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We present the proton and neutron vector form factors in a convenient parametric form that is optimized
for momentum transfers ≲ fewGeV2. The form factors are determined from a global fit to electron
scattering data and precise charge radius measurements. A new treatment of radiative corrections is applied.
This parametric representation of the form factors, uncertainties, and correlations provides an efficient
means to evaluate many derived observables. We consider two classes of illustrative examples: neutrino-
nucleon scattering cross sections at GeVenergies for neutrino oscillation experiments and nucleon structure
corrections for atomic spectroscopy. The neutrino-nucleon charged current quasielastic cross section differs
by 3%–5% compared to commonly used form factor models when the vector form factors are constrained
by recent high-statistics electron-proton scattering data from the A1 Collaboration. Nucleon structure
parameter determinations include: the magnetic and Zemach radii of the proton and neutron,
½rpM; rnM� ¼ ½0.739ð41Þð23Þ; 0.776ð53Þð28Þ� fm and ½rpZ; rnZ� ¼ ½1.0227ð94Þð51Þ;−0.0445ð14Þð3Þ� fm;
the Friar radius of nucleons, ½ðrpFÞ3; ðrnFÞ3� ¼ ½2.246ð58Þð2Þ; 0.0093ð6Þð1Þ� fm3; the electric curvatures,
½hr4ipE; hr4inE� ¼ ½1.08ð28Þð5Þ;−0.33ð24Þð3Þ� fm4; and bounds on the magnetic curvatures,
½hr4ipM; hr4inM� ¼ ½−2.0ð1.7Þð0.8Þ;−2.3ð2.1Þð1.1Þ� fm4. The first and dominant uncertainty is propagated
from the experimental data and radiative corrections, and the second error is due to the fitting
procedure.

DOI: 10.1103/PhysRevD.102.074012

I. INTRODUCTION

A new generation of precision measurements, including
accelerator-based neutrino experiments and muonic atom
spectroscopy, demands a rigorous assessment of nucleon
structure parameters and their uncertainties. The electro-
magnetic form factors of the proton and neutron are critical
inputs to searches for new physical phenomena and to new
precise measurements of the elementary particles. As one
example, precise neutrino-nucleus interaction cross sec-
tions are required in order to access fundamental neutrino
properties at long-baseline oscillation experiments [1–3];
the electroweak vector form factors of the nucleons are an
important input to these cross sections and are determined
by an isospin rotation of the electromagnetic form factors.
As another example, muonic atom spectroscopy [4,5] has
opened a new window on the determination of fundamental
constants and has revealed surprising discrepancies in

comparisons of different approaches to nucleon structure
[6]; it is critical to quantify uncertainties of nucleon
structure inputs for the muonic atom program and also
to incorporate constraints from these new measurements
into other processes, such as the above-mentioned neutrino
cross sections.
Recently, with Ye and Arrington [7], two of us provided

a new global fit of the proton and neutron electromagnetic
form factors, encompassing the entire momentum transfer
(Q2) range of available elastic electron scattering data. That
analysis provides a comprehensive discussion of the
available data, and the fit provides a general purpose tool
for studying the form factors over a broad range of Q2.
However, the fit of Ref. [7] is not optimized for relatively
low-Q2 applications, such as neutrino scattering in the GeV
energy regime. First, the inclusion of very high-Q2 data
necessitates the introduction of a large number of param-
eters, many of which are irrelevant to low-Q2 applications.
Second, the presentation of errors in Ref. [7] (an envelope
around the curve as a function of Q2) does not allow a
systematic propagation of errors into derived observables.
Finally, since the focus of Ref. [7] was in summarizing the
implications of electron scattering data in isolation, it did
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not incorporate the low-Q2 constraint on the proton electric
form factor that emerges from muonic atom spectroscopy.
While there is not a complete consensus regarding the
resolution of the so-called proton radius puzzle [8–12], we
believe it is important to be able to consistently incorporate
these data and study their impact for applications such as
neutrino scattering.
In this paper, we utilize the raw data selections and

uncertainty evaluations for electron scattering cross sec-
tions from Ref. [7] to present a complete and compact
parametric representation and covariance matrix for the
form factors suitable for GeV and sub-GeV scale applica-
tions. Section II begins by describing the salient features of
the data analysis and presenting the fit results. Section III
considers several illustrative applications, beginning with a
discussion of form factor radii and curvatures in Sec. III A.
Section III B evaluates neutrino-nucleon scattering cross
sections. Section III C presents central values and uncer-
tainties for several nucleon structure parameters that are
important for muonic atom spectroscopy. Section IV pro-
vides a summary discussion. Appendix A discusses ten-
sions between datasets. Appendix B provides details on the
dispersive evaluation of two-photon exchange radiative
corrections. Appendix C compares our numerical results
for nucleon structure parameters to previous estimates.

II. PRESENTATION OF FORM FACTORS

In this section, we begin by recalling definitions and
conventions, discuss our data selection and fit procedure,
and present the fit results.

A. Definitions

The Dirac and Pauli form factors, FN
1 and FN

2 , respec-
tively, are defined as matrix elements of the electromag-
netic current:

hNðp0ÞjJemμ jNðpÞi

¼ ūðp0Þ
�
γμF̃N

1 ðQ2Þ þ iσμν
2MN

F̃N
2 ðQ2Þqν

�
uðpÞ; ð1Þ

where qμ ¼ p0μ − pμ, Q2 ¼ −q2 ¼ −ðp0 − pÞ2, and N
stands for p (proton) or n (neutron). In the presence of
radiative corrections, the on-shell form factors F̃i are IR
divergent, and we define IR finite form factors FiðQ2Þ≡
FiðQ2; μ ¼ MpÞ in the MS scheme at the renormalization
scale μ ¼ Mp [13].1 We will present results in terms of the

Sachs electric and magnetic form factors, which are related
to the Dirac-Pauli basis by

GN
E ¼ FN

1 −
Q2

4M2
N
FN
2 ; GN

M ¼ FN
1 þ FN

2 : ð2Þ

For some applications, it is convenient to work with the
isoscalar and isovector linear combinations,

GS
E ¼ Gp

E þGn
E; GV

E ¼ Gp
E −Gn

E: ð3Þ

The form factors can be expressed as a convergent
expansion in the variable zðQ2Þ [14–16],

GN
E ðQ2Þ ¼

Xkmax

k¼0

akzðQ2Þk;

GN
MðQ2Þ ¼ GMð0Þ

Xkmax

k¼0

bkzðQ2Þk;

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut − t0
p : ð4Þ

The dimensionless coefficients ak, bk in this expansion
encode hadronic structure. The parameter tcut is the timelike
kinematic threshold for particle production: tcut ¼ 9m2

π for
isoscalar form factors and tcut ¼ 4m2

π for isovector form
factors.2 The parameter t0 represents the point in the Q2

plane mapping to z ¼ 0; this free parameter defines the
expansion scheme and is chosen for convenience. For
example, the choice of t0 that ensures the smallest range
of jzj corresponding to 0 < Q2 < Q2

max is

topt0 ðtcut; Q2
maxÞ ¼ tcut

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut

q �
: ð5Þ

Perturbative QCD requires that the form factors fall off
faster than 1=Q3 in the large Q2 limit [17], which implies
the four sum rules [16]

X∞
k¼n

kðk−1Þ� � �ðk−nþ1Þak ¼ 0; n¼ 0;1;2;3: ð6Þ

It will also be useful to consider the small-Q2 expansion of
the form factors, written conventionally as

GN
E ðQ2Þ¼GN

E ð0Þ−
hr2iNE
3!

Q2þhr4iNE
5!

Q4þ�� � ; ð7Þ1The IR finite form factors are defined in terms of a standard
factorization formula: F̃i ¼ Fi;SðQ2; μÞFiðQ2; μÞ. Here F̃i is the
(IR divergent) on-shell form factor; the soft function Fi;S is IR
divergent, but independent of hadron structure; and the hard
function Fi (also called a “Born” form factor in the literature) is
IR finite and encodes hadron structure. In the following, FiðQ2Þ
refers to FiðQ2; μ ¼ MpÞ.

2When the proton and neutron form factors are considered
individually, the lower threshold 4m2

π must be used.
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GN
MðQ2Þ¼GN

Mð0Þ
�
1−

hr2iNM
3!

Q2þhr4iNM
5!

Q4þ���
�
: ð8Þ

We further define rNE ¼
ffiffiffiffiffiffiffiffiffiffiffi
hr2iNE

p
and rNM ¼

ffiffiffiffiffiffiffiffiffiffiffi
hr2iNM

p
.3

B. Data selection

For elastic ep- and en-scattering measurements, a
complete tabulation of the data and error assignments
that we use can be found in the Supplemental Material
of Ref. [7]. We provide a short synopsis here. The
ep-scattering data are divided into three datasets:

(i) “Mainz”: the rebinned 2010 data from the A1
experiment [19] with modifications as detailed in
Ref. [16], which comprise 657 data points in the
kinematic range Q2 < 1 GeV2;

(ii) “World”: the compilation of unpolarized cross-section
data not contained in the “Mainz” dataset [19–47];

(iii) “Pol”: Gp
E=G

p
M ratios extracted from polarization

data [48–60].
For en scattering, we include all data available from
Refs. [61–75] for Gn

E and Refs. [76–82] for Gn
M. As

explained in detail in Appendix A 2, we do not include
PRad data to the fit since complete uncertainty correlations
are not yet available [83].
In addition to electron scattering data, we include

precision low-Q2 constraints on the form factors. Charge
conservation requires that Gp

Eð0Þ ¼ 1 and Gn
Eð0Þ ¼ 0.

The magnetic moments of the proton and neutron deter-
mine [6] (see also Ref. [84]) Gp

Mð0Þ≡ μp=ðeℏ=2MpÞ ¼
2.7928473508ð85Þ and Gn

Mð0Þ≡ μn=ðeℏ=2MnÞ ¼
−1.91304272ð45Þ × ðMn=MpÞ.4 The proton electric charge
radius can be inferred from the measurement of the 2S-2P
Lamb shift in muonic hydrogen [4]; we employ the updated
value [5]

ðrpEÞμH ¼ 0.84087ð39Þ fm: ð9Þ

The neutron electric charge radius is determined from
neutron scattering length measurements on heavy targets
[85,86], which yield

hr2inE ¼ −0.1161ð22Þ fm2: ð10Þ

We do not include external constraints on rpM or rnM. We have
not included dispersive constraints [11,12,87,88] on the form
factors such as from ππ → NN̄ data, since these constraints
have either modest impact on the fits [14] or introduce
further theoretical considerations. Our form factor results are
presented with complete error budgets that may be compared
to other determinations using dispersive analysis, lattice
QCD, or future electron scattering data.
We will consider two types of fits: first, a fit of separate

proton and neutron data to their respective form factors;
second, a fit of combined proton and neutron data to
isospin-decomposed form factors. For our default proton fit
(line 1 of Table I), we employ the “Mainz” ep-scattering
dataset in combination with the proton electric charge
radius. For our default neutron fit (lines 2 and 3 of Table I),
we consider en-scattering data with Q2 ≤ 1 GeV2 in
combination with the neutron electric charge radius. For
our default isospin-decomposed fit (line 4 of Table I), we
consider all of the above proton and neutron data. Finally,
we also consider an isospin-decomposed fit (line 5 of
Table I) that includes all of the above data, as well as
neutron data with 1 GeV2 < Q2 ≤ 3 GeV2, and “World”
and “Pol” data with 0 < Q2 ≤ 3 GeV2. The total number of
data points for each of these fits is summarized in Table I.
We also show the total χ2 and number of degrees of
freedom for each fit.5

TABLE I. Number of data points from each dataset included in fits below the momentum transfer Q2
max. The total

χ2 and number of degrees of freedom of each fit are also displayed.

Fit Q2
max [GeV2] Mainz World Pol Gn

E Gn
M rpE hr2inE χ2 ndof

p 1.0 657 0 0 0 0 1 0 475.35 650
n (Gn

E) 1.0 0 0 0 29 0 0 1 14.81 26
n (Gn

M) 1.0 0 0 0 0 15 0 0 8.03 11
iso ð1 GeV2Þ 1.0 657 0 0 29 15 1 1 499.63 687
iso ð3 GeV2Þ 3.0 657 480 58 37 23 1 1 1162.45 1241

3The notations hr2iNE;M and hr4iNE;M are motivated in a non-
relativisitic model with static charge distribution [18]. We employ
this common notation with the understanding that it is a purely
conventional representation of the corresponding form factor
derivatives, e.g., hr2iNE ≡ −6dGN

E=dQ
2jQ2¼0.4The Mn=Mp factor results from a conventional expression of

μn in units of the nuclear magneton, eℏ=2Mp. This difference is
insignificant compared to other uncertainties in electron scatter-
ing fits; cf. footnote 4 of Ref. [7].

5The number of degrees of freedom, ndof , is equal to the sum of
the number of data points from the respective row in the table,
minus the number of form factor parameters (for definiteness, we
count kmax − 4 parameters for each form factor that are not fixed
by sum rules; cf. Table II). Note that nuisance parameters in the
dataset (floating normalizations for all datasets except for Gn

E
and correlated systematic parameters for the Mainz dataset as
described in Refs. [7,16]) are subject to χ2 constraints (i.e., each
nuisance “parameter” is accompanied by a corresponding “data
point”), and we do not include them in counting ndof .
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C. Radiative corrections to ep scattering

One goal of the current work is a more robust accounting
for radiative corrections to unpolarized ep cross sections in
the fits.6 Besides the standard QED corrections on the
electron line, there are three types of radiative corrections
that must be applied to scattering data in order to extract the
IR finite “Born” form factors defined after Eq. (1). They
may be classified as “hadronic vertex,” “hadronic vacuum
polarization,” and “two-photon exchange” (TPE). The first,
hadronic vertex, type of correction involves soft radiation
and the shape of the event distribution as a function of the
inelasticity ΔE ¼ E0elastic

e − E0
e (where E0

e is the scattered
electron energy and E0elastic

e is the elastic limit). This
correction is calculable from QED in the soft limit
ΔE ≪ mπ, but is numerically enhanced by large logarithms
in that limit. In the Mainz data, the soft-photon tail was
analyzed in detail but neglected higher-order corrections
that are larger than stated systematic uncertainties [13];
however, the bulk of these corrections is absorbed by
floating normalization parameters. In the World data,
uncorrelated uncertainties were included in the dataset
[7] to account for possible model dependence in the
treatment of the radiative tail. In all cases, the error budgets
from Ref. [7] are assumed to contain any residual error
from the approximate treatment of this correction; we
include here the small discrepancy between the MS
convention defined after Eq. (1), and the commonly used
Maximon-Tjon convention [91] for the soft subtraction (see
Appendix B of Ref. [13] for related discussion). The
second, hadronic vacuum polarization, type of correction
was omitted from the Mainz dataset [19], and treated
nonuniformly in the World dataset. As with the hadronic
vertex correction, the error budgets from Ref. [7] are
assumed to contain any residual error from approximate
treatment of this correction (see Sec. 1 of Ref. [16] for
related discussion).
The third, TPE type of correction, remains a significant

contributor to the error budget for ep scattering. As with
the hadronic vertex correction, the soft-photon part of
the TPE correction is computable without uncertainty in
QED, while the remaining hard-photon part is removed
according to

dσBorn ¼ dσexpt

1þ δTPE
: ð11Þ

Here dσexpt is the experimental cross section after
extracting leptonic QED corrections, and the above-
mentioned hadronic vertex, vacuum polarization, and
soft-photon TPE effects. The resultant dσBorn is identified

with the tree-level (Mott) cross section computed using
Born form factors.
At arbitrary Q2, we account for differences between the

true TPE correction and the previous default model
employed in Ref. [7], called there “SIFF Blunden” [92],
by writing (for notational simplicity, we henceforth sup-
press the subscript “TPE” on δ)

δ ¼
�
δdefault þ xðδdispersive − δdefaultÞ Q2 < 1 GeV2

δdefault þ yδAMT Q2 > 1 GeV2
:

ð12Þ

For data below Q2 ¼ 1 GeV2, we consider the dispersive
analysis from Refs. [93–98], which determines
δ ¼ δdispersive; details are provided in Appendix B. We take
the discrepancy between the default model and the dis-
persive analysis as an uncertainty and allow x ¼ 1� 1.
Above Q2 ¼ 1 GeV2, we consider the phenomenological
correction from Ref. [90], δ ¼ δdefault þ yδAMT, which is
designed to improve agreement between polarization mea-
surements and TPE-corrected unpolarized Rosenbluth
measurements at high Q2; the explicit form of δAMT is
provided in Appendix B. We take the discrepancy between
the default model and this phenomenological ansatz as an
uncertainty and conservatively allow y ¼ 1� 2. Since the
ansatz involving δAMT is purely phenomenological, we
perform fits with y ¼ 1� 2 enforced as an uncorrelated
error, as in Ref. [7], whereas x ¼ 1� 1 is enforced as a
correlated error. We have verified that taking x uncorrelated
or y correlated does not significantly alter the results.7

As a practical summary, our treatment of radiative correc-
tions follows Ref. [7] above Q2 ¼ 1 GeV2, with the addi-
tional parameter x to describe TPE corrections below
Q2 ¼ 1 GeV2.

D. Fit parameters and procedure

Having defined our datasets and treatment of radiative
corrections, let us determine the relevant parameters for the
z-expansion analysis. We use data with Q2 ≤ 1 GeV2 for
our default fits and choose t0 as in Eq. (5) to minimize the
maximum size of jzj in thisQ2 range. We enforce sum rules
on the coefficients, fix the normalization of form factors at
zero momentum transfer, and choose the number of free
parameters in the z expansion, nmax ¼ kmax − 4 ¼ 4, suffi-
ciently large so that terms of order jzjnmaxþ1 are small

6We follow the analysis of [7,89,90] by omitting radiative
corrections to the form factor ratios from polarization data, which
are expected to be small compared to other uncertainties.

7The results for the default proton and iso (1 GeV2) fits are
x ¼ 1.41ð52Þ and x ¼ 1.43ð52Þ, respectively. For the iso
(3 GeV2) fit treating y as a correlated error, we obtain x ¼
2.17ð41Þ and y ¼ 1.74ð60Þ. Loosening the Gaussian bounds on x
by a factor of 5, the results for the default proton and iso (1 GeV2)
yield small changes to x ¼ 1.55ð61Þ and x ¼ 1.58ð60Þ, respec-
tively. If we do the same for x and y for the iso (3 GeV2) fit, we
obtain x ¼ 2.40ð45Þ and y ¼ 1.81ð64Þ.
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compared to experimental precision.8 Our results do not
change significantly when kmax is increased; we illustrate
this in Sec. III by recomputing observables using
kmax → kmax þ 1. For all form factors, we have enforced
Gaussian bounds, jakj ≤ 5, jbkj ≤ 5 (k ¼ 1;…; kmax) on
the coefficients (i.e., a term a2k=5

2 is included in the χ2

function). Our results do not change significantly when this
bound is increased by a factor of 2. In Table II, we
summarize the choices of z-expansion parameters used
in our fits. For each choice of dataset in Table I, the fit
returns form factors expressed as central values, errors, and
correlations for the indicated number of free parameters.

E. Fit results

For the proton fit (line 1 of Table I), the form factor
coefficients are

½ap1 ;ap2 ;ap3 ;ap4 �
¼ ½−1.4860ð97Þ;−0.096ð52Þ;1.82ð15Þ;1.29ð41Þ�;

½bp1 ;bp2 ;bp3 ;bp4 �
¼ ½−1.464ð11Þ;0.063ð60Þ;1.74ð21Þ;−0.35ð38Þ�: ð13Þ

For the neutron fits (lines 2 and 3 of Table I), the form
factor coefficients are

½an1; an2; an3; an4�
¼ ½0.084ð18Þ;−0.279ð63Þ;−0.15ð32Þ; 0.35ð56Þ�;

½bn1; bn2; bn3; bn4�
¼ ½−1.415ð39Þ; 0.22ð17Þ; 1.39ð39Þ; 0.0ð1.5Þ�: ð14Þ

For the isospin-decomposed fit (line 4 of Table I), the
isovector form factor coefficients are

½aV1 ;aV2 ;aV3 ;aV4 �
¼ ½−1.576ð15Þ;0.177ð77Þ;2.05ð24Þ;0.88ð57Þ�;

½bV1 ;bV2 ;bV3 ;bV4 �
¼ ½−1.456ð13Þ;0.186ð67Þ;1.63ð23Þ;−0.73ð46Þ�; ð15Þ

and the isoscalar form factors are given by

½aS1; aS2; aS3; aS4�
¼ ½−1.809ð17Þ; 0.91ð12Þ; 1.92ð27Þ;−0.98ð82Þ�;

½bS1; bS2; bS3; bS4�
¼ ½−1.938ð57Þ; 0.78ð25Þ; 3.71ð88Þ;−4.0ð2.8Þ�: ð16Þ

Whereas in Ref. [7] we considered the most inclusive
dataset, here we have chosen the default proton dataset to
contain the most recent precise measurements and to
minimize internal data tensions. For definiteness we have
included neutron data up to the same Q2

max ¼ 1 GeV2. We
remark that the Mainz dataset predicts rpE ¼ 0.879ð18Þ fm
when the μH charge radius constraint is removed [16];
this value is in only mild tension, 2.2σ, with Eq. (9).9 The
absence of more severe internal data tensions does not
guarantee the absence of potentially underestimated sys-
tematics; for a fuller discussion we refer to Ref. [16].
Plots in Appendix A compare our Gp

E, G
p
M, G

n
E, G

n
M, and

GV
E , G

V
M form factors against those of our previous global

fit in Ref. [7] and to the BBBA2005 parametrization of
Ref. [99]. In Supplemental Material [100], we provide
values for the coefficients and covariance matrices suitable
for precise evaluation of charge radii and other physical
quantities,10 as well as values for the coefficients from a fit
with kmax ¼ 9 which we use in applications to estimate the
error from z-expansion truncation.

III. ILLUSTRATIVE APPLICATIONS

Having determined the form factor coefficients, errors,
and correlations, let us illustrate with some relevant
physical examples. We begin in Sec. III A by evaluating
form factor radii and curvatures. Section III B discusses
neutrino scattering applications, and Sec. III C considers
nucleon structure parameters for atomic spectroscopy.

TABLE II. Parameter choices for the z expansion of the form
factors in this paper. Throughout the paper, we use the charged
pion mass mπ ¼ 0.13957 GeV for the evaluation of tcut. The
values for t0 are obtained by rounding topt0 ð1 GeV2; 4m2

πÞ ≈
−0.21, and topt0 ð1 GeV2; 9m2

πÞ ≈ −0.28.

Form factor tcut [GeV2] t0 [GeV2] kmax − 4 jakjmax

Gp
E, G

p
M 4m2

π −0.21 4 5
Gn

E, G
n
M 4m2

π −0.21 4 5
GS

E, G
S
M 9m2

π −0.28 4 5
GV

E , G
V
M 4m2

π −0.21 4 5

8For the isovector threshold tcut ¼ 4m2
π and choice of t0¼

−0.21GeV2, we have jzj5<0.0033 when 0<Q2<1GeV2, and
jzj5 < 0.042 when 0 < Q2 < 3 GeV2. For the isoscalar threshold
tcut ¼ 9m2

π and choice of t0 ¼ −0.28 GeV2, we have jzj5 <
0.0007 when 0 < Q2 < 1 GeV2, and jzj5 < 0.019 when
0 < Q2 < 3 GeV2.

9This current fit corresponds to the “alternate approach”
described in Sec. VI. C. 3 of Ref. [16], which yielded rpE ¼
0.891ð18Þ fm (line 7 of Table XIV). The small difference with
0.879(17) results from omitting sum rule constraints on the
coefficients, omitting the floating TPE correction in Eq. (12), and
restricting to Q2

max ¼ 0.5 GeV2.
10The linear combination of coefficients that defines the

charge radius is more precisely determined with the form factor
parameters and the covariance matrix from the Supplemental
Material [100] than by evaluation using Eq. (13) and neglecting
correlations.
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A. Form factor radii and curvatures

The nucleon radii, defined in Eqs. (7) and (8), are
presented in Table III, where each line represents the result
of the fit using the corresponding dataset in Table I. For
each entry in the table, the first number represents the fit
with default kmax ¼ 8 (as in Table II), and the second
number represents the fit with kmax ¼ 9.
As expected, the output proton and neutron electric radii

are driven by the precise external constraints on these
quantities, and the kmax dependence is insignificant and not
displayed.11 The determination of rpE using low-Q2 data
released in 2019 by the PRad experiment is discussed in
Appendix A.
The proton and neutron magnetic radii are consistent

between fits and represent the best values for these quantities
obtained from electron scattering data plus external charge
radius constraints. The proton magnetic radius from the
default fit, rpM ¼ 0.739ð41Þð23Þ fm, should be compared to
(and does not essentially alter) our previous extraction from
2010 Mainz data, rpM ¼ 0.776ð34Þð17Þ fm.12 The difference
results from omitting the muonic hydrogen constraint of
Eq. (9), omitting the floating TPE correction in Eq. (12),
omitting sum rule constraints on the coefficients, and
restricting to Q2

max ¼ 0.5 GeV2.13 The neutron magnetic
radius from our default fit, rnM ¼ 0.776ð53Þð28Þ fm, repre-
sents a new extraction. Our value may be compared to
the result 0.89(3)fm from Ref. [102] that performed a
z-expansion fit to ep and en scattering data and

ππ → NN̄ data, utilizing a dataset for Gp
M from Ref. [90]

that did not include 2010 Mainz data. The PDG recom-
mended value rnM ¼ 0.864ð9Þ fm [101] results from a naive
average of this result and the result rnM ¼ 0.862ð9Þ fm from
Ref. [87] that performed a global fit of spacelike and timelike
data to model spectral functions.
The form factor curvatures, hr4i from Eqs. (7) and (8),

are presented in Table IV. Only the proton electric curvature
is determined to be nonzero with statistical significance. As
for the radii, different fit variations are consistent within
uncertainties. We provide previous estimates of curvature in
Table X of Appendix C.
For both radii and curvatures, the iso (1 GeV2) fit yields

a modest reduction in uncertainty compared to the separate
proton and neutron fits, which can be traced to more data
and a higher threshold tcut (hence a smaller range of jzj and
a smaller number of relevant form factor coefficients) in the
isoscalar channel. There is further reduction in the errors
using the iso (3 GeV2) fit due to the inclusion of more data.
As discussed in Appendix A, these additional data intro-
duce a significant and unresolved tension with the Mainz
dataset; we focus on the p, n, and iso (1 GeV2) fits as our
default results.

B. Neutrino-nucleon scattering

The elementary signal process for neutrino oscillation
experiments is charged current quasielastic scattering,14

νl þ n → l− þ p;

ν̄l þ p → lþ þ n: ð17Þ

Neglecting power corrections to four-fermion theory
of order Q2=M2

W (MW is the W� boson mass), the cross
section in the laboratory frame is15

TABLE III. Electric and magnetic radii of proton and neutron using form factor parameters and bounds of
Table II and datasets of Table I. For rM, the second number in each table results from changing the default
kmax ¼ 8 to kmax ¼ 9.

Fit choice rpE [fm] rpM [fm] hr2inE ½fm2� rnM [fm]

p 0.84089(39) 0.739(41), 0.716(44) � � � � � �
nðGn

EÞ � � � � � � −0.1161ð22Þ � � �
nðGn

MÞ � � � � � � � � � 0.881(83), 0.878(79)
iso (1 GeV2) 0.84090(39) 0.749(36), 0.729(38) −0.1160ð22Þ 0.776(53), 0.748(57)
iso (3 GeV2) 0.84097(39) 0.799(23), 0.819(25) −0.1160ð22Þ 0.821(34), 0.855(38)

11Removing the neutron charge radius constraint from the
PDG in Eq. (10), the n ðGn

EÞ fit as in Table I yields
hr2inE ¼ −0.075ð95Þð5Þ fm2, the iso (1 GeV2) fit yields
hr2inE ¼ −0.092ð34Þð1Þ fm2, and the iso (3 GeV2) fit yields
hr2inE ¼ −0.100ð28Þð8Þ fm2.

12A naive average with the analogous fit to World data without
Mainz data, rpM ¼ 0.914ð35Þ fm, is used to arrive at the PDG
recommended value rpM ¼ 0.851ð26Þ fm [101]. Our current fit
corresponds to the alternate approach described in Sec. VI. C. 3
of Ref. [16], which yielded rpM ¼ 0.792ð49Þ fm (line 7 of
Table XIV).

13Removing the μH constraint from our default fit shifts the
central value by ∼0.7σ∶rpM ¼ 0.739ð41Þ fm → 0.768ð42Þ fm;
further removing the floating TPE parameter, the result would
be 0.774(41) fm.

14For a classic review see Ref. [103]. For recent reviews see
Refs. [1–3].

15Our sign convention assumes negative axial charge FAð0Þ≡
gA < 0, hence the negative sign before BðQ2Þ. For antineutrino-
proton scattering, this sign is positive. Our expression corre-
sponds to Ref. [103] and differs from Ref. [104] in the axial form
factor contribution to the function A.
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dσ
dQ2

ðQ2;EνÞ¼
G2

FjVudj2
8π

M2

E2
ν

�
AðQ2Þm

2
lþQ2

M2

−BðQ2Þs−u
M2

þCðQ2Þ
�
s−u
M2

�
2
�
; ð18Þ

where GF is the Fermi constant, Vud is a Cabibbo-
Kobayashi-Maskawa matrix element, M ¼ ðMp þMnÞ=2
is the average nucleon mass, ml is the final-state lepton
mass, Eν is the incoming neutrino energy, and the differ-
ence in Mandelstam variables can be written as
s − u ¼ 4EνM −Q2 −m2

l. The three structure-dependent
functions A, B, and C are given by

A ¼ 2τNðFV
1 þFV

2 Þ2 − ð1þ τNÞ½ðFV
1 Þ2 þ τNðFV

2 Þ2 − ðFAÞ2�
− r2l½ðFV

1 þFV
2 Þ2 þ ðFA þ 2FPÞ2 − 4ð1þ τNÞF2

P�;
B ¼ 4τNFAðFV

1 þFV
2 Þ;

C ¼ 1

4
½ðFV

1 Þ2 þ τNðFV
2 Þ2 þ ðFAÞ2�; ð19Þ

where τN ¼ Q2=ð4M2Þ, rl ¼ ml=ð2MÞ, and the four form
factors FV

1 , F
V
2 , FA, FP are defined by

hpðp0ÞjūγμPLdjnðpÞi

¼ 1

2
ūðpÞðp0Þ

�
γμFV

1 ðQ2Þ þ iσμνqν
2M

FV
2 ðQ2Þ

þ γμγ5FAðQ2Þ þ qμ

M
γ5FPðQ2Þ

�
uðnÞðpÞ; ð20Þ

with PL ¼ ð1 − γ5Þ=2. Equation (18) represents the “Born”
cross section for the quasielastic process, analogous to
Eq. (11) for the case of ep scattering. Soft radiation effects
and two-boson exchange contributions have been sub-
tracted and are to be treated separately. It is important to
include such radiative corrections and to account for
collinear and hard-photon emission in a practical experi-
ment [13,105–107]; however, our focus here is to determine
the Born cross section for the quasielastic process.
The axial form factor FA is taken from Ref. [108]. In

order to illustrate the utility of the new vector form factors,
we will use the standard partially-conserved axial current
ansatz and pion-pole dominance assumption for the pseu-
doscalar form factor FP (whose effects are suppressed by
powers of the lepton mass),

FPðQ2Þ ¼ 2M2

m2
π þQ2

FAðQ2Þ: ð21Þ

The isovector vector form factors FV
1 and FV

2 are deter-
mined either by taking the difference of proton and
neutron form factors or by directly implementing the
isospin-decomposed fit. We have ignored second-class
form factors in Eq. (20), and isospin-violating corrections
to the relation of Fp;n

i to FV
i . These effects are suppressed

by the fine structure constant α or by ðmd −muÞ=ΛQCD, and
are expected to be small compared to other uncertainties.
To illustrate the relevant range of Q2 for neutrino beams

in the GeV energy regime, we display the νμn charged
current quasielastic (CCQE) cross section as a function
of Q2, fixing Eν ¼ 5 GeV, in the left-hand side of Fig. 1.
The cross section is dominated by Q2 ≲ 1 GeV2 and is
relatively insensitive to the detailed form factor behavior at
larger momentum transfers. For comparison, the right-hand
side of Fig. 1 shows the ντn CCQE cross section; this rare
process accesses somewhat larger Q2. In both cases, there
can be residual sensitivity to higher-order coefficients in
the z expansion that are poorly constrained by the chosen
electron scattering dataset. This sensitivity can be deter-
mined in practice by recomputing observables using differ-
ent values of kmax.
Our CCQE cross sections for muon (anti)neutrino are

displayed as a function of neutrino energy in Fig. 2, using
our default isospin-decomposed (iso 1 GeV2) fit. The
current large uncertainty of the axial form factor dominates
the error budget. We remark that the deviation of central
values between our fit and the commonly used BBBA2005
model [99] is sizable compared to the axial form factor
uncertainty at Eν ≳ 1 GeV. The cross section depends
strongly on lepton flavor at energies near or below the
muon-production threshold, as shown in Fig. 3.
Tables V–VII show the CCQE total cross sections for

three benchmark points with Eν ¼ 0.5, 1, and 3 GeV. In
addition to axial and vector form factor uncertainties, we
include a z-expansion truncation uncertainty estimated from
the shift in central value when the default fit with kmax ¼ 8
is replaced by the fit with kmax ¼ 9. We also compare our
evaluation with Ref. [108], where the BBBA2005 para-
metrization was used for vector form factors.

C. Spectroscopy of electronic and muonic atoms

Modern spectroscopy experiments with ordinary and
muonic hydrogen [4,5,109–114] are sensitive to the

TABLE IV. Same as Table III, but for curvatures.

Fit hr4ipE ½fm4� hr4ipM ½fm4� hr4inE ½fm4� hr4inM ½fm4�
p 1.08(28), 1.13(30) −2.0ð1.7Þ, −2.8ð1.8Þ � � � � � �
nðGn

EÞ � � � � � � −0.37ð62Þ, −0.35ð63Þ � � �
nðGn

MÞ � � � � � � � � � 1.6(3.3), 1.4(3.3)
iso (1 GeV2) 1.25(23), 1.21(23) −1.6ð1.5Þ, −2.4ð1.5Þ −0.33ð24Þ, −0.30ð25Þ −2.3ð2.1Þ, −3.4ð2.2Þ
iso (3 GeV2) 0.83(18), 0.78(19) −0.6ð9Þ, 0.6(1.2) 0.04(20), 0.08(21) −1.1ð1.3Þ, 0.8(1.7)
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FIG. 2. Muon neutrino-neutron (left) and antineutrino-proton (right) quasielastic cross section. Our result is given by the narrow dark
band representing the iso (1 GeV2) fit with vector form factor uncertainty. Axial form factor uncertainty is represented by the wide light
band and is to be added in quadrature. The blue dashed line represents the central value using the same axial form factor as the central
curve, but BBBA2005 vector form factors.

FIG. 1. Neutrino-neutron quasielastic scattering cross section versusQ2 for muon (left) and tau (right) flavors, using the iso (1 GeV2) fit.

FIG. 3. Electron and muon neutrino-neutron (left) and antineutrino-proton (right) quasielastic cross section at low energies. The
shaded regions correspond to the light bands in Fig. 2. The region with solid boundary line represents the νμ case and the region with
dotted boundary line represents the νe case. The vector form factor uncertainty from our fit is not resolved in the plots.
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internal structure of the proton. In particular, the small size of
muonic atoms enhances sensitivity to structure-dependent
effects and makes measurements with muons attractive in
searches for new physics and precise studies of proton and
nuclear dynamics. The leading structure-dependent effect,
which is proportional to hr2iE, shifts energy levels at order
mlα

4 and enters via the exchange of one virtual photon
between the lepton (l ¼ e or l ¼ μ) and the proton. This
effect does not depend on the spin state of the energy level.
The leading spin-dependent contribution of order mlα

5

arises from the two-photon exchange. It contributes to the
hyperfine splitting of energy levels [5]. Modern measure-
ments of the Lamb shift in muonic hydrogen [4,5], of the
hydrogen-deuterium isotope shift [115], and of the 1S-2S
transition in hydrogen [116] are sensitive to spin-indepen-
dent two-photon exchange contributions as well. For both
ordinary and muonic hydrogen, the bulk of the two-photon
exchange contributions is determined by certain structure
parameters, “moments,” expressed as Q2 integrals over
products of elastic form factors. In this section, we compute
the Friar and Zemach radii governing spin-independent and
spin-dependent two-photon exchange, respectively. Some
previous results are compiled in Appendix C.

1. Lamb shift

The leading structure-dependent contribution to the
Lamb shift in hydrogen is proportional to the (cube of
the) Friar radius rF:

r3F ¼ 24

π

Z
∞

0

dQ2

Q5
½G2

EðQ2Þ − 1 − 2Q2G0
Eð0Þ�; ð22Þ

where G0
Eð0Þ ¼ dGE=dQ2jQ2¼0. We evaluate r3F exploiting

the fit of proton and neutron data as well as isospin-
decomposed fits and present our results in Table VIII.
The first error is from the extracted form factor
covariance matrix, and the second is the shift in central
value when the default fit with kmax ¼ 8 is replaced
by the fit with kmax ¼ 9. We note that removing the μH
constraint from our default proton fit shifts ðrpFÞ3 ¼
2.246ð58Þ fm3 → 2.97ð35Þ fm3.

2. Hyperfine splitting

The first measurements of the 1S hyperfine splitting in
muonic hydrogen with ppm precision are being planned
by the CREMA [112] and FAMU [113] Collaborations,

TABLE V. CCQE cross section at Eν ¼ 0.5 GeV. Errors are from axial form factor (A), vector form factors [(V)
for isospin-decomposed fits or (p) and (n) for separate proton and neutron fits], and z-expansion truncation (t).

Fit choice σνμn→μ−p ½10−39 cm2� σν̄μp→μþn ½10−39 cm2�
p, n 7.971ð689ÞAð7Þpð16Þnð0.2Þt 2.196ð146ÞAð2Þpð5Þnð0.3Þt
iso (1 GeV2) 7.975ð689ÞAð17ÞVð1Þt 2.197ð146ÞAð4ÞVð0.5Þt
iso (3 GeV2) 7.958ð689ÞAð15ÞVð7Þt 2.186ð146ÞAð4ÞVð0.2Þt
BBBA 7.87ð69ÞAð8ÞV 2.18ð15ÞAð8ÞV

TABLE VI. Same as for Table V, but for Eν ¼ 1 GeV.

Fit choice σνμn→μ−p ½10−39 cm2� σν̄μp→μþn ½10−39 cm2�
p, n 10.312ð987ÞAð11Þpð22Þnð5Þt 3.886ð220ÞAð5Þpð8Þnð3Þt
iso (1 GeV2) 10.319ð988ÞAð24ÞVð6Þt 3.887ð220ÞAð9ÞVð3Þt
iso (3 GeV2) 10.200ð981ÞAð20ÞVð3Þt 3.851ð225ÞAð7ÞVð1Þt
BBBA 10.10ð98ÞAð18ÞV 3.82ð23ÞAð8ÞV
Ref. [108] 10.1(9) 3.83(23)

TABLE VII. Same as for Table V, but for Eν ¼ 3 GeV.

Fit choice σνμn→μ−p ½10−39 cm2� σν̄μp→μþn ½10−39 cm2�
p, n 10.035ð935ÞAð31Þpð66Þnð69Þt 6.686ð461ÞAð19Þpð34Þnð38Þt
iso (1 GeV2) 10.061ð936ÞAð71ÞVð77Þt 6.699ð460ÞAð39ÞVð43Þt
iso (3 GeV2) 9.710ð918ÞAð19ÞVð3Þt 6.515ð471ÞAð13ÞVð2Þt
BBBA 9.61ð91ÞAð24ÞV 6.45ð47ÞAð15ÞV
Ref. [108] 9.6(9) 6.47(47)

TABLE VIII. Friar radii of proton and neutron. The first error is
from the extracted form factor covariance matrix, and the second
error is from z-expansion truncation.

Fit choice ðrpFÞ3½fm3� ðrnFÞ3½fm3�
p, n 2.246(58)(2) 0.0093(11)(1)
iso (1 GeV2) 2.278(49)(12) 0.0093(6)(1)
iso (3 GeV2) 2.176(38)(10) 0.0100(5)(0)
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and at J-PARC [114]. The leading nucleon-structure con-
tribution to the hyperfine splitting of S energy levels is
given by the two-photon exchange diagram. The bulk of the
correction is proportional to the Zemach radius rZ [117],
which can be expressed as a convolution of nucleon electric
and magnetic form factors,

rNZ ¼ −
4

π

Z
∞

0

dQ
Q2

�
GN

MðQ2ÞGN
E ðQ2Þ −GN

Mð0ÞGN
E ð0Þ

GN
Mð0Þ

�
:

ð23Þ
Similar to the Friar radii, we present Zemach radii

evaluated using the fits from Sec. II E in Table IX.
These results provide a first rigorous error estimate. We
note that removing the μH constraint from our default
proton fit shifts rpZ ¼ 1.0227ð94Þ fm → 1.0426ð132Þ fm.

IV. SUMMARY

We have presented a compact representation of the
proton and neutron vector form factors in terms of
z-expansion coefficients, including central values, errors,
and correlations. The results can be used to evaluate both
central values and error bars for many derived quantities
that are sensitive to GeVand sub-GeVmomentum transfers.
In our default fits we employed the following data: (i) the

high-statistics Mainz dataset for ep cross sections; (ii) en
elastic scattering data at momentum transfersQ2 ≤ 1 GeV2;
and (iii) precise external constraints on the proton and neutron
electric charge radii. We considered two types of fits to these
data. First, we performed separate proton and neutron fits, i.e.,
proton data fit to proton form factors and neutron data fit to
neutron form factors. Second, we performed a fit of both
proton and neutron data to isospin-decomposed form factors.
For proton structure observables, there is only a slight
reduction in uncertainty when the proton fit is replaced by
the isospin-decomposed fit; for simplicity we use the proton
fit as our final result: rpM¼0.739ð41Þð23Þ fm; hr4ipE¼
1.08ð28Þð5Þ fm4; hr4ipM ¼ −2.0ð1.7Þð8Þ fm4; ðrpFÞ3 ¼
2.246ð58Þð2Þ fm3; rpZ ¼ 1.0227ð94Þð51Þ fm. For neutron
structure observables, the abundance and precision of proton
data relative to neutron data lead to a significant reduction
in uncertainty when using the isospin-decomposed fit;
we thus use the isospin-decomposed fit as our final result:
rnM ¼ 0.776ð53Þð28Þ fm; hr4inE ¼ −0.33ð24Þð3Þ fm4;
hr4inM ¼ −2.3ð2.1Þð1.1Þ fm4; ðrnFÞ3 ¼ 0.0093ð6Þð1Þ fm3;
rnZ ¼ −0.0445ð14Þð3Þ fm. For the neutrino CCQE cross
sections, only the isovector combination of vector form

factors appears, and we thus use the cross section determined
from isospin-decomposed form factors as our default
result for the Born cross sections: σνμn→μ−pjEν¼0.5GeV¼
7.975ð689Þð17Þð1Þ, σνμn→μ−pjEν¼1 GeV ¼ 10.319ð988ÞA ×
ð24Þð6Þ, and σνμn→μ−pjEν¼3 GeV ¼ 10.061ð936ÞAð71Þð77Þ.
We present the uncertainty coming from vector form factors
and the truncation uncertainty as the last two errors, respec-
tively, in results of this paragraph.
Significant tensions exist between the default dataset and

other ep data. In Ref. [7], we quantified this tension as a
function ofQ2. Without knowing the source of discrepancy
it remains unclear how to rigorously address this tension in
the fit, and how to propagate it to derived observables. In
this paper, we bypass this issue by focusing on the
internally consistent default dataset, but present results
for comparison also from the global fit that includes World
and Pol data as in Table I. This combined iso (3 GeV2) fit is
similar to our global fit from Ref. [7]; the detailed
comparison is discussed in Appendix A. The iso
(3 GeV2) fit includes more data than our default fit, and
it is thus not surprising that this fit predicts smaller
uncertainties in derived observables. However, the fit does
not address internal dataset tensions and the iso (3 GeV2)
uncertainties are likely underestimates.
A primary goal of this work is to provide a consistent

framework for applications such as neutrino event gener-
ators to propagate form factor constraints and uncertainties
into cross section predictions. The framework is readily
adapted to new data. Our new precise vector form factors
have small uncertainty but deviate significantly from
commonly used parametrizations; such deviations become
sizable compared to the dominant axial form factor
uncertainty for larger neutrino energies. It is important to
address these discrepancies with future experimental and/or
lattice QCD data. We remark that the axial form factor was
extracted under a specific (BBBA2005) assumption for the
vector form factors. This ansatz can be justified given the
current large uncertainty of elementary target neutrino data.
However, correlations between vector and axial form
factors should be accounted for when future more precise
data become available.
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APPENDIX A: CONSISTENCY BETWEEN
DATASETS

In this Appendix, we discuss the tension between iso
(1 GeV2) and iso (3 GeV2) fits and compare to our
previous global fit [7] and to the BBBA2005 parametriza-
tion [99]. In particular, we illustrate the tension between
extractions of Gp

M at Q2 ∼ 1 GeV2 from the Mainz and
other World cross-section data. This tension manifests in
observables sensitive to moderate Q2 ≳ few × 0.1 GeV2,
such as CCQE cross sections with few GeV neutrino
energies; cf. Fig. 2. We also show that including the
PRad data does not significantly alter the fits when the
μH constraint is imposed.

1. Mainz and World+Pol datasets

Figure 4 compares the form factors from our default p, n,
and iso (1 GeV2) fits to our iso (3 GeV2) fit. We also
compare to our previous global fit from Ref. [7]. That
global fit corresponds with the iso (3 GeV2) fit after the
following modifications: (i) inclusion of the μH constraint
(9); (ii) improved treatment of TPE correction (12);
(iii) omission of data above Q2 ¼ 3 GeV2; (iv) choice of
form factor expansion parameters t0 and kmax optimized for
0 < Q2 < 1 GeV2. Note that the error band from Ref. [7]
includes an ad hoc “data tension” error to account for
the tension between Mainz and other World data. Since we
have in mind applications to neutrino cross sections, we
compare also to the commonly used BBBA2005 para-
metrization. The BBBA2005 parametrization resulted from
a fit to data preceding the A1 experiment and is in severe
tension with our default fit for Gp

M.

2. PRad and Mainz datasets

The PRad Collaboration recently presented new mea-
surements of elastic electron-proton scattering at JLAB
[83]. At two beam energies E ¼ 1.1 GeV and 2.2 GeV,
33 and 38 measurements were taken in the range of Q2

up to 0.016 GeV2 and 0.058 GeV2, respectively. PRad
announced a result rpE ¼ 0.831� 0.007stat � 0.012syst fm
fitting to a rational functional form for Gp

E,

Gp
EðQ2Þ ¼ 1þ p1Q2

1þ p2Q2
: ðA1Þ

Notably, this is within 1σ of ðrpEÞμH in Eq. (9) from muonic
hydrogen spectroscopy.
The PRad Collaboration employed particular assump-

tions in fitting the cross sections, which are detailed in the
Supplemental Material of Ref. [83]. To extract form factors,
the measured scattering cross sections were fit to the
following reduced cross section

σredPRad ¼ ðnGEÞ2 þ
τ

ε
ðGK

MÞ2; ðA2Þ

where τ ¼ Q2=ð4M2
pÞ, ϵ ¼ ½1þ 2ð1þ τÞtan2ðθ=2Þ�−1, n is

a normalization parameter for a given beam energy, andGK
M

is the Kelly parametrization for the proton magnetic form
factor [118]. The PRad Collaboration showed that the cross
sections vary by less than 0.2% when different models for
the magnetic form factor are used.16

In Fig. 5, we compare Gp
E from four fits:

1. (blue, dash-dotted curve in left plot) Fitting with the
above rational functional form to the provided form
factor tabulations with statistical-only errors, we
have reproduced the PRad results for the proton
charge radius and reduced χ2.

2. (red, dotted curve in left plot) Following a modified
version of the PRad procedure, we also fit directly to
the tabulated PRad cross sections with statistical and
systematic uncertainties added in quadrature. Fixing
the magnetic form factor to the dipole form
Gp

MðQ2Þ ¼ μpGDðQ2Þ, we employed the z expan-
sion (without sum rules) with kmax ¼ 3 for Gp

E. For
each beam energy, a separate normalization param-
eter multiplying the entire reduced cross section is
used. We did not apply additional TPE corrections.
The extracted radius value is rpE ¼ 0.836ð19Þ fm,
with χ2 ¼ 23.88 and ndof ¼ 68.

3. (black, long dash-dotted curve in both left and right
plots) Gp

E obtained from our default proton-only fit
to Mainz data with ðrpEÞμH constraint.

4. (purple, solid/dashed curve in right plot) Gp
E obtained

from the proton-only fit using the z expansion with
kmax ¼ 8 to combined Mainz and PRad data (stat-
istical and systematic uncertainties added in quad-
rature) without ðrpEÞμH constraint. TPE corrections are
applied to both datasets. The extracted radius value

16Note that after factoring out the normalization parameter
from the reduced cross section, the ansatz in Eq. (A2) does not
strictly reproduce the correct anomalous magnetic moment.
Since the parameter τ is small in the range of Q2 covered by
the PRad experiment, the fits are insensitive to the replacement
GK

M → GK
M=n.
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for this fit is rpE ¼ 0.843ð11Þ fm, with χ2 ¼ 503.24
and ndof ¼ 720.

In the right plot of Fig. 5, we show that the combined fit
without the μH constraint and our default fit with the μH
constraint lie within the 1σ uncertainty bands of each other
for the entire Q2 range of the PRad data. It would be
desirable to include the PRad data directly into our fits,
alongside the data in Table I; we refrain from doing so since

the PRad uncertainties are systematics dominated and
uncertainty correlations are not yet available [83]. We have
shown, however, that these data will not significantly alter
our fits once the precise external μH constraint is imposed.
Taking the PRad errors at face value (i.e., neglecting
correlations), we remark that the z-expansion fit to PRad
data results in a significantly larger uncertainty for rpE than
is obtained using Eq. (A1), comparable to the ∼0.020 fm

FIG. 4. Plots of 1σ bands ofGp
E and Gp

M (top),Gn
E and Gn

M (middle), andGV
E andGV

M (bottom) from different fits. The black long dash-
dotted curves are the results of the following: the p fit of line 1 in Table I (top); the n fits of lines 2 and 3 in Table I (middle); and the iso
(1 GeV2) fit of line 4 in Table I (bottom). The purple bands are the results of the iso (3 GeV2) fit of line 5 in Table I. The red dotted
curves correspond to the global fit of Ref. [7], and the blue dash-dotted curves are the BBBA2005 result of Ref. [99].
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uncertainty of our default proton fit, while the combined fit
returns a radius uncertainty that is a factor of 2 smaller than
either dataset in isolation.

APPENDIX B: TWO-PHOTON EXCHANGE

In this Appendix, we provide pertinent details of two-
photon exchange corrections that were discussed in
Section II C.
For momentum transfers Q2 ≲ 1 GeV2, dispersion rela-

tions have been used to constrain TPE corrections using
available experimental data for inelastic cross sections. At
relatively small momentum transfer and small scattering
angles, the contribution from all inelastic intermediate
states was evaluated [119] on top of the proton state
[120] accounting for unpolarized proton inelastic structure
functions in the resonance region. To calculate the TPE
correction at large scattering angles, the data-driven
dispersion relation framework was recently developed
[93–97]. The imaginary part of TPE amplitudes is evalu-
ated from on-shell information in the physical region of
electron-proton scattering. The real part of TPE amplitudes
requires information from the unphysical region as input.
Novel methods of analytical continuation [94,97] allow us
to overcome this complication. Contributions from proton
and πN intermediate states are evaluated for Q2 ≲ 1 GeV2.
At low momentum transfer and backward scattering angles,
the relative contribution of inelastic intermediate states is
found to be much smaller than the elastic contribution to
TPE. At larger electron beam energies and momentum
transfer, the intermediate states with higher invariant mass,
e.g., ππN, become kinematically enhanced and prevent
making a rigorous prediction in the absence of exclusive
experimental data. At small momentum transfer Q2 ≲
0.25 GeV2 and scattering angles, we account for all
inelastic intermediate states [119]. At large angles and

momentum transfer, proton and πN states are included
[94,95,97]. The intermediate region is described by inter-
polation between these two calculations as in Ref. [98].
We denote this dispersive result as δdispersive and provide the
corresponding correction for each point in the Mainz
dataset in the Supplemental Material [100].
At larger momentum transfers, Q2 ≳ 1 GeV2, the

explicit form of the phenomenological TPE modification
is as follows [90]:

δAMTðε; Q2Þ ¼ 0.01ðε − 1Þ ln
Q2

1 GeV2

ln 2.2
; ðB1Þ

which is negative (since 0 ≤ ε ≤ 1) and increases the
inferred Born cross section. As discussed in the main text,
this correction serves to improve agreement between
polarization measurements and TPE-corrected unpolarized
Rosenbluth measurements at high-Q2.

APPENDIX C: COMPARISON TO LITERATURE

In this Appendix, we provide some existent results for
form factor curvatures, Friar radii and Zemach radii.

1. Curvature

The curvature of the proton form factor has been
estimated by performing fits to data [121] and by perform-
ing calculations in heavy-baryon ChPT [122]. We tabulate
these previous results in Table X. Our extraction of electric
curvature lies below previous extractions from data. The
curvature of neutron form factors was evaluated in dis-
persively improved chiral effective field theory (DIχEFT).
Our results for the curvatures of both electric and magnetic
neutron form factors are in a fair agreement with Ref. [123].

FIG. 5. Comparison ofGp
E from fits with and without PRad data. In both plots, the black, long dash-dotted curve is our default (proton)

fit. On the left-hand side, blue points are the tabulated PRad form factors with statistical errors; the blue, dash-dotted curve is the PRad
extraction; and the red, dotted curve is our extraction from PRad data. On the right-hand side, we compare our default fit to the fit when
the μH constraint is replaced by PRad data (purple, dashed curve).
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2. Friar radius

We present some previous estimates of Friar radii in
Table XI. There is a significant difference between results

with and without the constraint on the proton charge
radius [88,125–138].

3. Zemach radius

Previous results for the nucleon Zemach radii are
rpZ ¼ 1.045ð4Þ fm in Ref. [129] for the proton and
rnZ ¼ −0.0449ð13Þ fm in Refs. [139,140] for the
neutron. These should be compared with our values:
rpZ ¼ 1.0227ð94Þð51Þ fm for the proton and rnZ ¼
−0.0445ð14Þð3Þ fm for the neutron. Further calculations
and fits to scattering data are found in Refs. [126,129,138,
139,141–144]. Extractions from atomic spectroscopy are
found in Refs. [5,145–148].
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