. When we include _β terms, we see that χ
appears to have some sort of universal line that all the

FIG. 13. fT; μBg trajectories far from the critical point and at
the critical point using Israel-Stewart equations of motion without
the _β terms.

FIG. 14. Shear inverse Reynolds number χ ¼ πηη=w trajectories far from the critical point using Israel-Stewart equations of motion
with _β terms in (a) and without _β terms in (b). The solid black lines assume that the initial Re−1 ¼ 0 for both shear and bulk (the band
demonstrates the width of our range of the freeze-out fT; μBg).
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trajectories are pointing toward. We do find that the
timescales are too short for the curves to truly converge,
but this hints that with the _β terms one could reach an
attractor if the timescales were long enough. Unlike in
Fig. 14 in which we found only extreme trajectories that
diverged in χ as hydrodynamics evolved in time when _β
terms are excluded, at the critical point, we find that most
trajectories diverge at the critical point for χ if we neglect _β
terms. This demonstrates the importance of using the full
equations of motion for Israel-Stewart if one wants to study
the QCD phase diagram, especially close to a phase
transition.
In this section, we only consider the critically scaled

ζT=w because we wanted to test the limits of Israel-Stewart
with and without the _β terms. In Fig. 17, we plot the Re−1
for the bulk viscosity with and without the _β terms. In both
cases, we can obtain very large values of Ω (in fact, much
larger than DNMR), but it is clear from Fig. 17 that, while
Ω briefly diverges as one crosses the critical point (due to
the large value of ζT=w) with the inclusion of _β terms, it
quickly recovers and is able to return to the potential

attractor very quickly. In contrast, Israel-Stewart without _β

terms diverges in a multitude of directions, and it is not

clear if an attractor is obtained even for the few trajectories

that do not diverge. Thus, we argue that Israel-Stewart
without _β terms should definitely not be used near a critical
point, nor even when the system is far from equilibrium
because it can lead to diverging solutions.
Finally, in Fig. 18, we compare the trajectories of Israel-

Stewart with and without the _β terms at the critical point.
Surprisingly enough, if one were only to look at the fT; μBg
trajectories, it would appear that the equations of motions
are well behaved at the critical point. There are no particular
red flags here; nor do they appear drastically different than
the DNMR shown in Fig. 12. Therefore, it is important to
investigate the Re−1 as one studies the QCD phase diagram
to ensure that hydrodynamic is still applicable. This is
especially important when close to the critical point
because transport coefficients from the dynamic universal-
ity class H diverge at the critical point [123]. Thus, this is a
serious issue that realistic hydrodynamic models will need
to contend with.

FIG. 15. Bulk inverse Reynolds numberΩ ¼ Π=w trajectories far from the critical point using Israel-Stewart equations of motion with
_β terms in (a) and without _β terms in (b). The solid black lines assume that the initial Re−1 ¼ 0 for both shear and bulk (the band
demonstrates the width of our range of the freeze-out fT; μBg).

FIG. 16. Shear inverse Reynolds number χ ¼ πηη=w trajectories far from the critical point using Israel-Stewart equations of motion
with _β terms in (a) and without _β terms in (b). Here, only the critically scaled ζT=w is considered.
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One interesting consequence of the _β terms is that they
produce trajectories that appear to cross the critical point
and pass into large regions of μB that may potentially
remain in the deconfined phase. It is difficult to know
precisely what is happening in these low-temperature
regions because this is precisely the part of the phase
diagram (large μB along the first-order phase transition)
where our EOS begins to break down. However, this does

raise the possibility that there may be trajectories that
cross the critical point but enter into deconfined matter
and then cross over the first-order phase transition
line at lower temperatures/higher μB. The consequence
of such a trajectory we leave for a future paper when we
have an improved EOS where we can extend to large μB’s
to explore this part of the QCD phase diagram in more
detail.
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