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BPS strings and the stability of the asymptotic Casimir law in adjoint
flavor-symmetric Yang-Mills-Higgs models
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We investigate an effective flavor-symmetric Yang-Mills-Higgs model with N? — 1 adjoint scalar fields.
We find a set of Bogomol'nyi-Prasad-Sommerfield equations that provide vortex solutions and calculate
their energies for arbitrary representations. We show that, for a given N-ality k, the energy of the
corresponding antisymmetric representation is the lowest. This completes the proof that this model is able
to reproduce a Casimir law for the string tension at asymptotic distances.

DOI: 10.1103/PhysRevD.102.074005

I. INTRODUCTION

The chromoelectric flux tube between external quarks in
SU(N) Yang-Mills (YM) theory [1-6] has many interesting
properties. At intermediate distances, the lattice string
tension o7(D), derived from the Wilson loop average
(We)," scales with the quadratic Casimir C,(D) of the
SU(N) quark representation D(-), see Ref. [2]. That is,

ai(D) _ C:(D)
aF)  Ca(F)

(1)

where F stands for the fundamental representation. In this
work, we will be mainly interested in the behavior at
asymptotic distances, where the string tension is known to
depend only on the N-ality of D(-) [7]. The latter is given
by an integer k (modulo N) that dictates how the center of
SU(N),

Z(N) = {zy|lz € C,z2" =1}, (2)
is realized. Namely
D(zly) = Z'Ip. (3)

where [ is a D x D identity matrix and D is the dimension
of D.

A possible approach to capture the physics at asymptotic
distances is to look for effective Yang-Mills-Higgs (YMH)

'C is the closed worldline associated with the external quark/
antiquark pair.
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models that accomodate N-ality as due to an SU(N) —
Z(N) spontaneous symmetry breaking (SSB) pattern,
which leads to the formation of Z(N) strings [8,9]. In this
scenario, the quarks are represented by external monopole/
antimonopole pairs carrying the charges (weights) that
characterize D(-) [10]. In Ref. [11] (see also [12]), the pure
Yang-Mills sector of these models was associated with the
continuum limit of an effective Wilson action with frus-
tration. The latter generates an average of center elements
which depends on the linking number between the external
quark worldline C and plaquette configurations distributed
on closed surfaces. These configurations were thus identified
with an ensemble of center-vortex worldsurfaces, which are
quantum variables extensively explored in the lattice as a
source for confinement [13-23]. The possibility of non-
oriented center vortices, where the 8u(N) Lie algebra
orientation changes at some worldlines on the worldsurfaces,
was also observed in lattice simulations, and is believed to
play a relevant role for confinement [24-26]. In Ref. [11],
this type of nonoriented object was introduced by means of
an ensemble of adjoint dual Wilson loops. Moreover, in the
continuum, this sector induces a set of effective adjoint Higgs
fields, while possible correlations between adjoint dual
Wilson lines were related to effective Higgs interactions.
Then, among the SU(N) — Z(N) models, an interesting
possibility is the one introduced in Ref. [8], as it contains
N? — 1 adjoint Higgs fields, and displays flavor symmetry.
Besides N-ality, an effective description should also
explain the particular scaling of the asymptotic string
tension (D). There are two main possibilities consistent
with the lattice data [27]. One of them is the sine law

(D) _ sin (kz/N)
o(F)  sin(z/N) "~

(4)

The other one is an extension to the asymptotic region
of the behavior in Eq. (1), but replacing C,(D) by the
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lowest quadratic Casimir among representations with the
same N-ality than D(-). The latter is given by the
k-antisymmetric (k-A) irreducible representation (irrep).
Interestingly, in the adjoint flavor-symmetric model, the
tension of the infinite k-A string scales with the quadratic
Casimir [9], which is compatible with the second possibility.
In this context, in order to establish the asymptotic Casimir
scaling law one must also show that this is the lowest tension
among the irreps with N-ality k. In that case, k-A strings
would be settled as the stable confining states. This is one of
the properties we will be able to address exactly in this work.
For this aim, we need an analysis of the field equations for
any representation D(-) of SU(N), which was still lacking.
Here, we will show that there is a point in parameter space
where the complicated set of second order equations can be
reduced to a set of first order Bogomol nyi-Prasad-
Sommerfield (BPS) equations. In flavor-symmetric models,
this reduction was shown in Refs. [28-30] when the Higgs
fields are in the fundamental representation, and in Ref. [31],
only for SU(2), when the Higgs fields are in the adjoint. At
this point, we will close an ansatz for a string carrying any
weight of SU(N) showing that, for a given N-ality k, the
tension corresponding to the k-antisymmetric representation
is indeed the lowest.

II. PREVIOUS RESULTS

The flavor-symmetric effective model with adjoint Higgs
fields v, which take values in the 8u(N) Lie algebra, is
given by2 [8]

1 1
S = /d4x<—Z<F,w’Fllv> +§<D,¢W1,D,ﬂl/1> - VH(W))’

(5a)

i
F;w = —[D”,DD],

p D, =0,—ig[A,.] =0, +gA, A.

(5b)

The number of flavors I =1,...,N?> —1 equals the
dimension of 8u(N). Under a gauge transformation
U € SU(N), we have

A, = UAU™! +éU8,,U‘1, v, — Uy, U™, (6a)

The potential was set as

e

K
Vuly) =c +?<V/A7V/A> +§fABC<WA AWg.We)

NS )

2Throughout this work, we use Euclidean metric.

which leads to the classical vacua (S € SU(N))

A, = é $0,571,  y, = vST,4S, (8a)
Here, T and f ¢ are the 3u(N) Lie basis and structure
constants, respectively. Throughout this work, we shall
also separate the color and flavor indices into Cartan g =
1,...,N — 1 and off-diagonal a, & labels. The elements Tq
form a maximal commuting set, while the remaining
elements are defined in terms of root vectors E,

— Ea + E—a Ea - E—a

Ta = T(I - =
V2 V2i

where a is a positive root of 3u(N). For the notation and
conventions, see the Appendix A.

As the only transformation that leaves a Higgs field
vacuum configuration invariant is U = zly, the system
undergoes SU(N) — Z(N) SSB. Consequently, the vortex
solutions to the static field equations

D;Fi; = gDy Ny, (10a)
oV
DDy, = ﬁ (10b)
are topologically stable due to the nontrivial first homo-
topy group of the associated vacua manifold M = SZ%\;),

IT; (M) = Z(N). Among the possible configurations are
those containing just one infinite straight string. To find
these solutions, the ansatz

AO = 0, Ai = S./4l‘S_1 + iS@,»S_l, Wa = hABSTAS_l,
g
S = eihT (11)

was used. Since there is cylindrical symmetry in this case,
the profiles a and &, can be taken as functions of p alone,
with (p,¢,z) being cylindrical coordinates. The vortex
charge is defined by the magnetic weight g = 2NAP, with
AP being the highest weight of the representation D(-).
Here, we used the notation §- T = f[, T, where fi| , is the
gth component of the (N — 1)-tuple f. For the various
definitions and properties, see Appendix B. In Ref. [9],
considerig A; = (a/g)0;¢f - T, we obtained vortex solu-
tions for the k-A and k-symmetric (k-S) representations. In
this work, using .4; along a general Cartan direction
(cf. Sec. IIT A), we shall be able to accommodate a vortex
for a general D(-). In terms of the Cartan-Weyl sectors, the
anstaz has the simpler structure:

W, = h,ST,S7!,

l//[l - haST&S_l, l//q - hquTpS_l.

(12)
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In order for the gauge and v, y; fields, with a - 8 # 0, to
be well-defined along the z axis, we imposed the regularity
conditions

a(0) =0, (13a)
ha(0) =0 when a-f# 0. (13b)

In this regard, note that
ST,S™! = cos (pf - a)T, + sin (pp - a)T, (14a)
ST3S™! = cos (pf - a)T5 —sin (¢pf - a)T,. (14b)

When u? =0, the solution for the fields with no
regularity conditions at p = 0 is frozen everywhere at
the vacuum value:

w, =T, we=0vT, whena-p=0. (15)

This led to the following asymptotic exact behavior of the
string tension for the k-A representation
o(k-A)
o(F)

_k(N-k)  Cy(k-A)
- ON-1 éZ(F) ' (16)

This agrees with the large distance behavior of the Wilson
loop [4]. It is trivial to extend the discussion of Ref. [9] to
the k-S irrep. In this case, the model is equivalent to a
Ginzburg-Landau theory with winding number k. Then, at
the BPS point 1 = ¢g*> of the Abelianized > = 0 model,
we have

 k(N=K) o(k-A)
k>N T em (17)

for k > 1. Then, when a k-S string is long enough, it is
energetically favorable to create valence gluon excitations
around the quark sources to produce a k-A string.

III. BPS EQUATIONS
In the Nielsen-Olesen model governed by the action
(D, =09, —igh,, p €C)

l *
§(¢¢ - U2)2>’

(18)

when A < ¢7, a single vortex with higher winding number
is energetically more favorable than n separated vortices
with winding number 1. When A > ¢?, the situation is
reversed. For a recent discussion about the fitting of lattice
data with the Nielsen-Olesen model, see Refs. [5,6,32,33]
and references therein.

1 1
Sabe = /d4x <_ZFMDF/4U +§D;¢¢Dﬂ¢_

At 1 = g%, also known as the BPS point, the vortices do
not interact, as the energy of any configuration with
winding number 7 is given by

E = gv? / d*x By = 2zv°n. (19)

In this Abelian setting, the equations of motion at the BPS
point can be reduced to be first order

Di¢p=0. By=_(v"—¢¢")

NSRINS

B1 - B2 - 0, (20)

where D, = D = iD,. For a detailed discussion on this
topic, see Ref. [34]. In the non-Abelian context, this type of
BPS point is known to occur in flavor-symmetric SU(N) —
Z(N) models constructed in terms of N Higgs fields in the
fundamental representation [28,29,35]. In this section, we
will show that there is a set of BPS equations that provides
solutions to the flavor-symmetric SU(N) — Z(N) model
formed by N? — 1 adjoint Higgs fields, at y> = 0 and 1 =
g* [cf. Egs. (5), (7), (10)]. Moreover, we will show that
these equations can be closed with an ansatz that accom-
modates center vortices carrying the weights of any SU(N)
group representation.
Initially, for every pair y,, yz with @ > 0, we define

_Vat Wa

N

which is in the complexified 3u(N) Lie algebra (a is a
positive root). We shall consider configurations for an
infinite static vortex. Because of translation symmetry
along the x? direction, we require

Ca (21)

Bl = B2 = O, D3l//A =0. (22)
Next, motivated by the BPS equations in Refs. [28,29,36]
involving Higgs fields transforming in the fundamental and
adjoint representations, for the field dependence transverse
to the string we propose the first-order equations

D.l,=0eD_C=0,

Dqu = DZV/q =0, (238')

B3 = gZ(Ua|qu - [ga’ C(TI])

a>0

(23b)

In terms of the original fields, we can also write

DiW(l = :FlDil//&’ (24)
By =g (valwy—ya A wa). (25)
a>0
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A. The ansatz

Regarding the ansatz, we shall use Eqgs. (11) and (12),
with A4; being a general field in the Cartan subalgebra €,
not necessarily proportional to g - T,

N—

A Z

dla opA T, (26)

where ) = 2NAA and 274, I=1,....N—1 are the
antisymmetric (fundamental) weights, which provide a
basis () - T for €. The Dynkin numbers d, are the positive
integer coefficients obtained when expressing f# as a linear
combination of p/~A. The profiles a, must obey the
boundary conditions
@(0) =0, afo) =d,. (27)
The first guarantees a finite action density and a well-

defined strength field along the vortex core while the
second ensures that the gauge field is a pure gauge, cf. (11),

when p — oo. (28)

From this ansatz, it also follows that Dy, = 0w, and,
from Egs. (22), (23a), that the fields y, must be homo-
geneous. We shall take y, = vT ;. Also notice that Eq. (23)
leads to

D+[§w ga’} = [DJrCa’ Ca’] + {ga’DJré:a’] =0, (29)
if both @ and & are positive roots. This suggests that
[C4, €] is proportional to another {,. In addition, the

boundary conditions imply

[gaa éa] -0 N{l a’[ s a] = UzNa.a’Ea+(f
when p — oo. (30)

Then, it is natural to assume

[Ca’ Ca’] = UNa,a’(:a+a" (31)

Regarding this proposal, it is important to check if it is
consistent with the regularity conditions at p = 0.
Fortunately, when both a,« are positive roots, these
equations are always consistent.

If - fp #0, because of the ansatz (12) and Eq. (14),
we must impose {,(p — 0) = 0. These conditions are
compatible as the highest weight is always a positive
integer linear combination of fundamental weights (see
Appendix B). In addition, the inner product between a

fundamental weight and a positive root is positive.
Therefore, if f-a#0or f-a #0, then - (a+ ') #0.
In this case, to avoid the defect in Eq. (14), {,,, will be
zero at p = 0, in accordance with the regularity condition
on at least one of the factors in the left-hand side of
Eq. (31). On the other hand, when both f-a =0 and
B+ d =0, the associated basis elements do not rotate so
Vo War Wos Wy are not fixed at the origin. In this case,
just like y,, it holds that D;y, = 0;y,. For this reason,
when f-a=0 we will assume y, = vT,, yz; = vT;.
Consequently, Eq. (31) also holds in this case, as it simply
follows from the commutation relations between E, and
E . Moreover, it is not difficult to check that this solves the
equations for y, when T, and T do not rotate.

B. Reduced scalar BPS equations
Notice that

D+ (A)ga = SD+ (A)(haEa)S_l

N-1
= <8+ha - ia+(pha Z(al - dl)a

=1

‘ﬂl_A> SE(IS_I,

(32)

N-1
laal
B} = AT =g va-T—y, Ay,
ng@p ; o

=g (v? = h2)Sa-TS™". (33)

a>0

These two relations imply the BPS equations for the gauge
and Higgs profiles

d.Inh, =i0, ¢ E a-p=A (34a)
1 8a, > 2 2
= 2 —h2)a-al) 34b
pap = T2 ) (34b)

Here, we used the well-known property involving the
fundamental weights and the simple roots a(”) =@ =Wyt

(P) . pI=A = §ra. (35)

We have already discussed the property {, A {y = v, -
Naturally, this leads to h,h, = vh,, ,, which is consistent
with Eq. (34). Furthermore, as a general root can be written
as a positive sum of simple roots with unit coefficients, the
profiles A, associated with simple roots, which satisfy

9, Inhyy =id, la,—d,) (36)

can be used to generate all the others.
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IV. MAKING CONTACT WITH THE
SU(N) — Z(N) MODEL

A. The gauge-field equations
From Eqgs. (22), (23b), recalling that

1
B; = zgiijjkv Fij = 8ijkBk7 (37)
we can imply
D;F;; = ¢;;D;B; = _geij3Dj(l//a AWg). (38)

If we take i = 1 and using the BPS equation for y,, 5, we
get

DF\; = —gD>(ya A Ws) = —gD2yo A W — g A Doy
_ig

=5 Doy Ao —D_wa ANpag+ya ADiys
—¥a A D_ys)

= % (=iD o Ao —iD_ya Aya +iwe A Doy,
+ iy A D_yr,)

= _g<‘l’a A #Wa T wa A #W&)

= gD1ya N ya. (39)

This is nothing but the component i = 1 of Eq. (10). A
similar calculation can be done for i = 2, while i = 3 is
trivially satisfied.

B. The Higgs-field equations

1. Cartan sector

Now, to make contact with the solutions to the Higgs-
field equations (10b), we have to look for a Higgs potential
Vy that is compatible with the BPS equations. In particular,
Egs. (22), (23a) imply DiDiz//q = 0, so that Vi must imply

Vu _ (40)
oy,

on the ansatz given in Egs. (11), (12) and (26), which closes
the BPS equations. In what follows, we will see that this
happens when it is given by Eq. (7) with > = 0 and A = ¢°.
In this case,

oV
5—H =M A (Wa Ayp —vfapcwe) (41)
WA
where v = —%. Indeed, applying the same ansatz, we get

oVy
6— = lzwa A (l//q AWy — qua&l//&)
L a>0

+wa AWy Awa = 0f jaaWa)

=0 (hyST,S™)

a>0

A (@l heSTaS™" = al h,SToS™H) = 0. (42)

2. Off-diagonal sector

Let us now analyze the equations for fields labeled by
roots. The BPS equations lead to

Dzé’a = D—D+¢a - 9[337 é’a]
= QZZHC(/v ZJZJ] - v - T, é:a}'

a>0

(43)

The sum over o involves all positive roots, including a.
On the other hand, according to the equations of the model,
we have

1 /6V
DZC(x:FUw Fa_—(

V2

In view of Eq. (41), F, receives contributions from the
index types B = g, a, @, y,y where y > 0 is a root different
from . The partial contribution originated from the Cartan
labels B = ¢ is given by

%
— i . (44
&lla_'—l&//é) “4)

B— A
F(<1 9 - ﬁl//q A\ (Wa A Yy — vfaqécl//d

+ il//& A l//q - i”f&qal//a)‘ (45)

Using the ansatz equations (11), (12), and also v, = vT,
we have

Yo Ny = Ufaq&wav (468')

Wa Ny = Uf&qal//a’ (46b)

which imply FE.B:") = (0. Next, there is a contribution

originated from B = a, &

(B=a,a) __ A
Fa = 7§ (l/j(—l AN (l//a NWgz— Ufaﬁtql//q)

+ e A (Wa A Wa = Vfaaq¥yq))
Wa — iy
% AN (l//a NWa— Ufa()ql//q)

= /1[[4’{1’ C(E] —va-y, C(l]’

=2
(47)

where we used the property
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Va A Va = [ga’ C;] (48)
Finally, we evaluate F SIB:N) =P, + Q,, where P, (Q,) is
the part without (with) explicit dependence on the structure
constants. They are given by a sum over positive roots
r#Fa

P,=2> (v,

rFa

Canyz)).  (49)

Ao Nyy) iy A

Qa fayél//y ANYs— fa}/&l//y ANWs— lfayél//y ANYs
\/—

r#Fa
—ifazs¥y N Ws)- (49b)
Using Eq. (31), we arrive at
Po=2> (G ACAG)+E A LanE)
y#Fa
=2y (6 818 = 20N oy [ Car)). (50)
y#Fa

On the other hand, by using Egs. (A10) and (21) it is
possible to cast Q, in the form

= M}Z

y#a

ay é‘y,Caﬂ/ +Na y[CyvCa }/]) (51)

Let us analyze the term with label o —y. Because y is
a positive root, @ —y is not necessarily positive, so we
cannot use Eq. (31) right away. Instead, we shall split this
term into two contributions: y = y* (y = y7) such that
a—y" (a—y7) is a positive (negative) root. In the second
case

AvNa,—y’ [C},— ’ é‘a—y’] = AUNa,—a—a [é:a-ﬁ—a? C—U]
= j'UNa,U[gI" €6+a} ’ (52)

where ¢ is a positive root that, when summed with a, yields
another positive root. This is precisely the condition on y in
the first term of Eq. (51). Therefore,

—ﬂvzzNayCy,é’aer +/1”ZN0¢ -yt gy ’Ca al }

y#Fa
(53)
which together with the result for P, yields
FET =237116,.6).¢d) HvZNa Gy Casyr].
y#a
(54)

By the definition of y, @ — y* is positive so we can use
Eq. (31) once again to write

B =7 _/IZ cy’z.:y Ca +/MJZZN0 /*Ny a— y*z:a

y#a

=2y 116, ¢4

r#a

MZ il (55)

To evaluate the sum over y*, we need to count how many
roots are consistent with the @ — y™ > 0 condition. For this
objective, we can use that « = w; — w; for some [ < J.
Then, there are two cases

y"=w;—w,I<l<J=J-I1-1 possibilities,

yr=w,—w;, I <l<J=J—-1-1 npossibilities.

1

Moreover, since N i—ﬁ =5y in both of these cases,

we have
J—-1-1
YN = —— (56)
rt ’

The sum of the A/ (21 o factors in Eq. (55) can be rewritten

as a sum of (a-y) factors:
N+J-1-3 N-J+I-1
2 T="0y 2N _ZN r

r#a

(57)

where we used a similar counting to determine how many
positive roots y different from a have a-y ==+ ﬁ In
addition, using the ansatz,

a'yéa: [Y'T7Ca]v (58)
so that

Brr

1)2}/ : T’ Ca]' (59)

=21y 1581 -

y#Fa

Finally, joining this result with the previous ones, namely
FE=? — () and Eq. (47), we get

DZC(I = jV[[é’(u C(-E] - Uza -T, C(l] + AZ[[Q‘;’ é.:y] - 1}2

y#a

= ,12[1)20/ -T— [Co/v gl’} ’ ga} ’ (60)

>0

v T, é‘(l]

which equals Eq. (43) for 1 = ¢°.

V. PHYSICAL ANALYSIS

A. Stability of the asymptotic Casimir scaling law

In the previous sections, for each quark representation,
we showed that at y> =0, 1 = ¢g*> the proposed vortex
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ansatz that closes the BPS equations provide a static vortex
solution for the SU(N) — Z(N) YMH model defined in
Eq. (5). From Eqgs. (21)—(23), the associated energy per unit
length is

€= /d%(% (B3.B3) + Y (DLl Do) + VH(‘//)>’

a>0

(61)

where d’x integrates over the transverse directions to the
infinite string. Using Derrick’s theorem in two dimensions,
we can equate the potential energy of the Higgs field to that
of the gauge field, thus obtaining

. / &x(B;, B3) — (1 D?C,)
:/d2x<B3,B3> — (¢h.D_D_.,) + 9{Ci [B5. L)
- / Lx(B B + glCa. 1))

= /dzxgvz(B3,25- T) = gv? 7{<Ai,26- T)dx;, (62)

where 0 is the sum of all positive roots and the last integral
must be taken along a circle with infinite radius. Recalling
Eq. (28), this implies that

€ = 2xgv*f - 26. (63)

at the BPS point. In particular, note that the k-A string
tension scales with the quadratic Casimir, as f-20 =

NLHCZ(k—A) in this case. This is the result we obtained
in Ref. [9]. The new important physical consequence that
we will derive from Eq. (63) is that for a general
representation D(-) with N-ality k, the asymptotic string
tension satisfies

(D) B C,(k-A)
o) = ColF) (64)

which is one of the possible behaviors observed in lattice
simulations.

In what follows, we shall see that the smallest f - 26
factor is given by the k-A weight. To prove this result, some
Young tableau technology, useful to study the properties of
the irreps, is required. In this discussion, we shall closely
follow the ideas in Ref. [37]. A Young tableau consists of a
number of boxes organized according to the follow-
ing rules:

(1) The maximum allowed number of boxes on a given

column is N — 1.

\

FIG. 1. Young tableaux for the k-A (left) and k-S (right)
representations.

(2) The number of boxes in a given column (n;) should
be lower or equal than the number in any column to
the left. That is, i > j — n; < n;.

(3) The number of boxes in a given row (m;) should be
lower or equal than the number in any row above.
Thatis, i > j — m; < m;.

Every diagram drawn according to these rules corresponds
to an irrep of SU(N). Many related properties can be easily
identified in this language [37]. The N-ality of a repre-
sentation is simply given by the number of boxes of the
Young tableau, modulo N. The Dynkin indices d; of the
highest weight A2 satisfy [37]’

N-1
=N "daA, di=mi =iy (65)
=1

In general, when a box is moved from an upper to a lower
row, an irrep with more antisymmetries is obtained. For
example, the Young tableau for the k-A (k-S) irrep has one
column (row) with k boxes, as shown in Fig. 1. For an irrep
with N-ality k, that is, a Young tableau with a total number
of boxes of the form k 4 nN, the scaling factor can be
written as

=

-1
dI(N = 1)
1

N
f-26=—"

N+14

N N-1
= N(k+nN) — N1 > myl. (66)
=1

Then, if a pair of irreps D and D’ with magnetic weights f
and g/, respectively, have the same N-ality k, we obtain

IN N-1
AB-25=p-26-p-26=N*An———> Aml
p2o=p 25— n N+1; mil,

(67)

Am; = m) —m;, An = n' — n, where the primed variables
refer to D’. Let us initially consider a pair of Young

*When i = N — 1, we take my = 0.
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FIG. 2. An example of transformation on a tableau that
decreases the scaling factor f - 26.

tableaux with the same number of boxes. If a box is moved
from an upper row [ to a lower row J (see, for example,

Fig. 2), we have I <J and Am; = —Am; = 1; conse-
quently, AS - 26 = A?ivl (I —J) < 0. This means that, for a

given number of boxes k + nN, the tableau with smallest
f - 26 is that in which the boxes are as lowered as possible.
Among these tableaux, we need to compare those having
different n but the same N-ality. As an initial example, let
us begin by comparing the pair shown in Fig. 3 and assume
that the column of the first one is not completely full, i.e.,
k < N —2. In this case, we see that

2, ifi=k,

1, otherwhise.

Also, An = 1 because we are comparing k with k + N
boxes, in which case

oN N 2N
AB-26=N*An———"SN Aml=-—""(N—-k)>0.
p n N+1; m N—i—l( ) >

(69)

This means the scaling factor increases when we go from k
to N + k boxes. This can be readily extended to the general
case depicted in Fig. 4. Because - 26 depends only on
the difference of the number of boxes, the x full columns

k+1

FIG. 3. Fully antisymmetric Young tableau with k (left) and
N + k (right) boxes.

.l} -
- | - : vl
{ e
(11 1]

— N

FIG. 4. Fully antisymmetric Young tableau with k + nN (left)
and k + (n + 1)N (right) boxes. There are y boxes (in red) in the
partly full column in the first tableau and N boxes (in blue) were
added in the second one.

in both diagrams can be disregarded for our purposes. The
values of x and y are such thaty + x(N — 1) = k + nN. In
fact, the analysis of the relevant part of these two tableaux is
completely analogous to that of Fig. 3, which leads to the
same result of Eq. (69) but with y instead of k. Since
1 <y <N — 1, the net difference continues to be positive.
In summary, the smallest scaling factor within a given
N-ality k corresponds to the single column tableau on the
left side of Fig. 3, namely, the one corresponding to the k-A
representation.

Now, to complete the analysis of the asymptotic scaling,
we need to discuss how the Wilson loop would be assessed
in the effective model in Eq. (5), as this is the observable
used in the lattice to compute string tensions. Indeed, this
model emerges as an effective description of center-element
averages, which depend on the linking number between
center vortices and the Wilson loop C. As discussed in
Ref. [11], by considering in Eq. (5) the replacement

Fo—Fu—Ju, J =2ap-Ts,,,

S = / d?5,6W (x —w(s. 7)), (70)
S()

an average is reproduced. Here, f is a magnetic weight
associated with the quark representation, and s, is con-
centrated on any surface S(C), parametrized by w(s, ),
whose border is C. More precisely, J,, was introduced to
compute intersection numbers in the initial ensemble,
which are equivalent to the linking numbers between C
and the vortex worldsurfaces. As usual, the confining state
in the presence of a static quark-antiquark pair is obtained
from a rectangular Wilson loop with one side along the
Euclidean time with length 7 — oco. In the energy func-
tional, J,, gives place to unobservable Dirac strings with
endpoints at the (physical) quark and antiquark locations.
Solutions of the form (11), with modified regularity
conditions so as to cancel the Dirac strings, can be
obtained. They correspond to smooth finite strings, which
in the limit of large quark-antiquark separations make
contact with the BPS solutions studied in this work.
However, at asymptotic distances, most of these solutions
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(a) A pair of sources and sinks

FIG. 5.

(b) Double Y-shaped configuration in SU(3)

qqq g probes: (a) The stable flux configuration includes the energy minimization over all possible guiding centers g;, g.

(b) For R, > v/3R,, the coalescence of ¢;, ¢, is favored, as the sum of fundamental 31t(3) weights f;, 5, is an antifundamental weight

—p5 (N-ality).

are in fact local minima or metastable states. Other finite
energy solutions where the Dirac strings are also canceled
may involve dynamical adjoint monopoles (valence gluons)
created around the sources [10]. As the adjoint representa-
tion has trivial N-ality, the favored asymptotic confining
string will be the one with the lowest energy among those
with the same N-ality (k) of D(:). From the previous
discussion, this corresponds to the k-A string, which settles
the asymptotic Casimir scaling in Eq. (64).

B. Configurations induced by a pair of external
quark-antiquark sources

In Monte Carlo simulations, when studying an observ-
able that creates static sources during a large time interval
T, the leading behavior is dominated by the lowest energy
state that can be created. Then, in the effective model, this
state must be compared with the lowest energy configu-
ration compatible with the conditions imposed by the
sources. For example, it is clear that the lattice simulation
of the Wilson loop in the k-A irrep must be compared with a
straight string (with cylindrical symmetry), running from
the quark to the antiquark. This will be the global mini-
mum, as the introduction of dynamical monopoles or
wiggles will certainly increase the energy. Indeed, at
asymptotic distances, where the effective model is expected
to be valid, this will make contact with the translationally
symmetric BPS k-A string solution.

Now, at 4> = 0, the nontrivial profiles for translationally
symmetric configurations with any number of k-A strings,
given by the ansatz in Eq. (11), were shown to obey
Nielsen-Olesen equations [9]. At the critical coupling, this
implies that they do not interact. However, this is not
necessarily related with the behavior of fluxes in Yang-
Mills observables. For example, to analyze a situation with
a pair of sources and sinks [see Fig. 5(a)], an observable
that creates a tetraquark must be considered. Again, the
lattice result has to be compared with the global minimi-
zation of the effective energy functional in the presence of
the static probes, without any further restrictions on the
fields. On the other hand, the multivortex critical solutions

do not contemplate the minimization with respect to
translationally nonsymmetric configurations. That is, when
the sources and sinks are far apart from each other, the
noninteracting translationally invariant configuration could
be a metastable state associated with a local minimum.
Then, let us take a closer look to the case of SU(3) with
fundamental quarks. As pointed out in Refs. [38-40], the
flux distribution strongly depends on the distance between
the quark-antiquark pairs. For R, > /3R, (with asymp-
totic values for both R; and R,), the energy distribution is
given by a double Y-shaped configuration, as depicted in
Fig. 5(b). This behavior was computed in the lattice, by
considering the tetraquark observable [38]

] ! Iy A 1,0 £
W4q[A/4] — E(,;.abcedefeabc(_:def

X T[99, [PV T |/ T5| 9Ty [T |7, (71)

where A, is the fundamental field of pure Yang-Mills
theory and the different holonomies I" are evaluated along
the paths yq,...,74, g, Yo (see Fig. 6).

In the center-vortex ensemble picture, the tetraquark
observable is related with the average of

A

-<\\/
A
<

FIG. 6. Representation of the tetraquark observable W,,. The
dashed lines represent optional holonomies that can be included
without changing this variable.

074005-9



JUNIOR, OXMAN, and SIMOES

PHYS. REV. D 102, 074005 (2020)

4
Wy, = H 22 L) D 2L (r5w) (72)

i=1

over closed worldsurfaces w, as this is the contribution to
the tetraquark variable W,, when evaluated on thin center
vortices. Here, z = ¢/27/3 is a center element, and the closed
paths ¢, y§ (respectively, 5, y4) are the composition of y,
y» (respectively, ys, y4) with the adjacent dotted line y;
(respectively, yg). In addition, the closed path y§ is given by
the composition of ys.y.,7e and yg. L(yg,w) is the
linking number between w and the closed paths y{, while
the factor 2 is because y< has opposite orientation compared
with y§, ..., 75, and z7! = z2. In Ref. [11], we introduced an
ensemble measure in the lattice, which includes oriented
and nonoriented center-vortex degrees of freedom. The
former are generated by a Wilson action with frustration,
whose continuum limit corresponds to the A, gauge-field
sector in the effective action [cf. Eqgs. (5), (70)]. This,
together with holonomies defined on an ensemble of
worldlines with stiffness, generated the nonoriented center
vortices. These holonomies were then shown to be effec-
tively described by the scalar sector y 4 in Eq. (5). The only
difference here is the choice of external source to be
considered in Eq. (70). Due to Eq. (72), a possibility is
given by

5

T =21 Brg) - Tsk, (73)

k=1

where s,’jv is localized on a surface S(y{) whose border is y§
and

BS) =B0s) =F.  BUS) =BIs) = P
ﬁ(}’g) =p3 =P — P (74)

where f;, = 2Nwy, and w,, w,, w3 are the three (ordered)
weights of the fundamental representation of SU(3).
Indeed, in the lattice, this introduces a frustration factor
in the Wilson action

—ia, _ 1 1 5
e aﬂu—aﬁy—l—---—l—aﬂy—aﬁy,

o, = { 2zp(ys) - T if (uv) intersects S(y{)

0 otherwise,

defined on the lattice plaquettes (uv). In the expansion
of the Wilson action, the nontrivial contribution is origi-
nated from plaquettes distributed on closed worldsur-
faces w. When y§ links w, then S(y§) is intersected.
This gives a factor 2T = 27T — 7] or ¢ T =
27 PtP)T — 221 thus reproducing Eq. (72). It is also
interesting to note that the weight choice in Eq. (74) is
related with the Petrov-Diakonov representation of Wy,

(see Appendix C). Similarly to the case of a single Wilson
loop, at fixed ¢ the external source in Eq. (73) will give rise
to unobservable Dirac lines, which can be chosen as
entering the lower (upper) antiquark and leaving the lower
(upper) quark with f; (f,). In this case, in order for the
energy to be finite, a configuration based on a phase S =
e!Pntib)T s required, where y; (y,) is multivalued
when going around a closed path designed to cancel the
Dirac string of type f#; (f,). This leaves the effect of a pair
of guiding centers g;, g, [Fig. 5(a)] where the fields must be
in a false vacuum, so that the energy will be mainly

concentrated around them. It is clear that for R; > v/3R,
(with asymptotic Ry, R,), the energy minimization, which
includes the variation of ¢; and g,, will favor a Y-shaped
global minimum as shown in Fig. 5(b). This is due to the
fact that, in the common part, the sum of fundamental
magnetic weights f; and f, will combine to —f;, which
implies the same energy cost of a single fundamental string.
In other words, the observed Y-shaped configuration is
nothing but the reflection of N-ality stated in the language
of weights.

VI. CONCLUSIONS

In this work, we were able to find a set of BPS equations
which provide center string solutions for a Yang-Mills-
Higgs model containing N> — 1 adjoint Higgs fields. This
type of model can be thought of as an effective description
for center-element averages over an ensemble of closed
worldsurfaces and correlated worldlines. It is strongly
believed that these ensembles can capture the relevant
quantum degrees of pure Yang-Mills theories in the infrared
regime. In the ensemble, a center element is generated
every time a worldsurface links the Wilson loop. As this
element depends on how the quark representation realizes
the center of SU(N), this scenario is able to explain the
property of N-ality observed in the full Monte Carlo
simulations of YM theory. In the YMH model, N-ality
is reflected in the SU(N) — Z(N) SSB pattern, while the
information about the Wilson loop is manifested as a
frustration in the effective gauge field sector. This in turn
amounts to represent the quark/antiquark in terms of
monopole/antimonopole sources with charges in the given
quark representation. As the distance between the quark
and antiquark grows, to lower the total energy, the YMH
model allows for the formation of dynamical adjoint
monopoles localized around the sources (valence gluons).
These objects cannot induce transitions that change the
N-ality of the confining state, so that the asymptotic
confining string will be the one with the lowest energy
among those with the same N-ality. Here, we found the
energy of an infinite string solution to the BPS equations in
a general representation of SU(N). We showed that the
energy corresponding to the k-A representation is the
lowest among all the quark representations with N-ality
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k. In other words, for widely separated quark/antiquark
sources, the stable state is indeed given by the k-A string.”
This together with our previous result in Ref. [9], where the
k-A string tension was shown to be proportional to the
quadratic Casimir, completes the proof that the effective
YMH model reproduces an asymptotic Casimir Law.
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APPENDIX A: CARTAN DECOMPOSITION
OF 3u(N)

Here, we summarize the main properties of the 3u(N)
Lie algebra, as well as the conventions used throughout the
paper. The construction of the Cartan-Weyl basis is initiated
by defining a maximal commutative subspace, whose
generators T', satisfy

r,.T,] =0, (A1)
where ¢, p = 1,...,N — 1. The remaining basis elements
are the so-called root vectors E,, which diagonalize the
adjoint action of 7',

T,.EJ = a| E,. (A2)

q
The eigenvalues a|, form an (N — 1)-tuple a = (al, a|,,
...,a|y_) which is referred to as root. Since the dimen-
sions of 8u(N) and the Cartan subalgebra are, respectively,
N? —1and N — 1, there are N(N — 1) root vectors. A well-
known result is that if « is a root, so is —a. Moreover, the
associated root vectors are related by

(A3)

We are considering the Cartan-Weyl basis {7,.E,} as
orthonormal with respect to the product
(A, B) = Tr(Ad(A)Ad(B)), (A4)

where Ad(-) stands for the adjoint representation. In this
case, we have

N-1
EqE_l) =) a,T,=a-T. (AS5)
gq=1

*Of course, for the trivial N-ality k=N (mod N) this
corresponds to the string breaking.

In order to completely specify the commutation relations of
root vectors, we need to address two roots that do not sum
up to zero. These relations turn out to be

[Ea’ Ea’] = Na,a’Ea+a’v (A6)
where o # —a and N, vanishes when a + ' is not a
root. With the normalization adopted, one can show that

, 1

S A7
a,d N ( )

whenever it does not vanish. These structure constants also
have the property
N{l’,a = N—a,—a’

= _Na,a" (As)

Moreover, if a, ', @’ are roots that add up to zero, then

Ntx,a’ = Na”,a = Na’,a”- (A9)
The root vectors E,, which live in the complexified Lie
algebra, can be replaced by the Hermitian generators 7T,
and T in Eq. (9). When using the latter as basis elements,
one must consider only positive roots a > 0 to avoid
overcounting (for the notion of positiveness, see
Appendix B). In this basis, the following commutation

relations hold:

T, T, =ia|,Ts T, T; =—ia|,T,,
q q q q
i
0o = 5 (NagTag + NaciTig). (ALD)
i
(T T/_}} == ﬁ (Na,ﬁTa+ﬁ - Na,—[iTa—/i)7 (A12)
i
[Ta Tj] = 7 (NapTozp = No—pTozp)-  (A13)

However, these relations remain true even for negative
roots, recalling that the extended Hermitian generators are
not independent from their positive-root counterparts, and
satisfy

(A14)

APPENDIX B: WEIGHTS AND
REPRESENTATIONS OF 3u(N)

A weight of an irrep D of 3u(N) is an (N —1)-
tuple formed by the eigenvalues of a simultaneous
eigenvector of D(T,),q =1,...,N — 1. Each irrep has
its own set of weights. That corresponding to the
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fundamental representation has N elements @, w,, ..., ®y
constrained by
The weights of the adjoint representation are the roots, as
they are eigenvalues for the adjoint action [T, -]. They can
be expressed as the differences

a=w;—w; (B2)

for some i,j=1,...,N, which is consistent with the
previous counting of N(N — 1) roots. Some useful sums are

N

1
Zwi|qwi|q = ﬁ‘sqp’ Zalqalp =6,- (B3a)
i=1 a

A weight is said positive if its last nonvanishing
component is positive. Consequently, a weight is greater
than another if their difference is positive. In particular,
given the set of weights of a given irrep., we can always
determine the highest. For the fundamental representation,
we choose the ordering convention

W > Wy > ... > Wy. (B4)

Then, a root @ = w; — w; is positive if and only if i < j.

Among the irreps. with N-ality k, we have the
k-symmetric (k-S) and k-antisymmetric (k-A), k=1,
.., N — 1. They are constructed from the totally symmetric
and antisymmetric decomposition of k tensor products of
the fundamental representation. The corresponding highest

weights are given by5

lks = ka)l,

It is important to emphasize that the highest weight of any
irrep. can always be written as a nonnegative integer linear
combination of the k-antisymmetric weights, which are
called fundamental weights (not to be confused with the
weights of the fundamental representation). The coeffi-
cients are called Dynkin numbers and there is a one-to-one
correspondence between irreps. and these combinations.

To end this quick review, the quadratic Casimir operator
for a given representation D is

N2-1
C,(D) = Z D(T4)D(Ty). (B6)
A=1

This operator commutes with every element of 31 (N) and
thus it is proportional to the identity matrix. The propor-
tionality constant is known as the quadratic Casimir. For
our choice of normalization, the quadratic Casimir for the
fundamental, adjoint, k-S and k-A representations are,
respectively,

N2 -1
2N?

k(N +k)(N = 1)

k(N =k)(N +1)
2N? ’

2N?

) ’ ’

(B7)

Finally, for any irrep. D, the quadratic Casimir can be
expressed in the form

where AP is the highest weight and & is the Weyl vector,
given by half the sum of the positive roots.

APPENDIX C: PETROV-DIAKONOV
REPRESENTATION OF W,

We note that the integral

/ du(g)du(g:)du(g")du(g")(g. v1IT11g, v1)(g. 112 |T2lg , va)

/1

X <g”’ Vg |FG/ |glv yG’><d/7 U3|F3|g s l/3> <g”’ IJ4|F4|‘¢”, U4> <g’ UG|FG|g”/7 I‘/G>

is nonzero and proportional to Wy, if and only if v = v,
vs+uvy+vg=v,+vs+vs=0. Here, we used the
group coherent states [41,42] |g,v) = g|v), with |v) being
weight vectors of the fundamental representation, and
the formula [the normalization of the Haar measure is

Jdu(g) =11

1
= y €abc€a'b' >

/ Adp(9)Gaa Goi' ec' g e Su(3). (C2)

’Notice that A!=S = A2 = ;.

(C1)

Then, a possible choice to accompany the holonomies
{I',I3}, {T,. T4}, {I'6.'¢} in Eq. (Cl) is given by
vV =V =Wy, V) =VU3= 0)2), Vg = Vg = w3, TIE€Spec-
tively, where w,, @,, w5 are the three (ordered) fundamental
weights of 3u(3). Next, for each factor in Eq. (C1), we can
use the Petrov-Diakonov (PD) representation [43]

<gf’ V|Fy|9i,l/> 1% /[dg(s)]eifdﬂr((g1Ag+ig10sg)b.T)’

d
L) (C3)

a=Z0y,
ds "
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where T', is an holonomy, and the measure [dg(s)]
integrates over paths ¢(s) defined on y [parametrized by
x(s)], with initial and final conditions g; and g;, respec-
tively. In the exponent of the PD representation of W, thus
obtained, the six line integrals can be replaced by five
integrals along the loops y§, k =1,...,5, after extending
[dg(s)] = [dg(s)], which also integrates over group ele-
ments defined on the dotted lines. Indeed, because of the
weight distribution, the additional integrals along y; and yx
are canceled because of the property m; + @, + w3 = 0.

A further extension of the paths in the group to configu-
rations U(x) such that §(s) = U(x(s)), and the Stokes’s
theorem, finally leads to

W,

q & /[DU]e%fd“XTr(U_]yMUJ,Aﬁs

y/w(U’ g) = €;wpaDp (Z‘)(Ao - L0)7 (C4)

where ZM = if]é?”ff‘l and J,, is given by Eq. (73).
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