
 

BPS strings and the stability of the asymptotic Casimir law in adjoint
flavor-symmetric Yang-Mills-Higgs models

David R. Junior, Luis E. Oxman, and Gustavo M. Simões
Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói–RJ, Brazil

(Received 3 August 2020; accepted 14 September 2020; published 9 October 2020)

We investigate an effective flavor-symmetric Yang-Mills-Higgs model with N2 − 1 adjoint scalar fields.
We find a set of Bogomol’nyi-Prasad-Sommerfield equations that provide vortex solutions and calculate
their energies for arbitrary representations. We show that, for a given N-ality k, the energy of the
corresponding antisymmetric representation is the lowest. This completes the proof that this model is able
to reproduce a Casimir law for the string tension at asymptotic distances.
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I. INTRODUCTION

The chromoelectric flux tube between external quarks in
SUðNÞYang-Mills (YM) theory [1–6] has many interesting
properties. At intermediate distances, the lattice string
tension σIðDÞ, derived from the Wilson loop average
hWCi,1 scales with the quadratic Casimir C2ðDÞ of the
SUðNÞ quark representation Dð·Þ, see Ref. [2]. That is,

σIðDÞ
σIðFÞ

¼ C2ðDÞ
C2ðFÞ

; ð1Þ

where F stands for the fundamental representation. In this
work, we will be mainly interested in the behavior at
asymptotic distances, where the string tension is known to
depend only on the N-ality of Dð·Þ [7]. The latter is given
by an integer k (modulo N) that dictates how the center of
SUðNÞ,

ZðNÞ ¼ fzIN jz ∈ C; zN ¼ 1g; ð2Þ

is realized. Namely

DðzINÞ ¼ zkID; ð3Þ

where ID is aD ×D identity matrix andD is the dimension
of D.
A possible approach to capture the physics at asymptotic

distances is to look for effective Yang-Mills-Higgs (YMH)

models that accomodate N-ality as due to an SUðNÞ →
ZðNÞ spontaneous symmetry breaking (SSB) pattern,
which leads to the formation of ZðNÞ strings [8,9]. In this
scenario, the quarks are represented by external monopole/
antimonopole pairs carrying the charges (weights) that
characterize Dð·Þ [10]. In Ref. [11] (see also [12]), the pure
Yang-Mills sector of these models was associated with the
continuum limit of an effective Wilson action with frus-
tration. The latter generates an average of center elements
which depends on the linking number between the external
quark worldline C and plaquette configurations distributed
on closed surfaces. These configurations were thus identified
with an ensemble of center-vortex worldsurfaces, which are
quantum variables extensively explored in the lattice as a
source for confinement [13–23]. The possibility of non-
oriented center vortices, where the suðNÞ Lie algebra
orientation changes at someworldlines on theworldsurfaces,
was also observed in lattice simulations, and is believed to
play a relevant role for confinement [24–26]. In Ref. [11],
this type of nonoriented object was introduced by means of
an ensemble of adjoint dual Wilson loops. Moreover, in the
continuum, this sector induces a set of effective adjoint Higgs
fields, while possible correlations between adjoint dual
Wilson lines were related to effective Higgs interactions.
Then, among the SUðNÞ → ZðNÞ models, an interesting
possibility is the one introduced in Ref. [8], as it contains
N2 − 1 adjoint Higgs fields, and displays flavor symmetry.
Besides N-ality, an effective description should also

explain the particular scaling of the asymptotic string
tension σðDÞ. There are two main possibilities consistent
with the lattice data [27]. One of them is the sine law

σðDÞ
σðFÞ ¼

sin ðkπ=NÞ
sin ðπ=NÞ : ð4Þ

The other one is an extension to the asymptotic region
of the behavior in Eq. (1), but replacing C2ðDÞ by the
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1C is the closed worldline associated with the external quark/
antiquark pair.
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lowest quadratic Casimir among representations with the
same N-ality than Dð·Þ. The latter is given by the
k-antisymmetric ðk-AÞ irreducible representation (irrep).
Interestingly, in the adjoint flavor-symmetric model, the
tension of the infinite k-A string scales with the quadratic
Casimir [9], which is compatible with the second possibility.
In this context, in order to establish the asymptotic Casimir
scaling law one must also show that this is the lowest tension
among the irreps with N-ality k. In that case, k-A strings
would be settled as the stable confining states. This is one of
the properties we will be able to address exactly in this work.
For this aim, we need an analysis of the field equations for
any representation Dð·Þ of SUðNÞ, which was still lacking.
Here, we will show that there is a point in parameter space
where the complicated set of second order equations can be
reduced to a set of first order Bogomol’nyi-Prasad-
Sommerfield (BPS) equations. In flavor-symmetric models,
this reduction was shown in Refs. [28–30] when the Higgs
fields are in the fundamental representation, and in Ref. [31],
only for SUð2Þ, when the Higgs fields are in the adjoint. At
this point, we will close an ansatz for a string carrying any
weight of SUðNÞ showing that, for a given N-ality k, the
tension corresponding to the k-antisymmetric representation
is indeed the lowest.

II. PREVIOUS RESULTS

The flavor-symmetric effective model with adjoint Higgs
fields ψ I, which take values in the suðNÞ Lie algebra, is
given by2 [8]

S ¼
Z

d4x

�
−
1

4
hFμν; Fμνi þ

1

2
hDμψ I; Dμψ Ii − VHðψÞ

�
;

ð5aÞ

Fμν ¼
i
g
½Dμ; Dν�; Dμ ¼ ∂μ − ig½Λμ; � ¼ ∂μ þ gΛμ ∧ :

ð5bÞ

The number of flavors I ¼ 1;…; N2 − 1 equals the
dimension of suðNÞ. Under a gauge transformation
U ∈ SUðNÞ, we have

Λμ → UΛμU−1 þ i
g
U∂μU−1; ψ I → Uψ IU−1: ð6aÞ

The potential was set as

VHðψÞ ¼ cþ μ2

2
hψA;ψAi þ

κ

3
fABChψA ∧ ψB;ψCi

þ λ

4
hψA ∧ ψBi2; ð7Þ

which leads to the classical vacua (S ∈ SUðNÞ)

Λμ ¼
i
g
S∂μS−1; ψA ¼ vSTAS−1: ð8aÞ

Here, TA and fABC are the suðNÞ Lie basis and structure
constants, respectively. Throughout this work, we shall
also separate the color and flavor indices into Cartan q ¼
1;…; N − 1 and off-diagonal α, ᾱ labels. The elements Tq

form a maximal commuting set, while the remaining
elements are defined in terms of root vectors E�α

Tα ¼
Eα þ E−αffiffiffi

2
p ; T ᾱ ¼

Eα − E−αffiffiffi
2

p
i

; ð9Þ

where α is a positive root of suðNÞ. For the notation and
conventions, see the Appendix A.
As the only transformation that leaves a Higgs field

vacuum configuration invariant is U ¼ zIN , the system
undergoes SUðNÞ → ZðNÞ SSB. Consequently, the vortex
solutions to the static field equations

DjFij ¼ gDiψA ∧ ψA; ð10aÞ

DiDiψA ¼ δVH

δψA
ð10bÞ

are topologically stable due to the nontrivial first homo-

topy group of the associated vacua manifold M ¼ SUðNÞ
ZðNÞ ,

Π1ðMÞ ¼ ZðNÞ. Among the possible configurations are
those containing just one infinite straight string. To find
these solutions, the ansatz

Λ0 ¼ 0; Λi ¼ SAiS−1 þ
i
g
S∂iS−1; ψA ¼ hABSTAS−1;

S ¼ eiφβ·T ð11Þ

was used. Since there is cylindrical symmetry in this case,
the profiles a and hAB can be taken as functions of ρ alone,
with ðρ;φ; zÞ being cylindrical coordinates. The vortex
charge is defined by the magnetic weight β ¼ 2NλD, with
λD being the highest weight of the representation Dð·Þ.
Here, we used the notation β · T ¼ βjqTq, where βjq is the
qth component of the (N − 1)-tuple β. For the various
definitions and properties, see Appendix B. In Ref. [9],
considerig Ai ¼ ða=gÞ∂iφβ · T, we obtained vortex solu-
tions for the k-A and k-symmetric (k-S) representations. In
this work, using Ai along a general Cartan direction
(cf. Sec. III A), we shall be able to accommodate a vortex
for a general Dð·Þ. In terms of the Cartan-Weyl sectors, the
anstaz has the simpler structure:

ψα ¼ hαSTαS−1; ψᾱ ¼ hαST ᾱS−1; ψq ¼ hqpSTpS−1:

ð12Þ2Throughout this work, we use Euclidean metric.
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In order for the gauge and ψα;ψᾱ fields, with α · β ≠ 0, to
be well-defined along the z axis, we imposed the regularity
conditions

að0Þ ¼ 0; ð13aÞ

hαð0Þ ¼ 0 when α · β ≠ 0: ð13bÞ

In this regard, note that

STαS−1 ¼ cos ðφβ · αÞTα þ sin ðφβ · αÞT ᾱ; ð14aÞ

ST ᾱS−1 ¼ cos ðφβ · αÞT ᾱ − sin ðφβ · αÞTα: ð14bÞ

When μ2 ¼ 0, the solution for the fields with no
regularity conditions at ρ ¼ 0 is frozen everywhere at
the vacuum value:

ψq ¼ vTq; ψα ¼ vTα when α · β ¼ 0: ð15Þ

This led to the following asymptotic exact behavior of the
string tension for the k-A representation

σðk-AÞ
σðFÞ ¼ kðN − kÞ

N − 1
¼ C2ðk-AÞ

C2ðFÞ
: ð16Þ

This agrees with the large distance behavior of the Wilson
loop [4]. It is trivial to extend the discussion of Ref. [9] to
the k-S irrep. In this case, the model is equivalent to a
Ginzburg-Landau theory with winding number k. Then, at
the BPS point λ ¼ g2 of the Abelianized μ2 ¼ 0 model,
we have

σðk-SÞ
σðFÞ ¼ k >

kðN − kÞ
N − 1

¼ σðk-AÞ
σðFÞ ; ð17Þ

for k > 1. Then, when a k-S string is long enough, it is
energetically favorable to create valence gluon excitations
around the quark sources to produce a k-A string.

III. BPS EQUATIONS

In the Nielsen-Olesen model governed by the action
(Dμ ¼ ∂μ − igΛμ, ϕ ∈ C)

SAbe ¼
Z

d4x

�
−
1

4
FμνFμν þ

1

2
DμϕDμϕ−

λ

8
ðϕϕ� − v2Þ2

�
;

ð18Þ

when λ < g2, a single vortex with higher winding number n
is energetically more favorable than n separated vortices
with winding number 1. When λ > g2, the situation is
reversed. For a recent discussion about the fitting of lattice
data with the Nielsen-Olesen model, see Refs. [5,6,32,33]
and references therein.

At λ ¼ g2, also known as the BPS point, the vortices do
not interact, as the energy of any configuration with
winding number n is given by

E ¼ gv2
Z

d3xB3 ¼ 2πv2n: ð19Þ

In this Abelian setting, the equations of motion at the BPS
point can be reduced to be first order

Dþϕ ¼ 0; B3 ¼
g
2
ðv2 − ϕϕ�Þ; B1 ¼ B2 ¼ 0; ð20Þ

where D� ¼ D1 � iD2. For a detailed discussion on this
topic, see Ref. [34]. In the non-Abelian context, this type of
BPS point is known to occur in flavor-symmetric SUðNÞ →
ZðNÞ models constructed in terms of N Higgs fields in the
fundamental representation [28,29,35]. In this section, we
will show that there is a set of BPS equations that provides
solutions to the flavor-symmetric SUðNÞ → ZðNÞ model
formed by N2 − 1 adjoint Higgs fields, at μ2 ¼ 0 and λ ¼
g2 [cf. Eqs. (5), (7), (10)]. Moreover, we will show that
these equations can be closed with an ansatz that accom-
modates center vortices carrying the weights of any SUðNÞ
group representation.
Initially, for every pair ψα;ψᾱ, with α > 0, we define

ζα ¼
ψα þ iψᾱffiffiffi

2
p ; ð21Þ

which is in the complexified suðNÞ Lie algebra (α is a
positive root). We shall consider configurations for an
infinite static vortex. Because of translation symmetry
along the x3 direction, we require

B1 ¼ B2 ¼ 0; D3ψA ¼ 0: ð22Þ

Next, motivated by the BPS equations in Refs. [28,29,36]
involving Higgs fields transforming in the fundamental and
adjoint representations, for the field dependence transverse
to the string we propose the first-order equations

Dþζα ¼ 0 ⇔ D−ζ
†
α ¼ 0; D1ψq ¼ D2ψq ¼ 0; ð23aÞ

B3 ¼ g
X
α>0

ðvαjqψq − ½ζα; ζ†α�Þ: ð23bÞ

In terms of the original fields, we can also write

D�ψα ¼ ∓iD�ψᾱ; ð24Þ

B3 ¼ g
X
α>0

ðvαjqψq − ψα ∧ ψᾱÞ: ð25Þ
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A. The ansatz

Regarding the ansatz, we shall use Eqs. (11) and (12),
with Ai being a general field in the Cartan subalgebra C,
not necessarily proportional to β · T,

Ai ¼
XN−1

l¼1

al − dl
g

∂iφβ
l−A · T; ð26Þ

where βðlÞ ¼ 2Nλl−A and λl−A, l ¼ 1;…; N − 1 are the
antisymmetric (fundamental) weights, which provide a
basis βðlÞ · T for C. The Dynkin numbers dl are the positive
integer coefficients obtained when expressing β as a linear
combination of βl−A. The profiles al must obey the
boundary conditions

alð0Þ ¼ 0; alð∞Þ ¼ dl: ð27Þ

The first guarantees a finite action density and a well-
defined strength field along the vortex core while the
second ensures that the gauge field is a pure gauge, cf. (11),

Λi →
∂iφ

g
β · T; when ρ → ∞: ð28Þ

From this ansatz, it also follows that Diψq ¼ ∂iψq and,
from Eqs. (22), (23a), that the fields ψq must be homo-
geneous. We shall take ψq ≡ vTq. Also notice that Eq. (23)
leads to

Dþ½ζα; ζα0 � ¼ ½Dþζα; ζα0 � þ ½ζα; Dþζα0 � ¼ 0; ð29Þ

if both α and α0 are positive roots. This suggests that
½ζα; ζα0 � is proportional to another ζα00. In addition, the
boundary conditions imply

½ζα; ζα0 � → v2N α;α0 ½Eα; Eα0 � ¼ v2N α;α0Eαþα0

when ρ → ∞: ð30Þ

Then, it is natural to assume

½ζα; ζα0 � ¼ vN α;α0ζαþα0 : ð31Þ

Regarding this proposal, it is important to check if it is
consistent with the regularity conditions at ρ ¼ 0.
Fortunately, when both α; α0 are positive roots, these
equations are always consistent.
If α · β ≠ 0, because of the ansatz (12) and Eq. (14),

we must impose ζαðρ → 0Þ ¼ 0. These conditions are
compatible as the highest weight is always a positive
integer linear combination of fundamental weights (see
Appendix B). In addition, the inner product between a

fundamental weight and a positive root is positive.
Therefore, if β · α ≠ 0 or β · α0 ≠ 0, then β · ðαþ α0Þ ≠ 0.
In this case, to avoid the defect in Eq. (14), ζαþα0 will be
zero at ρ ¼ 0, in accordance with the regularity condition
on at least one of the factors in the left-hand side of
Eq. (31). On the other hand, when both β · α ¼ 0 and
β · α0 ¼ 0, the associated basis elements do not rotate so
ψα, ψᾱ, ψα0 , ψᾱ0 are not fixed at the origin. In this case,
just like ψq, it holds that Diψα ¼ ∂iψα. For this reason,
when β · α ¼ 0 we will assume ψα ¼ vTα, ψᾱ ¼ vT ᾱ.
Consequently, Eq. (31) also holds in this case, as it simply
follows from the commutation relations between Eα and
Eα0 . Moreover, it is not difficult to check that this solves the
equations for ψα when Tα and T ᾱ do not rotate.

B. Reduced scalar BPS equations

Notice that

DþðΛÞζα¼ SDþðAÞðhαEαÞS−1

¼
�
∂þhα− i∂þφhα

XN−1

l¼1

ðal−dlÞα ·βl−A
�
SEαS−1;

ð32Þ

B3 ¼
XN−1

l¼1

1

gρ
∂al
∂ρ βl−A · T ¼ g

X
α>0

v2α · T − ψα ∧ ψᾱ

¼ g
X
α>0

ðv2 − h2αÞSα · TS−1: ð33Þ

These two relations imply the BPS equations for the gauge
and Higgs profiles

∂þ ln hα ¼ i∂þφ
XN−1

l¼1

ðal − dlÞα · βl−A; ð34aÞ

1

ρ

∂al
∂ρ ¼ g2

X
α>0

ðv2 − h2αÞα · αðlÞ: ð34bÞ

Here, we used the well-known property involving the
fundamental weights and the simple roots αðpÞ¼ωp−ωpþ1:

αðpÞ · βl−A ¼ δpq: ð35Þ

We have already discussed the property ζα ∧ ζα0 ¼ vζαþα0.
Naturally, this leads to hαhα0 ¼ vhαþα0 , which is consistent
with Eq. (34). Furthermore, as a general root can be written
as a positive sum of simple roots with unit coefficients, the
profiles hαðpÞ associated with simple roots, which satisfy

∂þ ln hαðpÞ ¼ i∂þφðap − dpÞ ð36Þ

can be used to generate all the others.
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IV. MAKING CONTACT WITH THE
SUðNÞ → ZðNÞ MODEL

A. The gauge-field equations

From Eqs. (22), (23b), recalling that

Bi ¼
1

2
εijkFjk; Fij ¼ εijkBk; ð37Þ

we can imply

DjFij ¼ εijkDjBk ¼ −gεij3Djðψα ∧ ψᾱÞ: ð38Þ

If we take i ¼ 1 and using the BPS equation for ψα, ψᾱ, we
get

DjF1j ¼ −gD2ðψα ∧ ψᾱÞ ¼ −gD2ψα ∧ ψᾱ − gψα ∧ D2ψᾱ

¼ ig
2
ðDþψα ∧ ψᾱ −D−ψα ∧ ψᾱ þ ψα ∧ Dþψᾱ

− ψα ∧ D−ψᾱÞ

¼ ig
2
ð−iDþψᾱ ∧ ψᾱ − iD−ψᾱ ∧ ψᾱ þ iψα ∧ Dþψα

þ iψα ∧ D−ψαÞ

¼ −g
�
ψα ∧ Dþ þD−

2
ψα þ ψᾱ ∧ Dþ þD−

2
ψᾱ

�

¼ gD1ψA ∧ ψA: ð39Þ

This is nothing but the component i ¼ 1 of Eq. (10). A
similar calculation can be done for i ¼ 2, while i ¼ 3 is
trivially satisfied.

B. The Higgs-field equations

1. Cartan sector

Now, to make contact with the solutions to the Higgs-
field equations (10b), we have to look for a Higgs potential
VH that is compatible with the BPS equations. In particular,
Eqs. (22), (23a) imply DiDiψq ¼ 0, so that VH must imply

δVH

δψq
¼ 0 ð40Þ

on the ansatz given in Eqs. (11), (12) and (26), which closes
the BPS equations. In what follows, we will see that this
happens when it is given by Eq. (7) with μ2 ¼ 0 and λ ¼ g2.
In this case,

δVH

δψA
¼ λψB ∧ ðψA ∧ ψB − vfABCψCÞ; ð41Þ

where v ¼ − κ
λ. Indeed, applying the same ansatz, we get

δVH

δψq
¼ λ

X
α>0

ψα ∧ ðψq ∧ ψα − vfqαᾱψ ᾱÞ

þ ψᾱ ∧ ðψq ∧ ψᾱ − vfqᾱαψαÞ
¼ λv

X
α>0

ðhαSTαS−1Þ

∧ ðαjqhαST ᾱS−1 − αjqhαST ᾱS−1Þ ¼ 0: ð42Þ

2. Off-diagonal sector

Let us now analyze the equations for fields labeled by
roots. The BPS equations lead to

D2ζα ¼ D−Dþζα − g½B3; ζα�
¼ g2

X
α0>0

½½ζα0 ; ζ†α0 � − v2α0 · T; ζα�: ð43Þ

The sum over α0 involves all positive roots, including α.
On the other hand, according to the equations of the model,
we have

D2ζα ¼ Fα; Fα ¼
1ffiffiffi
2

p
�
δV
δψα

þ i
δV
δψᾱ

�
: ð44Þ

In view of Eq. (41), Fα receives contributions from the
index types B ¼ q; α; ᾱ; γ; γ̄ where γ > 0 is a root different
from α. The partial contribution originated from the Cartan
labels B ¼ q is given by

FðB¼qÞ
α ¼ λffiffiffi

2
p ψq ∧ ðψα ∧ ψq − vfαqᾱψ ᾱ

þ iψᾱ ∧ ψq − ivfᾱqαψαÞ: ð45Þ

Using the ansatz equations (11), (12), and also ψq ¼ vTq,
we have

ψα ∧ ψq ¼ vfαqᾱψ ᾱ; ð46aÞ

ψᾱ ∧ ψq ¼ vfᾱqαψα; ð46bÞ

which imply FðB¼qÞ
α ¼ 0. Next, there is a contribution

originated from B ¼ α; ᾱ

FðB¼α;ᾱÞ
α ¼ λffiffiffi

2
p ðψᾱ ∧ ðψα ∧ ψᾱ − vfαᾱqψqÞ

þ iψα ∧ ðψᾱ ∧ ψα − vfᾱαqψqÞÞ

¼ λ
ψᾱ − iψαffiffiffi

2
p ∧ ðψα ∧ ψᾱ − vfαᾱqψqÞ

¼ λ½½ζα; ζ†α� − vα · ψ ; ζα�; ð47Þ

where we used the property
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ψα ∧ ψᾱ ¼ ½ζα; ζ†α�: ð48Þ

Finally, we evaluate FðB¼γ;γ̄Þ
α ¼ Pα þQα, where Pα (Qα) is

the part without (with) explicit dependence on the structure
constants. They are given by a sum over positive roots
γ ≠ α

Pα ¼ λ
X
γ≠α

ðψγ ∧ ðζα ∧ ψγÞ þ ψγ̄ ∧ ðζα ∧ ψγ̄ÞÞ; ð49aÞ

Qα ¼
λvffiffiffi
2

p
X
γ≠α

ðfαγδ̄ψγ ∧ ψδ̄ − fαγ̄δψ γ̄ ∧ ψδ − ifᾱγδψγ ∧ ψδ

− ifᾱ γ̄ δ̄ψ γ̄ ∧ ψδ̄Þ: ð49bÞ

Using Eq. (31), we arrive at

Pα ¼ λ
X
γ≠α

ðζγ ∧ ðζα ∧ ζ†γÞ þ ζ†γ ∧ ðζα ∧ ζγÞÞ

¼ λ
X
γ≠α

ð½½ζγ; ζ†γ �; ζα� − 2vN α;γ½ζ†γ ; ζαþγ�Þ: ð50Þ

On the other hand, by using Eqs. (A10) and (21) it is
possible to cast Qα in the form

Qα ¼ λv
X
γ≠α

ðN α;γ½ζ†γ ; ζαþγ� þN α;−γ½ζγ; ζα−γ�Þ: ð51Þ

Let us analyze the term with label α − γ. Because γ is
a positive root, α − γ is not necessarily positive, so we
cannot use Eq. (31) right away. Instead, we shall split this
term into two contributions: γ ¼ γþ (γ ¼ γ−) such that
α − γþ (α − γ−) is a positive (negative) root. In the second
case

λvN α;−γ− ½ζγ− ; ζα−γ− � ¼ λvN α;−σ−α½ζσþα; ζ−σ�
¼ λvN α;σ½ζ†σ; ζσþα�; ð52Þ

where σ is a positive root that, when summed with α, yields
another positive root. This is precisely the condition on γ in
the first term of Eq. (51). Therefore,

Qα ¼ λv
X
γ≠α

2N α;γ½ζ†γ ; ζαþγ� þ λv
X
γþ

N α;−γþ½ζγþ ; ζα−γþ�;

ð53Þ

which together with the result for Pα yields

FðB¼γ;γ̄Þ
α ¼ λ

X
γ≠α

½½ζγ; ζ†γ �; ζα� þ λv
X
γþ

N α;−γþ½ζγþ ; ζα−γþ�:

ð54Þ

By the definition of γþ, α − γþ is positive so we can use
Eq. (31) once again to write

FðB¼γ;γ̄Þ
α ¼ λ

X
γ≠α

½½ζγ; ζ†γ �; ζα� þ λv2
X
γþ

N α;−γþN γþ;α−γþζα

¼ λ
X
γ≠α

½½ζγ; ζ†γ �; ζα� − λv2
X
γþ

N 2
α;−γþζα: ð55Þ

To evaluate the sum over γþ, we need to count how many
roots are consistent with the α − γþ > 0 condition. For this
objective, we can use that α ¼ ωI − ωJ for some I < J.
Then, there are two cases

γþ ¼ ωI − ωl; I < l < J ⇒ J − I − 1 possibilities;

γþ ¼ ωl − ωJ; I < l < J ⇒ J − I − 1 possibilities:

Moreover, since N 2
α;−γþ ¼ 1

2N in both of these cases,
we have

X
γþ

N 2
α;−γþ ¼ J − I − 1

N
: ð56Þ

The sum of the N 2
α;−γþ factors in Eq. (55) can be rewritten

as a sum of ðα · γÞ factors:
X
γ≠α

α · γ ¼ N þ J − I − 3

2N
−
N − J þ I − 1

2N
¼

X
γþ

N 2
α;−γþ ;

ð57Þ

where we used a similar counting to determine how many
positive roots γ different from α have α · γ ¼ � 1

2N. In
addition, using the ansatz,

α · γζα ¼ ½γ · T; ζα�; ð58Þ

so that

FðB¼γ;γ̄Þ
α ¼ λ

X
γ≠α

½½ζγ; ζ†γ � − v2γ · T; ζα�: ð59Þ

Finally, joining this result with the previous ones, namely

FðB¼qÞ
α ¼ 0 and Eq. (47), we get

D2ζα ¼ λ½½ζα; ζ†α�− v2α · T;ζα� þ λ
X
γ≠α

½½ζ†γ ;ζγ�− v2γ · T;ζα�

¼ λ
X
α0>0

½v2α0 · T − ½ζα0 ;ζ†α0 �;ζα�; ð60Þ

which equals Eq. (43) for λ ¼ g2.

V. PHYSICAL ANALYSIS

A. Stability of the asymptotic Casimir scaling law

In the previous sections, for each quark representation,
we showed that at μ2 ¼ 0, λ ¼ g2 the proposed vortex
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ansatz that closes the BPS equations provide a static vortex
solution for the SUðNÞ → ZðNÞ YMH model defined in
Eq. (5). From Eqs. (21)–(23), the associated energy per unit
length is

ϵ ¼
Z

d2x

�
1

2
hB3; B3i þ

X
α>0

hDiζ
†
α; Diζαi þ VHðψÞ

�
;

ð61Þ

where d2x integrates over the transverse directions to the
infinite string. Using Derrick’s theorem in two dimensions,
we can equate the potential energy of the Higgs field to that
of the gauge field, thus obtaining

ϵ ¼
Z

d2xhB3; B3i − hζ†α; D2ζαi

¼
Z

d2xhB3; B3i − hζ†α; D−Dþζαi þ ghζ†α; ½B3; ζα�i

¼
Z

d2xhB3; B3 þ g½ζα; ζ†α�i

¼
Z

d2xgv2hB3; 2δ · Ti ¼ gv2
I

hΛi; 2δ · Tidxi; ð62Þ

where δ is the sum of all positive roots and the last integral
must be taken along a circle with infinite radius. Recalling
Eq. (28), this implies that

ϵ ¼ 2πgv2β · 2δ: ð63Þ

at the BPS point. In particular, note that the k-A string
tension scales with the quadratic Casimir, as β · 2δ ¼
N

Nþ1
C2ðk-AÞ in this case. This is the result we obtained

in Ref. [9]. The new important physical consequence that
we will derive from Eq. (63) is that for a general
representation Dð·Þ with N-ality k, the asymptotic string
tension satisfies

σðDÞ
σðFÞ ¼

C2ðk-AÞ
C2ðFÞ

; ð64Þ

which is one of the possible behaviors observed in lattice
simulations.
In what follows, we shall see that the smallest β · 2δ

factor is given by the k-A weight. To prove this result, some
Young tableau technology, useful to study the properties of
the irreps, is required. In this discussion, we shall closely
follow the ideas in Ref. [37]. AYoung tableau consists of a
number of boxes organized according to the follow-
ing rules:
(1) The maximum allowed number of boxes on a given

column is N − 1.

(2) The number of boxes in a given column (ni) should
be lower or equal than the number in any column to
the left. That is, i > j → ni ≤ nj.

(3) The number of boxes in a given row (mi) should be
lower or equal than the number in any row above.
That is, i > j → mi ≤ mj.

Every diagram drawn according to these rules corresponds
to an irrep of SUðNÞ. Many related properties can be easily
identified in this language [37]. The N-ality of a repre-
sentation is simply given by the number of boxes of the
Young tableau, modulo N. The Dynkin indices dk of the
highest weight λD satisfy [37]3

λD ¼
XN−1

l¼1

dlλl-A; di ¼ mi −miþ1: ð65Þ

In general, when a box is moved from an upper to a lower
row, an irrep with more antisymmetries is obtained. For
example, the Young tableau for the k-A (k-S) irrep has one
column (row) with k boxes, as shown in Fig. 1. For an irrep
with N-ality k, that is, a Young tableau with a total number
of boxes of the form kþ nN, the scaling factor can be
written as

β · 2δ ¼ N
N þ 1

XN−1

l¼1

dllðN − lÞ

¼ Nðkþ nNÞ − 2N
N þ 1

XN−1

l¼1

mll: ð66Þ

Then, if a pair of irreps D and D0 with magnetic weights β
and β0, respectively, have the same N-ality k, we obtain

Δβ · 2δ ¼ β0 · 2δ − β · 2δ ¼ N2Δn −
2N

N þ 1

XN−1

l¼1

Δmll;

ð67Þ

Δml ¼ m0
l −ml, Δn ¼ n0 − n, where the primed variables

refer to D0. Let us initially consider a pair of Young

FIG. 1. Young tableaux for the k-A (left) and k-S (right)
representations.

3When i ¼ N − 1, we take mN ¼ 0.
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tableaux with the same number of boxes. If a box is moved
from an upper row I to a lower row J (see, for example,
Fig. 2), we have I < J and ΔmJ ¼ −ΔmI ¼ 1; conse-
quently, Δβ · 2δ ¼ 2N

Nþ1
ðI − JÞ < 0. This means that, for a

given number of boxes kþ nN, the tableau with smallest
β · 2δ is that in which the boxes are as lowered as possible.
Among these tableaux, we need to compare those having
different n but the same N-ality. As an initial example, let
us begin by comparing the pair shown in Fig. 3 and assume
that the column of the first one is not completely full, i.e.,
k ≤ N − 2. In this case, we see that

Δmi ¼
�
2; if i ¼ k;

1; otherwhise:
ð68Þ

Also, Δn ¼ 1 because we are comparing k with kþ N
boxes, in which case

Δβ · 2δ ¼ N2Δn −
2N

N þ 1

XN−1

l¼1

Δmll ¼
2N

N þ 1
ðN − kÞ > 0:

ð69Þ

This means the scaling factor increases when we go from k
to N þ k boxes. This can be readily extended to the general
case depicted in Fig. 4. Because β · 2δ depends only on
the difference of the number of boxes, the x full columns

in both diagrams can be disregarded for our purposes. The
values of x and y are such that yþ xðN − 1Þ ¼ kþ nN. In
fact, the analysis of the relevant part of these two tableaux is
completely analogous to that of Fig. 3, which leads to the
same result of Eq. (69) but with y instead of k. Since
1 ≤ y ≤ N − 1, the net difference continues to be positive.
In summary, the smallest scaling factor within a given
N-ality k corresponds to the single column tableau on the
left side of Fig. 3, namely, the one corresponding to the k-A
representation.
Now, to complete the analysis of the asymptotic scaling,

we need to discuss how the Wilson loop would be assessed
in the effective model in Eq. (5), as this is the observable
used in the lattice to compute string tensions. Indeed, this
model emerges as an effective description of center-element
averages, which depend on the linking number between
center vortices and the Wilson loop C. As discussed in
Ref. [11], by considering in Eq. (5) the replacement

Fμν → Fμν − Jμν; Jμν ¼ 2πβ · Tsμν;

sμν ¼
Z
SðCÞ

d2σ̃μνδð4Þðx − wðs; τÞÞ; ð70Þ

an average is reproduced. Here, β is a magnetic weight
associated with the quark representation, and sμν is con-
centrated on any surface SðCÞ, parametrized by wðs; τÞ,
whose border is C. More precisely, Jμν was introduced to
compute intersection numbers in the initial ensemble,
which are equivalent to the linking numbers between C
and the vortex worldsurfaces. As usual, the confining state
in the presence of a static quark-antiquark pair is obtained
from a rectangular Wilson loop with one side along the
Euclidean time with length T → ∞. In the energy func-
tional, Jμν gives place to unobservable Dirac strings with
endpoints at the (physical) quark and antiquark locations.
Solutions of the form (11), with modified regularity
conditions so as to cancel the Dirac strings, can be
obtained. They correspond to smooth finite strings, which
in the limit of large quark-antiquark separations make
contact with the BPS solutions studied in this work.
However, at asymptotic distances, most of these solutions

FIG. 2. An example of transformation on a tableau that
decreases the scaling factor β · 2δ.

FIG. 3. Fully antisymmetric Young tableau with k (left) and
N þ k (right) boxes.

FIG. 4. Fully antisymmetric Young tableau with kþ nN (left)
and kþ ðnþ 1ÞN (right) boxes. There are y boxes (in red) in the
partly full column in the first tableau and N boxes (in blue) were
added in the second one.
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are in fact local minima or metastable states. Other finite
energy solutions where the Dirac strings are also canceled
may involve dynamical adjoint monopoles (valence gluons)
created around the sources [10]. As the adjoint representa-
tion has trivial N-ality, the favored asymptotic confining
string will be the one with the lowest energy among those
with the same N-ality (k) of Dð·Þ. From the previous
discussion, this corresponds to the k-A string, which settles
the asymptotic Casimir scaling in Eq. (64).

B. Configurations induced by a pair of external
quark-antiquark sources

In Monte Carlo simulations, when studying an observ-
able that creates static sources during a large time interval
T, the leading behavior is dominated by the lowest energy
state that can be created. Then, in the effective model, this
state must be compared with the lowest energy configu-
ration compatible with the conditions imposed by the
sources. For example, it is clear that the lattice simulation
of theWilson loop in the k-A irrep must be compared with a
straight string (with cylindrical symmetry), running from
the quark to the antiquark. This will be the global mini-
mum, as the introduction of dynamical monopoles or
wiggles will certainly increase the energy. Indeed, at
asymptotic distances, where the effective model is expected
to be valid, this will make contact with the translationally
symmetric BPS k-A string solution.
Now, at μ2 ¼ 0, the nontrivial profiles for translationally

symmetric configurations with any number of k-A strings,
given by the ansatz in Eq. (11), were shown to obey
Nielsen-Olesen equations [9]. At the critical coupling, this
implies that they do not interact. However, this is not
necessarily related with the behavior of fluxes in Yang-
Mills observables. For example, to analyze a situation with
a pair of sources and sinks [see Fig. 5(a)], an observable
that creates a tetraquark must be considered. Again, the
lattice result has to be compared with the global minimi-
zation of the effective energy functional in the presence of
the static probes, without any further restrictions on the
fields. On the other hand, the multivortex critical solutions

do not contemplate the minimization with respect to
translationally nonsymmetric configurations. That is, when
the sources and sinks are far apart from each other, the
noninteracting translationally invariant configuration could
be a metastable state associated with a local minimum.
Then, let us take a closer look to the case of SUð3Þ with
fundamental quarks. As pointed out in Refs. [38–40], the
flux distribution strongly depends on the distance between
the quark-antiquark pairs. For R1 >

ffiffiffi
3

p
R2 (with asymp-

totic values for both R1 and R2), the energy distribution is
given by a double Y-shaped configuration, as depicted in
Fig. 5(b). This behavior was computed in the lattice, by
considering the tetraquark observable [38]

W4q½Aμ� ¼
1

12
ϵabcϵdefϵa

0b0c0ϵd
0e0f0

× Γ1jaa0Γ2jbb0ΓGjcfΓ3jd0dΓ4je0eΓG0 jf0c0 ; ð71Þ

where Aμ is the fundamental field of pure Yang-Mills
theory and the different holonomies Γ are evaluated along
the paths γ1;…; γ4, γG, γG0 (see Fig. 6).
In the center-vortex ensemble picture, the tetraquark

observable is related with the average of

(a) (b)

FIG. 5. qqq̄ q̄ probes: (a) The stable flux configuration includes the energy minimization over all possible guiding centers g1, g2.
(b) For R1 >

ffiffiffi
3

p
R2, the coalescence of g1, g2 is favored, as the sum of fundamental suð3Þ weights β1, β2 is an antifundamental weight

−β3 (N-ality).

FIG. 6. Representation of the tetraquark observable W4q. The
dashed lines represent optional holonomies that can be included
without changing this variable.
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W4q ¼
Y4
i¼1

z
P

w
Lðγci ;wÞz

P
w
2Lðγc

5
;wÞ ð72Þ

over closed worldsurfaces w, as this is the contribution to
the tetraquark variable W4q when evaluated on thin center
vortices. Here, z ¼ ei2π=3 is a center element, and the closed
paths γc1; γ

c
2 (respectively, γ

c
3; γ

c
4) are the composition of γ1,

γ2 (respectively, γ3, γ4) with the adjacent dotted line γL
(respectively, γR). In addition, the closed path γc5 is given by
the composition of γG; γL; γG0 and γR. Lðγck; wÞ is the
linking number between w and the closed paths γck, while
the factor 2 is because γc5 has opposite orientation compared
with γc1;…; γc4, and z

−1 ¼ z2. In Ref. [11], we introduced an
ensemble measure in the lattice, which includes oriented
and nonoriented center-vortex degrees of freedom. The
former are generated by a Wilson action with frustration,
whose continuum limit corresponds to the Λμ gauge-field
sector in the effective action [cf. Eqs. (5), (70)]. This,
together with holonomies defined on an ensemble of
worldlines with stiffness, generated the nonoriented center
vortices. These holonomies were then shown to be effec-
tively described by the scalar sector ψA in Eq. (5). The only
difference here is the choice of external source to be
considered in Eq. (70). Due to Eq. (72), a possibility is
given by

Jμν ¼ 2π
X5
k¼1

βðγckÞ · Tskμν ð73Þ

where skμν is localized on a surface SðγckÞwhose border is γck
and

βðγc1Þ ¼ βðγc3Þ ¼ β1; βðγc2Þ ¼ βðγc4Þ ¼ β2;

βðγc5Þ ¼ β3 ¼ −β1 − β2; ð74Þ

where βk ¼ 2Nωk, and ω1, ω2, ω3 are the three (ordered)
weights of the fundamental representation of SUð3Þ.
Indeed, in the lattice, this introduces a frustration factor
in the Wilson action

e−iαμν ; αμν ¼ α1μν þ � � � þ α1μν − α5μν;

αkμν ¼
�
2πβðγckÞ · T if hμνi intersects SðγckÞ
0 otherwise;

defined on the lattice plaquettes hμνi. In the expansion
of the Wilson action, the nontrivial contribution is origi-
nated from plaquettes distributed on closed worldsur-
faces w. When γck links w, then SðγckÞ is intersected.
This gives a factor ei2πβ1·T ¼ ei2πβ2·T ¼ zI or e−i2πβ3·T ¼
ei2πðβ1þβ2Þ·T ¼ z2I, thus reproducing Eq. (72). It is also
interesting to note that the weight choice in Eq. (74) is
related with the Petrov-Diakonov representation of W4q

(see Appendix C). Similarly to the case of a single Wilson
loop, at fixed t the external source in Eq. (73) will give rise
to unobservable Dirac lines, which can be chosen as
entering the lower (upper) antiquark and leaving the lower
(upper) quark with β1 (β2). In this case, in order for the
energy to be finite, a configuration based on a phase S ¼
eiðβ1χ1þiβ2χ2Þ·T is required, where χ1 (χ2) is multivalued
when going around a closed path designed to cancel the
Dirac string of type β1 (β2). This leaves the effect of a pair
of guiding centers g1, g2 [Fig. 5(a)] where the fields must be
in a false vacuum, so that the energy will be mainly
concentrated around them. It is clear that for R1 >

ffiffiffi
3

p
R2

(with asymptotic R1, R2), the energy minimization, which
includes the variation of g1 and g2, will favor a Y-shaped
global minimum as shown in Fig. 5(b). This is due to the
fact that, in the common part, the sum of fundamental
magnetic weights β1 and β2 will combine to −β3, which
implies the same energy cost of a single fundamental string.
In other words, the observed Y-shaped configuration is
nothing but the reflection of N-ality stated in the language
of weights.

VI. CONCLUSIONS

In this work, we were able to find a set of BPS equations
which provide center string solutions for a Yang-Mills-
Higgs model containing N2 − 1 adjoint Higgs fields. This
type of model can be thought of as an effective description
for center-element averages over an ensemble of closed
worldsurfaces and correlated worldlines. It is strongly
believed that these ensembles can capture the relevant
quantum degrees of pure Yang-Mills theories in the infrared
regime. In the ensemble, a center element is generated
every time a worldsurface links the Wilson loop. As this
element depends on how the quark representation realizes
the center of SUðNÞ, this scenario is able to explain the
property of N-ality observed in the full Monte Carlo
simulations of YM theory. In the YMH model, N-ality
is reflected in the SUðNÞ → ZðNÞ SSB pattern, while the
information about the Wilson loop is manifested as a
frustration in the effective gauge field sector. This in turn
amounts to represent the quark/antiquark in terms of
monopole/antimonopole sources with charges in the given
quark representation. As the distance between the quark
and antiquark grows, to lower the total energy, the YMH
model allows for the formation of dynamical adjoint
monopoles localized around the sources (valence gluons).
These objects cannot induce transitions that change the
N-ality of the confining state, so that the asymptotic
confining string will be the one with the lowest energy
among those with the same N-ality. Here, we found the
energy of an infinite string solution to the BPS equations in
a general representation of SUðNÞ. We showed that the
energy corresponding to the k-A representation is the
lowest among all the quark representations with N-ality
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k. In other words, for widely separated quark/antiquark
sources, the stable state is indeed given by the k-A string.4

This together with our previous result in Ref. [9], where the
k-A string tension was shown to be proportional to the
quadratic Casimir, completes the proof that the effective
YMH model reproduces an asymptotic Casimir Law.
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APPENDIX A: CARTAN DECOMPOSITION
OF suðNÞ

Here, we summarize the main properties of the suðNÞ
Lie algebra, as well as the conventions used throughout the
paper. The construction of the Cartan-Weyl basis is initiated
by defining a maximal commutative subspace, whose
generators Tq satisfy

½Tq; Tp� ¼ 0; ðA1Þ

where q; p ¼ 1;…; N − 1. The remaining basis elements
are the so-called root vectors Eα, which diagonalize the
adjoint action of Tq

½Tq; Eα� ¼ αjqEα: ðA2Þ

The eigenvalues αjq form an (N − 1)-tuple α ¼ ðαj1; αj2;
…; αjN−1Þ which is referred to as root. Since the dimen-
sions of suðNÞ and the Cartan subalgebra are, respectively,
N2 − 1 and N − 1, there are NðN − 1Þ root vectors. Awell-
known result is that if α is a root, so is −α. Moreover, the
associated root vectors are related by

E−α ¼ E†
α: ðA3Þ

We are considering the Cartan-Weyl basis fTq; Eαg as
orthonormal with respect to the product

hA; Bi ¼ TrðAdðAÞAdðBÞÞ; ðA4Þ

where Adð·Þ stands for the adjoint representation. In this
case, we have

½Eα; E−α� ¼
XN−1

q¼1

αqTq ¼ α · T: ðA5Þ

In order to completely specify the commutation relations of
root vectors, we need to address two roots that do not sum
up to zero. These relations turn out to be

½Eα; Eα0 � ¼ N α;α0Eαþα0 ; ðA6Þ

where α0 ≠ −α and N α;α0 vanishes when αþ α0 is not a
root. With the normalization adopted, one can show that

N 2
α;α0 ¼

1

2N
ðA7Þ

whenever it does not vanish. These structure constants also
have the property

N α0;α ¼ N −α;−α0 ¼ −N α;α0 : ðA8Þ

Moreover, if α; α0;α00 are roots that add up to zero, then

N α;α0 ¼ N α00;α ¼ N α0;α00 : ðA9Þ

The root vectors Eα, which live in the complexified Lie
algebra, can be replaced by the Hermitian generators Tα

and T ᾱ in Eq. (9). When using the latter as basis elements,
one must consider only positive roots α > 0 to avoid
overcounting (for the notion of positiveness, see
Appendix B). In this basis, the following commutation
relations hold:

½Tq; Tα� ¼ iαjqT ᾱ; ½Tq; T ᾱ� ¼ −iαjqTα;

½Tα; T ᾱ� ¼ iαjqTq; ðA10Þ

½Tα; Tβ� ¼
iffiffiffi
2

p ðNα;βTαþβ þ Nα;−βTα−βÞ; ðA11Þ

½Tα; T β̄� ¼ −
iffiffiffi
2

p ðNα;βTαþβ − Nα;−βTα−βÞ; ðA12Þ

½T ᾱ; T β̄� ¼ −
iffiffiffi
2

p ðNα;βTαþβ − Nα;−βTα−βÞ: ðA13Þ

However, these relations remain true even for negative
roots, recalling that the extended Hermitian generators are
not independent from their positive-root counterparts, and
satisfy

T−α ¼ Tα; T−ᾱ ¼ −T ᾱ: ðA14Þ

APPENDIX B: WEIGHTS AND
REPRESENTATIONS OF suðNÞ

A weight of an irrep D of suðNÞ is an (N − 1)-
tuple formed by the eigenvalues of a simultaneous
eigenvector of DðTqÞ; q ¼ 1;…; N − 1. Each irrep has
its own set of weights. That corresponding to the

4Of course, for the trivial N-ality k ¼ N (mod N) this
corresponds to the string breaking.
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fundamental representation has N elements ω1;ω2;…;ωN
constrained by

ω1 þ ω2 þ � � � þ ωN ¼ 0: ðB1Þ
The weights of the adjoint representation are the roots, as
they are eigenvalues for the adjoint action ½Tq; ·�. They can
be expressed as the differences

α ¼ ωi − ωj ðB2Þ
for some i; j ¼ 1;…; N, which is consistent with the
previous counting ofNðN − 1Þ roots. Some useful sums are

XN
i¼1

ωijqωijq ¼
1

2N
δqp;

X
α

αjqαjp ¼ δqp: ðB3aÞ

A weight is said positive if its last nonvanishing
component is positive. Consequently, a weight is greater
than another if their difference is positive. In particular,
given the set of weights of a given irrep., we can always
determine the highest. For the fundamental representation,
we choose the ordering convention

ω1 > ω2 > … > ωN: ðB4Þ
Then, a root α ¼ ωi − ωj is positive if and only if i < j.
Among the irreps. with N-ality k, we have the

k-symmetric (k-S) and k-antisymmetric (k-A), k ¼ 1;
…; N − 1. They are constructed from the totally symmetric
and antisymmetric decomposition of k tensor products of
the fundamental representation. The corresponding highest
weights are given by5

λk-S ¼ kω1; λk-A ¼
Xk
i¼1

ωi: ðB5Þ

It is important to emphasize that the highest weight of any
irrep. can always be written as a nonnegative integer linear
combination of the k-antisymmetric weights, which are
called fundamental weights (not to be confused with the
weights of the fundamental representation). The coeffi-
cients are called Dynkin numbers and there is a one-to-one
correspondence between irreps. and these combinations.
To end this quick review, the quadratic Casimir operator

for a given representation D is

C2ðDÞ ¼
XN2−1

A¼1

DðTAÞDðTAÞ: ðB6Þ

This operator commutes with every element of suðNÞ and
thus it is proportional to the identity matrix. The propor-
tionality constant is known as the quadratic Casimir. For
our choice of normalization, the quadratic Casimir for the
fundamental, adjoint, k-S and k-A representations are,
respectively,

N2 − 1

2N2
; 1;

kðN þ kÞðN − 1Þ
2N2

;
kðN − kÞðN þ 1Þ

2N2
:

ðB7Þ

Finally, for any irrep. D, the quadratic Casimir can be
expressed in the form

C2ðDÞ ¼ λD · ðλD þ 2δÞID; ðB8Þ

where λD is the highest weight and δ is the Weyl vector,
given by half the sum of the positive roots.

APPENDIX C: PETROV-DIAKONOV
REPRESENTATION OF W4q

We note that the integral

Z
dμðgÞdμðg2Þdμðg00Þdμðg000Þhg; ν1jΓ1jg0; ν1ihg; ν2jΓ2jg0; ν2i

× hg00; νG0 jΓG0 jg0; νG0 ihg00; ν3jΓ3jg000; ν3ihg00; ν4jΓ4jg000; ν4ihg; νGjΓGjg000; νGi ðC1Þ

is nonzero and proportional toW4q if and only if νG ¼ νG0 ,
ν3 þ ν4 þ νG ¼ ν1 þ ν2 þ νG ¼ 0. Here, we used the
group coherent states [41,42] jg; νi ¼ gjνi, with jνi being
weight vectors of the fundamental representation, and
the formula [the normalization of the Haar measure isR
dμðgÞ ¼ 1]

Z
dμðgÞgaa0gbb0gcc0 ¼

1

3!
ϵabcϵa0b0c0 ; g ∈ SUð3Þ: ðC2Þ

Then, a possible choice to accompany the holonomies
fΓ1;Γ3g, fΓ2;Γ4g, fΓG;ΓG0g in Eq. (C1) is given by
ν1 ¼ ν3 ¼ ω1, ν2 ¼ ν3 ¼ ω2), νG ¼ νG0 ¼ ω3, respec-
tively, where ω1, ω2, ω3 are the three (ordered) fundamental
weights of suð3Þ. Next, for each factor in Eq. (C1), we can
use the Petrov-Diakonov (PD) representation [43]

hgf ; νjΓγjgi; νi ∝
Z

½dgðsÞ�ei
R

dsTrððg−1Agþig−1∂sgÞν·TÞ;

A ¼ dxμ
ds

Aμ; ðC3Þ5Notice that Λ1−S ¼ Λ1−A ¼ ω1.
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where Γγ is an holonomy, and the measure ½dgðsÞ�
integrates over paths gðsÞ defined on γ [parametrized by
xðsÞ], with initial and final conditions gi and gf , respec-
tively. In the exponent of the PD representation ofW4q thus
obtained, the six line integrals can be replaced by five
integrals along the loops γck, k ¼ 1;…; 5, after extending
½dgðsÞ� → ½dg̃ðsÞ�, which also integrates over group ele-
ments defined on the dotted lines. Indeed, because of the
weight distribution, the additional integrals along γL and γR
are canceled because of the property ω1 þ ω2 þ ω3 ¼ 0.

A further extension of the paths in the group to configu-
rations ŨðxÞ such that g̃ðsÞ ¼ ŨðxðsÞÞ, and the Stokes’s
theorem, finally leads to

W4q ∝
Z

½DŨ�ei
2

R
d4xTrðŨ−1YμνŨJμνÞ;

YμνðŨ; gÞ ¼ ϵμνρσDρðL̃ÞðAσ − L̃σÞ; ðC4Þ

where L̃μ ≡ iŨ∂μŨ−1 and Jμν is given by Eq. (73).
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