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D̄0-meson photoproduction off the proton is studied at energies from the process threshold up to 20 GeV.
The background part of the process is modeled within the Regge model with the help of D̄0-meson
trajectories that are being exchanged in the t channel or Λþ

c -baryon trajectories exchanged in the u channel.
These contributions create cross sections which are smooth functions of energy. The introduction of
exchanges of three hidden-charm pentaquarks with spin 1=2 and 3=2 in the s channel then creates sharp
peaks in the cross section predictions. In order to account for the finite size of the particles involved, we
introduce hadron form factors. In analysis of model predictions with pseudoscalar and pseudovector
couplings in the strong vertex, the contact term was shown to play a non-negligible role. A great merit of
the proposed approach is its limited number of parameters that need to be adjusted as there are to this date
no data available for this process. Being limited by the broken SU(4) symmetry and guided by other works
that show their predictions of this process, we could adjust the parameters manually in order to provide at
least qualitative results.
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I. INTRODUCTION

Hadrons with heavy flavor provide new phenomena in
the hadron physics. Many exotic hadrons such as the X, Y,
Z states and the hidden-charm pentaquark Pc have been
reported in the accelerator facilities [1–4]. The properties of
these states cannot be explained by the ordinary hadron
picture, baryons as three quark states and mesons as quark-
antiquark states, while they are expected to have exotic
structures, e.g., the multiquark states and hadronic mole-
cules. The heavy baryons can be good probes to investigate
the diquark degrees of freedom inside the baryons, where
the heavy baryon is interpreted as a bound state of a heavy
quark and a light diquark for single-heavy baryons, and of a
heavy diquark and a light quark for double-heavy baryons
[5–8]. The separation of the light degrees of freedom, i.e.,
the light-quark spins and orbital angular momenta, from the
heavy-quark spins results in a novel symmetry in the
heavy-quark sector, which is the heavy-quark spin sym-
metry [4,9–14]. This symmetry appears because the spin-
flip interaction of the heavy quark is suppressed by a factor
of 1=mQ with the heavy-quark mass mQ.
In the experimental studies, the heavy hadrons have been

investigated at various accelerator facilities [2,15] such as the
eþe− collision experiments inBelle,BABAR [16] andBESIII
[17], and the heavy ion collisions in LHCb [18–27]. The

photoproduction of the charmed hadrons was performed in
Jefferson Lab [28,29]. As a proposal, the charmed hadron
production induced by the pion beam is planned in Japan
Proton Accelerator Research Complex [30].
The Pc state is one of the interesting topics in the heavy-

hadron physics which has impacted the studies of the exotic
states. The Pc resonances were reported by the LHCb
Collaboration in the weak decay Λb → J=ψK̄ [20–23]. The
minimal quark content of the Pc states is assumed to be
cc̄uud, and thus it is called the hidden-charm pentaquark.
In the first observation in 2015 [20–22], LHCb reported the
twin resonances Pcð4380Þ and Pcð4450Þ at 4380� 8�
29 MeV and 4449.8� 1.7� 2.5 MeV, respectively. The
Pcð4380Þ was found below the D̄Σ�

c threshold and with
the large decay width Γ ¼ 205� 18� 86 MeV, while the
Pcð4450Þ was below the D̄�Σc threshold and with the
narrow decay width Γ ¼ 39� 5� 19 MeV. In 2019, a new
analysis with more statistical data was performed [23],
where three narrow peaks were reported as summarized in
Table I. The two peaks were found at 4440 and 4457 MeV
and called Pcð4440Þ and Pcð4457Þ resonances, respec-
tively, where the Pcð4450Þ reported in 2015 was resolved
into the two peaks. The other peak was a new one which
was found at 4312 MeV, below the D̄Σc threshold, and
called Pcð4312Þ. For the broad resonance Pcð4380Þ,
however, the data can be fitted well without the Breit-
Wigner contributions corresponding to the Pcð4380Þ in the
new analysis. The Pc resonances were also studied in the
γp → J=ψp reaction by the GlueX Experiment in Hall D at
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Jefferson Lab [28]. However, no clear contributions from
the Pc states were found. In the theoretical studies, there
have been many works of the hidden-charm pentaquarks as
the compact states, hadronic molecules, kinematical effects,
etc. [31–67]. The contributions from the Pc states in the
cross sections have also been discussed for the photo-
production [68–74], the electroproduction [75], and the
reactions induced by pion beams [76–79].
The interesting phenomena show up in the heavy-quark

sector, which have not appeared in the light-quark sectors.
However, we do not achieve to understand the properties of
the heavy baryons which are the hadron structures as well
as the quantum numbers such as the spin and parity. Further
experimental and theoretical studies are necessary to study
nature of the heavy hadrons.
In this paper, we study the photoproduction cross section

of the γp → D̄0Λþ
c reaction, where the contributions of the

hidden-charm pentaquarks Pþ
c ð4312Þ, Pþ

c ð4440Þ, and
Pþ
c ð4457Þ are included as the intermediate states of the

reaction. The photoproduction experiments provide further
results for the properties of charmed hadrons including the
Pc states explored in the LHCb experiment. Since the
photoproduction process with the intermediate exotic states
does not satisfy the condition of anomalous triangle
singularity [70], the experiment can be utilized as a tool
for investigating exotic states. We use the masses and decay
widths of Pþ

c ð4312Þ, Pþ
c ð4440Þ, and Pþ

c ð4457Þ given by
LHCb [23] summarized in Table I. The spin (J) and parity
(P) are not determined in experiments yet. In Ref. [66], the
Pc states were studied as the hadronic molecules of

D̄ð�ÞΛc − D̄ð�ÞΣð�Þ
c , where the one-pion exchange potential

as the long-range force, and the coupling to the five-quark
states working as the short-range force were employed. The
JP is assigned as 1=2− for Pþ

c ð4312Þ, 3=2− for Pþ
c ð4440Þ,

and 1=2− for Pþ
c ð4457Þ in [66], where the same assignment

was also given in [59]. Assuming the Pc states as the

hadronic molecules of D̄ð�ÞΛc − D̄ð�ÞΣð�Þ
c , these states

strongly couple to open-charm channels such as D̄ð�ÞΛc

and D̄ð�ÞΣð�Þ
c rather than hidden-charm ones such as J=ψp,

because the coupling between the Pc and hidden-charm
states is induced by exchanges of the charmed hadrons (or
the charm quark) having large masses.
The framework which we employ in this paper for

studying photoproduction of D̄0Λþ
c was previously used

for analyzing photoproduction of KþΛ [80] where it led to
a good agreement with experimental data. As the process of
D̄0Λþ

c photoproduction off proton is analogous to the KþΛ
photoproduction off proton, we can employ the same
techniques here as well. This method is called the
Regge-plus-resonance model, originally constructed by a
group at Ghent University [81], and allows to describe the
photoproduction process in the threshold region as well as
at higher energies. The Regge part of the amplitude, which
is a smooth function of energy, creates the background in
the threshold region and constitutes the whole prediction
above this region. On top of this background, we add a few
pentaquark exchanges which create a peak structure above
the threshold. An essential merit of the Regge-plus-
resonance approach is its small number of free parameters.
In our framework, the γD0D0 coupling is introduced in

the exchange of D̄0-meson trajectory in the t channel. In
naive expectations, the photon does not couple to neutral
mesons. However, the open-flavor structure of the D̄0

meson composed of c̄ and u quarks yields the nonzero
γD0D0 coupling as long as the flavor SU(4) symmetry is
broken, while the γD0D0 coupling vanishes in the flavor
SU(4) limit. We derive the effective γD0D0 coupling by
introducing the vector meson dominance (VMD) [82,83],
where the photon couples to the D̄0 mesons via the neutral
vector-meson propagator.
This paper is organized as follows. In Sec. II, we present

various models which give us hints on the values of the
couplings in the strong vertex and we show the course of
the calculation together with the method used in the current
study, i.e., the Regge-plus-resonance model. In Sec. III, the
results are shown and discussed with emphasis on the type
of coupling in the strong vertex and values of coupling
constants. Finally, Sec. IV concludes this paper. Details on
effective couplings of a photon and D mesons are given in
the Appendix A.

II. METHODOLOGY

Most of the knowledge on the DN interaction comes
from calculations using hadronic Lagrangians motivated by
SU(4) extensions of light-flavor chiral Lagrangians and
heavy-quark symmetry. Otherwise, there is no experimental
information on the DN interaction currently available
(situation may change with the PANDA@FAIR experiment
]84 ]). For the strong coupling constant gDΛþ

c N , we could use
the SU(4) flavor symmetry as a reasonable first approxi-
mation and relate this coupling constant to other couplings
in the light-flavor sector,

gDΛþ
c N ¼ gKΛN ¼ −

3 − 2αDffiffiffi
3

p gπNN; ð1Þ

where g2πNN=4π ¼ 14.4 and αD ¼ 0.644. The relation
between gKΛN and gπNN is taken from Ref. [85]. This gives

TABLE I. Properties of the three pentaquark states assumed in
Ref. [23]. The quantum numbers of Pc ’s have not been
determined in experiments yet, while the total angular momentum
J and parity P shown in the table are predicted in Ref. [66].

Particle Mass [MeV] Width [MeV] JP (pred.)

Pþ
c ð4312Þ 4311.9� 0.7þ6.8

−0.6 9.8� 2.7þ3.7
−4.5 1=2−

Pþ
c ð4440Þ 4440.3� 1.3þ4.1

−4.7 20.6� 4.9þ8.7
−10.1 3=2−

Pþ
c ð4457Þ 4457.3� 0.6þ4.1

−1.7 6.4� 2.0þ5.7
−1.9 1=2−
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us gDΛþ
c N=

ffiffiffiffiffiffi
4π

p ¼ −3.75 and when we assume the SU(4)
flavor symmetry being broken at the level of 20%, we get

−4.5 ≤
gDΛþ

c Nffiffiffiffiffiffi
4π

p ≤ −3.0:

Besides employing the SU(4) symmetry, one can use
QCD sum rules (QCDSR) and obtains values which are
quite different, i.e.,

gDΛþ
c N ∼ 6.7 − 7.9:

The coupling constant for the Dð�ÞΛþ
c N vertex, gDð�ÞΛþ

c N
,

has been investigated by using various methods. These
values are unfortunately not consistent with each other, as
summarized in Table II. The coupling constants gDΛþ

c N and
gD�Λþ

c N in Table II are defined as

hΛcðp0ÞjDðqÞNðpÞi ¼ gDΛþ
c NūΛc

ðp0Þiγ5uNðpÞ; ð2Þ

hΛcðp0ÞjD�ðqÞNðpÞi ¼ ūΛc
ðp0ÞðgVD�Λþ

c N
ε · γ

þ igTD�Λþ
c N

σμνε
μqνÞuNðpÞ: ð3Þ

We note that the definitions of the coupling constant are
different in references.
We can again employ the SU(4) symmetry and relate this

coupling to the known coupling gρNN¼3.25, i.e., gD�Λþ
c N ¼

−
ffiffiffi
3

p
gρNN ¼ −5.63. Assuming the SU(4) flavor violation,

we get an interval

−6.8 ≤ gD�Λþ
c N ≤ −4.5:

When using the QCD sum rules, we obtain for this coupling
an approximate value gD�Λþ

c N ∼ −7.5.
According to Ref. [86], the gDΛþ

c N must be larger than
gD�Λþ

c N .
The calculation procedure used in this paper is analogous

to the one recently used in the KþΛ photoproduction
study [92] as it is easily applicable for photoproduction of
various pseudoscalar mesons. The invariant amplitude of
the process

γðkÞ þ pðpÞ → D̄0ðpDÞ þ Λþ
c ðpΛÞ;

where the corresponding four-momenta are shown in the
parentheses and the four-momenta of the intermediate
particles are denoted by q, can be decomposed into
the linear combination of six covariant gauge-invariant
contributions

M ¼
X6
j¼1

Ajðk2; s; t; uÞūðpΛÞγ5MjuðpÞ; ð4Þ

where Mj are explicitly gauge-invariant operators

M1 ¼ ð=k=ε − =ε=kÞ=2; ð5aÞ

M2 ¼ p · ε − k · pk · ε=k2; ð5bÞ

M3 ¼ pΛ · ε − k · pΛk · ε=k2; ð5cÞ

M4 ¼ =εk · p − =kp · ε; ð5dÞ

M5 ¼ =εk · pΛ − =kpΛ · ε; ð5eÞ

M6 ¼ =kk · ε − =εk2; ð5fÞ

and εμ is the polarization vector of the photon. The scalar
amplitudes Ajðk2; s; t; uÞ contain contributions from all of
the considered Feynman diagrams. The expressions of Aj

amplitudes for various particle exchanges are shown in
subsequent sections.
We note that the formalism shown here is given as the

general one which can be applied to the production both
with the virtual and real photons corresponding to the
electroproduction and photoproduction, respectively. The
photoproduction can be viewed as a special case of
the electroproduction when the incoming photon is on
its mass shell and thus the terms k2 and k⃗ · ε⃗ vanish. The
decomposition of the amplitude to the invariant operators
Mi used in our work is not unique as there can be found
other bases in the literature, e.g., in Ref. [93]. The basis
of ours and of Ref. [93] is equivalent and there also

TABLE II. Summary of the coupling constants gDð�ÞΛþ
c N

obtained by using various methods: SU(4) symmetry,
QCDSR, light-cone QCD sum rules (LCQCDSR), and quark model. For the gDΛþ

c N coupling, we use the convention
of Eq. (1).

Method gDΛþ
c N gD�Λþ

c N Reference

SU(4) −13.2 (4.3, 6.07 GeV−1) [86]
QCDSR −6.74� 2.12 … [87]

−7.9� 0.9 −7.5� 1.1 [88]
−4.82� 1.44 … [89]

LCQCDSR −12.3þ5.3
−4.2 ð−6.9þ2.4

−2.9 ; 1.3
þ0.87
−0.59 GeV−1Þ [90]

Quark model ð−16.95;−13.56Þ … [91]
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exists a transformation matrix between them. For instance,
another basis for the invariant operators can be found in
Refs. [94–96]. In Appendix B, we show the transformation
between our basis and the basis of Levy et al. [95,96].
Further on, we use a representation of the Lorentz-

invariant matrix element (4) in terms of the two-component
spinor Chew, Goldberger, Low, and Nambu (CGLN)
amplitudes [97,98]. In the c.m. frame, the Lorentz-invariant
matrix element (4) can be rewritten as

Jμεμ ¼ χþΛFχp; ð6Þ

where χp and χΛ are the Pauli spinors of the proton and Λþ
c

baryon and

F ¼ f1σ⃗ · ε⃗ − if2σ⃗ · ˆp⃗Dσ⃗ · ðˆk⃗ × ε⃗Þ
þ f3σ⃗ · ˆk⃗ ˆp⃗D · ε⃗þ f4σ⃗ · ˆp⃗D

ˆp⃗D · ε⃗

þ f5σ⃗ · ˆk⃗ ˆk⃗ ·ε⃗þ f6σ⃗ · ˆp⃗D
ˆk⃗ · ε⃗: ð7Þ

Here ˆk⃗ ¼ k⃗=jk⃗j, ˆp⃗D ¼ p⃗D=jp⃗Dj, σ⃗ are the Pauli matrices,
and ε⃗ is the spatial component of the photon polarization
vector. The CGLN amplitudes fiðk2; s; t; uÞ are expressed
via the scalar amplitudes Aj,

f1 ¼ N�½−ðW −mpÞA1 þ k · pA4 þ k · pΛA5 − k2A6�;
ð8aÞ

f2 ¼ N� jk⃗jjp⃗Dj
ðE�

Λ þmΛÞðE�
p þmpÞ

½ðW þmpÞA1 þ k · pA4

þ k · pΛA5 − k2A6�; ð8bÞ

f3 ¼ −N� jk⃗jjp⃗Dj
E�
p þmp

½A3 þ ðW þmpÞA5�; ð8cÞ

f4 ¼ N� jp⃗Dj2
E�
Λ þmΛ

½A3 − ðW −mpÞA5�; ð8dÞ

f5 ¼ N� jk⃗j2
E�
p þmp

�
A1 −

1

k2
½ðk2 þ k · pÞA2 þ k · pΛA3�

− ðW þmpÞðA4 þA6Þ
�
; ð8eÞ

f6 ¼ N� E�
γ jk⃗jjp⃗Dj

ðE�
Λ þmΛÞðE�

p þmpÞ
�
A1 −mpA4 þ

k · pΛ

E�
γ

A5

þ ðE�
p þmpÞ
E�
γk2

½ðk2 þ k · pÞA2

þ k · pΛA3� − ðW þmpÞA6

�
; ð8fÞ

where W ¼ ffiffiffi
s

p
, and E�

p (mp), E�
Λ (mΛ), E�

D (mD), and E�
γ

are the c.m. energies (masses) of the proton, charmed
baryon, D meson, and photon, respectively. The normali-
zation factor reads

N� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�

Λ þmΛÞðE�
p þmpÞ

4mΛmp

s
: ð9Þ

With help of the CGLN amplitudes, the differential
cross section of the D̄0-meson photoproduction can be
calculated as

dσ
dΩ

¼ CRe
�
jf1j2 þ jf2j2 − 2f1f�2 cos θD

þ sin2θD

�
1

2
ðjf3j2 þ jf4j2Þ þ f1f�4

þ f2f�3 þ f3f�4 cos θD

��
; ð10Þ

where the normalization factor C reads

C ¼ ðℏcÞ2 α

4π

mΛjp⃗Dj
jk⃗jW

ð11Þ

with the fine-structure constant α ∼ 1=137.

A. The Regge model

The Regge model provides us with an economical (fewer
coupling constants needed to introduce) and elegant way to
describe the photoproduction of mesons at high energies.
Recently, this kind of approach has been quite successfully
used to describe, with addition of several nucleon resonan-
ces in the s-channel, the photoproduction of KþΛ on the
proton [80].Analyticity of the scattering amplitude is built in
these models. The exchange of meson trajectories (in the t
channel) or baryon trajectories (in the u channel) ensures
unitarity and describes the behavior of the amplitudes far
from the poles. A striking feature is that thesemodels exhibit
the right energy and momentum dependence.
What is more, the Regge exchanges when extrapolated to

the low-energy region provide us with smooth functions
which are ideal to parametrize the background. However,
one has to proceed with caution when adding the reso-
nances to the Regge amplitude, which we do in our
approach, as this can lead to double counting of the poles.
The so-called duality hypothesis simply states that the sum
of all contributing s-channel resonances equals the sum of
all the t- and u-channel trajectory exchanges. In practice,
however, one does not include all s-channel exchanges
together with all the trajectory exchanges in t or u channels.
The standard technique is composed of defining a limited
number of dominant resonant states which replenish the
phenomenological background. Nevertheless, the amount
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of contributions added on top of the Regge amplitude
should be limited to a strict minimum [85,99].
The amplitude for the exchange of a linear meson or

baryon trajectory in the t or u channel, respectively,

αXðxÞ ¼ αX;0 þ α0Xðx −m2
XÞ; ð12Þ

where x equals t or u andmX, αX;0, α0X are mass, spin of the
lightest particle X of the given trajectory, and the incline of
the trajectory, respectively, can be written with help of the
standard Feynman amplitude interchanging the Feynman
propagator for the Regge one,

1

x −m2
X
→ PX

ReggeðαXðxÞÞ: ð13Þ

The Regge amplitude then reads

MRegge ¼ βXPX
ReggeðαXðxÞÞ; ð14Þ

where βX is the residuum of the Feynman amplitude in
the given pole, since in the vicinity of the t-channel or
u-channel pole the Regge amplitude should coincide with
the Feynman amplitude for the exchange of the given pole.
We thus keep the vertex structure given by the Feynman
diagrams, which correspond to the first materialization, i.e.,
the lightest particle, of the trajectory.
Generally, the Regge propagator reads

Pζ¼�1
Reggeðs; xÞ ¼

�
s
s0

�
αXðxÞ πα0

sin½παXðxÞ�
1þ ζe−iπαXðxÞ

2

×
1

Γ½αXðxÞ þ 1� ; ð15Þ

where the exponential scale factor reduces the Regge
contribution for s > s0 for negative physical values of t.
The scale parameter s0 is chosen as s0 ¼ 1 GeV2.
When we derive the Regge propagator, we have to

differentiate between two signature parts of the trajectories,
ζ ¼ �1, in order to obey the convergence criteria: ζ ¼ þ1
corresponds with the even and ζ ¼ −1 with the odd partial
waves. Therefore, we have to sum over this factor in the
propagator. Unfortunately, the theory does not allow us to
determine the relative sign between the even and odd parts
of the trajectory. We, therefore, end up either with a so-
called constant phase, identical to 1, or a rotating phase
which gives rise to a complex factor of expð−iπαðxÞÞ. In
studies of the Kþ photoproduction, the rotating phase has
been preferred because the constant phase inducing a real
amplitude leads to the hyperon polarization asymmetry
being zero, which disagrees with the experimental data
[85,99]. The rotating phase in the Kþ photoproduction was
also derived in Refs. [100,101], where the duality diagram
in the Kþ photoproduction was introduced by assuming the
vector meson dominance. As the contributions of the

meson and Λþ
c exchanges are rather weak in D̄0Λþ

c
photoproduction, the choice of constant or rotating phase
is not decisive for the background shape. In this work, we
use the rotating phase of the propagator, once the exper-
imental data on the charmed-baryon polarization asymme-
try in the D̄0 photoproduction become available, we can
check if our choice of the rotating phase in the propagator
agrees with observations.

1. D̄0-meson trajectory exchange in the t channel

In case of the D̄0ð1864Þ pseudoscalar meson being
exchanged in the t channel, shown in Fig. 1(b), the
amplitude has the form

MD̄0 ¼ ūðpΛÞVSftðtÞ
1

t −m2
D
VEM
μ εμðkÞuðpÞ; ð16Þ

where ftðtÞ is the hadron form factor and VS is the strong
vertex factor. In the strong vertex, we can consider either a
pseudoscalar coupling or a pseudovector one; for corre-
sponding vertex factor formulas, see Eqs. (22) and (23).
The electromagnetic vertex factor VEM

μ reads

VEM
μ ¼ −iCðmodelÞð2pD − kÞμ; ð17Þ

where the CðmodelÞ is a constant which reflects what model
we use to describe the γD̄0D0 vertex. Derivation of this
vertex factor is given in Appendix A. This amplitude in the
compact form, Eq. (4), reads

MD̄0 ¼ ūðpΛÞγ5ftðtÞ
�
A2M2 þA3M3

− CðmodelÞgDΛþ
c N

k · ε
k2

�
uðpÞ: ð18Þ

There are only two nonzero scalar amplitudes for both
pseudoscalar and pseudovector cases,

A2 ¼ −A3 ¼ 2CðmodelÞ gDΛþ
c N

t −m2
D
; ð19Þ

and the third term in Eq. (18) is the term which breaks the
gauge invariance. We deal with this issue in Sec. II B.
In our analysis of D̄0Λþ

c photoproduction, we identify
the D̄0ð1864Þ pseudoscalar-meson trajectory as the dom-
inant contribution to the high-energy amplitude. We have
also considered introducing the D�ð2007Þ vector-meson
trajectory but soon we revealed that its contribution was
negligible and we, thus, decided to omit it. The corre-
sponding propagator for the D̄0ð1864Þ trajectory has the
following form:
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PDð1864Þ
Regge ðs; tÞ ¼ ðs=s0ÞαDðtÞ

sin½παDðtÞ�
πα0D

Γ½1þ αDðtÞ�
× exp½−iπαDðtÞ�: ð20Þ

The interpretation of the Regge propagator effectively
incorporating the exchange of all members of an αDðtÞ
trajectory can be easily seen from the definition of the
propagator. There are poles at non negative integer values
of αDðtÞ, which correspond to the zeroes of the sine
function but which are not compensated by the poles of
the Γ function. In the physical region of the process under
study (with t < 0), these poles cannot be reached.
The trajectory equation for the D̄0ð1864Þ pseudoscalar

meson reads

αDðtÞ ¼ 0.73ðt −m2
DÞ: ð21Þ

2. Λ+
c -baryon trajectory exchange in the u channel

In the case a Λþ
c baryon is being exchanged in the u

channel, shown Fig. 1(c), the strong (in the pseudoscalar
and pseudovector couplings, respectively) and electromag-
netic vertex factors, respectively, read

VPS
S ¼ gDΛþ

c Nγ5; ð22Þ

VPV
S ¼ −g0DΛþ

c N
Dμγμγ5; ð23Þ

VEM
μ ¼ eFΛþ

c
1 ðk2Þγμ þ ie

FΛþ
c

2 ðk2Þ
2mΛ

σμνkν; ð24Þ

where g0DΛþ
c N

¼ gDΛþ
c N=ðmΛ þmpÞ, σμν ¼ i

2
½γμ; γν�, and

Dμ is a four-momentum corresponding to the D̄0-meson
field coming out of the strong vertex. In the s and u
channels, there is Dμ ¼ pμ

D while in the t channel we
have Dμ ¼ ðp − pΛÞμ.
At the photoproduction point (k2 ¼ 0), the Dirac FΛþ

c
1

and Pauli form factors FΛþ
c

2 acquire values

FΛþ
c

1 ð0Þ ¼ 1; FΛþ
c

2 ð0Þ ¼ κΛþ
c
; ð25Þ

where κΛþ
c
is the anomalous magnetic moment of the Λþ

c

baryon. Its determination belongs to the actual topics in
physics, and various models [102] give results in the range

κΛþ
c
¼ ð0.34 − 0.43ÞμN:

In this work, we take κΛþ
c
¼ 0.4μN .

The Born u-channel amplitude reads

MΛþ
c
¼ ūðpΛÞVEM

μ
=pΛ − =kþmΛ

u −m2
Λ

VSfuðuÞεμðkÞuðpÞ: ð26Þ

It can be decomposed into electric (∼γμ) and magnetic
(∼σμνkν) parts according to the terms in the electromagnetic
vertex factor. Opting for the pseudoscalar coupling in the
strong vertex, once we cast this amplitude into the compact
form

MPS
Λþ
c
¼ −

egDΛþ
c N

u −m2
Λ
ūðpΛÞγ5fuðuÞ

�
−M1 − 2M3

þ ðu −m2
ΛÞ

k · ε
k2

�
uðpÞ

−
egDΛþ

c N

u −m2
Λ
ūðpΛÞγ5fuðuÞ

κΛþ
c

4mΛ
½−2mΛM1

− 4M5 − 2M6�uðpÞ; ð27Þ
we recognize the scalar amplitudes Ai; i ¼ 1;…; 6 which
read

A1 ¼
egDΛþ

c N

u −m2
Λþ
c

fuðuÞ
�
1þ κΛþ

c

2

�
; ð28aÞ

A3 ¼ 2
egDΛþ

c N

u −m2
Λþ
c

fuðuÞ; ð28bÞ

A5 ¼
egDΛþ

c N

u −m2
Λþ
c

fuðuÞ
κΛþ

c

mΛ
¼ 2A6: ð28cÞ

FIG. 1. Feynman diagrams of the contributions to the pðγ; D̄0ÞΛþ
c . The background part is modeled by assuming either the exchange

of a D̄0-meson trajectory in the t channel, where the photon couples to the D̄0-meson with help of intermediary vector meson (b), or a
Λþ
c -baryon trajectory in the u channel (c). In order to restore the gauge invariance, we add the contact term (d) and the proton exchange

(a). On top of the background, there are s-channel exchanges of pentaquarks (a).
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When we use the pseudovector coupling in the strong vertex, the invariant amplitude, split into the electric and magnetic
terms, reads

MPV
Λþ
c
¼ −

eg0DΛþ
c N

u −m2
Λ
ūðpΛÞγ5fuðuÞ

�
−ðmΛ þmpÞM1

− 2ðmΛ þmpÞM3 þ
�
2
k · pΛ

k2
− 1

�
M6 þ ðu −m2

ΛÞ
k · ε
k2

ðmp þmΛ þ =kÞ
�
uðpÞ

þ
eg0DΛþ

c N

u −m2
Λ
ūðpΛÞγ5fuðuÞ

κΛþ
c

4mΛ
½ðu −m2

Λ þ 4mΛmpÞM1 þ 4ðmΛ þmpÞM5 þ 2ðmΛ þmpÞM6�uðpÞ: ð29Þ

The extracted scalar amplitudes have the form

A1 ¼
eg0DΛþ

c N

u−m2
Λ
fuðuÞ

�
mΛþmpþ

κΛþ
c

4mΛ
ðu−m2

Λþ4mΛmpÞ
�
;

ð30aÞ

A3 ¼ 2
egDΛþ

c N

u −m2
Λ
fuðuÞ; ð30bÞ

A5 ¼
egDΛþ

c N

u −m2
Λ
fuðuÞ

κΛþ
c

mΛ
; ð30cÞ

A6 ¼
egDΛþ

c N

u −m2
Λ
fuðuÞ

�
1

mΛ þmp

�
1 − 2

k · pΛ

k2

�
þ κΛþ

c

2mΛ

�
:

ð30dÞ

Moreover, we can clearly see the gauge breaking term,
∼k · ε=k2, in the electric part of the amplitude. This term,
however, needs to be canceled in the total amplitude, which
is done with help of the s-channel proton exchange and the
contact current.
Since the first materialization of the Λþ

c trajectory carries
spin, αX;0 in Eq. (12) takes on the value of the spin. In this
case, thus αX;0 ¼ 1=2. The trajectory equation for the Λþ

c

baryon reads

αΛðuÞ ¼ 0.5þ 0.65ðu −m2
ΛÞ: ð31Þ

The effect of spin can be implemented into the Regge
propagator, Eq. (15), in a simple way by making the
replacement αX → αX − αX;0. This substitution guarantees
that the Regge amplitude matches the corresponding
Feynman one at the pole of the first materialization where
αX ¼ αX;0. The corresponding propagator for theΛþ

c ð2286Þ
trajectory has the following form:

PΛþ
c ð2286Þ

Regge ðs; uÞ ¼ ðs=s0ÞαΛðuÞ−1=2
sin½πðαΛðuÞ − 1=2Þ�

πα0Λ
Γ½1=2þ αΛðuÞ�

× exp½−iπðαΛðuÞ − 1=2Þ�: ð32Þ

B. Gauge-invariance restoration

The gauge invariance or electromagnetic current con-
servation is a fundamental requirement which any physical
theory should fulfil. In the process under study in this
paper, the pseudoscalar-meson exchange in the t channel
and the Λþ

c -baryon exchange in the u channel explicitly
break the gauge invariance [see Eqs. (18), (27), and (29)].
There are generally two methods to restore gauge invari-

ance. Avery often used prescription for the gauge-invariance
restoration in the Regge model is the Guidal-Laget-
Vanderhaeghen method [103]. In this method, in order to
restore the gauge invariance broken by the t-channel
exchange, the authors add the electric part of the s-channel
Born diagram to the t-channel exchanges of the Regge
trajectories. The gauge noninvariant terms coming from both
s-channel and t-channel diagrams then compensate each
other so that the total amplitude becomes gauge invariant.
Although this frameworkprovides a reliable data description,
recent criticism revealed that it is not substantiated in any
approximation of the field theory [104]. An introduction of
the contact term in order to tame the gauge noninvariant
contributions of the t channel meson-trajectory exchange
was proposed [104]. We follow this prescription and intro-
duce the contact term in both t-channel and u-channel
trajectory exchanges. What is more, in order to cancel the
gauge breaking terms coming from theu-channel exchanges,
we need to introduce also the s-channel proton exchange.

1. D̄0-meson trajectory exchange in the t channel

When we consider the Reggeization of the t-channel
exchanges of the D̄0-meson trajectory, we have to introduce
a contact term in order to tame the gauge noninvariant
contributions stemming from the t-channel amplitude.
The contact term has to fulfil the four-divergence
condition [104],

kμM
μ
int ¼ QDFt þQΛþ

c
Fu − FsQp; ð33Þ

whereQD ¼ CðmodelÞ is a constant associated to the strength
of the γDD effective Lagrangian (see Appendix A for more
details), QΛþ

c
¼ Qp ¼ e are charges associated to the Λþ

c
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baryon and proton, respectively, and Fx; x ¼ s, t, u, denote
the vertex factors in the s, t, and u channels, respectively.
The minimal contact term reads

Mμ
int ¼ mμ

cftðtÞ þ VSCμ; ð34Þ

where the first term is the so-called Kroll-Ruderman–type
bare contact current mμ

c resulting from an elementary four-
point Lagrangian multiplied by the hadron form factor in
the t channel, and the other term is an auxiliary current Cμ

multiplied by the strong vertex factor VS. When we put all
hadron form factors to unity, the contact term is determined
by the first term only, i.e., Mμ

int ¼ mμ
c. Inserting the above

mentioned values for Q’s and the pseudoscalar coupling in
the strong vertex, when Ft ¼ Fu ¼ Fs ¼ gDΛþ

c Nγ5, into the
four-divergence condition, Eq. (33), we get

kμM
μ
int ¼ kμm

μ
c ¼ CðmodelÞgDΛþ

c Nγ5
kμkμ
k2

: ð35Þ

Contracting mμ
c with the photon polarization vector εμðkÞ

and introducing the hadron form factor ftðtÞ gives us
precisely the term which we need to cancel the gauge-
violating term in the t-channel amplitude, Eq. (18), i.e.,

mμ
cεμðkÞftðtÞ¼CðmodelÞgDΛþ

c NftðtÞγ5
k · ε
k2

: ð36Þ

When we opt for the pseudovector coupling in the
strong vertex, we can proceed in a completely analogous
way. We just need to keep in mind that the strong vertex
coupling in this case varies in various channels as it
involves the four-momentum of a D̄0-meson field going
out of the strong vertex; see Eq. (23). Therefore, Ft ¼
−g0DΛþ

c N
ð=p − =pΛÞγ5 and Fu ¼ Fs ¼ −g0DΛþ

c N
=pDγ5, where

g0DΛþ
c N

¼ gDΛþ
c N=ðmΛ þmpÞ. The contraction of mμ

c with

the photon polarization vector εμðkÞ multiplied by the
hadron form factor ftðtÞ gives

mμ
cεμðkÞftðtÞ¼−CðmodelÞg0DΛþ

c N
ftðtÞð=p−=pΛÞγ5

k · ε
k2

:

ð37Þ

Once we sandwich this expression by the Dirac bispinors of
the Λþ

c and proton from the left and right, respectively, and
employ the Dirac equation, we end up with the same
expression that we encountered in the case with the
pseudoscalar coupling, i.e., Eq. (36).
Using only the first term in the minimal contact current,

Eq. (34), is thus sufficient to restore the gauge invariance of
the amplitude. Interestingly, the contact term serves only to
cancel the gauge-violating term in Eq. (18) and it does not
contribute to scalar amplitudes Aj.

2. Λ+
c -baryon trajectory exchange in the u channel

In case we consider the Reggeization of the u-channel
Λþ
c exchanges, the total amplitude reads

Mμ ¼ Mμ
s þMμ

u þMμ
int; ð38Þ

whereMμ
x is the amplitude of either an s-channel (x ¼ s) or

a u-channel (x ¼ u) exchange and Mμ
int is the contact

current which can be written in the form

Mμ
int ¼ mμ

cfuðuÞ þ VSCμ: ð39Þ
When we consider the Λþ

c -baryon trajectory exchange in
the u channel and do not assume the vector meson
dominance in the t channel [in which case QD ¼ 0 in
Eq. (33)], the gauge-violating terms come only from the u
and s channels. The Kroll-Ruderman–type bare contact
current mμ

c therefore needs to satisfy the condition

kμm
μ
c ¼ QΛþ

c
Fu − FsQp: ð40Þ

The four-divergence vanishes since QΛþ
c
¼ Qp ¼ e and

both u-channel and s-channel vertex factors coincide, i.e.,
Fu ¼ Fs ¼ VPS

S , in the pseudoscalar coupling. Therefore,
mμ

c ¼ 0. The contact current is thus determined by the
second term in Eq. (39) only. The auxiliary current Cμ is
given by

Cμ ¼ −e
�
ð2pΛ − kÞμ fu − 1

u −m2
Λ
fs þ ð2pþ kÞμ fs − 1

s −m2
p
fu

�
:

ð41Þ
With help of this knowledge on the shape of the contact

current, we can recast it into the compact form in order to
extract its contributions. When we employ the pseudoscalar
coupling in the strong vertex, we get

MPS
int ¼ ūðpΛÞVPS

S CμεμðkÞuðpÞ

¼ −egDΛþ
c NūðpΛÞγ5

��
2M3 − ðu −m2

ΛÞ
k · ε
k2

�

×
fuðuÞ − 1

u −m2
Λ

fsðsÞ

þ
�
2M2 þ ðs −m2

pÞ
k · ε
k2

�
fsðsÞ − 1

s −m2
p

fuðuÞ
�
uðpÞ:

ð42Þ

The contact term contributions to the scalar amplitudes read

A2 ¼ −2egDΛþ
c N

fsðsÞ − 1

s −m2
p

fuðuÞ; ð43aÞ

A3 ¼ −2egDΛþ
c N

fuðuÞ − 1

u −m2
Λ

fsðsÞ: ð43bÞ
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It can be easily shown that the Kroll-Ruderman bare
contact current mμ

c vanishes also with the pseudovector
coupling. It is sufficient to realize that the pseudovector
strong vertex factors Fu and Fs in Eq. (40) coincide, i.e.,

Fu ¼ Fs ¼ −g0DΛþ
c N
=pDγ5, as well as the charges associated

to the Λþ
c baryon and proton, QΛþ

c
¼ Qp ¼ e, respectively.

The contact current contribution is thus given solely by
the auxiliary current Cμ and reads

MPV
int ¼ ūðpΛÞVPV

S CμεμðkÞuðpÞ
¼ ūðpΛÞVPS

S CμεμðkÞuðpÞ

− eg0DΛþ
c N

ūðpΛÞγ5=k
�
½2pΛ · ε − k · ε� fu − 1

u −m2
Λ
fs þ ½2p · εþ k · ε� fs − 1

s −m2
p
fu

�
uðpÞ

¼ −eg0DΛþ
c N

ūðpΛÞγ5
��

2ðmΛ þmpÞM3 − 2M5 þ
�
1 −

k · pΛ

k2

�
M6 − ðu −m2

ΛÞðmΛ þmp þ =kÞ k · ε
k2

�
fu − 1

u −m2
Λ
fs

þ
�
2ðmΛ þmpÞM2 − 2M4 − 2

k · p
k2

M6 þ ðs −m2
pÞðmΛ þmp þ =kÞ k · ε

k2

�
fs − 1

s −m2
p
fu

�
uðpÞ: ð44Þ

In the pseudovector coupling, the contact term contri-
butions, beyond the contributions of Eq. (43), read

A4 ¼ 2eg0DΛþ
c N

fs − 1

s −m2
p
fu; ð45aÞ

A5 ¼ 2eg0DΛþ
c N

fu − 1

u −m2
Λ
fs; ð45bÞ

A6 ¼ eg0DΛþ
c N

�
2
k ·p
k2

fs − 1

s−m2
p
fu −

�
1−

k ·pΛ

k2

�
fu − 1

u−m2
Λ
fs

�
:

ð45cÞ

The Reggeization of the u-channel and contact-current
contributions corresponds to substituting the Regge rezid-
ual function F uðuÞ ¼ ðu −m2

ΛÞPΛ
Regge for the usual hadron

form factor fuðuÞ in all the expressions above.
In order to restore the gauge invariance in the u channel,

we add not only the contact current but also a proton
exchange in the s channel. The strong vertex functions are
the same as shown above in Eqs. (22) and (23) and the
electromagnetic vertex function reads

VEM
μ ¼ eFp

1 ðk2Þγμ þ e
1−Fp

1 ðk2Þ
k2

kμγ · kþ ie
Fp
2 ðk2Þ
2mp

σμνkν;

ð46Þ

where Fp
1 ðk2Þ and Fp

2 ðk2Þ are standard electromagnetic
proton form factors for which at the photoproduction point
holds Fp

1 ð0Þ ¼ 1 and Fp
2 ð0Þ ¼ κp, where κp is the anoma-

lous proton magnetic moment.

The invariant amplitude of the proton exchange reads

Mp ¼ ūðpΛÞVSfsðsÞ
=pþ =kþmp

s −m2
p

VEM
μ εμðkÞuðpÞ ð47Þ

and, similarly to the u-channel case, it can be divided into
the electric and magnetic parts, each corresponding to the
appropriate term in the electromagnetic vertex factor. We
choose the pseudoscalar coupling in the strong vertex and
cast the amplitude into the compact form,

MPS
p ¼ egDΛþ

c N

s −m2
p
ūðpΛÞγ5fsðsÞ

�
M1 þ 2M2

þ ðs −m2
pÞ

k · ε
k2

�
uðpÞ

−
egDΛþ

c N

s −m2
p
ūðpΛÞγ5fsðsÞ

κp
4mp

½−4mpM1

− 4M4 þ 2M6�uðpÞ: ð48Þ

We can then extract the scalar amplitudes

A1 ¼
egDΛþ

c N

s −m2
p
fsðsÞ½1þ κp�; ð49aÞ

A2 ¼ 2
egDΛþ

c N

s −m2
p
fsðsÞ; ð49bÞ

A4 ¼
egDΛþ

c N

s −m2
p
fsðsÞ

κp
mp

¼ −2A6: ð49cÞ

When we use the pseudovector coupling in the strong
vertex, the amplitude takes the form
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MPV
p ¼ ūðpΛÞγ5

eg0DΛþ
c N

s −m2
p
fsðsÞ

�
ðmΛ þmpÞðM1 þ 2M2Þ

− ð1þ 2k · p=k2ÞM6

þ ðs −m2
pÞðmΛ þmp þ =kÞ k · ε

k2

�
uðpÞ

þ ūðpΛÞγ5
eg0DΛþ

c N

s −m2
p
fsðsÞ

κp
2mp

f½2k · pþ k2�M1

þ 2ðmΛ þmpÞM4 − ðmΛ þmpÞM6guðpÞ; ð50Þ

where g0DΛþ
c N

¼ gDΛþ
c N=ðmΛ þmpÞ.

The scalar amplitudes read

A1¼
egDΛþ

c N

s−m2
p
fsðsÞ

�
1þ κp

2mpðmΛþmpÞ
ðs−m2

pÞ
�
; ð51aÞ

A2 ¼ 2
egDΛþ

c N

s −m2
p
fsðsÞ; ð51bÞ

A4 ¼
egDΛþ

c N

s −m2
p
fsðsÞ

κp
mp

; ð51cÞ

A6 ¼ −
egDΛþ

c N

s −m2
p
fsðsÞ

�
1

mΛ þmp

�
1þ 2

k · p
k2

�
þ κp
2mp

�
:

ð51dÞ

In both pseudoscalar and pseudovector cases, the gauge-
breaking terms come from the electric part of the inter-
action, while the magnetic part is gauge invariant.
From this treatise, we can clearly see that the gauge-

breaking terms in both s and u channels are wiped out and
the total amplitude is gauge invariant.

C. Pentaquark exchanges

On top of the Regge background, we add the pentaquark
exchanges in the s channel, as shown in Fig. 1(a), with the
standard Feynman propagators and the resonance finite
lifetime which is taken into account through the substitution

s −m2
Pc

→ s −m2
Pc

þ imPc
ΓPc

in the propagator denominator where themPc
and ΓPc

are the
mass and width of the propagating pentaquark state, respec-
tively. There are three pentaquark states that we take into
account, two with spin 1=2 and one with spin 3=2. Table I
summarizes their properties.

1. Spin-1=2 pentaquark exchange

The amplitude for this contribution has the form

MPcð1=2Þ ¼ iūðpΛÞgDΛcPc
γ5ΓfsðsÞ

qþmPc

s −m2
Pc

þ imPc
ΓPc

×
μpPc

mp þmPc

σμνkνΓεμðkÞuðpÞ; ð52Þ

where μpPc
is a transition magnetic moment [97]. As both

spin-1=2 pentaquark states are of negative parity, the factor
Γ takes the form of γ5. In this case, the scalar amplitudes are

A1 ¼
mPc

−mp

s −m2
Pc

þ imPc
ΓPc

G; ð53aÞ

A4 ¼ −
2

s −m2
Pc

þ imPc
ΓPc

G; ð53bÞ

A6 ¼ −
1

2
A4; ð53cÞ

where

G ¼ gDΛcPc

μpPc

mp þmPc

ð54Þ

is the coupling parameter.

2. Spin-3=2 pentaquark exchange

The amplitude of the spin-3=2 pentaquark exchange
reads

MPcð3=2Þ ¼ ūðpΛÞΓ
if

mPc
mD

ϵμνλργ5γ
λqμpρ

DfsðsÞ

×
qþmPc

s −m2
Pc

þ imPc
ΓPc

�
gνβ −

1

3
γνγβ

�

×
1

mPc
ðmPc

þmpÞ
ðg1qαFαβ þ g2qFβαγ

α

− g2γβqαFατγ
τÞΓγ5uðpÞ; ð55Þ

where Fμν ¼ kμεν − εμkν, g1 and g2 are the electromagnetic
coupling constants, and f is the strong coupling constant.
As the Pcð4440Þ pentaquark has negative parity, the factor
Γ equals γ5. Casting the amplitude to the compact form (4),
the extracted individual scalar amplitudes Aj read

A0
1¼−

G1

3
ðq ·pΛ−mPc

mΛÞq ·kþ
G2

3
ð2sq ·pΛ−3sk ·pΛ

þ2smpmΛþmPc
mΛq ·k−2smPc

mΛ

−2mpmPc
q ·pΛþ2q ·pΛq ·kÞ; ð56aÞ
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A0
2 ¼G1

�
sk ·pΛþmPc

mpk ·pΛ −
1

3
q ·pΛk2þ

1

3
mPc

mΛk2
�

þG2

�
−2sk ·pΛþ

1

3
mΛmPc

k2þ 2

3
k2q ·pΛ

�
; ð56bÞ

A0
3 ¼ G1ð−mPc

mp − sÞq · kþ G2ð2q · k − k2Þs; ð56cÞ

A0
4 ¼ G1

�
−
1

3
smΛ þ 1

3
ðmp þmPc

Þq · pΛ

−
1

3
mΛmpmPc

−mPc
k · pΛ

�

−G2

�
−smΛ þ 1

3
mΛmpmPc

þ 2

3
mpq · pΛ

�
; ð56dÞ

A0
5 ¼ G1mPc

q · kþ G2ð−mPc
þmpÞs; ð56eÞ

A0
6 ¼G1

�
1

3
mΛmpmPc

þmPc
k ·pΛ

þ 1

3
mΛs−

1

3
q ·pΛðmp þmPc

Þ
�

þG2

�
−
1

3
mΛsþ

1

3
mΛmpmPc

þ 2

3
q ·pΛðmp −mPc

Þ
�
;

ð56fÞ

where the coupling parameters G1 and G2 read

G1 ¼ −
fg1

16m4
Dm

4
p
; ð57aÞ

G2 ¼ −
fg2

32m4
Dm

5
p
: ð57bÞ

Each amplitude A0
i; i ¼ 1;…; 6, has to be multiplied by

the propagator denominator

Ai ¼
1

s −m2
Pc

þ imPc
ΓPc

A0
i: ð58Þ

III. DISCUSSION OF RESULTS

In this section, we present our new model for the D̄0Λþ
c

photoproduction off proton and show its predictions of the
differential cross sections for energies from the threshold
Elab
γ ¼ 8.67 GeV up to 20 GeV. In our model, there are a

few unknown parameters. Spin-1=2 and spin-3=2 penta-
quark exchanges introduce one and two free parameters,
respectively, and there is one more free parameter, gDΛþ

c N ,
which governs the trajectory behavior. For this parameter,
however, we can get some hint from several distinctive
approaches; either from the SU(4) symmetry, the QCD
sum rules or the quark model as shown in Table II.

Unfortunately, these approaches give us values which are
not in accordance with each other.
Since the particles we deal with are not pointlike, we

introduce also the hadron form factors, one for the back-
ground and one for the pentaquark exchanges, in order to
take the extended structure of the exchanged particles into
account. Each hadron form factor introduces one param-
eter, the cutoff parameter Λ. As there are currently no data
available, we had to choose these parameters by hand. We
let the values of the cutoff parameters vary from 4 to 5 GeV
so as to illustrate their effects on the predictions. In other
works, typical values in the KþΛ photoproduction are
between 1 and 3 GeV, and a recent study [73] on D̄0Λþ

c
used Λ ¼ 0.55 GeV. Let us point out that the cutoff value
depends not only on the process under study and particles
involved therein but also on the choice of the hadron form
factor; we know that the accurate selection of the appro-
priate hadron form factor is a troubling issue, e.g., in the
KþΛ photoproduction. In a recent study of that reaction, it
was revealed that the optimal hadron form factor should
have the multidipole shape as it depends on the particle’s
spin and thus gets stronger for higher-spin particles and
suppresses their contributions more. In the current study,
we opt for a dipole form factor

FdðΛÞ ¼
Λ4

ðx −m2Þ2 þ Λ4
; ð59Þ

where Λ, x ¼ s, t, u, and m are the cutoff parameter, the
Mandelstam variable, and the mass of the exchanged
particle, respectively. The reason for preferring this form
factor to the other ones is that in the D̄0Λþ

c production we
take into account only one pentaquark with spin 3=2. The
remaining two pentaquarks are of spin 1=2, for which the
multidipole form factor would reduce to a standard dipole
one. The role of the hadron form factor lies also in
suppressing contributions of the trajectories, which tend
to rise with increasing energy.
In the strong vertex, we can choose between a pseudo-

scalar or a pseudovector coupling. This choice affects not
only the shape of the cross section but also slightly changes
its magnitude. The exchanges of Regge trajectories in the
t or u channels produce cross sections which are smooth
functions of energy. The exchange of the t-channel tra-
jectory leads to the cross section which is focused in the
forward hemisphere and peaked at around θc:m:

D ¼ 30° and
which smoothly falls to zero at backward angles. The mere
Regge-trajectory exchange is strongly suppressed by the
factor sαDðtÞ in the Regge propagator, Eq. (20), as the
Mandelstam variable t occurring in the Regge trajectory,
Eq. (21), acquires large negative values (more pronounced
at backward angles). In case of t-channel Reggeization,
the choice of the type of coupling in the strong vertex
does not affect the behavior of the contribution. We observe
forward peaking of the t-channel D̄0-meson exchange
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which acquires its maximum at around θc:m:
D ¼ 20° and then

sharply decreases with the growing angle θc:m:
D . On the

contrary, when we consider the u-channel trajectory with
exchanges of Λþ

c baryons, we observe a significant change
between using the pseudoscalar and pseudovector cou-
plings and in both cases we obtain nonzero cross sections at
backward angles. In case of the pseudoscalar coupling in
the strong vertex, the background contribution is peaked at
backward angles (see Fig. 2) while when we use the
pseudovector coupling in the strong vertex, the background
produces a peak at forward angles (see Fig. 3). In both
cases, the u-channel trajectory exchange produces peaks at
large θc:m:

D angles, but we observe a strong contribution of
the proton exchange at forward angles in the pseudovector
coupling which plays a decisive role in shaping the cross
section. A striking feature of the u-channel background is
the magnitude of its cross section prediction which is a few

orders of magnitude larger in comparison with the
t-channel background even though all of these contribu-
tions are calculated with the same value of the coupling
constant gDΛþ

c N . The large background contribution in the u
channel is caused predominantly by the contact-term and
proton-exchange amplitudes. Moreover, this prediction
clearly shows that we cannot omit the hadron form factor
in the Reggeized u-channel background if we want to
obtain reliable magnitudes of the cross section. We deal
with the effect of choosing various values of the coupling
constant gDΛþ

c N on the background predictions later on.
The role of the contact term and the proton exchange,

i.e., the terms introduced in order to cancel the gauge-
breaking terms in the total amplitude, is illustrated in Fig. 4.
In both pseudoscalar and pseudovector couplings, the
proton exchange gives the most significant contribution,
while the contact term contributes much less and affects the
overall background prediction rather by interfering with
the proton exchange. The role of the contact term is to
mimic higher-order corrections to the tree-level description.
The large contact-term contributions thus indicate a non-
negligible role played by higher orders in this process. The
contribution of the actual trajectory seems to be negligible,
which corroborates the observation in Ref. [73] where the
authors in Fig. 10 show the trajectory contributions being
orders of magnitude smaller than the full model.
We also show the cross section as calculated with the full

model, i.e., the three pentaquark exchanges in the s channel
superimposed on the Regge background. The pentaquark
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FIG. 3. Cross section as modeled by the Reggeized u-channel
Λþ
c -meson exchange with the pseudovector coupling in the strong

vertex. Calculated with gDΛþ
c N=

ffiffiffiffiffi
4π

p ¼ −3.75 and with no hadron
form factor assumed.
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FIG. 2. Cross section as modeled by the Reggeized u-channel
Λþ
c -meson exchange with the pseudoscalar coupling in the strong

vertex. Calculated with gDΛþ
c N=

ffiffiffiffiffi
4π

p ¼ −3.75 and with no hadron
form factor assumed.

FIG. 4. The Regge background for the case of pseudoscalar
(upper figure) and pseudovector (lower figure) couplings in the
strong vertex. Full Regge background (solid line) and contribu-
tions of the Λþ

c -baryon trajectory (dotted line), contact term
(dashed line), and proton exchange (dotted-dashed line) are
shown. Calculated for θc:m:

D ¼ 90° and with dipole hadron form
factor with cutoff parameter Λ ¼ 5 GeV.
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exchanges in the s channel produce rather sharp peaks in
the cross section at the position of their poles, see Figs. 5
and 6, which show the contributions of pentaquark
exchanges added on the u-channel background with the
pseudoscalar and pseudovector couplings, respectively. We
do not show the calculation with the Reggeized t-channel
background as the background is orders of magnitude
smaller than the pentaquark peaks and thus plays a very
negligible role. The calculations with the Reggeized u-
channel background, in both types of couplings, comprise
the dipole hadron form factor with cutoff Λ ¼ 4 GeV. In
the u-channel background, the hadron form factor is indeed
needed in order to suppress its large contribution. With no
hadron form factor, the background contribution continues
to rise with the energy. We do not, however, observe such a
need in the t-channel background which contributes much
less even with no hadron form factor. In this calculation, the
coupling constants for the spin-1=2 and spin-3=2 penta-
quarks were chosen to be 0.01 and 0.1, respectively, where

the cross sections are obtained in a reasonable order of
magnitude. We will be able to fix these coupling constants
with help of partial decay widths measured in future
experiments. It is also possible to predict these couplings
from theoretical models. The coupling constants were not
obtained in Ref. [66] referred to in this study, while we will
address this calculation in future works. Interestingly, the
pentaquark contributions are almost independent of the
angle θc:m:

D when they are added to the t-channel back-
ground. On the other hand, we observe peaks in the central
angles and in the forward angles once the pentaquark
contributions interfere with the u-channel background in
the pseudoscalar and pseudovector couplings, respectively.
Figure 7 shows the differential cross section in the

central angles, at θc:m:
D ¼ 90°, as calculated with the

t-channel D̄0-meson trajectory (upper figure), u-channel
Λþ
c trajectory with the pseudoscalar (middle figure) and

pseudovector (lower figure) couplings in the strong vertex.
The dipole hadron form factor with the cutoff Λ ¼ 4 GeV
was introduced for both the Regge background and the
pentaquark exchanges. We chose this value of the cutoff
parameter since with this cutoff parameter the hadron form
factor suppresses the u-channel background contributions
to a reasonable level. If we do not introduce a form factor,
the background contributions are an order of magnitude
higher. If we do, on the other hand, employ too strong a
form factor, the contributions of background almost vanish.
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FIG. 5. Contributions of the Λþ
c -baryon trajectory and the

pentaquark exchanges in the s-channel to the cross section.
The pseudoscalar coupling in the strong vertex is used. The
dipole hadron form factors with Λ ¼ 4 GeV are introduced,
gDΛþ

c N=
ffiffiffiffiffi
4π

p ¼ −3.75 and the couplings for spin-1=2 and spin-
3=2 pentaquarks are 0.01 and 0.1, respectively.
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FIG. 6. Same as Fig. 5 but with the pseudovector coupling in
the strong vertex.

FIG. 7. Differential cross section at θc:m:
D ¼ 90° calculated with

D̄0-meson exchange (upper figure), Λþ
c -baryon exchange in the

pseudoscalar (middle figure) and pseudovector (lower figure)
couplings in the strong vertex. The dipole hadron form factor is
used with the cutoff Λ ¼ 4 GeV. Predictions of the full model
(solid line), Pcð4312Þ only (dotted line), Pcð4440Þ only (dashed-
dotted line), Pcð4457Þ only (dashed line), and D0-meson trajec-
tory only (double dashed-dotted line) are shown. The couplings
are 0.01 for both Pcð4312Þ and Pcð4457Þ and 0.1 for Pcð4440Þ.
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The differential cross section is computed with the full
model, individual pentaquarks, and the Regge trajectories
in either the t or u channel. We observe two narrow peaks
created by the pentaquarks added on top of the smooth
background created by the exchanges of the trajectories
(note also the difference in the magnitudes of the t-channel
and u-channel background contributions). The first peak is
apparently created by the superimposition of the Pcð4312Þ
state onto the background, while the second peak is a
combination of Pcð4440Þ, which creates a kind of shoulder
of the actual peak, and Pcð4457Þ contributions. The
strength of the pentaquark exchange contributions depends
on their couplings which unfortunately remain unknown so
far. For the spin-1=2 pentaquarks, we opted for G ¼ 0.01,
while the spin-3=2 pentaquark couplings were chosen to be
G1 ¼ G2 ¼ 0.1, i.e., the same values as were used above.
Figures 8 and 9 show predictions of the differential

cross sections as calculated by the model with either the
t-channel D̄0-meson exchange or the u-channel Λþ

c -baryon
exchange in the pseudoscalar and pseudovector coupling.
In the case with the t-channel exchanges, we observe only
two sharp peaks created by the pentaquarks and almost no
background. This is in stark contrast with the case where we
introduce the Reggeized u channel to model the back-
ground. In both types of coupling, we observe peaks at
backward angles, mainly at and above the threshold. The
Reggeized u-channel exchanges with the pseudovector
coupling create also a peak at forward angles, which is
more tangible at higher photon energies. The reason why
the predictions of the differential cross section differ
substantially for the t-channel and u-channel exchanges
is obvious. In the case of the u-channel Λþ

c -exchange, there
are contributions from the Λþ

c -exchange and on top of it

there is a contribution also from the proton exchange and
the contact term, both of which serve to restore the gauge
invariance. The proton exchange clearly dominates and
governs the shape of the background while the contact
current interferes with the proton exchange and provides
just minor modifications. In the case of the t-channel
exchanges, there are no extra contributions for the gauge
invariance preservation; the only contributions originate
from the Regge trajectory which is suppressed as dis-
cussed above.
The dependence of the Regge background on the

presence of the hadron form factor and values of the

FIG. 8. Differential cross section in dependence on the photon
lab energy Elab

γ for six different angles. The background modeled
by the t-channel D̄0-meson exchange (solid line) and u-channel
Λþ
c exchange in the PS and PV couplings (dotted and dashed

lines, respectively) is shown.

FIG. 9. Differential cross section in dependence on the θc:m:
D

angle for six different photon lab energies. The background
modeled by the t-channel D̄0-meson exchange (solid line) and
u-channel Λþ

c exchange in the PS and PV couplings (dotted and
dashed lines, respectively) is shown.

FIG. 10. Differential cross section computed for the various
values of gDΛþ

c N coupling stemming from various models as
shown in Table II. Only the contribution of the Regge background
is shown. The Λþ

c -baryon exchange with the pseudoscalar (upper
figure) and pseudovector (lower figure) couplings in the strong
vertex is employed. The left column illustrates cases with no
hadron form factor, while the right column shows suppression by
the dipole hadron form factor with Λ ¼ 5 GeV.
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coupling constant gDΛþ
c N is illustrated in Fig. 10 which

collects differential cross section predictions for θc:m:
D ¼ 90°

by the u-channel Regge background with either the
pseudoscalar (upper row) and pseudovector (lower row)
couplings in the strong vertex. In this figure, we use the
gDΛþ

c N coupling parameters from various models shown in
Table II. The predictions in the left column are calculated
with no hadron form factor, whereas in the right column we
introduce the dipole hadron form factor with a rather large
cutoff parameter Λ ¼ 5 GeV. The overall shape of the
differential cross section calculated with the u-channel
Regge trajectory changes once the form factor is in use.
When there is no hadron form factor, we see plateaulike and
steadily rising cross sections for pseudoscalar and pseu-
dovector couplings, respectively. However, once we
employ the hadron form factor even with as large a cutoff
as 5 GeV, the cross section is suppressed by an order of
magnitude and its behavior changes as well. In case of the
pseudoscalar coupling, we do not see the plateaulike cross
section any more, for large values of gDΛþ

c N a broad peak
around Elab

γ ¼ 10 GeV develops instead. Similarly, we
observe a suppression of the cross section computed with
the pseudovector coupling, it is most notable at higher
energies where the cross section changes from a convex
shape to a concave shape. The type of coupling in the
strong vertex and presence of the hadron form factor thus
play a decisive role in shaping the background contribution
to the cross section.

IV. CONCLUSION

In this paper, we have dealt with the photoproduction of
D̄0Λþ

c in the framework of the so-called Regge-plus-
resonace model. We model the background part of the
process by including an exchange of either the D̄0-meson
trajectory in the t channel or theΛþ

c -baryon trajectory in the
u channel. In this way, we create cross sections which are
smooth functions of energy. On top of this Regge back-
ground, we add exchanges of pentaquarks in the s channel
which create rather sharp peaks in the cross section
predictions at their respective poles. Since the particles
involved in this reaction are not pointlike, we introduce
hadron form factors to take their finite size into account.
One of the greatest advantages of the approach employed in
this work is the small number of the free parameters. As
there are to this date no data available for the photo-
production of D̄0Λþ

c , we had to rely on the broken SU(4)
symmetry and other recent works to hint us at reasonable
values of the otherwise unconstrained parameter gDΛþ

c N.
The rest of the parameters were then adjusted by hand so
that we could give at least some qualitative results. We
thoroughly discuss the behavior of the Regge background
with the pseudoscalar and pseudovector couplings in the
strong vertex and reveal that the contact term, imitating the
higher-order contributions, together with the s-channel

proton exchange play a non-negligible role in the model
predictions. As soon as the experimental data on this
process become available, we will be able to utilize them
not only for fitting the handful of free parameters but also
for considering the correct phase of the Regge propagator,
and thus providing a more thorough analysis of this
process.
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APPENDIX A: EFFECTIVE COUPLINGS
OF A PHOTON AND D MESONS

In this Appendix, we summarize the derivation of the
effective coupling of a photon and D mesons (γDD) via
the VMD.

1. Effective Lagrangians

The amplitudes of a photon and pseudoscalar mesons
(γPP) via the vector meson dominance are derived by the
effective Lagrangians [38,83,105],

L ¼ LγV þ LVPP þ LγPP; ðA1Þ

where

LγV ¼ −
ffiffiffi
2

p
egγVAμtrðQVμÞ; ðA2Þ

LVPP ¼ i2
ffiffiffi
2

p
gVPPtrðVμ½∂μP;P�Þ; ðA3Þ

LγPP ¼ ie

�
1 −

a
2

�
AμtrðQ½∂μP;P�Þ: ðA4Þ

The coupling constants are given by

gγV ¼ m2
V

gγ
∼ 0.10 GeV2; ðA5Þ

gVPP ¼ gγa

8
∼ 1.4; ðA6Þ

with mV ¼ 770 MeV, gγ ¼ 5.7, and a ¼ 2 in the standard
VMD model [38,83,105]. Thus, the direct γPP coupling
(A4) vanishes, while pseudoscalar mesons couple to a
photon via a vector-meson coupling. The SU(4) meson
matrices are given by
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P ¼

0
BBBBBB@

π0ffiffi
2

p þ ηffiffi
6

p þ η0ffiffi
3

p πþ Kþ D̄0

π− − π0ffiffi
2

p þ ηffiffi
6

p þ η0ffiffi
3

p K0 D−

K− K̄0 − 2ηffiffi
6

p þ η0ffiffi
3

p D−
s

D0 Dþ Dþ
s ηc

1
CCCCCCA
;

ðA7Þ

Vμ ¼

0
BBBBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ D̄�0

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0 D�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s ψ

1
CCCCCA

μ

; ðA8Þ

and

Q ¼ 1

3

0
BBB@

2 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 2

1
CCCA: ðA9Þ

The Lagrangian LγV in (A2) yields couplings between a
photon and neutral vector meson,

LγV0 ¼ −egγVAμ

�
ρ0 þ 1

3
ω −

ffiffiffi
2

p

3
ϕþ 2

ffiffiffi
2

p

3
ψ

�μ

: ðA10Þ

The Lagrangian LVPP in (A3) yields couplings of a vector
meson and pseudoscalar mesons. The γDD amplitudes are
obtained by the couplings to a neutral vector meson which
are given as

LV0DD ¼ i2gVPP½ðρ0 þ ωÞμð∂μD̄0D0 − D̄0∂μD0Þ
þ

ffiffiffi
2

p
ψμð∂μD0D̄0 −D0∂μD̄0Þ

þ ð−ρ0 þ ωÞμð∂μD−Dþ −D−∂μDþÞ
þ

ffiffiffi
2

p
ψμð∂μDþD− −Dþ∂μD−Þ� ðA11Þ

for D mesons.

2. The γPP amplitudes in the SU(4) symmetry

From the Lagrangians derived in the previous subsec-
tion, the γPP couplings via the VMD are obtained.
For the D mesons, the amplitude of the γDD coupling is

obtained as

hD̄0ðpDÞD0ðqÞjiLV0D̄0D0iLγV0 jγðkÞi

¼−i2egγVgVPPε · ðpD−qÞ
�

1

m2
ρ
þ 1

3m2
ω
−

4

3m2
ψ

�
ðA12Þ

for neutral D mesons, and

hD−ðpDÞDþðqÞjiLV0D−DþiLγV0 jγðkÞi

¼ i2egγVgVPPε · ðpD−qÞ
�

1

m2
ρ
−

1

3m2
ω
þ 4

3m2
ψ

�
ðA13Þ

for D� mesons. pμ
D and qμ are four-momenta of D mesons.

kμ is a four-momentum of a photon, and k2 ¼ 0 is used. εμ

is a polarization vector of the photon. In the SU(4) limit
with m2

V ¼ m2
ρ ¼ m2

ω ¼ m2
ψ , the γDD amplitudes are

reduced to

hD̄0ðpDÞD0ðqÞjiLV0D̄0D0iLγV0 jγðkÞi⟶
SUð4Þ limit

0; ðA14Þ

hD−ðpDÞDþðqÞjiLV0D−DþiLγV0 jγðkÞi
⟶
SUð4Þ limit

ieε · ðpD − qÞ; ðA15Þ

which are equal to amplitudes of neutral and charged
pseudoscalar bosons. Introducing the physical hadron
masses, mρ ¼ 770 MeV, mω ¼ 782 MeV and mψ ¼
3097 MeV, the amplitudes are obtained as

hD̄0ðpDÞD0ðqÞjiLV0D̄0D0iLγV0 jγðkÞi
¼ −0.19iε · ðpD − qÞ; ðA16Þ

hD−ðpDÞDþðqÞjiLV0D−DþiLγV0 jγðkÞi
¼ 0.11iε · ðpD − qÞ; ðA17Þ

where the strength of the γDD amplitude differs from the
one in the SU(4) limit. We emphasize that introducing the
physical hadron masses generate the nonzero γD0D0

coupling while it vanishes in the SU(4) limit. These
amplitudes can be regarded as those obtained by the
effective γDD Lagrangians

LðSUð4ÞÞ
γD̄0D0 ¼ 0.19iAμð∂μD̄0D0 − D̄0∂μD0Þ; ðA18Þ

LðSUð4ÞÞ
γD−Dþ ¼ −0.11iAμð∂μD−Dþ −D−∂μDþÞ: ðA19Þ

3. The γDD amplitudes in the
phenomenological model

In Sec. A 2, the flavor SU(4) symmetry is employed to
determine the coupling constants for charmed mesons.
However, this symmetry is broken due to the large mass of
the charm quark. In this subsection, we introduce the
phenomenological model to determine the coupling con-
stants and obtain the amplitude of the γDD couplings.
The coupling constant of the γJ=ψ coupling, gγψ , can be

determined by the J=ψ → eþe− decay [15], where

ΓðJ=ψ → eþe−Þ ¼ 16πα2

27

2g2γψ
m3

ψ
¼ 5.55 keV: ðA20Þ
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Then, jgγψ j ¼ 0.91 GeV2 is obtained, which is much larger
than gγV ∼ 0.10 GeV2 in (A5).
For the ρDD and ωDD couplings, the heavy meson

effective theory is employed, where

gVDD ¼ βgV
2

ffiffiffi
2

p ¼ 1.9 ðA21Þ

with β ¼ 0.9 and gV ¼ 5.8 [106]. The J=ψDD coupling
constant is obtained by model calculations such as the
QCDSR and the quark model as summarized in Table III,
while these results are not consistent with each other.
The amplitudes of the γDD couplings are obtained as

hD̄0ðpDÞD0ðqÞjiLV0D̄0D0iLγV0 jγðkÞi

¼−i2
�
gγVgVDD

�
1

m2
ρ
þ 1

3m2
ω

�
−
4

3

gγψgψDD

m2
ψ

�
eε · ðpD−qÞ

≡−iCγD̄0D0

ε · ðpD−qÞ; ðA22Þ

hD−ðpDÞDþðqÞjiLV0D−DþiLγV0 jγðkÞi

¼ i2

�
gγVgVDD

�
1

m2
ρ
−

1

3m2
ω

�
þ 4

3

gγψgψDD

m2
ψ

�
eε · ðpD − qÞ

≡ iCγD−Dþ
ε · ðpD − qÞ; ðA23Þ

where the constant CγD̄0D0

(CγD−Dþ
) is given by 0.15 (0.23)

for the SU(4) model, 0.036 (0.36) for gψDD ¼ 2.9 the
QCDSR, and −0.093 (0.48) for the quark model as
summarized in Table III. The constant CðmodelÞ used in
Eq. (17) above is given as CðmodelÞ ≡ CγD̄0D0

, where
model ¼ SUð4Þ, QCDSR, quark model.
The effective Lagrangians which yield the amplitudes

(A22) and (A23) can be written by

LðphÞ
γD̄0D0 ¼ iCγD̄0D0

Aμð∂μD̄0D0 − D̄0∂μD0Þ; ðA24Þ

LðphÞ
γD−Dþ ¼ −iCγD−Dþ

Aμð∂μD−Dþ −D−∂μDþÞ; ðA25Þ

where CγD̄0D0

and CγD−Dþ
are regarded as the coupling

constants of the effective γDD Lagrangians.

APPENDIX B: TRANSFORMATION MATRIX OF
THE GAUGE-INVARIANT OPERATORS

In the paper of Levy et al. [95,96], the authors use a
different basis to ours for the gauge-invariant operators. We
denote the gauge-invariant operators in their basisML

i and
they read

ML
1 ¼ 1

2
γ5ð=ε=k − =k=εÞ; ðB1aÞ

ML
2 ¼ 2γ5ðpK · εP · k − pK · kP · εÞ; ðB1bÞ

ML
3 ¼ γ5ð=εpK · k − =kpK · εÞ; ðB1cÞ

ML
4 ¼ iϵαβμνγαp

β
Kε

μkν; ðB1dÞ

ML
5 ¼ γ5ðpK · εk2 − pK · kk · εÞ; ðB1eÞ

ML
6 ¼ γ5ðk · ε=k − k2=εÞ: ðB1fÞ

The gauge-invariant operators ML
i in the basis of Levy

et al. [95,96] can be rewritten in terms of gauge-invariant
operators Mi of our basis, shown in Eq. (A5), as

ML
1 ¼ −γ5M1; ðB2aÞ

ML
2 ¼ γ5½ð2pΛ · k − k2ÞM2 − ð2p · kþ k2ÞM3�; ðB2bÞ

ML
3 ¼ γ5ðM4 −M5 −M6Þ; ðB2cÞ

ML
4 ¼ γ5½−ðmΛ þmpÞM1 −M4 −M5�; ðB2dÞ

ML
5 ¼ γ5k2ðM2 −M3Þ; ðB2eÞ

ML
6 ¼ γ5M6: ðB2fÞ

From here, we can schematically write the transition
between these two bases, i.e., ML

i ¼ γ5Ri
jMj, where the

transformation matrix reads

Ri
j¼

0
BBBBBBBBB@

−1 0 0 0 0 0

0 2k ·pΛ−k2 −2k ·p−k2 0 0 0

0 0 0 1 −1 −1
−mΛ−mp 0 0 −1 −1 0

0 k2 −k2 0 0 0

0 0 0 0 0 1

1
CCCCCCCCCA
:

ðB3Þ

TABLE III. The coupling constants gψDD and the correspond-
ing strength of the γDD effective Lagrangians, CγD−Dþ

and
CγD̄0D0ð¼CðmodelÞÞ. The results obtained by the various models,
the SU(4) symmetry (SU(4)), QCDSR, and the quark model, are
shown.

Model gψDD CγD̄0D0

CγD−Dþ
Reference

SU(4) gVPP ¼ 1.4 0.15 0.23 [105]
QCDSR 2.9 0.036 0.36 [107]
Quark model 4.6 −0.093 0.48 [108]
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