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In this paper, we show that QCD at high energies leads to the multiplicity distribution ðσn=σinÞ ¼
ð1=NÞ ðN − 1=NÞn−1 (where N denotes the average number of particles) and to entanglement entropy
S ¼ lnN, confirming that the partonic state at high energy is maximally entangled. However, the value ofN
depends on the kinematics of the parton cascade. In particular, for deep inelastic scattering, N ¼ xGðx;QÞ,
where xG is the gluon structure function, while for hadron-hadron collisions, N ∝ Q2

SðYÞ, where Qs

denotes the saturation scale. We checked that this multiplicity distribution describes the LHC data for low
multiplicities n < ð3 ÷ 5ÞN, exceeding it for larger values of n. We view this as a consequence of our
assumption that the system of partons in hadron-hadron collisions at c.m. rapidity Y ¼ 0, is dilute. We show
that the data can be described at large multiplicities in the parton model, if we do not make this assumption.

DOI: 10.1103/PhysRevD.102.074008

I. INTRODUCTION

Over the past several years, new ideas have been devel-
oped in the high energy and nuclear physics community,
which suggest a robust relation between the principle
features of high energy scattering and entanglement proper-
ties of the hadronic wave function [1–17]. The main idea,
which we explore in this paper, is the intimate relation
between the entropy in the parton approach [18–21] and the
entropy of entanglement in a proton wave function [5].
This relation materialized as the resolution of the

following difficulty in our understanding of high energy
scattering: on one hand, the proton is a pure state, and it is
described by a completely coherent wave function with
zero entropy, but, on the other hand, the deep inelastic
scattering (DIS) experiments are successfully described,
treating the proton as a incoherent collection of quasifree
partons. This ensemble has nonvanishing entropy, and
Ref. [5] proposes that the origin of this entropy is the
entanglement between the degrees of freedom one observes
in DIS (partons in the small spatial region of the proton)
and the rest of the proton wave function, which is not
measured in the DIS experiments.

In other words, the hadron in the rest frame is described
by a pure state jψiwith density matrix ρ̂ ¼ jψihψ j and zero
von Neumann entropy S ¼ −tr½ρ̂ ln ρ̂� ¼ 0. In DIS at
Bjorken x and momentum transfer, q2 ¼ −Q2 probes only
a part of the proton’s wave function; let us denote it A. In
the proton’s rest frame, the DIS probes the spatial region A
localized within a tube of radius approximately 1=Q and
length approximately 1=ðmxÞ [22,23], where m is the
proton’s mass. The inclusive DIS measurement thus sums
over the unobserved part of the wave function localized in
the region B complementary to A, so we have access only to
the reduced density matrix ρ̂A ¼ trBρ̂, and not the entire
density matrix ρ̂ ¼ jψihψ j. In Ref. [5], it is proposed that

SA ¼ −trB½ρ̂A ln ρ̂A� ¼ Sparton cascade: ð1Þ

Equation (1), in spite of its general form, means that we can
estimate the entropy and multiplicity distribution of the
produced gluons using the parton wave function in the
initial state. In addition, we can obtain a thermal distribu-
tion of the produced particles in the high energy collision in
spite of the fact that the number of secondary interactions in
proton-proton collisions is rather low and cannot provide
the thermalization due to the interaction in the final state.
It has been demonstrated in Refs. [6,10,11,16] that these

ideas are in qualitative and, partly, in quantitative agree-
ment with the available experimental data.
The goal of this paper is to study the multiplicity

distribution and the entanglement entropy in the effective
theory for QCD at high energies (see Ref. [24] for a general
review). Such a theory exists in two different formulations:
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the color glass condensate (CGC)/saturation approach
[25–30] and the BFKL (Balitsky-Fadin-Kuraev-Lipatov)
Pomeron calculus [31–45].
We believe that the CGC/saturation approach provides a

more general pattern [43,44] for the treatment of high
energy QCD. However, in this paper, we restrict ourself to
the BFKL Pomeron calculus, which has a more direct
correspondence with the parton approach and has been
used in Ref. [5].
Fortunately, in Ref. [44], it was shown that these two

approaches are equivalent for the description of the
scattering amplitude

Y ≤
2

ΔBFKL
ln
�

1

Δ2
BFKL

�
; ð2Þ

where ΔBFKL denotes the intercept of the BFKL Pomeron.
The main difference between the CGC approach and

the parton QCD cascade for the topics dealt with in this
paper is the fact that the CGC approach generates the
nondiagonal elements of the density matrix (see, for
example, Refs. [3,9,12,17]), while for the parton cascade
and, generally, in the BFKL Pomeron calculus, the density
matrix is diagonal. Since in DIS experiments we can only
measure the diagonal elements of density matrix, we can
introduce in the framework another kind of entropy: “the
entropy of ignorance” [17], which characterized this lack of
knowledge of the actual density matrix in DIS experiments.
We will show below that the McLerran-Venugopalan
approach [25], which is used in Ref. [17], leads to the
same multiplicity distribution as the parton cascade.
The paper is organized as follows. In the next section, we

consider the entropy and multiplicity distributions in the
QCD parton cascade. We show that in different kinematic
regions the QCD cascade leads to different energy and
dipole size dependence of the mean multiplicity, and that
the multiplicity distribution has a general form,

σn
σin

¼ 1

N

�
N − 1

N

�
n−1

; ð3Þ

where N is the average number of partons. The entangle-
ment entropy is equal to Sparton cascade ¼ lnN, confirming
that the partonic state at high energy is maximally
entangled [5] (see Fig. 2). In the case of DIS, we argue
that N is equal to the gluon structure function, but we can
only prove the multiplicity distribution of Eq. (3), for the
BFKL evolution of this structure function. In Sec. III, we
show that the CGC approach leads to the multiplicity
distribution of Eq. (3). In Sec. IV, we consider hadron-
hadron scattering. In the range of energy given by Eq. (2),
we use the Mueller-Patel-Salam-Iancu (MPSI) [36,46]
approach, using the formalism of Ref. [41]. We show that
in the framework of this approach we have the distribution
of Eq. (3), which can describe the experimental data for

sufficiently low multiplicities n ≤ ð3 ÷ 5Þhni. However, we
fail to describe the data for larger n. We conclude that the
main assumption of the MPSI approach, that a system of
dilute partons are produced in the c.m. rapidity Y ¼ 0, is
not valid for large multiplicities at high energies of the
LHC. Unfortunately, at the moment, we have no theoretical
tool to treat this scattering. However, in Ref. [47], an
approach has been suggested, which allows us to describe
the dense system of partons in hadron-hadron collisions, as
well as the dilute one. Developing this approach for the
multiplicity distribution, we are able to describe the data for
large multiplicities. We summarize our results in the
conclusions.

II. QCD PARTON CASCADE

A. QCD cascade for fast moving large dipole

1. General approach

As discussed in Refs. [24,26,40,41], the parton cascade
can be written in the form (see Fig. 1)

∂PnðY; r; b; r1; b1; r2; b2…ri; bi;…rn; bnÞ
∂Y

¼ −
Xn
i¼1

ωGðriÞPnðY; r; b; r1; b1; r2; b2…ri; bi;…rn; bnÞ

þ ᾱS
Xn−1
i¼1

ðri þ rnÞ2
ð2πÞr2i r2n

Pn−1ðY; r; b; r1; b1;…ðri þ rnÞ;

bin;…rn−1; bnÞ; ð4Þ

where PnðY; fri; bigÞ is the probability to have n-dipoles of
size ri, at impact parameter bi and at rapidity Y1 bin in
Eq. (4) is equal to bin ¼ bi þ 1

2
ri ¼ bn − 1

2
ri.

Eq. (4) is a typical cascade equation in which the first
term describes the reduction of the probability to find n
dipoles due to the possibility that one of the n dipoles can
decay into two dipoles of arbitrary sizes, while the second
term describes the growth due to the splitting of (n − 1)
dipoles into n dipoles.
The initial condition for the DIS scattering is

P1ðY ¼ 0; r; b; r1; b1Þ ¼ δð2Þðr − r1Þδð2Þðb − b1Þ;
Pn>1ðY ¼ 0; frigÞ ¼ 0; ð5Þ

which corresponds to the fact that we are discussing a
dipole of definite size which develops the parton cascade.
Since PnðY; frigÞ is the probability to find dipoles frig,

we have the sum rule

1In the laboratory frame rapidity, Y is equal to Y ¼
ydipole r − ydipoles ri , where ydipole r is the rapidity of the incoming
fast dipole and ydipoles ri is the rapidity of dipoles ri.
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X∞
n¼1

Z Yn
i¼1

d2rid2biPnðY; fribigÞ ¼ 1; ð6Þ

i.e., the sum of all probabilities is equal to 1.
This QCD cascade leads to Balitsky-Kovchegov (BK)

equation [24,27,28] for the amplitude and gives the
theoretical description of the DIS. We introduce the
generating functional [26]

ZðY; r; b; ½ui�Þ

¼
X∞
n¼1

Z
PnðY; r; b; fribigÞ

Yn
i¼1

uðribiÞd2rid2bi; ð7Þ

where uðribiÞ≡ ¼ ui is an arbitrary function. The initial
conditions of Eq. (5) and the sum rules of Eq. (6) take the
following form for the functional Z:

ZðY ¼ 0; r; b; ½ui�Þ ¼ uðr; bÞ; ð8aÞ

ZðY; r; ½ui ¼ 1�Þ ¼ 1: ð8bÞ

Multiplying both parts of Eq. (4) by
Q

n
i¼1 uðribiÞ and

integrating over ri and bi we obtain the following linear
functional equation [41]:

∂ZðY; r; b; ½ui�Þ
∂Y

¼
Z

d2r0Kðr0; r − r0jrÞ
�
−uðr; bÞ

þ u

�
r0; bþ 1

2
ðr − r0Þ

�
u

�
r − r0; b −

1

2
r0
��

δZ
δuðr; bÞ ;

ð9aÞ

Kðr0; r − r0jrÞ ¼ ᾱS
2π

r2

r02ðr − r0Þ2 ;

ωGðrÞ ¼
Z

d2r0Kðr0; r − r0jrÞ: ð9bÞ

Searching for the solution of the form Zð½uðri; bi; YÞ�Þ
for the initial conditions of Eq. (8), Eq. (9a) can be rewritten
as the nonlinear equation [26]:

∂ZðY; r; b; ½ui�Þ
∂Y

¼
Z

d2r0Kðr0; r − r0jrÞ
�
Z

�
r0; bþ 1

2
ðr − r0Þ; ½ui�

�

× Z

�
r − r0; b −

1

2
r0; ½ui�

�
− ZðY; r; b; ½ui�Þ

�
: ð10Þ

Therefore, the QCD parton cascade of Eq. (4) takes into
account nonlinear evolution. However, to obtain the BK
equation for the scattering amplitude, we need to introduce
the scattering amplitude γðri; bÞ, for the interaction of the
dipole with the target at low energies. Using these ampli-
tudes, we can obtain the nonlinear BK equation from
Eq. (10), since [28]

NðY; r; bÞ ¼
X∞
n¼1

ð−1Þn−1
n!

Z Yn
i¼1

�
d2riγðri; bÞ

δ

δui

�

× ZðY; r; b; ½ui�Þjui¼1: ð11Þ

Using Eqs. (9a) and (11), we derive the BK equation in the
standard form:

∂
∂YNðr;b;YÞ¼

Z
d2r0Kðr0;r−r0jrÞ

�
N

�
r0;b−

1

2
ðr−r0Þ;Y

�

þN

�
r−r0;b−

1

2
r0;Y

�
−Nðr;b;YÞ

−N

�
r−r0;b−

1

2
r0;Y

�
N

�
r0;b−

1

2
ðr−r0Þ;Y

��
:

ð12Þ
2. Several first iterations

Our goal is to find the solution to Eq. (4). In particular,
for the multiplicity distribution and for the entropy, we wish
to find

P̃nðY; rÞ ¼
Z

PnðY; r; b; fri; b0Þ
Yn
n¼1

d2rid2b0: ð13Þ

P̃n is the probability of finding n dipoles of all possible
sizes at the same values of the impact parameters, and being
such, it gives σn=σin, which is the multiplicity distribution
in the QCD parton cascade. The initial and boundary
conditions for P̃nðY; rÞ follow from Eq. (5) and Eq. (6)
and take the form:

d___
d Y =1 2 n−1 n

P (Y,r,{r })n i
− 1 2 i n

P (Y,r,{r })n i

r’
+ 1 2 n−1

n

P   (Y,r,{r })n−1 i

FIG. 1. The graphical form of Eq. (4).
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P̃1ðY ¼ 0; r; bÞ ¼ 1; P̃nðY ¼ 0; rÞ ¼ 0 for n > 1;

X∞
n¼1

P̃1ðY; r; bÞ ¼ 1: ð14Þ

First, let us find P̃1ðY; rÞ. The equation for P1 has the
form

∂P1ðY; r; b; r1; b1Þ
∂Y ¼ −ωGðr1ÞP1ðY; r; b; r1; b1Þ ð15Þ

with the initial condition

P1ðY ¼ 0; r; b; r1; b1Þ ¼ δð2Þðr − r1Þδð2Þðb − b1Þ: ð16Þ

Therefore, for P̃1ðY; r; bÞ, the equation takes the form

∂P̃1ðY; r; bÞ
∂Y ¼ −ωGðrÞP̃1ðY; r; bÞ ð17Þ

with the solution

P̃1ðY; r; bÞ ¼ e−ωGðrÞY: ð18Þ

The equation for P2ðY; r; b; r1; b0; r2; b0Þ has the follow-
ing form:

∂P2ðY; r; b; r1; b0; r2; b0Þ
∂Y

¼ −ðωGðr1Þ þ ωGðr2ÞÞP2ðY; r; b; r1; b0; r2; bÞ

þ ᾱS
2π

ðr1 þ r2Þ2
r21r

2
2

P1ðY; r; b; r1 þ r2; b0Þ: ð19Þ

First, let us estimate the value of ωGðrÞ, which is given
by Eq. (9b):

ωGðrÞ ¼
ᾱS
2π

Z
d2r0

r2

r02ðr − r0Þ2

¼ ᾱS
π

Z
d2r0

r2

r02ðr02 þ ðr − r0Þ2Þ

¼
�Z

r

r0

þ
Z

∞

r

�
d2r0

r2

r02ðr02 þ ðr − r0Þ2Þ

¼ ᾱS ln ðr2=r20Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r0≤r

þ 0|{z}
r0≥r

¼ ᾱS

Z
r2

r2
0

dr02

r02
: ð20Þ

Hence, only dipoles of size smaller than r contribute to the
value of ωGðrÞ.

We suggest that the solution to Eq. (19) has the form

Z
d2b0P2ðY; r; b; r1; b0; r2; b0Þ

¼ 1

r21r
2
2

Θðr − r1ÞΘðr − r2Þp2ðr; bÞ; ð21Þ

where ΘðzÞ denotes the step function: ΘðzÞ ¼ 1 for z > 0
andΘðzÞ ¼ 0 for z < 0. For the solution of Eq. (21), we can
obtain the equation for P̃2ðY; r; bÞ, integrating both parts of
Eq. (19) over b0, r1, and r2. It has the form

∂P̃2ðY; rÞ
∂Y ¼ −2ωGðrÞP̃2ðY; rÞ þ ωGðrÞP̃1ðY; rÞ: ð22Þ

Using Eq. (18), we obtain that

P̃2ðY; rÞ ¼ e−ωGðrÞYð1 − e−ωGðrÞYÞ. ð23Þ

One can see that Eq. (23) gives P̃2ðY ¼ 0; rÞ ¼ 0 in
accord with Eq. (14). For small ωGðrÞY ≪ 1 in the parton
cascade, only two terms exist, P̃1ðY; rÞ and P̃2ðY; rÞ, and
Eq. (6) reduces to

P̃1ðY; rÞ þ P̃2ðY; rÞ !ωGðrÞY≪1
1 − ωGðrÞY|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

P̃1

þ ωGðrÞY|fflfflfflffl{zfflfflfflffl}
P̃2

¼ 1: ð24Þ

Eq. (24) shows that PnðY; r; b; fri; b0gÞ are negligibly
small for dipoles with large sizes (ri > r).

3. Solution

We suggest looking for the general solution in the form

P̃nðY; r; b; fr0igÞ ¼
Yn
i¼1

Θðr − riÞ
1

r2i
P̃nðY; r;bÞ: ð25Þ

For such a solution, we can obtain from Eq. (4) the
following equations for P̃nðY; r; bÞ:

∂P̃nðY; r; bÞ
∂Y ¼ −nωGðrÞP̃nðY; r; bÞ

þ ðn − 1ÞωGðrÞP̃n−1ðY; r; bÞ: ð26Þ

Introducing the Laplace transform

P̃nðY; r; bÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2πi

eωYp̃nðω; r; bÞ; ð27Þ

we rewrite Eq. (26) in the form

ωp̃nðω; r; bÞ ¼ −nωGðrÞp̃nðω; r; bÞ
þ ðn − 1ÞωGðrÞp̃n−1ðω; r; bÞ: ð28Þ
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Eq. (28) has the solution

p̃nðω; rÞ ¼ ðn − 1Þ!
Yn
m¼1

1

ωþmωGðrÞ
; ð29Þ

note that Eq. (29) reproduces both Eq. (18) and Eq. (23).
Taking the inverse Laplace transform of function

e−ωGðrÞYð1 − e−ωGðrÞYÞn−1, we have

Z
∞

0

dYe−ωYe−ωGðrÞYð1 − e−ωGðrÞYÞn−1

¼ ðn − 1Þ!
Yn
m¼1

ωGðrÞ
ωþmωGðrÞ

¼ p̃nðω; rÞ: ð30Þ

Hence, we have the following solution:

P̃nðY; rÞ ¼ e−ωGðrÞYð1 − e−ωGðrÞYÞn−1: ð31Þ

It is easy to see that Eq. (31) satisfies the initial conditions
and the sum rules of Eq. (14).

B. Multiplicity distribution and entropy
of the parton cascade

As has been mentioned,

σn
σin

¼ P̃nðY; rÞ ð32Þ

and therefore determines the multiplicity distribution.
Calculating the average N,

N ¼
X∞
n¼1

n
σn
σin

¼
X∞
n¼1

nP̃nðY; rÞ ¼ eωðrÞY; ð33Þ

we see that this distribution can be written in the form

σn
σin

¼ 1

N

�
N − 1

N

�
n−1

¼ 1

N̄

�
N̄

N̄ þ 1

�
n

; ð34Þ

where we have denoted N̄ ¼ N − 1.
We can compare Eq. (34) with the general form of the

negative binomial distribution (NBD)

PNBDðr; n̄; nÞ ¼
�

r
rþ hni

�
r Γðnþ rÞ
n!ΓðrÞ

� hni
rþ hni

�
n
: ð35Þ

One can see that Eq. (34) can be rewritten as

σn
σin

¼ N̄
N̄ þ 1

PNBDð1; N̄; nÞ; ð36Þ

where σn is the cross section for producing n hadrons in a
collision and σin is the inelastic cross section. Therefore, at
large N̄, our distribution is close to the negative binomial
distribution with number of failures r ¼ 1 and with
probability of success p ¼ N̄=ðN̄ þ 1Þ. Eq. (34) coincides
with the multiplicity distribution in the parton model (see
below and Ref. [5]). The difference is only in the expres-
sion for the average multiplicity (N).
Having Eq. (34), we can calculate the von Neumann

entropy of the parton cascade [see Eq. (1)], given by the
Gibbs formula,

Sparton cascade ¼ −
X
n

pn lnpn; ð37Þ

where pn is the probabilities of microstates. In the parton
cascade, we can identify pn with P̃nðY; rÞ, reducing
Eq. (38) to the following expression (see Fig. 2):

Sparton cascade ¼ −
X
n

P̃nðY; rÞ ln P̃nðY; rÞ

¼
X
n

�
ln N̄ − n ln

�
N̄

N̄ þ 1

��
1

N̄

�
N̄

N̄ þ 1

�
n

¼ ln N̄ þ ln

�
N̄

N̄ þ 1

��
1þ 1

N̄

�
⟶
N̄≫1

ln ðN − 1Þ

¼ ωGðrÞY: ð38Þ

Eq. (38) shows that at large Y all probabilities P̃n become
equal and small, of the order of P̃n ∼ 1

N. It is well known
that this equipartitioning of microstates maximizes the von
Neumann entropy and describes the maximally entangled
state. We thus conclude that at large Y the fast dipole
represents a maximally entangled quantum state of partons.

exact

asymptotics

2 4 6 8 10

0

2

4

6

8

10

ln N = G(r) Y

S

FIG. 2. Entropy S vs lnN ¼ ωGðrÞY [see Eq. (38)]. Sasymp ¼
lnN ¼ ωGðrÞY.
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C. QCD motivated parton model

The main assumption of the parton model [19–21] is that
all partons have average transverse momentum, which does
not depend on energy. Therefore, we can obtain the parton
model from the QCD cascade assuming that the unknown
confinement of gluons leads to the QCD cascade for the
dipole of fixed size. In this case, the cascade equation take
the form

dPnðYÞ
dY

¼ −ΔnPnðYÞ þ ðn − 1ÞΔPn−1ðYÞ; ð39Þ

where PnðYÞ is the probability to find n dipoles (of a fixed
size in our model) at rapidity Y and Δ ¼ ωGðr ¼ r0Þ.
Using the Laplace transform of Eq. (27), we obtain the

solution to Eq. (39) in the form

PnðωÞ ¼ ðn − 1Þ!
Yn
m¼1

1

ωþmΔ
: ð40Þ

Using Eq. (30), we see that the solution of Eq. (39) has
the form

σn
σin

≡PnðYÞ¼ e−ΔYð1−e−ΔYÞn−1¼ 1

N

�
N−1

N

�
n−1

; ð41Þ

which is a direct generalization of Eq. (31). In Eq. (41),N is
the average number of the partons, which is equal to
N ¼ exp ðΔYÞ. In the parton model, the average number of
partons is related to the deep inelastic structure function.
Therefore, in Ref. [5], it is assumed that

N ¼ xGðx;Q2Þ; ð42Þ

where xG is the gluon structure function. In this case,Δ can
be identified with the intercept of the BFKL Pomeron [31].
One can see that N ¼ exp ðωGðrÞYÞ; this is certainly not
the same as a solution of the QCD evolution for the gluon
structure function.

D. Mutiplicity distribution for the parton cascade
in DIS

As we have seen [see Eq. (25)], our solution describes the
evolution in the system of partons with smaller sizes of
dipoles than the initial fastest dipole. On the other side, only
partons of larger than initial parton size contribute to the
structure function. In double log approximation, the emis-
sion of such dipoles leads to xG ∝ exp ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱSY ln ðR2=r2Þ

p
Þ,

whereR is the size of the target.We need to consider how the
produced dipoles interact with the target. We measure the
gluon structure function in the experiment in which r2 of
the fastest dipole is about r2 ∼ 1=Q2 ≪ R2. Since all ri ≤ r
the n produced dipoles interact with the target at rapidity Y
and since ri < R, the amplitude of this interaction is

proportional to r2i =R
2. This fact completely changes the

structure of the cascade. Let us illustrate this, considering
P2ðY; r; r1; r2Þ. The amplitude of interaction is proportional
to ρ2ðY; r; b; r1; r2; b0Þ≡ ðr21 þ r22ÞP2ðY; r; b; r1; r2; b0Þ.
Let us look at Eq. (19) for ri > r. The term with gluon
ωGðriÞ does not contribute since, as we have discussed,
only ri > r contribute in this term. Therefore, the equation
reduces to the following one:

∂ρ2ðY; r; b; r1; r2; b0Þ
∂Y ¼ r2

r41
2r21PðY; r; b; r1:b0Þ

¼ 2
1

r21
PðY; r; b; r1:b0Þ: ð43Þ

Therefore, we infer that dipole sizes larger than r
contribute to the scattering amplitude of our interest and
lead to large ρ2.
Generally speaking, the scattering amplitude can be

written in the form [28,41]

NðY; r; bÞ ¼ −
X∞
n¼1

ð−1Þnρpnðr1; b1;…rn; bn;Y − Y0Þ

×
Yn
i¼1

NðY0; ri; biÞd2rid2bi; ð44Þ

where NðY0; ri; biÞ is the amplitude of the interaction of
dipole ri with the target at low energy Y ¼ Y0 and the
n-dipole densities in the projectile ρpnðr1; b1;…; rn; bnÞ are
defined as follows:

ρpnðr1;b1…;rn;bn;Y−Y0Þ¼
1

n!

Yn
i¼1

δ

δui
ZðY−Y0; ½u�Þju¼1:

ð45Þ

For ρn, we obtain [41]

∂ρpnðr1; b1…; rn; bnÞ
ᾱs∂Y

¼ −
Xn
i¼1

ωðriÞρpnðr1; b1…; rn; bnÞ

þ 2
Xn
i¼1

Z
d2r0

2π

r02

r2i ðri − r0Þ2 ρ
p
nð…r0; bi − r0=2…Þ

þ
Xn−1
i¼1

ðri þ rnÞ2
ð2πÞr2i r2n

ρpn−1ð…ðri þ rnÞ; bin…Þ: ð46Þ

For ρ1, we have the linear equation:
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∂ρp1 ðY; r1; bÞ
ᾱS∂Y ¼ −ωGðr1Þρp1 ðY; r1; bÞ

þ 2

Z
d2r0

2π

r02

r21ðr1 − r0Þ2 ρ̄
p
1 ðY; r0; bÞ: ð47Þ

Introducing ρ̄p1 ðY; r1; bÞ ¼ r21ρ
p
1 ðY; r0; bÞ, we obtain for

ρ̄p1 ðYr1; bÞ the BFKL equation:

∂ρ̄p1 ðY; r1; bÞ
ᾱS∂Y ¼ −ωGðr1Þρ̄p1 ðY; r1; bÞ

þ 2

Z
d2r0

2π

1

ðr1 − r0Þ2 ρ̄
p
1 ðY; r0; bÞ: ð48Þ

The physical meaning of ρp1 is clear from Eq. (45); it is the
mean number of dipoles with size r1 that have been
produced. The multiplicity, which we needed in DIS, is
the number of dipoles with sizes larger than r ∼ 1=Q. It is
equal to

Np
1 ðY; rÞ ¼

Z
r
d2r1; d2bρ

p
1 ðY; r1; bÞ

¼
Z

ξ
dξ0d2bρ̄p1 ðY; ξ0; bÞ ¼ hni; ð49Þ

where ξ ¼ lnð1=r2Þ.
In the double log approximation (DLA) of perturbative

QCD, Eq. (48) can be rewritten in the form

∂2Np
1 ðY; rÞ

ᾱS∂Y∂ξ ¼ Np
1 ðY; rÞ: ð50Þ

It is worth it to mention that Np
1 is the gluon structure

function in the DLA.
The equation for ρ̄p2 ðY; r1; r2; bÞ has the form2

∂ρp2 ðY; r1; r2; bÞ
ᾱS∂Y ¼ −ðωGðr1Þ þωGðr2ÞÞρp2 ðY; r1; r2bÞ

þ 2

Z
d2r0

2π

r02

r21ðr1 − r0Þ2 ρ
p
2 ðY; r0; b; r2; bÞ

þ 2

Z
d2r0

2π

r02

r22ðr2 − r0Þ2 ρ
p
2 ðY; r1; r0; bÞ

þ ðr1 þ r2Þ2
ð2πÞr21r22

ρp1 ðY; r1 þ r2Þ; bÞ: ð51Þ

However, to find the multiplicity distribution, we need to
introduce moments [see Eq. (13)]:

Np
nðY; rÞ ¼

Z Yn
i¼1

d2rid2bρ
p
nðY; frig; bÞ

¼
Z Yn

i¼1

d2ri
r2i

d2bρ̄pnðY; frig; bÞ: ð52Þ

Np
2 is equal to

Np
2 ðY; rÞ ¼

Z
ξ
dξ1

Z
ξ
dξ2

Z
d2bρ̄p2 ðY; ξ1; ξ2; bÞ; ð53Þ

which gives hnðn−1Þ
2

i.
The equation for ρp2 can be rewritten in the form for ρ̄p2

∂ρ̄p2 ðY; r1; r2; bÞ
ᾱS∂Y ¼ −ðωGðr1Þ þ ωGðr2ÞÞρ̄p2 ðY; r1; r2bÞ

þ 2

Z
d2r0

2π

1

ðr1 − r0Þ2 ρ̄
p
2 ðY; r0; b; r2; bÞ

þ 2

Z
d2r0

2π

1

ðr2 − r0Þ2 ρ̄
p
2 ðY; r1; r0; bÞ

þ ρ̄p1 ðY; r1 þ r2; bÞ; ð54Þ

or in DLA, it takes the form

∂ρ̄p2 ðY; ξ1; ξ2; bÞ
ᾱS∂Y ¼

Z
ξ1
dξ0ρ̄p2 ðY; ξ0; ξ2; bÞ

þ
Z

ξ2
dξ0ρ̄p2 ðY; ξ1; ξ0; bÞ

þ ρ̄p1 ðξ1 ≈ ξ2Þ ð55Þ

Note that the gluon Reggeization does not contribute in
DLA, since it describes the contribution of distances ri < r
(see the discussion above). Integrating Eq. (55) over ξ1 and
ξ2, we obtain

∂Np
2 ðY; ξÞ
ᾱS∂Y ¼ 2

Z
ξ
dξ0Np

2 ðY; ξ0Þ þ
Z

ξ
dξ0Np

1 ðY; ξ0Þ: ð56Þ

The general solution to Eq. (56) has a form Np
2 ðY; ξÞ ¼

Np;homog
2 ðY; ξÞ − Np

1 ðY; ξÞ, where Np;homog
2 ðY; ξÞ is the

solution of the homogenous equation:

∂Np;homog
2 ðY; ξÞ
ᾱS∂Y ¼ 2

Z
ξ
dξ0Np;homog

2 ðY; ξÞ: ð57Þ

The solution of Eq. (57) has the form

Np;homog
2 ðY; ξÞ ¼

Z
ϵþi∞

ϵ−i∞

dγ
2πi

e
2ᾱS
γ YþγξninðγÞ; ð58Þ

where ωðγÞ ¼ ᾱS
γ is the DLA limit of the BFKL kernel,2For simplicity of presentation, we took b ≫ ri.
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ωðγÞ ¼ ᾱSχðγÞ ¼ ᾱSð2ψð1Þ − ψðγÞ − ψð1 − γÞÞ; ð59Þ

where ψðzÞ is Euler gamma function [see Ref. [48],
Eq. (8.36)].
We select ninðγÞ ¼ 1=γ, since at Y ¼ 0 we have only one

dipole and N2 ¼ hnðn − 1Þ=2i ¼ 0. Taking the integral
over γ using the method of steepest descent, we obtain

Np;homog
2 ðY; ξÞ ¼

�
π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ᾱSYξ

p
�

1=2
exp ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ᾱSYξ

p
Þ: ð60Þ

First, we wish to note that Eq. (60) leads to
Np;homog

2 ðY; ξÞ ≠ ðNp
1 ðY; ξÞÞ2. However, in the diffusion

approximation for the BFKL kernel,

ωðγÞ ¼ ΔBFKL þDð1=2 − γÞ2

¼ ΔBFKL −Dν2 with γ ¼ 1

2
þ iν;

ΔBFKL ¼ 4 ln 2ᾱS;D ¼ 14ζð3ÞᾱS ¼ 16.828ᾱS; ð61Þ

the main contribution stems from ω ¼ ΔBFKL and
Np;homog

2 ðY; ξÞ ¼ ðNp
1 ðY; ξÞÞ2, if we neglect the contribu-

tions at γ ≠ 1=2 ν ≠ 0). Taking the integral over γ using the
method of steepest descent for the kernel of Eq. (61), one
can see that the values of the saddle point for ν are equal,

νSP ¼
ξ

2DnY
; ð62Þ

for NP
n. Therefore, for large Y as well as for large n, we,

indeed, can consider νSP → 0. For this special case, we have

Np
2 ðY; ξÞ ¼ ðNp

1 ðY; ξÞÞ2 − Np
1 ðY; ξÞ: ð63Þ

Comparing with the multiplicity distribution of Eq. (34),
one can see that Eq. (57) gives the factorial moment hnðn−1Þ

2
i

of this distribution with hni ¼ Np
1 .

For Np
n, the equation follows from Eq. (53), which in

DLA takes the form

∂Np
nðY; ξÞ
ᾱS∂Y ¼ n

Z
ξ
dξ0Np

nðY; ξ0Þ

þ ðn − 1Þ
Z

ξ
dξ0Np

n−1ðY; ξ0Þ: ð64Þ

The solution to this equation has the form

Np
nðY; ξÞ ¼

Z
ϵþi∞

ϵ−i∞

dγ
2πi

1

γ
eωðγÞYþγξfeωðγÞY − 1gn−1; ð65Þ

with ωðγÞ ¼ ᾱS=γ in DLA.
Comparing Eq. (65) with the moments Mq ¼ h n!

q!ðn−qÞ!i
for the multiplicity distribution of Eq. (34),

N1¼ n̄; Nkðk>1Þ¼
�

n!
q!ðn−qÞ!

	
¼ n̄ðn̄−1Þk−1; ð66Þ

one can see that Np
nðY; ξÞ coincide with these moments

only if we take into account the main exponential behavior
at γ ¼ 1=2. As we have seen above, for large n, the value
of the saddle point for ν [see Eq. (62)] indeed approach-
ing zero.
Hence, we infer that the QCD parton cascade in DIS

leads to the multiplicity distribution of Eq. (34) with
N ¼ xGðQ; xÞ at x → 0, as is expected from the parton
model of Sec. II C, but xG should satisfy the BFKL
evolution equation, and the accuracy of Eq. (34) is not
very precise at small n.

III. MULTIPLICITY DISTRIBUTION
IN CGC APPROACH

In Ref. [17], the density matrix is calculated in the
CGC approach, using the CGC wave function from
Refs. [49,50]. In the CGC approach, the large fraction
of momentum is carried by the valence quarks and gluons.
These fast partons emit low energy gluons whose lifetime is
much shorter than the valence partons. In other words, the
valence (“hard”) partons can be treated as static sources of
the soft gluons. The wave function of such a system of
partons can be written in the form

jψi ¼ jvi ⊗ jsi; ð67Þ

where jvi characterizes the valence degrees of freedom,
while jsi denotes the wave function of the soft gluon in the
presence of the valence partons. Sign ⊗ does not denote a
direct product, since the wave function of a soft gluon
depends on the valence degrees of freedom. Using that

jsi ¼ Cj0i with C ¼ exp
�
2itr

Z
d2k
ð2πÞ2 b

iðkÞϕa
i ðkÞ

�
;

ð68Þ

where ϕiðkÞ≡ aþi þ að−kÞ and bia ¼ gρaðkÞ ikik2 þ ::.(ρa is
the charge density of the valence partons), and McLerran-
Venugopalan (MV) model for wave function jvi, the
density matrix

ρ̂ ¼ jvi ⊗ jsihsj ⊗ hvj ð69Þ

is calculated in Ref. [17]. The result of these calculation is

hlcðqÞ; mcð−qÞjρ̂jαcðqÞ; βcð−qÞi

¼ ð1 − RÞ ðlþ βÞ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l!m!α!β!

p
�
R
2

�
lþβ

δlþβ;mþα; ð70Þ

with
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R ¼
�
1þ q2

2g2μ2

�−1
; ð71Þ

where g is QCD coupling constant and μ2 determines the
color charge density in the valence wave function in the
MV model [25].
For the multiplicity distribution, we only need the

diagonal elements of the density matrix with l ¼ α and
m ¼ β, and the multiplicity is n ¼ lþm. Plugging these l
and m into Eq. (70), we obtain for the multiplicity
distribution

σn
σin

¼ ð1 − RÞ
X
m

n!
m!ðn −mÞ!

�
R
2

�
n
¼ ð1 − RÞRn: ð72Þ

Calculating average n ¼ N, we obtain

N ¼ ð1 − RÞ−1; ð73Þ

and the multiplicity distribution can be rewritten in the form

σn
σin

¼ 1

N

�
N − 1

N

�
n
¼ 1

N̄

�
N̄

N̄ þ 1

�
n

: ð74Þ

We stress that Eq. (74) coincides with Eq. (34), which we
derived for the QCD parton cascade.

IV. MULTIPLICITY DISTRIBUTION
IN HADRON-HADRON SCATTERING

A. Interaction of two dipoles at high energies

We first consider the high energy interactions of two
dipoles with sizes r and R and with r ∼ R. In Ref. [44], it is
shown that in the limited range of rapidities, which is
given by Eq. (1), we can safely apply the Muller, Patel,
Salam, and Iancu approach for this scattering [36,46] [see

Fig. 3(a)]. The scattering amplitude in this approach can be
written in the form [41]

NðY;r;R;bÞ¼−
X∞
n¼1

ð−1Þn
Z

ρtn

�
r1;b01;…;rn;b0n;

1

2
Y

�

×ρpn

�
r01;b−b01−b001;…;rn;b−b0n−b00n;−

1

2
Y

�

×
Yn
i¼1

d2ri
Yn
j¼1

d2r0jd
2b0jd

2b00jN
BAðri;r0i;b00i Þ;

ð75Þ

where ρtn and ρpn are the parton densities in the target and
projectile, respectively. These densities can be calculated
from Pn using Eq. (45). NBA is the scattering amplitude of
two dipoles in the Born approximation of perturbative QCD
(see Fig. 3). Eq. (75) simply states that we can consider the
QCD parton cascade of Eq. (4) generated by the dipole of
the size r for the c.m.f. (center mass frame) rapidities from
0 to 1

2
Y and the same cascade for the dipole of the size R for

the rapidities from 0 to − 1
2
Y.

Generally speaking, for the dense system of partons
at Y ¼ 0, n dipoles from upper cascade could interact
with m dipoles from the low cascade, with the amplitude
Nm

n ðfrig; fr0jgÞ [41]. In Eq. (75), we assume that the system
of dipoles that has been created at Y ¼ 0 is not very dense.
In this case,

Nm
n ðfrig; fr0jgÞ ¼ δn;m

Yn
j¼1

ð−1Þn−1NBAðri; r0i; b00i Þ; ð76Þ

and after integration over fr1g and fr0jg, the scattering
amplitude can be reduced to a system of enhanced BFKL
Pomeron diagrams, which are shown in Fig. 3(b).

0

r

R

Y/2

0

−Y/2

QCD parton cascade

QCD parton cascade

r

R

(b)(a)

0

r

R

Y/2

−Y/2

(c)

FIG. 3. Scattering amplitude for the interaction of two dipoles with sizes: r and R at high energy in MPSI approach [see Figs. 3(a) and
3(b)]. The amplitudes of interaction of two dipoles in the Born approximation of perturbative QCD [Nðri; r0i; b00iÞ in Eq. (75)] are shown
as white circles. The wavy lines denote the BFKL Pomerons. Fig. 3(c) shows the Mueller diagram [51] for inclusive production of
gluons.
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The average number of dipoles at Y ¼ 0 are determined
by the inclusive cross section, which is given by the
diagram of Fig. 3(c) and which can be written at y → 0
as follows [52]:

dσ
dyd2pT

¼ 2CF

αsð2πÞ4
1

p2
T

Z
d2rTeipT ·rT

×
Z

d2b∇2
TN

BFKL

�
1

2
Y;r;rT ;b

�

×
Z

d2B∇2
TN

BFKL

�
y2¼−

1

2
Y;R;rT ;B

�
: ð77Þ

The average number of dipoles that enters the multiplicity

distribution of Eq. (34) is equal to n̄¼N¼R d2pT
ð2πÞ2

dσ
dyd2pT

=σin∝
expðΔBFKLYÞ3 only if we assume that σin ∼ Const. Indeed,
the enhanced diagrams of Fig. 3(b) lead to the inelastic cross
section, which is constant at high energy.

B. Hadron-hadron collisions

The first idea is to view a hadron as a dilute system of
dipoles and use Eq. (77) for the average multiplicity,
together with the multiplicity distribution of Eq. (34).
However, the energy dependence of the mean multiplicity
from Eq. (77) (n̄ ∝ exp ðΔBFKLYÞ) does not describe the
experimental data (see Fig. 4). The experimental depend-
ence of the mean multiplicity on energy can be para-
metrized as n̄ ∝ exp ðλYÞ, but with the value of
λ ¼ 0.1 ÷ 0.2 [53–55], which is far too small for ΔBFKL.
However, this power is close to the experimental behavior

of the deep inelastic structure function. Therefore, the main
assumption of Ref. [5], that N ∼ xGðx;Q2Þ, does not
contradict the experimental data at least on the qualitative
level [16].
On the other hand, the experimental data can be

described in the framework of the CGC/saturation approach
in which NBFKL were replaced by NBK [57]. Hence, we
cannot view hadrons as the dilute system of dipoles but
rather have to consider them as the a dense system of
dipoles. For such a situation, we expect that n̄ ∝ Q2

sðYÞ=ᾱS
(see Refs. [24,57–60]). Therefore, the entanglement
entropy in this case is

Sparton cascade ¼ ln n̄ ¼ ln ðQ2
sðYÞ=Q2

sðY ¼ 0ÞÞ: ð78Þ

Note that for CGC approach of Sec. III the average
multiplicity turns out to be proportional, μ2 ∼Q2

s , if the
energy evolution is taken into account (see Refs. [24,30]
for review). Frankly speaking, we do not have a theoretical
tool to treat the dense-dense system scattering. For a
general set of diagrams [see Fig. 5(a)], we cannot use the
Hamiltotian of Ref. [44] nor other theoretical methods.
Therefore, our suggestion to use the multiplicity distribution
of Eq. (34) with n̄ determined by Eq. (77) with NBK is a
conjecture. However, we can claim that ρ2 ¼ ρ1ðr1Þρ1ðr2Þ −
ρ1ðr1 þ r2Þ [see Figs. 5(b) and 5(c)), on the same theoretical
grounds as the derivation of BK equation [27,28], since the
fact that the amplitude for two BFKL Pomeron production is
equal to ðNBKÞ2 is used in the derivation of theBKequations.

C. Comparison with the experimental data

To compare the parton cascade with the experimental
data, we first need to establish a relation between the

 [GeV]s

210 310
0

5

10

15

20

25

30

0

Y/2

−Y/2 hadron

hadron
NA22

UA1

UA5

CMS

CMS NSD
| < 2.4 | |

[53]
[54]
[55]
Levin et al.

(a) (b)

FIG. 4. (a) The comparison of the average multiplicities in proton-proton collisions at jη ≤ 2.4 [56] with the theoretical prediction
[53–55,57]. The figure is taken from Ref. [56]. The CGC prediction is marked by Levin et al., and they are taken from Ref. [57]. (b) The
Mueller diagram [51] for the inclusive production in CGC/saturation approach. The wavy lines are the BFKL Pomerons. The helical
lines denote the gluons. The black blobs stand for the triple Pomeron vertices.

3ΔBFKL is the intercept of the BFKL Pomeron.
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multiplicity of hadrons with the multiplicities of partons, in
the QCD parton cascade. Based on “parton liberation”
picture [61] and on the “local parton-hadron duality” [62],
we assume that Sparton cascade ¼ Shadrons. In other words, we
suggest that there is no substantial entropy increase during
the transformation of partons to hadrons. This relation is
our hypothesis about confinement of quarks and gluons,
and it has support in the fact that the value of the entropy
corresponds to a maximally entangled, equipartitioned state
at a relatively modest average multiplicity of around
N ¼ 3 ÷ 6.
Hence, we use Eq. (34) for the hadron multiplicity

distribution replacing n̄ ¼ N of partons, by n̄ of hadrons.
Following Ref. [5], we estimate, using Eq. (34), the value

of the cumulants

Cq ¼
hnqi
hniq ; ð79Þ

where h…i denotes the average over the distribution in
hadron multiplicity n. These quantities can be readily
computed using Eq. (34) (see Ref. [5]). The results of
these estimates are the following:

C2 ¼ 2 − 1=n̄; C3 ¼
6ðn̄ − 1Þn̄þ 1

n̄2
;

C4 ¼
ð12n̄ðn̄ − 1Þ þ 1Þð2n̄ − 1Þ

n̄3
;

C5 ¼
ðn̄ − 1Þð120n̄2ðn̄ − 1Þ þ 30n̄Þ þ 1

n̄4
: ð80Þ

Using the experimental multiplicity in the rapidity
window jηj ≤ 0.5 equal [56] to n̄ ¼ 6.33� 0.46 at W ¼
7 TeV and n̄ ¼ 3.72� 0.23 at W ¼ 0.9 TeV, we get from
Eq. (80) the following predictions for the cumulants:
C2 ≃ 1.83ð1.73Þ, C3 ≃ 5.08ð4.46Þ, C4 ≃ 18.6ð15.31Þ, and
C5 ≃ 85.7ð65.75Þ. We put in parentheses the values at
W ¼ 0.9 TeV. The CMS experiments give (see Fig. 6(b)
of Ref. [56]) Cexp

2 ¼ 2.0� 0.05, Cexp
3 ¼ 5.9� 0.6,

Cexp
4 ¼ 21� 2, and Cexp

5 ¼ 90� 19. Therefore, our esti-
mates are in reasonably good agreement with the data,
indicating that the parton distributions are close to the
hadronic ones. Taking the limit of n̄ → ∞, we obtain the
maximal values for the cumulants C2 ¼ 2, C3 ¼ 6,
C4 ¼ 24, and C5 ¼ 120 as a prediction for asymptotically

high energies. Comparing these numbers to the experi-
mental values listed above, we see that the multiplicity
distribution measured at

ffiffiffi
s

p ¼ 7 TeV is already quite close
to the expected asymptotic form.
In Figs. 6 and 7, we plot the multiplicity dependence in

the form of the KNO (Koba-Nielsen-Olesen) scaling
function [63]:

σn
σin

¼ 1

n̄
Ψ
�
z ¼ n

n̄

�
: ð81Þ

One can see that at large n̄ the distribution of Eq. (34)
leads to

Ψ
�
z ¼ n

n̄

�
⟶
n̄≫1

e−z
�
1þ 1

n̄
−

z
2n̄

�
ð82Þ

and shows KNO scaling for n̄ ≫ z. As far as we know, this
is the first time that KNO scaling appears at ultrahigh
energies on theoretical grounds for hadron-hadron colli-
sions. At least, in the framework of the Pomeron calculus
[64], KNO scaling is expected only for the intermediate
range of energy [65,66].
In Fig. 6(a) and Fig. 7(a), we compare the CMS data [56]

with the multiplicity distribution of Eq. (34). In spite of
the good agreement at small z, one can see two major
qualitative disagreements: (i) KNO scaling works better for
jηj < 0.5 than at jηj < 2.4 in the data, while Eq. (34)
predicts a different behavior, and (ii) Eq. (34) predicts a
larger cross section in the region of large z than is observed
experimentally. The first disagreement is intimately related
to the small value of n̄ at jηj < 0.5. In the framework of our
approach, the violation of KNO scaling will not be seen if
we take N ¼ 5.8 [67] at η ¼ 0, instead of 6.33 ¼ 30.4=4.8,
which we used in these figures. The second disagreement is
of a principle nature. As we have discussed, we use
Eq. (76), which is based on the assumption that we do
not have a dense system of parton at Y ¼ 0. Certainly, such
an assumption is not correct for events with large multi-
plicities. Therefore, this disagreement can be considered as
an additional argument in the attempts to build a gener-
alization of CGC approach to describe the hadron-hadron
collisions.
In Figs. 6(b) and 7(b), we use the negative binomial

distribution of Eq. (35) in which we fixed the parameter r

n 2

hadron hadronhadronhadron

r + r1 2

_

hadron

r1 r2 r1r + r1 2

_
hadron

__

r2

(a) (b) (c)

__ __

FIG. 5. (a) The BFKL Pomeron diagrams for ρn. (b,c) The Pomeron diagrams for ρ2. The wavy lines denote the BFKL Pomerons, The
black circles stand for triple Pomeron vertices. The arrows describe quarks and antiquarks.
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from the moment hnðn−1Þ
2

i, which is estimated using
ρ2 ¼ ρ1ðr1Þρ1ðr2Þ − ρ1ðr1 þ r2Þ (see Fig. 5). One can
see that this distribution has the same characteristic features
as Eq. (34).

D. Back to QCD motivated parton model

In the previous section, we inferred that comparison
with the experimental data indicates that we cannot use

Eq. (76), which stems from the assumption that the system
of partons, which is produced at Y ¼ 0, is rather dilute.
Unfortunately, we have not developed a theoretical
approach in the framework of QCD to treat this problem.
However, in the QCD parton model, that we have discussed
above, a breakthrough has been made by Ref. [47], and an
approach has been constructed that sums all Pomeron
diagrams of the most general type (see Figs. 3 and 5 for
examples).

(a) (b)

FIG. 6. KNO function ðσnσin¼ 1
n̄Ψðnn̄ÞÞ vs z¼n=n̄ for rapidity window jηj < 0.5. (a) Comparison with prediction of Eq. (34).

(b) Comparison with the negative binomial distribution of Eq. (35), in which we estimated parameter r using ρ2 ¼
ρ1ðr1Þρ1ðr2Þ − ρ1ðr1 þ r2Þ.

(a) (b)

FIG. 7. KNO function ðσnσin ¼ 1
n̄Ψðnn̄ÞÞ vs z ¼ n=n̄ for rapidity window jηj < 2.4. (a) Comparison with prediction of

Eq. (34). (b) Comparison with the negative binomial distribution of Eq. (35), in which we estimated parameter r using
ρ2 ¼ ρ1ðr1Þρ1ðr2Þ − ρ1ðr1 þ r2Þ.
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In Ref. [47], a new Hamiltonian is suggested and has
the form

HPM ¼ −
1

γ
P̄P; ð83Þ

where PM stands for “parton model.” P̄ and P are the
BFKL Pomeron field in the model, where the sizes of the
dipoles are fixed. This Hamiltonian in the limit of small P̄
reproduces the BK Hamiltonian (see Ref. [47] and below
for details). This condition is the most important one for
fixing the form of HPM. The second of such conditions is
that this Hamiltonian satisfies both t and s channel
unitarity. γ in Eq. (83) has the physical meaning of the
dipole-dipole scattering amplitude in the Born approxima-
tion of perturbative QCD, and, being such, it is naturally
small and of order ᾱS.
The most important ingredient of this approach is the

generalization of the commutation relation, which has the
form

ð1 − PÞð1 − P̄Þ ¼ ð1 − γÞð1 − P̄Þð1 − PÞ: ð84Þ

Eq. (84) gives the correct factor ð1 − γÞn̄ that includes all
multiple scattering corrections, while all the dipoles remain
intact and can subsequently scatter on an additional
projectile or on target dipoles. For small γ, and in the
regime where P and P̄ are small themselves, we obtain

½P; P̄� ¼ −γ þ � � � ; ð85Þ

consistent with our original expression. One can see that
these commutation relations take into account the inter-
action of one dipole with many other partons, and therefore
we are going beyond the approximation, which is given by
Eq. (76). Concluding this brief outline of this approach, we
see that for the first time we have a simple theory in which
we can describe the interactions of dilute-dilute parton
system scattering as well as dilute-dense and dense-dense
system interactions.
For HPM, the cascade equation takes the form (see

Eq. (5.8) of Ref. [47])

dPnðYÞ
dY

¼ −
Δ
γ
ð1 − ð1 − γÞnÞPnðYÞ

þ Δ
γ
ð1 − ð1 − γÞn−1ÞPn−1ðYÞ: ð86Þ

For small n (γn < 1), one can see, that Eq. (86) reduces to
Eq. (39). Hence, for such small n, we have the multiplicity
distribution of Eq. (41) with hni ¼ eΔY . However, at large
n, Eq. (86) has the form

dPnðYÞ
dY

¼ −
Δ
γ
PnðYÞ þ

Δ
γ
Pn−1ðYÞ: ð87Þ

We will show below that this equation gives the Poisson
distribution with hni ¼ Δ

γ Y. Therefore, as we have guessed,
the interaction of one dipole with many dipoles at Y ¼ 0 in
Fig. 3 would lead to far fewer multiplicities than Eq. (41).
Using Laplace transform of Eq. (27) and following the
pattern described in Sec. II C, we obtain the solution in
ω-representation,

PnðωÞ ¼
1

ω1

Yn
m¼1

ωm

ωþ ωm
; ð88Þ

where ωm ¼ Δ
γ ð1 − ð1 − γÞmÞ.

We have not found an elegant form for the inverse
Laplace transform, but we can see the main qualitative
features of this solution, assuming that for n < n0 with
γn0 ≈ 1 we have ωm ¼ mΔ, but for n > n0 ωm ¼ Δ

γ. In this
approach, we obtain

n < n0PnðYÞ ¼ e−ΔYð1 − e−ΔYÞn−1; ð89aÞ

n > n0PnðYÞ ¼
Z

Y
dY 0e−ΔðY−Y 0Þð1 − e−ΔðY−Y 0ÞÞn0−1

× e−
Δ
γY

0 ðΔγ Y 0Þn−n0
ðn − n0Þ!|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Poisson distribution

: ð89bÞ

The Poisson distribution in Eq. (89b) is the inverse
Laplace transform of

ðΔγ Þn−n0
ðωþ Δ

γ Þn−n0þ1
: ð90Þ

In Fig. 8, we compare this multiplicity distribution with
Eq. (34). One can see that at large multiplicities the
modified distributions of Eq. (89a) and Eq. (89b) lead to
the suppression of the parton emission, as we expected. Of
course, this modified distribution is very approximate and
can only be used to clarify the qualitative features of the
interaction of the partons in the exact approach.
To illustrate that the parton cascade of Eq. (86) is able to

describe the experimental data, we calculate the first two P1

and P2, taking integral over ω in Eq. (27),

P1ðYÞ ¼ eΔY ;

P2ðYÞ ¼
ω2

ω2 − ω1

e−ω1Yð1 − e−ðω2−ω1ÞYÞ; ð91Þ

where ω2 − ω1 ¼ Δ − γΔ < Δ. P2 in our notation with
N ¼ eΔY can be r-written in the form

P2 ¼
1

N

�
1 −

�
1

N

�
1−γ

�
: ð92Þ
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Assuming that the multiplicity distribution has the form

Pn ¼
1

N

�
1 −

�
1

N

�
1−γ

�
n−1

; ð93Þ

we can use this approximation, except for very large n. In
Fig. 9, we compare Eq. (93) with the data. One can see that
it provides quite a good description of the data.

V. CONCLUSIONS

As has been discussed in the Introduction, this paper has
two main results. First, we prove that in QCD at high
energies the multiplicity distribution has the form of
Eq. (34), which was discussed in Ref. [5], in the framework
of the parton model. We also show that the average number

of gluons is not always related to the gluon structure
function and can depend on both energy and the size of the
dipoles. However, the entanglement entropy is equal to
Spartons ¼ lnN, where N is the average number of partons,
confirming that the partonic state at high energy is
maximally entangled [5]. In the case of DIS, we prove
that the average number of partons is related to the gluon
structure function, and only if we use the BFKL evolution
equation for this structure function can we prove that the
multiplicity distribution has the form of Eq. (34).
Second, we developed an approach for hadron-

hadron collisions in which we show that Eq. (34) correctly
describes the Mueller-Patel-Salam-Iancu approach [36,46].
We argued that actually at high energies the mean multi-
plicity is proportional toQ2

sðYÞ, leading to the entanglement
entropy proportional to lnQ2

sðYÞ.
We compared the multiplicity distribution with the

experimental data. We described quite well the data at
multiplicities n < ð3 ÷ 4Þhni, using Eq. (34), but predict
higher σn for large multiplicities than have been seen
experimentally. We conclude that this indicates that the
assumptions that at high energies we create a dilute system
of partons in the c.m. rapidity Y ¼ 0, and we can use
Eq. (76), are not correct, and we have to deal with a rather
dense system of partons. At the moment, we have not
developed theoretical tools to treat such a system. However,
in Ref. [47], an approach was developed for the parton
model, which allow us to theoretically treat such a dense
system of partons. We show that in this approach the
production of a system of partons with large multiplicities
is suppressed in comparison with Eq. (34), and we are able
to describe the experimental data.
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