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The strong coupling constant of doubly heavy baryons with light pseudoscalar mesons z and K are
computed within the light cone sum rules. We take into account two-particle and three-particle distribution
amplitudes of the said pseudoscalar mesons. We compare our result with the one existing in the literature.
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I. INTRODUCTION

The quark model has been very successful in studying
the spectroscopy of baryons [1]. Many states of baryons
predicted by the quark model have already been observed
in experiments. For instance, practically all baryons
containing a single heavy quark have been observed in
experiments.

The quark model also predicted the existence of the
baryon family composed of two heavy and one light quarks.
During the last two decades, many experimental efforts have
been made for observation of these states [2—4]. The first
experimental evidence of the doubly heavy baryon E.. with
mass 3520 MeV in the channels Ef, - Af K~z and 5}, —
pDTK~ was found by the SELEX Collaboration. Three
years ago, the LHCb Collaboration announced the obser-
vation of 21" through the process E;." = A K~z z* with
mass (3624.40+0.72+0.14) MeV [5]. Later, the LHCb
Collaboration measured the lifetime of 27" and confirmed
the existence of i in the decay channel Ej.z* [6].
The search of other doubly heavy baryons predicted
by the quark model is now one of the main research areas
in collider experiments [7,8]. These observations stimulated
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a lot of theoretical studies, which can shed light on a deeper
understanding of the inner structure of these baryons.

The study of the spectroscopy of doubly heavy baryons
has been at the heart of tremendous theoretical studies.
Within the framework of the Hamilton method [9], the
hypercentral method [10], the lattice QCD [11,12], the
QCD sum rules [13-18], the Bethe-Salpeter equation
[19], and in an extended chromomagnetic model [20],
the spectroscopy of doubly heavy baryons has been
completely studied.

For a deeper understanding of the dynamics of doubly
heavy baryons, the study of their weak decays and strong
and electromagnetic transitions is an ideal place.

The semileptonic decays of doubly heavy baryons are
analyzed within the QCD sum rules [21], and the tran-
sitions Eg — Ay and Ep — Zy are studied within the
light cone sum rules ([22,23], respectively), in the frame-
work of the light front formalism [24], in the nonrelativistic
quark model [25], in the relativistic quark model [26], and
in the covariant constituent quark model [27]. However, the
main studies focused on spectroscopic properties and weak
decays of doubly heavy baryons. The studies of the strong
and electromagnetic decays of doubly heavy baryons are
very limited. Therefore, the study of their strong transitions
would be timely.

In the present work, we study the strong coupling
constants of doubly heavy baryons with the light pseudo-
scalar mesons z and K within the light cone sum rules
(LCSR) (For a discussion on the LCSR method, see for
example [28]). Note that the strong coupling constants
EeeBeem and BB, 7 within the same framework are
studied in [29].

Published by the American Physical Society
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The paper is organized as follows. In Sec. II, we derive
the LCSR for the strong coupling constants of doubly
heavy baryons with pseudoscalar mesons 7 and K. In this
section, we present the details of the calculations for the
strong coupling constants. Section III is devoted to the
numerical analysis of the sum rules for the strong coupling
constants. This section also contains our summary.

II. LCSR FOR THE STRONG COUPLING
CONSTANTS OF DOUBLY HEAVY BARYONS
WITH PSEUDOSCALAR MESONS

In order to determine the strong coupling constants of
doubly heavy baryons with pseudoscalar mesons within the
LCSR, we introduce the following correlation function:

M= / S (P RO)0), (1)

where P(g) is a pseudoscalar meson with momentum g and
n denotes the interpolating current of the corresponding
doubly heavy baryon. The SU(3) classification leads to the
fact that there are two types of currents: symmetric and
antisymmetric with respect to the exchange of two heavy
quarks. The antisymmetric current exists only in the case in
which two heavy quarks are different. The general forms of
the interpolating currents (symmetric and antisymmetric)
for doubly heavy baryons with J = 1/2 can be written as

1,](5 —_ abc Z{ QaTA Az Qlc (Q P Ql)} (2)
and
I,I(A) —_ Lgabc i{z(QaTAi le)Ai qc
\/6 - 1 2
(0TGN ALQ" ~ (QTAIGNALOS) (3)

where a, b, and ¢ are color indices, and

A{ - C’ Al = CySv A% =75 A% = ﬁl (4)
where f is an arbitrary parameter and C is the charge
conjugation operator.

The main idea of the LCSR is the calculation of the
correlation function in two different domains. On one hand,
the correlation function is calculated in terms of hadrons.
On the other hand, it is calculated in the deep Euclidean
domain, p*> < 0 and (p + q)> < 0, by using the operator
product expansion (OPE) over twist. Then, performing the
corresponding Borel transformation in order to suppress the
contributions from higher states and the continuum and to
enhance the contributions of the ground state, and matching
these results, we can get the desired sum rules.

The representation of the correlation function in terms of
hadrons is obtained by inserting a complete set of baryon
states carrying the same quantum numbers as the inter-
polating currents and by isolating the contribution of the
corresponding ground states, namely,

(Oln|B2(p2))(PB(p2)|B(p1)) (B(p1)]i1]0)
(p3 = m3,) (Pt —m3,)

+ higher states (5)

1=

where mp, and mp, are the masses of the final and initial
doubly heavy baryons, respectively. The matrix elements in
Eq. (5) are determined as

(Oln|B,(p2)) = /132“(192)’
(PBy(p2)|Bi(p1)) = gp,,pit(p2)irsu(pi),  (6)

where 4 is the residue, and g p,p is the relevant coupling
constant of the doubly heavy baryons with the correspond-
ing pseudoscalar meson. Taking into account (6) in (5) and
performing the summation over Dirac bispinors for the
physical part of the correlation function, we get

Ag, A, (P + mp))[iys|(F + 4 + mg, )95, 5,p

= —m) o+ 9 -]

+ ... (7)

where we denote p = p, and p; = p +¢g. Among all
possible structures, we choose the structure pyfys which
contains the maximal number of external momenta, which
usually leads to a more reliable stability, namely better
predictions for the physical quantities. As a result for the
physical part of the correlation function (i.e., focusing on
the structure pfys), we get

Ag A
M= — B,*B,9B,B,P (8)
(p* = mp,)l(p +q)* —mj ]
Performing a Borel transformation over variables —p? and
—(p + q)?, we obtain
(2 2 2

H<B) = AB1legBlBQfPe (mBl+MB2>/2M . (9)
On the other hand, the correlation function is calculated
from the QCD side by using the OPE over twist. It involves
the heavy quark propagator in the presence of a background
field as follows from (1) after applying Wick’s theorem. As
a result, we get

T1(55)

1 b ¢! ipx i AJ
=5¢ begat /d4xep ZJ:(A ap(A5), (A}),
x (A1) gy (P(@){[S55,, Sty + (@ < Q)

Oy~ O«
~ Sty Sehy = (Q < Q))asa}}10), (10)
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1 YNNG . : . ~7 ~7 / / - / / — 7
Ad = ggabcfa be /d4xelpr(A11)aﬂ(Alz)py(Aé)y’p’ X (A{)o/ﬁ/<7’(6I)|{45237@/52%/61561;/ - ZSZC/W/S“Q%/;/‘I;CIZ
ij

_ ac’  ¢bd
2SQ(1yl SQ,/}ﬁ/

bzb qac'  ged bob gec ad
+ qhalse S, + qhal S S } 10), (11)

oy b / b=c / / -b b=b / / b=c b /
G5 =258, S ) + S5y Sog 0T + 4TS S5 — 2080755 S

1 -a'b'c! i i i xJ 1J /4 d aa’
H(SA) = —EabLS be / d4xe pr(Al)aﬁ(AQ)py X (AJZ)y’p’ (Ajl)a’ﬁ’<P(Q)|{_2q}sqz’slg’/}y’SQaﬂ'
V12 -
_p 7 ba' b=b ’ ’ b=b' b ’ b=b' ’ b=b ’ ’
+ 2q}c"qajSaQCay/SQqﬂﬁ/ - qﬁqa’SCQC’yy’ngxﬁ’ + qﬁqa’SaQay’Sg}yﬁ’ + qﬁqa’slg’ay’SCQ(;/ﬁ’ - qﬁqa,S‘é?aﬂ/SCQny,}|0>. (12)

In these expressions, the superscripts (SS), (AA), and (SA) denote the symmetry property of the current 7 and 7, and
A= yoAlTyO. The heavy quark propagator in the presence of a background field in the coordinate space is

2

aa’ mQ le (mQ _-x2> x + Kl (mQ _x2> 5aa/ gS /1 d lKl (mQ _xz) [—x + x]
= = ——Fm Uy ————F—|Ux0o uo
Qaf = 42 (V=x2)?2 2 1672 ¢ —x? o o

+ K() (mQ V —XZ)GM.}
af

(n) );" ad' |
Gl‘r ( 2 ) ( 3)
(n)

where G’ is the gluon field strength tensor, the A" are the Gell-Mann matrices, and the K,(myV—x?) are the modified
Bessel functions of the second kind. Now, using the Fiertz identities,

-} 1 / —
Gudy = =15 ([1)apd” aLiq (14)
and
i (n 11 /A _ n
ngz Ggr) - _ZZ (E) (Ft)a/}qrzGSh')q’ (15)

we see that the following matrix elements appear in the calculation:

(P(q)gTgl0) and (P(q)|gT,G\ql0). (16)

In the expressions above, I'y =1, I, =ys, '35 =y, ['4 = iy,rs, and I's = %oaﬂ. These matrix elements are defined in

terms of pseudoscalar meson distribution amplitudes (DAs), whose expressions are presented in Appendix A.
Inserting Eqgs. (13)—(15) into Egs. (10)—(12), performing necessary calculations for the theoretical part of the correlation
function, and doing the doubly Borel transformation over variables —p? and —(p + ¢)?, we get the following results:

M2

IS0 — et (M1 = D)o T (1 = 20T (@)

M=+ Bmey [ (=1 + Bup |OTI((1 = 20)T (@) = 56(=1 + i) T3] = 336(1 + ) fpmoT |

+56(1+ ity mo(=1 + i) up Tt} (17)
M)hee — 71722‘,4;%, {9M2(1 = BV moppI{* + M (=1 + B)my [ﬂp [9(—1 +AIP +56(3 +B) (=1 + ﬁ%)I%i]

= 336(1 + 5)fpmoT L +56(3 + B)(1 + 3)mmo(~1 + Fb)upllL}. (18)
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M2

H(SA)lheo —
288+/67°my

+ M=+ Bmey [ [9(=1 + ATI(T (o)) = 18(1 + 3H)TR (T (@) = 56(~1 + ) (-1

{OM> (=1 4+ pmopp| (<1 + HT(T (@) + 26+ PTP (T (@)

+ 75)1Z)

—336(1 + j) fmezg,} +56(1 + p)2mdmg(~1 + up)upz&,}, (19)

where we have defined

ij 5o ms  m,
1Y (f(u)Aley) = / dse™s/M* / daa=!(1 - a)j_15<s - <—Q + %))
mQ+mQ/ a a

uas >d-A(0‘17 l—a - o)

1—- al
/ d(ll/
1

—Qap d(13

(20)

/M [ dgei-! j-1 my | my . s 5
15, = ¢, (ug) o dse aad (1 —a)~'6(s— —~ T —(l+]—1)—W, (21)

S0
1317: = (PP(UO)/(

2

s ) ) m2 myy,
dses/M* /daa’_l(l —a)~ls( s - L), (22)
mQ+mQ/)2 “ I-a

: %0 2 ; . mp mZQ/
I] (ﬂa(uo)/ dse=s/M /daa’_l(l —a) 715 s— 2+ , (23)
(mQ-s-mQ/)2 a 1—a

where

[s0 -+ mg — mgy + ((so + mg — myy)?

max,min — 2

— 4som$)'/?] (24)

and N is the normalization factor which is equal to 1/1/2
(1) for different (identical) heavy quark flavors. Here, we
should note that we present the results for the pion case,
where we, take m2 — 0 for simplicity, retaining m2 in the
terms . For the kaon case, we take into account the
contribution from all the terms.

As an example, we present the steps of calculations for
one of the terms that appear in the calculation of the
theoretical part of the correlation function, and the results
for the remaining terms are presented in Appendix B.

We consider the term

/ du / d4xei(prua)x

where ¢(u) is a generic two-particle DA of the pseudo-
scalar meson. Using the integral representation of the
Bessel function,

K, (mgV=2) K, (g V=)
V= (V=

o(u)

[

e—mTQ(terzE/t) (25)

Ki(mQ\/—_xz) _1/ood 1

) tli+1

W 2

where x% = —x2. Introduce the new variables a and b as

2m 2m
a==%and b ="

[ d*xg, we get

116 ) o e
- d d dbai~1p/!
$Tongy gy ™ ] W, 2 | b 0w
1 2 -m2 Ja—m>, /b
X —P*/(a+b)e™0 o 26

(a+b)° ) 26)
where P := pp+ ggx. Introducing the identity
Jdpd(p—a—b) =1, making a scale transformation

a — pa, b — pf, and performing the integration over f,
we obtain

du [ da [ dp-ai-!
4(2mQ 2mQ, / ”/ “/ /’“

Q/

&7 ap(u).  (27)

Pit(p+a)u
(l_a)j lpH—j 26 »

Performing the Borel transformations over variables
—p* and —(p+q)* with the help of the formula
Bem" = 5(;5 — a), we obtain
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i 167*(M?)i+J /oo : ,
-———o(u daa=1(1 — a)/~!
4 (2mQ)l(2mQ/)] (p< 0) 0 ( )

w2 m?
e, o 2
‘e (”H)/M, (28)

2 mz/ . . .
Let s denote %—I—ﬁ. Equating this to s, in order to
perform the subtraction of the continuum threshold, we can
find the bounds of a. As a result, we get

i 16 2 M2 i+j s
i#(P(uo)/o dse‘S/Mz/da
4 (ZmQ) (ZMQ/)J (mQJFmQ’)Z

2 2
m ny,,
xa-l(1-a)-ls([s——2_ "2 ) 29
@ (1= a5 s 22— 0 (29)
In these expressions,
2 _ _MiMi_ __M
Yy 7> o =5 2" (30)
M? + M3 M? + M3

Since in our case the mass of the initial and final baryons
are practically the same, we put M? = M3, which gives
us ug = 1/2.

Matching the two representations of the correlation
function for the relevant coupling constants, we obtain

1
9B,B,P = _lB i
1 2

e(m%;Ier%z)/ZMzHLheo. (31)

III. NUMERICAL ANALYSIS

In this section, we numerically analyze the LCSR for the
strong coupling constants of the 7z and K mesons with the
baryons E.., Bpp, Epe, 2 s Qees Qppr Qpe, and Q) by using
Package X [30]. The LCSR for the coupling constants

g%sli)zp, gg:/;l p» and gg/g)zp include certain input parameters

such as quark masses, the masses and decay constants of
the pseudoscalar mesons 7 and K, and the masses and
residues of doubly heavy baryons. Some of these param-
eters are given in Table I. Another set of essential input
parameters are the pseudoscalar meson DAs of different
twists. These DAs are given as follows:

@p(u) = 6uit[l + al’Cy(2u—1) + a§C§/2(2u -1,
(32)
1

5
(pp(u) =1 + <307’]3 - 5—2> C;/2<2M - 1)
Hp

271 811
+ <—37I3W3 ————— 2 af) Cy?(u—1),

TABLE 1. Some of the input parameters used in our
computations.
Parameter Value Parameter Value
my (1 GeV) 137 MeV mg,, 3.72 GeV [15]
me 1.4 GeV mg,, 9.96 GeV [15]
m, 4.7 GeV mz, 6.72 GeV [15]
m, 135 MeV Mz 6.79 GeV [15]
my 495 MeV mq,, 9.97 GeV [15]
mq,, 3.73 GeV [15]
fx 131 MeV m,. 6.75 GeV [15]
fx 160 MeV mo 6.80 GeV [15]
Az, 0.16 [15] Ag,. 0.18 [15]
1z, 0.44 [15] Ao, 0.45 [15]
Az, 0.28 [15] g, 0.29 [15]
Agy 0.30 [15] Aoy 0.31 [15]
1 7 3
u) =6uu|l Sny — = i3Ws — = s — = unal
Ps(ut) [ + < 13 =5 13W3 = 55 Hp ~ 5 Hpds
x C3*(2u - 1)} , (34)

1
T(a;) = 360305002 [1 +wis (Ta, - 3)} . (35)

The Ck(x) are the Gegenbauer polynomials. The values of
the parameters inside the distribution amplitudes at the
renormalization scale of y = 1 GeV are af = 0, aj = 0.44,
ak =0.06, a¥ =0.25, 53 = 0.015, and w3 = -3 for the
pion and w; = —1.2 for the kaon.

From sum rules for the coupling constant, we see that
besides input parameters, they contain three auxiliary
parameters: the Borel mass parameter, M2, the continuum
threshold, s, and the arbitrary parameter, f, which appear
in the expression for the interpolating current. Obviously,
the measurable coupling constant should be independent
of them. Therefore, we must find the working regions of
these parameters for which the sum rules is reliable. The
lowest bound of M? is obtained by requiring the highest-
twist terms contributions should be reasonably small
compared to the lowest-twist term contributions. The
upper bound of M? is determined by demanding that
the continuum contribution should be not too large.
Consequently, we can find the working region of the
Borel parameter M2. The continuum threshold s, is
obtained by requiring that the mass sum rules reproduce
a 10% accuracy of the mass of doubly heavy baryons.
These conditions lead to the following values of M? and s,
for its channel as follows:
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E.Beem: M? € [3,6] GeV?, /5 = 4.6 GeV

EppEppm: M? € [10,15] GeV2, /5 =10.9 GeV

QB K M? € [10,15] GeV2, /55 = 10.9 GeV .

Q. E..K: M* € [3,6) GeV?, /55 =4.6 GeV

Q. B, K: M? €[6,9] GeV?, V50 =15 GeV
(36)

With the antisymmetric-antisymmetric current,

{ g,.B.m: M?€[6,9]GeV?, | /s5=1.5GeV 37)
Q= K:M*€[6,9]GeV?, \/50=7.5GeV
With the symmetric-antisymmetric current,
{ 5, Bperr: M? €[6,9]GeV?, | /57=1.5GeV 38)
Q, B,.K: M*€[6,9]GeV?, \/50=7.5GeV

Our calculation shows that the twist-4 term contributions
in these domains of M? at given values of s, does not
exceed 14% and higher states contribute at maximum 32%
for all considered channels. As an example, in Fig. 1, we
present the M? dependence of 9=z, at fixed values of s
and . Having the working regions of M? and s, we try to
find the working region of 3. For this aim, we study the
dependence of the strong coupling constant on cosé,
where f# = tan 0. We will search for a domain for $ such
that the results are insensitive to the variation in 3. As an
example, the dependence of the strong coupling constant
= =, On cos @ at fixed values of M* and /sy = 4.6 GeV
is presented in Fig. 2. From Fig. 2, one can see that when
cos @ varies between 0.6 and 1, the coupling constant
practically does not change and we deduce the values in
Table II. Performing similar calculations for the remaining
of the strong coupling constants, we obtain the results that
are summarized in Table II. The uncertainties are due to
the variation of M?, s, and errors in the values of the input
parameters.
We would like to say a few words on the results obtained.
In the case of symmetric currents, the difference in the

24 F ™ ]
22 [ MO ey Tl |
. 20 F /50 = 4.8 Gev  —%- i
¢ 18 | ]
"o16 | 1
1] 14 e n
DT S ]
10 | T TR ]

8 1 1 1 1 1 1
3 4 5 6 7 8 9 10
M? (GeV?)
FIG. 1. The dependence of the strong coupling constant gz = .

on M? at different s, values and = 0.75.

600

-1 -0.5 0
cos(0)
M? =3 GeV? M2 =5GeV2 -ceuenen
M? =4 GeV? - - - - M? =6 GeV? — - —

(((((((

values of the couplings constants of E,pEqo7r and
QppQppK are primarily due to the SU(3) symmetry
violation. We mainly see that the SU(3) violation in the
¢ sector is about 20% but in the b sector, it is about
30%-35%. In the case of antisymmetric currents, the
SU(3) violation is about 15%-20%; however, in the case
of a symmetric-antisymmetric current, the violation of
SU(3) is about 35%, similar to the antisymmetric-
antisymmetric case. Our final remark to this section is as
follows. As we have already noted, the =..E..7 and
E,Epp coupling constants within the same framework
is calculated in [29] and our results differ from the one
given in [29]. In our opinion, these differences are due to
the following circumstances: (i) The main equation, Eq. (8)
of [29] is incorrect. It is due to the following simple fact.
Let us consider the terms without ¢ (in our case, it is /) in
Eq. (8). By using Eq. (11), from Eq. (8) with ' = y5 or
I' =y,rs, immediately one gets that the terms which ¢,
and ¢p do not contribute to the correlation function. But,
these terms appear in Eq. (26), which seems highly strange.
(i) The continuum subtraction procedure performed in [29]

TABLE II. The numerical values for the strong coupling
constants.
Channel Strong coupling constant
SS EeeBeeT 10.03 £ 0.52
EbbE‘hb” 12.73 £ 1.29
Qi Epp K 17.40 = 1.89
Q..E..K 12.50 £0.75
Qp Bp K 5.08 £0.43
AA B, BT 6.85 £ 0.06
Q) .5 K 7.90 £ 0.16
SA B Bpe 1.49 +£0.10
e Bbe K 2.03+0.16
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2 2
is inconsistent. This is due to the apparent fact that the variables z and s are related as % + I'L_ZZ = s. However, in [29], z and s

are introduced as two independent variables, which is incorrect. Using these facts one can conclude that the results of [29]
are not reliable.
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APPENDIX A: DISTRIBUTION AMPLITUDES OF THE PION AND KAON

In this appendix, we present explicit expressions for the DAs of the # meson. For more information, see [31,32].

_ . 1 - 1 N i X 1 A
(P(p)|d(x)7,75q(0)[0) = —if pp, /0 due’™r* [«pp(u) + 1—6m%x2A(u)} - Efpm%p—’; A due™B(u),  (Al)
o

(P(p)|a()irsa(0)[0) = up / due™ o (i) (A2)

i ) L
<P(p)|q<X)Ua/}}’5LI(O)|O> = 8/"7’(1 - /"723)(p(1x/} - p/)’xa) A duelupx¢5(u), (A3)

_ . 1 1
(P(0)|4(3)0,0759,Gap(1x)q(0)[0) = zup{p,,pﬂ [gyﬁ L+ pﬁx»] ~pa, {gﬂﬂ L+ pﬁxﬂﬁ
1 1
— PpPu|Yva _E(pvxa +pax1/) +pﬂpy Yua _E(pyxa+paxﬂ)

X / Daei(aé+va.q)PxT(ai), (A4)

1 o
(P(P)|2(x)7,7595Gap(vx)q(0)[0) = p,(paXs — PpXa) Efpm% / Dae!@at12)Px A, (a;)

1

1
+ {pﬂ {g,m ——(PuXe + paxﬂ)] — Pa [gﬂﬁ o (Puxp + pﬂxﬂ)} }

px

xfpm%/Dae"(“ﬁ”%)p"Al(ai), (AS)

— . 1 i(ag+va,)px
<P(p)|Q(x)yulg\Gaﬂ(vx>q(0)|0> = pﬂ(p(lx/)’ - p/ix(l)afpm%)/pae( atoe)p VH(al)

1 1
+ {p/)’ |:g;4a - E (pyxa + paxu):| — Pa |:g/4/} - E (pyx/} + p/}x/l):| }

X fpm%) / Dae"(“ff“"ﬂ)”xVL (a,-), (A6)
where
mp o g, My,
pp=fp—r—  fp=—"—% (A7)
My, + Mg, mp
where m, = m, and m,, = m, for the pion, and m, = m, and m, = m, for the kaon. Here, pp(u), A(u), B(u), pp(u),

oo (u), T(a;), Ay(a;), Aj(e;), Vi(a;), and V)(e;) are the distribution amplitudes of the pseudoscalar meson with
definite twist.
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APPENDIX B: THEORETICAL RESULTS IN COMPUTING THE CORRELATION FUNCTION

In this appendix, we present the theoretical results that appear in the calculation of the correlation function from the
QCD side:

A/ _ £/ 2
/ du / d*xx, KilmoV =) K;(mg v =x ) citpsug)e

(V=2 (V=
—>%—(ISZQ(%;ZFQJ;go(uo)[—2i(p-l—bto‘J)ﬂ] /( ;‘;mg)z dse=/M* / daai-1 (1 —a)f—'(s(s—m%Q—%) (B1)
/ du / d*xx?ep(u mQ\/:) jm \/?) eilprua)x
V= (=
- 4<2WIlQ) %4(/)(%)(M2)iﬂ"l (:Q+mg/)2 dse=/M’
x/daai—l(l—a)f—l {—(i—i—j—l)— (%ZQﬂle_za)/Mz} ( %é—%) (B2)
du [ dx K"(mQ\/?) Ky{img V=x) (u)e!rHa
(V=x2) (V=x?)/

Ki(moV—x?) K ;(myV—x7) (u)—>i 167 (
V=) (V=) T a@mg)amg)

K ) ) m2 m2,
X / ! dse=s/M’ /daa"l(l - a)f_15<s S _Q)
(mQ+mQ/)2 o 1—a

du [ d*x

—) (M) ()24 (p + w0g),

(B4)
K; V=YK (m\ —x2
/du/d“ /dx iyl (PHH )8 A () T = x, — x5, 15) i(moV—x) K;(mg v —x')
V=) (/-ry
1 M2 i+J s,
— lux/o dse—s/M /da/ dxl
4(2mQ) (2mQ1) (mQ+mQ/
/ T (L S A PRI ) (BS)
—To\S———7— _|«& - x, 1 —x; —x3,x
=Xy 3x3 a l-a 1 1~ X3, X3
Ki(mpV—x*) K ;(myV—x*
d”/d4 /dxldx3e (Pratua)iA(xy, 1 = x; — x3,%3) mg x) i{mg -x)
4x V=) (=
i 16 M2 i+j s R u
- (_l)iﬂ'(l—)/o dse=s/M /da/ del
4(2mQ) (2mQ’)J (mQ+mQ/)2 0
I-a Uy — X m2 om0\ .
X[_MO dx; Ox% 15(S—7Q—1_QG)A(x1,1—x1—x3,x3) (B6)

where A(x, 1 —x; — x3,x3) = [;* dxA(x;, 1 —x; — x,x) and ®(u) = [ dvgh(v)
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