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Many studies for nonequilibrium systems, e.g., the pre-equilibration puzzle in heavy-ion collisions,
require solving the relativistic Boltzmann equation (BE) with the full collisional kernel to high precision. It
is challenging to solve relativistic BE due to its high dimensional phase-space integrals and limited
computing resources. We have developed a numerical framework for a full solution of the relativistic
Boltzmann equations for the quark-gluon matter using the multiple graphics processing units (GPUs) on
distributed clusters. Including all the 2 → 2 scattering processes of 3-flavor quarks and gluons, we compute
the time evolution of distribution functions in both coordinate and momentum spaces for the cases of pure
gluons, quarks, and the mixture of quarks and gluons. By introducing a symmetrical sampling method on
GPUs which ensures the particle number conservation, our framework is able to perform the space-time
evolution of quark-gluon system toward thermal equilibrium with high performance. We also observe that
the gluons naturally accumulate in the soft region at the early time, which may indicate the gluon
condensation.
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I. INTRODUCTION

Relativistic Boltzmann equation (BE), an effective
theory of many-body systems, is a profound and widely
used tool to study the properties of the systems out of
equilibrium or in thermal equilibrium. Recently, BE is often
applied to study the problem of early thermalization, which
remains to be one of the “greatest unsolved problems” [1]
in relativistic heavy-ion collisions, which collide two
accelerated nuclei to create a hot and dense deconfined
nuclear matter, named quark-gluon plasma (QGP). The
space-time evolution of QGP has been well described by
relativistic hydrodynamics simulations. The success of
hydrodynamical models on soft hadron production and
collective flows provides strong evidence for the rapid
thermalization of the quark-gluon system to create a
strongly-interacting QGP [2–6]. The timescale expected
for thermalization is estimated to be less than 1 fm=c [4] or
even shorter than 0.25 fm=c [7,8] in nucleus-nucleus
collisions at Relativistic Heavy-Ion Collider (RHIC) and
the Large Hadron Collider (LHC). However, it remains to

be a puzzle how an overoccupied gluonic system with weak
coupling can reach thermal equilibrium within such a short
timescale [5].

A. Background

The study of the systems under the framework of BE
with suitable initial conditions, also referred to as the
kinetic approach, is a well-established method for probing
the real-time quark and gluon dynamics in the dilute regime
at weakly coupling limit [9–11]. However, a full solution of
the relativistic BE involving all parton species, e.g., u, d, s
quarks, their antiparticles, and gluons, is still challenging
both analytically and numerically due to the complexity of
the collision integral, higher dimensions and computing
resources.
The typical initial condition for relativistic heavy-ion

collisions [12] is an overpopulated gluonic state named
color glass condensate (CGC) [13–20], which is formed in
the dynamical balance between the splitting and fusion of
gluons in the small-x region. The occupation number of
small-x gluons is of order 1=αs [21]. The gluon number
grows until the gluon size is larger than 1=Qs [22], with Qs
being the saturation scale. After the CGC state, the glasma,
a state of color electromagnetic fields, may be formed
[22–27]. Currently, how the glasma transits to a therma-
lized QGP in a short timescale is not well understood yet,
which is often referred to as the early thermalization puzzle.
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There have been various studies focusing on the evolu-
tion of the glasma stage. For example, the “bottom-up
scenario” [28] estimates a thermalization time of order
τth ∼ α−13=5s =Qs, which is unfortunately too large compared
to the timescale required by the hydrodynamics. To
reconcile this discrepancy, many other possible mecha-
nisms have been considered. One interesting mechanism is
the so-called plasma instability [29–35]. It originates from
the anisotropic momentum distribution in the plasma and
may drastically speed up the process of glasma equilibra-
tion [36–38]. However, some studies also imply that the
plasma instability may not play a significant role at the
early stage [39,40], and a scaling solution may also be
required [41]. Another mechanism is the Bose-Einstein
condensation of gluons. It has been suggested that the
gluon condensation at the early stage [42,43] may accel-
erate the thermalization process [44–48]. The influence of
fermions and masses in forming condensation has also been
discussed in Refs. [49–53]. However, it is argued that the
inelastic scattering processes may strongly hinder the effect
of gluon condensation [54,55]. In fact, the role of inelastic
scatterings in the thermalization is still not quite clear so far.
It has been suggested a long time ago that the inelastic
processes might be essential for thermalization [56]. Some
works by solving BE with the test particle method includ-
ing 2 → 3 processes has obtained the results close to the
“bottom-up” scenario [57]. Another simulation from the
Boltzmann approach of multiparton scattering (BAMPS), a
package for solving BE using the test particle method,
suggests that the bremsstrahlung from 2 → 3 processes
increases the efficiency of thermalization [58]. Later studies
from BAMPS imply that the inverse processes, i.e., the
3 → 2 processes, inhibit the 2 → 3 processes. With both
processes included, the timescale of thermal equilibration
from the BAMPS is of order α−2s lnðαsÞ−2Q−1

s [59]. It has
also been argued that the inclusion of all next-to-leading
order processes may make the equilibration considerably
faster than the simple 2 → 3 processes [60].

B. Motivation

Some of the above studies require solving relativistic BE
numerically. Historically, a full numerical solution of the
nonrelativistic BE has always been a challenge due to
its high dimensions and the intrinsic physical properties
[61–63]. Even in today’s petascale clusters, BE still
presents a substantial computational challenge [63]. In
the real application of nonrelativistic BE, one usually needs
very dense spatial grids to describe complicated effects
related to pressure, temperature, and turbulence, etc.
The main difference between the relativistic and non-

relativistic BE lies in the collision term and the coupled
equations. In the relativistic BE, the collision integrals are
usually much more complicated than those in the non-
relativistic case. For example, in our relativistic BE, there

are seven particle species with complicated scattering
matrix, while in the nonrelativistic case, one usually deals
with single species of particles in a gas or liquid. Despite
the heavy workload of the collision term, our relativistic BE
also contains coupled equations of seven species, which
need to be solved simultaneously. Furthermore, the dis-
tributions for fermions should not exceed unity due to the
Pauli exclusion principle. This limitation requires that the
time step of the evolution be sufficiently small, which in
turn drastically slows down the speed of the code.
Though complicated, several numerical tools based on

the parton cascade model [64,65] have been developed in
the market, e.g., BAMPS [66] and ZPC [67,68]. Another
way is the lattice Boltzmann approach [69–71], which has
been utilized as a fast lattice Boltzmann solver for relativ-
istic hydrodynamics with relaxation time approximation
[62,72,73]. In addition, the straightforward implementa-
tions of effective kinetic theory (e.g., see Ref. [9] for the
theoretical framework) for pure gluons [74,75] and quark-
gluon systems [51,52,76] also provide us physical insights
for prethermalization. While these models and approaches
have succeeded in describing the nonequilibrium evolution
of quark-gluon matter with a set of parameters given by the
physical consideration for simplicity, a full solution of the
BE is still demanded for a comprehensive understanding of
the thermalization puzzle.

C. Our numerical framework

In this study, we develop a numerical framework for the
full numerical solutions of the relativistic BE with the help
of the state-of-the-art GPUs. GPU, known for its high clock
rate, high instruction per cycle [77], and multiple cores,
makes more and more contributions to computational
physics nowadays [78]. Some calculations, which are
extremely difficult in the old-times, are now within the
scope [79–87]. Some physical phenomena could be under-
stood by the simulations via GPUs [88]. With the new
GPU techniques, various attempts have been done to tackle
the BE from different aspects for nonrelativistic cases
[63,89–93]. The GPU techniques also motivate us to
develop the framework for solving the relativistic BE in
the context of relativistic heavy-ion collisions, despite a
series of methodological challenges that have no counter-
parts in the nonrelativistic realm. As a first step, we only
consider the 2 → 2 scattering processes in the current work.
The difficulties in solving the relativistic BE originate

from two aspects. First, the collision terms are high
dimensional integrals. In this work, we use the package
ZMCintegral 5.0 [94,95] to perform these high dimensional
collisional integrals. ZMCintegral is an open-source Python

package developed by some of the authors in this work.
The second difficulty is the issue of particle number
nonconservation due to the discrete Monte Carlo (MC)
integration, see also Refs. [96,97]. To achieve a strict
particle number conservation in the CPU framework will
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usually cost lots of computing time. In our work, we
propose a “symmetrical sampling” method for the colli-
sional integrals via GPUs. With the help of new features of
GPUs, named CUDA atomic operations [98,99], we can
achieve the strict particle number conservation with accept-
able computing time.
Our numerical framework provides a full solution of the

BE with complete 2 → 2 scattering processes. The program
is developed with the combination of Python library Numba
[100] and Ray [101], which enable the manipulation of
GPU devices on distributed clusters. We will test the code
in many aspects, for instance, the stability of collisional
integrals, the particle number conservation, and the total
energy conservation. We will also show the time evolution
of the distribution functions in both coordinate and
momentum spaces.
The structure of this paper is as follows. In Sec. II, we

briefly review the ordinary BE for thermal quarks and
gluons. Next we introduce our numerical framework in
Sec. III. We first discuss how to get stable numerical results
in collision integral in Sec. III A and then introduce the
method to keep the particle numbers conserved in Sec III B.
We will present our numerical results in Sec. IV. In Sec. IV
A and IV B, we test the stability of the collisional integrals
and the particle number conservation. We discuss the total
energy conservation in Sec. IV C. With some physical
initial conditions, we show the time evolution of the system
in both coordinate and momentum spaces in Secs. IV D and
IV E, respectively. The summary of our paper will be
presented in Sec. V.
Throughout this work, we choose the metric gμν ¼

diagfþ;−;−;−g and the space and momentum four
vectors as xμ ¼ ðt;xÞ and pμ ¼ ðEp;pÞ. For a momentum
kμa, we choose μ ¼ ðt; x; y; zÞ for the space-time index and
a ¼ 1, 2, 3 for u, d, s flavors.

II. BOLTZMANN EQUATION FOR QUARK
GLUON MATTER

In this section, we will briefly review the ordinary BE for
the thermal quarks and gluons in the leading-log order.
More details can be found in our previous systematic
studies in Refs. [10,102].
The relativistic BE, which is an effective theory for

relativistic many-body systems, describes the evolution of
system in the phase space. The general expression for the
BE reads,

d
dt

fpðt;x;pÞ≡ ∂
∂t fp þ

∂x
∂t ·∇xfp þ

∂p
∂t · ∇pfp ¼ C½fp�;

ð1Þ

where fpðt;x;pÞ is the distribution function and C½f� is
called the collision term. The ∂x=∂t and ∂p=∂t are the
effective velocity and effective force for the particles,

respectively. One can derive the ∂x=∂t and ∂p=∂t from
the equation of motion of the action for a single particle. In
our study, the action in the classical level, i.e., up to the
order of ℏ0, is S ¼ R

dtðp · dxdt − EpÞ, with Ep being the
particle’s energy. For simplicity, we neglect the particle’s
physical mass, but the nonvanishing thermal mass mðxÞ
depends on the space-time in general. Accordingly, the
particle’s energy EpðxÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2ðxÞ

p
depends on the

space-time.
For thermal quark-gluon matter, the BE has the follow-

ing general structure [9,10,103]:

∂fapðt;x;pÞ
∂t þ p

Ea
p
·∇xfapðt;x;pÞ

−∇xEa
p · ∇pfapðt;x;pÞ ¼ Ca; ð2Þ

where fapðt;x;pÞ denotes the color and spin averaged
distribution function for particle a, and a ¼ q; q̄; g stands
for quarks, antiquarks, and gluons. Ea

pðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

aðxÞ
p

and Ca are the energy and collision term for particle a,
respectively. −∇xEa

p is an effective force, which comes
from the equation of motion of ∂p=∂t [9,10,103].
In the present work, we only consider the 2 → 2

scatterings. The collision term for a quark of flavor a
can be obtained,

NqCqa ¼
1

2
Cqaqa↔qaqa þ Cqaq̄a↔qaq̄a þ

1

2
Cgg↔qaq̄a

þ Cqag↔qag þ
X
b;b≠a

ðCqaqb↔qaqb

þ Cqaq̄b↔qaq̄b þ Cqbq̄b↔qaq̄aÞ; ð3Þ

where Nq ¼ 2 × 3 ¼ 6 is the quark helicity and color
degeneracy factor and the factor 1=2 is included when
the initial state is composed of two identical particles. For a
gluon, the collision term reads

NgCg ¼
1

2
Cgg↔gg þ

X
a

ðCgqa↔gqa þ Cgq̄a↔gq̄a þ Cqaq̄a↔ggÞ;

ð4Þ

where Ng ¼ 2 × 8 ¼ 16 is the gluon helicity and color
degeneracy factor.
The collision term for 2 → 2 scatterings, aðk1Þ þ

bðk2Þ → cðk3Þ þ dðpÞ, has the following general
expression,

Cab→cd ≡
Z Y3

i¼1

d3ki
ð2πÞ32Eki

×
jMab↔cdj2

2Ep

× ð2πÞ4δð4Þðk1 þ k2 − k3 − pÞ
× ½fak1fbk2Fc

k3
Fd
p − Fa

k1
Fb
k2
fck3f

d
p�; ð5Þ
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where Fg
p ¼ 1þ fgp, F

qðq̄Þ
p ¼ 1 − fqðq̄Þp and Mab→cd is the

matrix element in which all colors and helicities of the
initial and final states are summed over. We summarize
all 2 → 2 scattering matrix elements in Table I. In our
numerical calculation, the tree-level matrix elements for
all 2 ↔ 2 scattering processes are set as the default
configuration. We also provide an application program-
ming interface (API) for users to define their own matrix
elements for some specific purposes.
When the system reaches the global thermal equilibrium,

the distribution functions should satisfy the ordinary Bose-
Einstein or Fermi-Dirac distributions,

fgp ¼ 1

eðEp−μgÞ=T − 1
; ð6Þ

fqðq̄Þp ¼ 1

eðEp∓μqÞ=T þ 1
; ð7Þ

where T is the temperature and μa is the chemical potential
for particle a.
The thermal masses of gluon and quark (anti-quark) are

usually written as [10,103],

m2
g ¼

2g2

dA

Z
d3p

ð2πÞ32Ep

�
NgCAf

g
p þ

XNf

i¼1

NqiCFðfqip þ fq̄ip Þ
�
;

ð8Þ

m2
qi ¼ m2

q̄iðxÞ ¼ 2CFg2
Z

d3p
ð2πÞ32Ep

ð2fgp þ fqp þ fq̄pÞ;

ð9Þ

where Nf is taken to be 3 a we only consider qi ¼ u, d, s
quarks and their antiparticles. Note that, when adding the
contribution of 1 → 2 scattering, the thermal mass can be
introduced in a systematic way, and the invariant
momentum differential piece d3p=½ð2πÞ3Ep� could be
replaced by d3p=½ð2πÞ3jpj� in all momentum integrals,
see, e.g., in [9,51,52]. In the first time step of evolution,
since we have no prior information of particle masses, we
will use Ep ¼ jpj to perform the calculation in Eqs. (8)
and (9). In later time steps, we will use the normal
Ea
pðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

aðxÞ
p

. This iteration approach is rea-
sonable since the difference jEp − pj from nonzero
masses is of higher order [10].
In our calculations, we need to check the total particle

number conservation. The particle number is defined as:

NðgÞ ¼
Z

d3x
d3p
ð2πÞ3 fgNg

NðqiÞ ¼
Z

d3x
d3p
ð2πÞ3 f

qiNqi : ð10Þ

Note that, in general, the total number for each type of
particles (e.g., gluons, quarks, and antiquarks) is not
conserved due to the strong interaction. However, since
we only consider 2 → 2 scatterings in this work, the total

particle number Ng þ
PNf

i¼1ðNqi þ Nq̄iÞ is conserved. We
will check and confirm the total particle number conserva-
tion at each time step of our numerical simulations.
Since the thermal masses of particles depend on the space

and time, the ordinary kinetic energy-momentum tensor,

Tμν
kinðxÞ ¼

X
a

Z
d3p

ð2πÞ3Ea
p
NapμpνfapðxÞ; ð11Þ

is not conserved [103]. Instead, we have:

TABLE I. Matrix elements squared for all 2 → 2 parton
scattering processes in QCD. The helicities and colors of all
initial and final state particles are summed over. q1 (q̄1) and q2
(q̄2) represent quarks (antiquarks) of different flavors, and g
represents the gluon. dF and dA denote the dimensions of the
fundamental and adjoint representations of SUcðNÞ gauge group
while CF and CA are the corresponding quadratic Casimirs. The
s,u,t are Mandelstam variables. In a SUcð3Þ theory with
fundamental representation fermions, dF ¼ CA ¼ 3, CF ¼ 4=3,
and dA ¼ 8. The infrared divergence is suppressed by introducing
a regulator in the denominator [9,10,104].

ab → cd jMaðk1Þbðk2Þ→cðk3ÞdðpÞj2

q1q2 → q1q2
q̄1q2 → q̄1q2
q1q̄2 → q1q̄2
q̄1q̄2 → q̄1q̄2

8g4 d2FC
2
F

dA
½ s2þu2

ðt−m2
gÞ2�

q1q1 → q1q1
q̄1q̄1 → q̄1q̄1

8g4 d2FC
2
F

dA

h
s2þu2

ðt−m2
gÞ2 þ

s2þt2

ðu−m2
gÞ2
i

þ16g4dFCFðCF − CA
2
Þ s2

ðt−m2
gÞðu−m2

gÞ

q1q̄1 → q1q̄1 8g4 d2FC
2
F

dA

h
s2þu2

ðt−m2
gÞ2 þ

u2þt2

s2

i
þ16g4dFCFðCF − CA

2
Þ u2

ðt−m2
gÞs

q1q̄1 → q2q̄2 8g4 d2FC
2
F

dA
t2þu2

s2

q1q̄1 → gg 8g4dFC2
F

h
u

ðt−m2
gÞ þ

t
ðu−m2

gÞ
i

−8g4dFCFCAðt2þu2

s2 Þ
q1g → q1g
q̄1g → q̄1g

−8g4dFC2
F½us þ s

ðu−m2
gÞ
i

þ8g4dFCFCA½ s2þu2

ðt−m2
gÞ2�

gg → gg 16g4dAC2
A½3 − su

ðt−m2
gÞ2 −

st
ðu−m2

gÞ2 −
tu
s2�

ZHANG, WU, PU, QIN, and WANG PHYS. REV. D 102, 074011 (2020)

074011-4



∂μT
μν
kinðxÞ ¼ SνexðxÞ ¼

1

2

X
a

∂νm2
a

Z
d3p

ð2πÞ3Ea
p
Nafap; ð12Þ

where SνexðxÞ is a source term due to the mass variations.
As we have shown, the total energy is not conserved if

the thermal mass is space dependent. It is because the
gradient of thermal mass is an effective force in Eq. (2). It is
also shown in the pioneer work from the thermal field
theory done by Ref. [103]. Usually, for simplicity, one can
also set the thermal mass be homogeneous in space. Then,
the total energy becomes conserved. Here, in our work, we
will consider the dynamical thermal mass.

III. NUMERICAL FRAMEWORK FOR SOLVING
BOLTZMANN EQUATION

In order to keep the total particle number conserved, we
first rewrite the BE in Eq. (2) as follows,

∂fapðxÞ
∂t þ∇x ·

�
p
Ea
p
fapðxÞ

�
−∇p · ½ð∇xEa

pÞfapðxÞ� ¼ Ca½f�;

ð13Þ

where we have used the following identity,

−
�
∇x ·

p
Ea
p

�
þ ½∇p · ð∇xEa

pÞ� ¼ 0: ð14Þ

The form of Eq. (13) ensures the conservation of total
particle numbers when periodical boundary conditions are
applied in phase space. Then using central difference, we
can express the left-hand side of Eq. (13) into discrete form
as follows,

fapðxþ ΔtÞ − fapðxÞ
△t

þ
X

i¼1;2;3

�
1

2△xi

�
pifapðxi þ△xiÞ
Ea
pðxi þ△xiÞ

−
pifapðxi −△xiÞ
Ea
pðxi −△xiÞ

�

−
1

2△pi

�fapiþ△pi
ðxÞ

2△xi
ðEa

piþ△pi
ðxi þ△xiÞ − Ea

piþ△pi
ðxi −△xiÞÞ

−
fapi−△pi

ðxÞ
2△xi

ðEa
pi−△pi

ðxi þ△xiÞ − Ea
pi−△pi

ðxi −△xiÞÞ
��

: ð15Þ

A. The δ-function and the collision term

Now we look at the collision term in the right-hand side
of Eq. (2) or Eq. (13). Usually, one can integrate over the
momentum d3ki with the δ-function,

δð4Þðk1 þ k2 − k3 − pÞ
¼ δð3Þðk1 þ k2 − k3 − pÞδðE1 þ E2 − E3 − EpÞ; ð16Þ
which can reduce the number of integral variables. Here, we
have two choices: either expressing k2 by k3 þ p − k1 or
expressingk3 byk1 þ k2 − p. These twochoices can lead to
different numerical behaviors. In this work, we choose the
first choicewhichwillmake our numerical integrationsmore
stable than the second one (as we will show later).
With the help of the δ-function, we can integrate over

d3k2 and obtain,Z Y3
i¼1

d3ki

ð2πÞ32Eki

δð4Þðk1 þ k2 − k3 − pÞ

¼
Z

d3k1

ð2πÞ32E1

d3k3

ð2πÞ32E3

1

ð2πÞ32E2

δðE1 þ E2 − E3 − EpÞ

¼ 1

ð2πÞ9
Z

d3k3dkx1dk
y
1

2E12E22E3

X
i¼�

1

jJðki1zÞj
; ð17Þ

where we have used

δðE1 þ E2 − E3 − EpÞ ¼
X
i¼�

1

jJðki1zÞj
δðk1z − ki1zÞ; ð18Þ

with

Jðk�1zÞ ¼
k�1z
E1

−
−k�1z þ k3z þpz

E2

;

k�1z ¼ Root½E1 þE2 −E3 −Ep ¼ 0�: ð19Þ
There are two roots for k1z from the equation E1 þ E2−
E3 − Ep ¼ 0, and k1z has the form of k�1z ≡ A� ffiffiffi

H
p
B , where

A, B, H are functions of kx1; k
y
1 and k3.

Substituting Eq. (17) into Eq. (5), we obtain the collision
term, which consists of a 5-dimensional integration and
may be calculated numerically by using the direct MC
method on GPU. With the help of the packages Ray and
Numba, we can solve the Boltzmann equation (2) for all
2 ↔ 2 scattering processes on the distributed GPU clusters.
Before we present our numerical results, we would like

to discuss a little more about the difference between
integrating over k2 or k3 when we use the δ-function.
The difference comes from solving k1z from the equation
E1 þ E2 ¼ E3 þ Ep. In our first choice in Eq. (17), k1z is a
function ofE3 þ Ep. SinceE3 þ Ep is always positive for all
k3 and p, the integration of the collision term in Eq. (2) is
stable. If we integral out k3 in the δ-function, then k1z will
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become a function of E2 − Ep, which could flip its sign
when we change k2 and p. Therefore, the integral in Eq. (2)
using the second setup is not as stable as using the first setup.
We will discuss more on the stability of collision term in
Sec. IVA.

B. Particle number conservation
and symmetrical sampling

Since we use the direct MC method to compute the
collision integral, the total particle numbers are not strictly
conserved in each time step due to the randomness of MC
sampling. Such nonconservation of particle numbers can
accumulate with time and may affect the result at later time
steps. To ensure a strict particle number conservation, we
introduce a method named “symmetrical sampling”
on GPUs. Here we use the process of gluon scattering
gðk1Þ þ gðk2Þ → gðk3Þ þ gðpÞ as an example to illustrate
the basic idea of our “symmetrical sampling” method.
To calculate the collision term Cgg→ggðx;pÞ in Eq. (5), we
need to sample a series values of the integration vari-
ables ðk1x; k1y; k3x; k3y; k3zÞ. The collision term can be
written as,

Cgðk1Þþgðk2Þ→gðk3ÞþgðpÞðx;pÞ

¼
Z

c̃gpðk1x; k1y; k3x; k3y; k3zÞdk1xdk1ydk3xdk3ydk3z

≃
Vdomain

N

XN
si¼1

c̃gpðsample siÞ; ð20Þ

where Vdomain is the volume of the integration domain, and
the kernel c̃p denotes,

c̃pðk1x; k1y; k3x; k3y; k3zÞ
¼ ½fak1fbk2Fc

k3
Fd
p − Fa

k1
Fb
k2
fck3f

d
p� × sym

×
X
i¼1;2

1

jJaðki1zÞj
1

ð2πÞ52E12E22E32Ep
jMab↔cdj2; ð21Þ

where the symmetry factor sym ¼ 1=2 when the initial
state is composed of two identical particles, and other-
wise equals 1. Given each of ðk1x; k1y; k3x; k3y; k3zÞ and
ðpx; py; pzÞ, we can obtain the corresponding ðk1z; k2x;
k2y; k2zÞ and c̃pðk1x; k1y; k3x; k3y; k3zÞ.
Let us consider one specific sample c̃gpðsample siÞ in

Eq. (20) (also see Fig. 1). In the usual MC sampling,
one will only add the contribution of c̃gpðsample siÞ to
Ck1þk2→k3þpðx;pÞ. This sample will not influence the
values of Ck3þp→k1þk2

ðx;k1Þ, Ck3þp→k1þk2
ðx;k2Þ and

Ck1þk2→k3þpðx;k3Þ, for which one will compute their
corresponding c̃gk1

, c̃gk2
and c̃gk3

separately. Due to such
independence of Cgg→ggðx;pÞ at each grid, one cannot
achieve a strict particle number conservation in the MC
approach.
To fix the issue of the particle number nonconservation,

we reuse the value of c̃gpðsample siÞ. Actually, for a given
set of p, k1, k2, k3 satisfying k1 þ k2 ¼ k3 þ p, the
kernels c̃gp, c̃

g
k1
, c̃gk2

and c̃gk3
in different collisional integrals

are related to each other due to the symmetry in the
scattering amplitude jMab↔cdj2

FIG. 1. Illustration of the “symmetrical sampling” method. The sample c̃gpðsample siÞ will be used by four integrations. This
symmetrical reuse of samples leads to a conserved particle number. We call this trick of using sample c̃gpðsample siÞ for all four
momentum grids as “symmetrical sampling.” The sample points have been quadrupled.
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c̃gp ¼ c̃gk3
¼ −c̃gk2

¼ −c̃gk1 ;

for givenp;k1;k2;k3 and k1 þ k2 ¼ k3 þ p: ð22Þ

The above relation can be easily seen from Eq. (21). If
we switch particle 1 and p in Eq. (21), we only change
the sign of the term ½fak1fbk2Fc

k3
Fd
p − Fa

k1
Fb
k2
fck3f

d
p�.

Therefore, in our program, we will also use the value of
c̃gpðsample siÞ for Ck3þp→k1þk2

ðx;k1Þ, Ck3þp→k1þk2
ðx;k2Þ

and Ck1þk2→k3þpðx;k3Þ as well. We call this trick, to use
the sample c̃gpðsample siÞ for all four momentum grids, the
“symmetrical sampling” method. This means that the
sample points have been quadrupled.
With our “symmetrical sampling” trick, we can avoid the

errors from the related samples in the collisional integrals at
different momentum grids. Accordingly, we can obtain a
strict particle number conservation. In principle, one can
apply this method in the direct MC sampling based on CPU
approaches. However, it usually takes lots of computing
time and is hard to implement. Fortunately, with the help
of the feature in GPUs, named CUDA atomic operation
[98,99], the extra time for implementing symmetrical
sampling is almost negligible. As explained by the official
documents [105], “Atomic operations are operations which
are performed without interference from any other threads.
Atomic operations are often used to prevent race condi-
tions, which are common problems in multithreaded
applications.” In our case, each value of the array c̃gp,
whose element represents a specific c̃gp value at momenta p,
is saved in the global GPU memory. During the process of
parallel evaluations, at the same momenta p, we obtain
“simultaneously”many values for c̃gp from different threads
[we will also obtain the value of c̃gp from c̃gk3

;−c̃gk2
;−c̃gk1

as
discussed in Eq. (22)]. Since the accumulation of these
values can only be performed sequentially, when one value
of c̃gp in a GPU thread is calculated and being accumulated
to this global memory array c̃gp, all the other threads do not
have the access of c̃gp at p. These processes in GPUs refer to
CUDA “atomic operation.” Compared with parallel CPU
manipulation, CUDA is extremely fast at performing this
atomic operation, which enables a fast “symmetrical
sampling.” Similar strategy has also been used in CPUs
implementation to ensure particle number conservation,
e.g., see Refs. [51,52,74–76].
We note that while the condition k1 þ k2 ¼ k3 þ p

ensures that the integration always preserves energy and
momentum conservation in all microscopic processes, the
total energy as computed via Eq. (11) might not be strictly
conserved due to the discrete grids. To explain the possible
nonconservation of the total energy, we can take a close
look at Eq. (13). By integrating both sides of Eq. (13) over
d3xd3p=ð2πÞ3 and using the definition of total particle
number in Eq. (10), we obtain the time variation of particle
number

d
dt

N ¼ Na

Z
d3x

d3p
ð2πÞ3 C½f�; ð23Þ

where a ¼ g; qðq̄Þ. Our symmetrical sampling method in
the collisional integral C½f� guarantees the time reversal
symmetry in all microscopic processes, e.g., in Eq. (22).
Such time reversal symmetry in collisional integral C½f�
makes the integral

R d3p
ð2πÞ3 C½f� exactly zero numerically

[106,107], which ensures the strict particle number
conservation.
Similarly, by integrating Eq. (13) over d3xd3p=ð2πÞ3

with the multiplication of p0 on both sides and using the
definition of energy-momentum tensor in Eq. (11), we get
the time variation of total energy,

d
dt

T00 ¼ Na

Z
d3x

d3p
ð2πÞ3 p

0C½f� þ
Z

d3xS0ex; ð24Þ

where Sμex is the source term in Eq. (12). For simplicity,
let us assume the mass is constant, then the source term
vanishes. Although the time reversal symmetry still holds,
the errors could come from the discrete grids for p0.

Therefore, eventually, the integral
R d3p

ð2πÞ3 p
0C½f� is not

strictly zero numerically. On the other hand, from the
above analysis, we could expect that the errors for the
nonconservation of total energy will decrease if we increase
the number of grids. We will address this point in more
detail in Sec. IV C.

IV. TEST OF PROGRAM AND TIME EVOLUTION
IN COORDINATE AND MOMENTUM SPACE

In this section, we will first test several aspects of our
program, and then show the time evolution of the distri-
bution in both coordinate and momentum spaces. The
stability of the collision integrals will be tested in Sec. IVA.
The check of particle number conservation will be pre-
sented in Sec. IV B, and our results show that the particle
number is strictly conserved. The total energy conservation
is checked in Sec. IV C. It is found that even though the
total energy is not strictly conserved, the numerical errors
will decrease very fast with increasing the number of the
grid. Finally, we will present the time evolution of the
systems in both coordinate and momentum spaces for pure
gluons, pure quarks, and the mixture of quarks and gluons
in Secs. IV D and IV E. As is expected, the system tends to
be homogenous in coordinate space and become thermal-
ized in momentum space. We also find indications of gluon
condensation in the soft region.

A. Test of the stability of the collision integrals

As mentioned in Sec. III, there are two ways to integrate
over the δ-function in the collision term. Different
approaches of handling the δ-function can affect the
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numerical stability of the collision term. Here we use gluon-
gluon scatterings to illustrate such difference.
In Fig. 2, we show the results from two approaches using

the same initial distribution for gluons. Each data point
represents the numbers of the gluons associated with the
distribution function fgðt0 þ dt;x;pÞ where t0 ¼ 0 fm and
dt ¼ 0.01 fm. The blue triangle points, labeled as “more
stable,” stand for particle numbers obtained by using k2 ¼
k3 þ p − k1. The green circle points, labeled as “less
stable,” denote the results by using k3 ¼ k1 þ k2 − p.
We can see that the green circle points spread over a
relatively larger area than the blue triangle ones, which
means that the errors in the “less stable” method are
relatively larger than the “more stable” ones. Therefore,
using k2 ¼ k3 þ p − k1 to integrate over dk2 is a more
stable method, consistent with our previous argument in
Sec. III.

B. Test of particle number conservation

In Fig. 3, we show the particle numbers for different
parton species. For simplicity, we label the results obtained
by our symmetrical sampling method in Sec. III B as with
symmetrical sampling, while the results from direct MC
simulations are labelled as without symmetrical sampling.
In the figures, the blue triangle and green circle points
stand for the cases with and without symmetrical sampling,
respectively. In the upper panel, we show the gluon num-
bers for cases of pure gluon scattering and quark-gluon

FIG. 2. Test for the stability of two approaches dealing with the
delta function. Each data point represents the gluon numbers for
the distribution function fgðt0 þ dt;x;pÞ, where t0 ¼ 0 fm and
dt ¼ 0.01 fm. The horizontal axis denotes the ith independent
evaluation of the evolution from t0 to t0 þ dt. The initial distri-
bution function fgðt0;x;pÞ, drawn from random values between
[0,1], is kept the same for all data points in the figure. The phase
space box is of size ½−3 fm; 3 fm�3 × ½−2 GeV; 2 GeV�3. We
take 40 grids for each momentum freedom, the spatial grid is set
to 1, and αs ¼ 0.3. For each integration point Cgðx;pÞ, we have
sampled 100 points to perform a direct MC integration. The
matrix element for gluon-gluon scattering is in Table I. The blue
triangle and green circle points stand for the results of integrating
over k2 and k3 in Eq. (16), respectively.

(a)

(b)

(c)

(d)

FIG. 3. Number of particles for the cases with and without
“symmetrical sampling.” Each data point represents the particle
numbers for the distribution function faðt0 þ dt; x;pÞ using
the same initial configuration as in Fig. 2. The horizontal axis
denotes the ith independent evaluation of the evolution from t0 to
t0 þ dt. The blue triangle and green circle points denote the
results with and without symmetrical sampling, respectively.
The panel (a) is for the pure gluon case and the panels (b), (c),
and (d) are for the cases including the scatterings of quarks and
gluons.
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scattering in Fig. 3(a) and Fig. 3(b), respectively. We can
see that for pure gluon case, the gluon number is conserved
when using our symmetrical sampling method. In Fig. 3(b),
since the gluons can be converted to quarks and antiquarks,
there are some variations of the gluon numbers. Figure 3(d)
shows that there are also variations for the numbers of
quarks and antiquarks. However, as shown in Fig. 3(c), the
total number of particles, including quarks, antiquarks and
gluons is conserved for 2 → 2 scatterings when using our
symmetrical sampling method.
In Fig. 4, we show the numbers of gluons and quarks

(antiquarks) as a function of the evolution time. Since we
initialize the system with all gluons, we find that gluons
tend to convert into quarks and antiquarks during the
evolution, see in Fig. 4(a). After some time, both gluon
and quark numbers tend to achieve equilibrium. While the
individual parton numbers are changing with time, the total
particle number is strictly conserved during the evolution
when our symmetrical sampling method is employed.
Without the symmetrical sampling, the conservation of

the total particle number can be violated by a small amount
(about 0.03%) as shown in Fig. 4(b).

C. Test of energy conservation

In implementing the MC integration of the collision
term, we can use the symmetrical sampling method to
ensure the strict particle number conservation. However,
the conservation of total particle number does not guarantee
the strict conservation of total energy numerically due to
the discrete grids in the numerical calculation. When we
calculate the total energy with Eq. (11), the smooth p0 is
approximated by discrete grids. This discretization will
affect the numerical evaluation of the total energy. Such
effect can be seen in Fig. 5, where a constant gluon mass
m2

g ¼ 0.5 GeV2 is used. To quantify the violation of energy
conservation, here we introduce the following quantity
δErelative,

δErelative ¼
jEt¼1 fm − Et¼0 fmj

Et¼0 fm
: ð25Þ

In Fig. 5, we plot δErelative as a function of the number of
momentum grids. In this test, we choose the initial gluon
distribution as a step function, fg;initialðpÞ ¼ 0.5 × θð1 −
jpj=QsÞj with Qs ¼ 1.5 GeV. We find that the deviation
δErelative decreases fast as a function of the number of the
grids. From the figure, we can see that when the number of
grids in momentum space is taken as 30, δErelative ∼ 0.015,
i.e., the fluctuation of total energy computed from Eq. (11)
is about 1.5% at t ¼ 1 fm=c. Such small deviation is
mainly caused by the discretization of momentum. Of
course, the total energy is still conserved physically for this
case since we have used the condition k1 þ k2 ¼ k3 þ p in
the computation of the collision term.

(a)

(b)

FIG. 4. Number of particles of different species as a function of
evolution time for the cases with and without symmetrical
sampling. The parameters for fg=qðq̄Þðt; x;pÞ are the same as
in Figs. 2 and 3. Panel (a) plots the particle numbers for both
fermions and gluons using the symmetrical sampling. Panel
(b) compares the total particle number as a function of evolution
time with and without using the symmetrical sampling, as shown
by the blue and green lines, respectively. On one Nvidia Tesla
V100 card, the entire evaluations take 6456 and 8198 seconds for
the cases without and with the symmetrical sampling.

FIG. 5. The deviation of the total energy as a function of the
number of momentum grids, for a pure gluon system. Here, the
number for spatial grid is taken to be one, αs ¼ 0.3, the phase
space box is of size ½−3 fm; 3 fm�3 × ½−2 GeV; 2 GeV�3 and the
time step dt ¼ 0.0001 fm. The initial gluon distribution is chosen
as a step function, fg;initialðpÞ ¼ 0.5 × θð1 − jpj=QsÞj with Qs ¼
1.5 GeV and m2

g ¼ 0.5 GeV.

TOWARDS A FULL SOLUTION OF THE RELATIVISTIC … PHYS. REV. D 102, 074011 (2020)

074011-9



Now we consider the case of dynamical mass as
computed by Eqs. (8), (9). For simplicity, we focus on
the systems of pure gluons or u quarks that are homogenous
in coordinate space. Then Eq. (12) reduces to,

∂0T00
kin ¼ S0ex ¼

1

2
∂0m2

a

Z
d3p

ð2πÞ3Ea
p
Nafap: ð26Þ

Here the term ∂0T00
kinðxÞ is evaluated directly via

½T00ðtþ dtÞ − T00ðt − dtÞ�=ð2dtÞ. In Fig. 6, we show the
time variation of the kinetic energy ∂0T00

kin and the zero
component of source term S0ex. We can see that except for
the first few steps, two terms (∂0T00

kin and S0ex) are almost
identical. For gluons as shown by 6(a), the value of
∂0T00

kinðxÞ oscillates drastically for the first few time steps,
but after t ¼ 20 fm, it slightly fluctuates around the zero
value, which indicates the reach of nearly thermal equili-
bration. This result demonstrates that the change of the total
energy comes from the source term.
The above consistency check in Fig. 6 means that our

results satisfy Eq. (26) automatically. But this does not
mean that the total energy is physically conserved since the

masses are dynamically changing with space and time. In
principle, for a single flavor case, one can rewrite the right-
hand side of Eq. (12) as a total derivative term, then define a
modified conserved total energy-momentum tensor as
follows [103],

Tμν
total ¼ Tμν

kin −
1

4
m2

a

Z
d3p

ð2πÞ3Ea
p
Nafap; ð27Þ

where the definition of squared mass in Eq. (8), (9) is used
to derive the second term. For a multiple flavor case,
one usually cannot get a modified conserved energy-
momentum tensor.
For the case of dynamical mass, there may be another

source of numerical error originating from the definition
of mass in Eqs. (8), (9), apart from the discrete grids. To
obtain the squared mass, we need to integrate over p with
Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, which depends on the dynamical mass.

At the first step of the time evolution, we use jpj instead of
Ep to derive the dynamic mass. This tiny difference may also
be a source of numerical errors. Despite the above mentioned
numerical errors, the conservation of the total energy
computed via Eq. (11) can be archived up to 99.8% in Fig. 6.

D. Evolution of distribution functions and dynamical
masses in coordinate space

When the spatial part of the BE is taken into account, the
evolution of the phase space distributions becomes more
complicated. Since the dynamical masses now also depend
on the spatial grids as in Eqs. (8) and (9), all differential
terms in Eq. (13) contribute to the evolution. The initial
conditions for the distribution function must be physical,
e.g., the fermion distribution functions should be smaller
than unity, and all phase distributions should be positive
definite. Here for simplicity, we set the initial gluon
distribution as follows:

fg;initialðx;pÞ ¼
�
fg;max − fg;min

2jxx;maxj
�
ðxþ jxx;maxjÞ

þ
�
−
fg;max − fg;min

2jpx;maxj
�
ðpx þ jpx;maxjÞ

þ 2fg;min; ð28Þ
where fg;max and fg;min are two parameters, which stand for
the maximum and minimum values of the distribution.
2jpx;maxj is the size of the momentum box in the x direction,
and 2jxx;maxj is the size of the spatial box in the x direction.
One can also choose other types of initial conditions, and
the main results will be similar. The distribution function
fgðx;pÞ in Eq. (28) linearly increases in the x direction and
linearly decreases in the px direction. For simplicity, we set
the initial quark distribution to be zero,

fqðq̄Þ;initial ¼ 0: ð29Þ

(a)

(b)

FIG. 6. Time variation of the kinetic energy ∂0T00
kin and the zero

component of source term S0ex, as a function of evolution time.
Panels (a) and (b) show the results for pure gluon and quark
systems, respectively. The initial distribution function is given by
fg=u;initialðpÞ ¼ 0.5 × θð1 − jpj=QsÞj with Qs ¼ 1.5 GeV. We set
αs ¼ 0.3, dt ¼ 0.00005 fm for gluons and dt ¼ 0.001 fm for
quarks.

ZHANG, WU, PU, QIN, and WANG PHYS. REV. D 102, 074011 (2020)

074011-10



In Fig. 7, we show the gluon and u-quark distributions as
a function of the spatial directions x and y at different
evolution times. Initially, the gluon distribution is linear in

spatial x and u quark distribution is vanishing. As the time
evolves, the gluons tend to convert to quarks, similar to
Fig. 4. In the end, the distributions of both u quarks and
gluons become approximately uniform in all spatial direc-
tions (Here we show the distribution functions in the x and
y-directions). Other fermions have a similar pattern as well.
In Fig. 8, we show the dynamical masses for gluons and

u quarks in the spatial x and y-directions at different
evolution times. Initially, both masses squared m2

g and m2
u

increase linearly with x. Then as time evolves, they tend to
become homogenous in spatial x direction. The distribu-
tions for other flavors of quarks and antiquarks are similar.

(a)

(b)

(c)

(d)

FIG. 7. The gluon and u-quark distributions in spatial x and y
directions at different times. The phase space grid is taken as
½nx; ny; nz; npx; npy; npz� ¼ ½10; 10; 1; 10; 10; 1�, with n being
the number of grids. We have also chosen the coupling constant
αs ¼ 0.3, phase space box is of size ½−3 fm;3 fm�3× ½−2GeV;
2GeV�3 and dt ¼ 0.0005 fm. The initial gluon distribution is
given by Eq. (28) with jpx;maxj ¼ 2 GeV, jxx;maxj ¼ 3 fm,
fg;max ¼ 0.2 and fg;min ¼ 0.1. At each x or y, we plot fg or
fu which is averaged in ðy; z;pÞ or ðx; z;pÞ, respectively. The
calculation takes 3312 seconds on one Nvidia Tesla V100 card.

(a)

(b)

(c)

(d)

FIG. 8. Distribution of mass squaredm2
g andm2

u in spatial x and
y directions at different times. The parameters are chosen to be
the same as in Fig 7.
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In the future, we will extend our discussion here. It is
interesting to study the evolution of the system from a far
away equilibrium and to learn how the system reaches the
local equilibrium before the global one.

E. Evolution of distribution functions in momentum
space and gluon condensation

Now we show the evolution of systems in momentum
space. For simplicity, we neglect the spatial dependence
and set the systems to be homogenous in coordinate space.
As a first attempt, we investigate the time evolution of pure
gluon or pure quark systems in momentum space. The
initial gluon distribution is chosen to be a step function,

fgðpÞ ¼ fg;0θ

�
1 −

jpj
Qs

�
; ð30Þ

where f0 and Qs are parameters. This initial condition is to
mimic the distribution from color glass condensation
(CGC) [22], with Qs being the saturation scale. The
evolution of the distribution function for a pure gluon
system is shown in Fig. 9(a) and (c). Note that for gluon
evolution, the time dt is set very small (in our case
dt ¼ 0.00005 fm) to ensure that the distribution functions
are positive. Similarly for a pure quark system, we choose
the initial quark distribution function as,

fqðpÞ ¼ fq;0θ

�
1 −

jpj
Qs

�
: ð31Þ

The time evolution of the pure u quark distribution
function is shown in Figs. 9(b) and 9(d). For pure quark
system, the time step dt can be relative larger (in our case
dt ¼ 0.001 fm).
From Fig. 9, we find that the thermalization of gluons is

quite different from that of quarks. The gluons will first
accumulate in the soft region, where the energy is smaller
than 1.0 GeV. This phenomenon may indicate the gluon
condensation. While for quarks, we have not observed such
phenomenon. Since the system will reach to the thermal
equilibrium at the end, the distribution function in low
momentum region then turns back and finally matches to
thermal one. The similar behavior has also been discussed
in a simplified scalar field model in Ref. [108]. The gluon
condensation may be of importance to the prethermaliza-
tion of quark-gluon plasma created in the heavy-ion
collisions. It is impossible to understand the full evolution
of the system in the presence of gluon condensation in this
work. We will investigate such issue in our future studies
based on our program. It is noted that at the thermal
equilibrium, the gluon chemical potential is negative for
pure gluon system while the quark chemical potential is
positive for pure quark system in Fig. 9.

FIG. 9. Time evolution of the parton distribution functions
from initial step functions to thermal distributions. Panels (a) and
(c) show the results for pure gluons while panels (b) and (d)
for pure quarks. The phase space grid is taken as ½nx; ny;
nz; npx; npy; npz� ¼ ½1; 1; 1; 30; 30; 30�. The coupling constant
αs ¼ 0.3, the phase space box is of size ½−3 fm; 3 fm�3×
½−2 GeV; 2 GeV�3, with f0 ¼ 0.5 and Qs ¼ 1.5 GeV. For pure
gluons, the time step is taken as dt ¼ 0.00005 fm and for pure
quarks dt ¼ 0.001 fm. On one Nvidia Tesla V100 card, the
evaluation from 0 fm to 50 fm takes 60 hours for pure gluon case
and 2 hours for pure fermions case from 0 fm to 20 fm.

ZHANG, WU, PU, QIN, and WANG PHYS. REV. D 102, 074011 (2020)

074011-12



In Fig. 10, we show the evolution of the dynamical
masses squared for gluons and quarks. For a pure gluon
system, the gluon’s thermal mass decreases with time and
eventually becomes stable as the system reaches thermal
equilibrium. For a pure quark system, the quark’s thermal
mass oscillates with time, but the averaged value tends to be
constant.
We now extend our simulation to a system composed of

both quarks and gluons. The initial condition for gluons is set
the same in Eq. (30), and for quarks we choose fqðpÞ ¼ 0.
In Fig. 11, we show the distribution functions of gluons and
u quarks as a function of parton energy at different evolution
times. For gluons, the distribution function in the soft region
(≲1.0 GeV) increases very fast at the beginning and then
decreases to the thermal equilibration. The accumulation of
gluons in the soft region implies possible gluon condensa-
tion. For quarks, the distribution function reaches the Fermi-
Dirac distribution gradually. We also notice that the chemical
potentials for gluons and quarks are both negative in the
thermal equilibrium. Compared with the result in Figs. 9(b)
and 9(d), the negative chemical potential for quarks might
come from different initial condition and their interaction
with gluons.

(a)

(b)

FIG. 10. Time evolution of masses squared for pure gluons and
pure quarks from initial step functions to thermal distributions.
Panels (a) and (b) show the results for gluons and quarks, res-
pectively. The parameters are chosen to be the same as in Fig. 9.

FIG. 11. Time evolution of the parton distribution functions
for quark-gluon systems. The initial condition is fqðpÞ ¼ 0 for
quarks and fgðpÞ ¼ fg;0θð1 − jpj=QsÞ for gluons, with f0 ¼ 0.5
and Qs ¼ 1.5 GeV. The phase space grid is taken as ½nx; ny;
nz; npx; npy; npz� ¼ ½1; 1; 1; 30; 30; 30�. The coupling αs ¼ 0.3,
the phase space box is of size ½−3 fm;3 fm�3× ½−2GeV;2GeV�3,
and the time step is taken as dt ¼ 0.00005 fm. On one Nvidia
Tesla V100 card, the evaluation from 0 fm to 50 fm takes
around 2 days.
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In Fig. 12, we show the dynamical masses squared m2
g;u

and the particle numbers as a function of the evolution time.
It is interesting that there is no oscillation behavior for m2

u

here, as opposed to the results in Fig. 10. Instead, m2
u

decreases with time and then reaches to a constant,
similarly to m2

g. In Fig. 12(b), we also confirm that the
total particle number is strictly conserved. The gluons
convert to quarks in a very short time (≲10 fm), and then
both gluon and quark numbers tend to be constant. We also
note that the number of gluons is larger than the one of
fermions. It is caused by the initial conditions. Since there
is only one grid in space direction, i.e., the thermal mass is
homogeneous in space, both the total energy in Eq. (12)
and particle number are conserved. We can solve the
temperature and chemical potential in the equilibrium from
the initial conditions. Then, we have checked that in the
equilibrium, the number of gluons are larger than the one of
fermions.

V. CONCLUSION AND DISCUSSION

In this work, we have developed a new numerical
framework for obtaining the full solutions of relativistic
BE on GPUs. Our main equation, i.e., the complete relati-
vistic BE, is of form Eq. (2). We have considered the
thermal systems of 3 flavor quarks, antiquarks and gluons.
For simplicity, we only consider 2 → 2 scattering proc-
esses, in which the total particle numbers are conserved.

Since the quarks and gluons have dynamical masses in
Eqs. (8), (9), there is an external force in Eq. (2). Also the
kinetic energy-momentum tensor in Eq. (12) is not con-
served due to the external force.
To solve BE numerically, we first rewrite the main

equation as Eq. (13) with its discrete form in Eq. (15).
There are two ways to handle the δ-function in the colli-
sional integral, either integrating out k2 or integrating out
k3. In this work, we have chosen the first choice in
Eq. (17), which is more stable than the second one as
shown in Fig. 2. Next we introduce the symmetrical
sampling method to ensure the conservation of the total
particle number. We have also investigated the energy
conservation which is not strictly conserved numerically
due to the discrete grids. However, the numerical errors will
decrease very fast if we increase the numbers of the grids,
and the conservation of the total energy can be achieved up
to 99.8% in our calculation.
We have studied the time evolution of the distribution

functions in both coordinate and momentum spaces.
Figure 7 has shown the gluon and u-quark distributions
as a function of spatial direction x at different evolution
time, given the initial condition in Eqs. (28), (29). It is
found that the distributions of both u quarks and gluons
become homogeneous in the coordinate space at a later
time, implying the reach of thermal equilibrium. Figures 9
and 11 show the evolution of the distribution functions in
the momentum space for pure gluons, pure quarks and
quark-gluon mixtures. It is interesting that the thermal-
ization process of gluons is different from that of quarks.
The fermions reach the thermal distribution smoothly,
while the distribution functions of gluons at an early time
increase very fast in the soft region and then decrease to
thermal distributions.
In summary, we have provided a full numerical solution

to the BE with complete 2 → 2 scattering processes with
high computing performance. Our framework may serve as
a basis to study the prethermalization stage in heavy-ion
collisions in the future. Currently, our program can use the
grid sizes up to nx; ny; nz ¼ 20 and npx; npy; npz ¼ 40.
Very large grid sizes such as nx; ny; nz; npx; npy; npz ≥ 50

are still challenging, even with the help of GPU clusters.
We will continue to improve our framework and algorithms
along this direction.
In the future, we will include 2 → 3 processes and study

the interplay between elastic and inelastic scatterings. With
2 → 3 processes, the particle number is not conserved,
therefore, we will not implement the symmetric sampling in
that case. We may also include the external electromagnetic
fields to study the quantum transport phenomena under the
strong electromagnetic fields. Another important and nec-
essary extension is to add the expanding effect. We may
follow the famous trick proposed by Ref. [109] to add the
Bjorken expansion effect (also see Ref. [110] for the
application for the quantum kinetic theory).

(a)

(b)

FIG. 12. Time evolution of masses squaredm2
g;u and the particle

numbers for quark-gluon systems. The initial condition and
parameters are take as the same in Fig. 11.
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