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We apply the diabatic formalism, first introduced in molecular physics, to the description of heavy-quark
mesons. In this formalism the dynamics is completely described by a diabatic potential matrix whose
elements can be derived from unquenched lattice QCD studies of string breaking. For energies far below
the lowest open flavor meson-meson threshold, the resulting diabatic approach reduces to the well-known
Born-Oppenheimer approximation where heavy-quark meson masses correspond to energy levels in an
effective quark-antiquark potential. For energies close below or above that threshold, where the Born-
Oppenheimer approximation fails, this approach provides a set of coupled Schrédinger equations
incorporating meson-meson components nonperturbatively, i.e., beyond loop corrections. A spectral
study of heavy mesons containing ¢¢ with masses below 4.1 GeV is carried out within this framework.
From it a unified description of conventional as well as unconventional resonances comes out.
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I. INTRODUCTION

The discovery of the y.;(3872) in 2003 [1] may be
considered as the initio of a new era in heavy-quark meson
spectroscopy. This resonance and a plethora of new states
(w(4260), w(4360), X(3915), and many others, see [2])
discovered since then have masses and decay properties
that do not correspond to the conventional heavy quark
(Q)—heavy antiquark (Q) meson description, such as the
one provided by nonrelativistic or semirelativistic quark
models that has been so successful in the past [3-5]. A
feature of any of these unconventional states is that its mass
lies close below or above the lowest open flavour meson-
meson threshold with the same quantum numbers. This
suggests a possible relevant role of open flavour meson-
meson thresholds in the explanation of the structure of the
new states. As a matter of fact, the nonrelativistic Cornell
quark model [3.,4] incorporates some of these effects
through meson loops where the interaction connecting
QQ and open flavor meson-meson is derived from the
Q0 binding potential. Similar kind of loop contributions,
with quark pair creation models like the 3P, one providing
the valence-continuum coupling, have been extensively
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studied in the literature (see for instance [6,7]). However,
these perturbative loop contributions seem to be insufficient
for a detailed description of the new structures. This has led
to the building of phenomenological models involving
implicit or explicit meson-meson components, for example
in the forms of tetraquarks, meson molecules, and hadro-
quarkonium (see [8—11] and references therein).

Ab initio calculations from QCD have been also carried
out. From lattice QCD, a Born-Oppenheimer (B-O)
approximation for heavy-quark mesons has been developed
[12] (for a connection with effective field theories see [13]
and references therein). In this approximation, based on the
large ratio of the heavy quark mass to the QCD energy scale
associated with the gluon field, the heavy-quark meson
masses correspond to energy levels of a Schrodinger
equation for QQ in an effective potential. This potential
is defined by the energy of a stationary state of light-quark
and gluon fields in the presence of static Q and Q sources,
which is calculated in lattice QCD. Thus, conventional
quarkonium masses are the energy levels in the ground state
potential calculated in quenched (without light quarks)
lattice QCD whose form is Cornell-like [14], whereas
quarkonium hybrid (QQg bound state where g stands for
a gluon) masses are energy levels in the quenched excited
state potentials. Although no tetraquark potentials have
been calculated yet from lattice QCD, some information on
them has been also extracted [15]. The immediate question
arising is whether these hybrid and tetraquark B-O poten-
tials may correctly describe or not the new states. The
answer to this question can be derived from [15], where an
assignment of the masses of some of the new states to
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energy levels in these potentials has been pursued. In
essence, quoting this reference, although the B-O approxi-
mation provides a starting point for a coherent description
of the new states based firmly on QCD, a detailed
description of them requires to go beyond quenched lattice
calculations and beyond the B-O approximation.

An intermediate step in this direction was taken in [16]
by identifying the unquenched lattice energy for static Q
and Q sources, when the QQ configuration mixes with one
or two open flavor meson-meson ones [17,18], with a QQ
potential. This unquenched approximation allows for some
physical understanding of threshold effects beyond hadron
loops. However, the description in terms of effective QQ
channels does not give detailed account of the configura-
tion mixing.

In this article we take a step further to go beyond the B-O
approximation. For this purpose we use the diabatic
approach developed in molecular physics for tackling the
configuration mixing problem (see for instance [19]). This
allows us to establish a general framework for a unified
description of conventional and unconventional heavy-
quark meson states. This framework is applied to the
calculation of J™* and the low-lying 17~ meson states
with O = ¢ (charm quark) where there are sufficient data
available to test its validity.

In this manner a complete treatment of heavy-quark
meson states involving heavy quark-antiquark and meson-
meson degrees of freedom, that incorporates the results
from ab initio calculations in quenched and unquenched
lattice QCD, comes out.

The contents of the paper are organized as follows. In
Sec. II the mathematical formalism and the physical picture
leading to the B-O approximation for heavy-quark mesons
is revisited. In Sec. III we detail the diabatic approach and
in Sec. IV we adapt it to the description of heavy-quark
meson states. The application to meson states containing c¢
is detailed in Sec. V. For the sake of simplicity we consider
states involving nonoverlapping thresholds with small
widths. The comparison of our results to existing data
serves as a stringent test of our treatment. Finally, in Sec. VI
our main conclusions are summarized.

II. BORN-OPPENHEIMER APPROXIMATION
IN QCD

The Born-Oppenheimer (B-O) approximation was devel-
oped in 1927 for the description of molecules [20], and
since then it has been a fundamental approximation in
chemistry. More recently it has been employed for the
description of heavy-quark meson bound states from QCD
[12,15]. Next, we briefly recall the main steps in its
construction for the description of a heavy-quark meson
system containing a heavy quark-antiquark (QQ) interact-
ing with light fields (gluons and light quarks), with
Hamiltonian

— _ 1If
H=Kyg+HS (1)

where K ;5 is the Q0 kinetic energy operator

2
Pa B p2 P?

I Y
K = =

00 2mQ

(2)

with p1,5 being the reduced QQ mass, p (P) the QQ relative
(total) three-momentum, and Hga the part of the

Hamiltonian containing the light field energy operator
and the QQ—light-field interaction. Notice that H'éa

depends on the Q and Q positions but does not contain
any derivative with respect to the Q and Q coordinates.

A heavy-quark meson bound state |y) is a solution of the
characteristic equation

Hly) = Elw) (3)

where E is the energy of the state. Note that |y) contains
information on both the QQ and light fields.

A. Static limit

The first step in building the B-O approximation consists
in solving the dynamics of the light fields by neglecting the
QQ motion, i.e., setting the kinetic energy term K o equal
to zero. This corresponds to the limit where Q and Q are
infinitely massive, what can be justified because the Q and
Q masses, mgp and mg, are much bigger than the QCD scale
Aqcp, which is the energy scale associated with the light
fields.

As we are interested in the internal structure of the
system and this does not depend on the center of mass
motion (which coincides with the QO center of mass
motion in the infinite mass limit) it is convenient to use the
QQ relative position r =ry —rg, and work in the QQ
center of mass frame where P = 0.

In this static limit r is fixed, ceasing to be a dynamical
variable. This is, the components of r can be considered as
parameters, rather than operators, in the expression of H gé

that will depend operationally on the light fields only. We
shall indicate this parametric dependence renaming H'!f

‘ 00
as Hstatic (l‘) .

It is then possible to solve the dynamics of the light fields
for any value of r:

(H oo (r) = Vi(r))|i(r)) = 0 (4)

where |(;(r)) are the light field eigenstates, V;(r) the
corresponding eigenvalues, and i stands for the set of
quantum numbers labelling the eigenstates. Note that both
the eigenvalues and the eigenstates depend parametrically
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on r, and that for every value of r the eigenstates {|{;(r))}
form a complete orthonormal set for the light fields:

(& (ngi(r)) = 5. (5)

As for the eigenvalues V;(r), they correspond to the
energies of stationary states of the light fields in the
presence of static Q and Q sources placed at a relative
position r, and can be calculated ab initio in lattice QCD.

More precisely, in quenched (with gluon but not light-
quark fields) lattice QCD [14] the ground state of the light
fields is associated with a QQ configuration, and up to spin
dependent terms that we shall not consider the static energy
of this ground state mimics the form of the phenomeno-
logical Cornell potential

Vc(r):crr—)—i—i—mg—&—m@—ﬂ (6)

with o, y and f standing for the string tension, the color
Coulomb strength, and a constant fixing the origin of the
potential respectively.

On the other hand, unquenched (with gluon and light-
quark fields) lattice QCD calculations [17,18] have shown
that due to string breaking the association of the light field
ground state with a QQ configuration holds only for small
values of the relative QQ distance r = |r|. When increasing
r the QQ configuration mixes significantly with meson-
meson configurations. More in detail: below (above) an
open-flavor meson-meson threshold the energy of a sta-
tionary state of the light fields changes with r, from the one
corresponding to the QQ (meson-meson) configuration to
the one of meson-meson (QQ) configuration, avoiding in
this manner the crossing of the static light field energies
corresponding to pure QQ and meson-meson configura-
tions that would take place at the threshold mass in absence
of string breaking. In Fig. 1 we have represented graphi-
cally this situation for QQ and one meson-meson threshold
(the representation for two meson-meson thresholds can be
seen in [17,18]).

B. Adiabatic expansion

Having solved the static problem for the light fields, the
next step in the construction of the B-O approximation
consists in reintroducing the QQ motion. This is done by
solving the bound state equation

2

p

<2 _ + Hlsﬁatic(r) - E> |W> = 09 (7)
Koo

M

i 00

FIG. 1. Pictorial representation of lattice static energies. Dashed
line: ground state static light field energy in quenched lattice
QCD. Dotted line: meson-meson threshold. Dash-dotted lines:
ground and excited state static light field energies in unquenched
lattice QCD, showing an avoided crossing.

where E denotes the mass of the bound state, making use of
the so-called adiabatic expansion for |y):

W) =3 [ @) (®)

where |r’) is a state indicating the QQ relative position and
we have temporarily omitted spin degrees of freedom for
simplicity. The qualifier “adiabatic” refers to the fact that
each term in the expansion depends only on a single value
of ¥/, what can be related to the physical situation where the
light fields respond almost instantaneously to the motion of
the quark and antiquark. However, as will be shown in what
follows, this physical expansion is not mathematically
convenient when configuration mixing takes place. Note
that as the states |{;(')) depend on 7/, so do the coefficients
y;, one for each light field state.

Using (8) and multiplying on the left by (r| the bound
state equation can be rewritten as

> (o

e PV = E il =0, (9
i Hoo

then multiplying on the left by ({;(r)| yields

(i) IV2wi(n)Ci(r)) + (V(r) = E)éjyi(r) | = 0. (10)
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The first term on the left-hand side of (10) can be developed as

(&i(n) V2 (r)|Ei(r)) = 6;;V2y,(r) + 2z,(r) - Vy,(r) +

with

7;(r) = (£;(r)|VEi(r))

and 7%)(r) =

<2 (r)yri(r) (11)

(;(n)IV2Ei(r) (12)

being the so-called nonadiabatic coupling terms (NACTs) of the first and second order, respectively.

Furthermore, using V(¢;(r)|¢;(r)) = V6, = 0 we have
7i(r) = (E(1)[VE() = =(VE;0)[i(r) = —2,(r), (13)
from which it follows
(V¢ (r)Vei(r ;%|Q<WWm)2m T(r })m% )=—(z(r)?);. (14)
so that
(V2(r));; = (& OIVZE() + (VG IVEr) =<7 () = (2(r)?);, (15)

and finally

(€ () VPyy(r)|S;(r)) = 6,V

The bound state equation (10) then reads

Z[— "V 4+ 20+ (V) — )| wir) = .

i 200
(17)

This is a multichannel equation where y;(r) stands for the
ith component of the heavy-quark meson wave function,
that is in general a mixing of QQ and meson-meson
components. Notice though that this is not the usual
Schrodinger equation because of the presence of the
NACTs 7 inside the kinetic energy operator. These terms
introduce a coupling between the wave function compo-
nents and reflect the nontrivial interaction between the QQ
motion and the light field states.

C. Single channel approximation

The last step in the construction of the B-O approxima-
tion consists in neglecting the NACTs inside the kinetic
energy operator:

7;i(r) = (§;(r)|VEi(r)) = 0. (18)

wi(r) 4+ 27;(r) - Vyi(r) +

(V-2(r)ji + (2()))wi(r) = (V4 2(1))?) jayi(r). - (16)

This is called the single channel approximation because
the bound state equation (17) then factorizes in a set of
decoupled single channel Schrodinger equations

h2
2ugp

V2 (V) - B) |y =0 (19)

where V/(r), corresponding to the energy of the stationary

jth state of the light fields in the presence of static Q and Q
sources, plays the role of an effective potential.

Equations (4), (8), (18) and (19) define the B-O
approximation.

Notice that the single channel approximation can be
deemed reasonable only up to QQ distances for which the
NACTS can be neglected, i.e., for distances where the 00
and meson-meson configuration mixing associated with the
light field eigenstates is negligible (for a specific calcu-
lation see Sec. IV C). This makes the B-O approximation to
be justified only for bound state energies far below the
lowest open flavor meson-meson threshold. In particular,
conventional heavy-quark meson masses, far below the
lowest open flavor meson-meson threshold, can be
described as the energy levels in the potential correspond-
ing to the quenched ground state of the light fields, i.e., the
Cornell potential.
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III. DIABATIC APPROACH

For energies close below or above an open flavor meson-
meson threshold the mixing between the QQ and meson-
meson configurations gives rise to nonvanishing NACTs,
so that the single channel approximation (18) cannot be
maintained. Instead, one has to deal with the set of coupled
equations (17), which is not practicable for two reasons:

(i) There is no yet direct lattice QCD calculation of the
NACTsS 7.

(ii) When 7 # 0, the wave function components in the
expansion (8) do not correspond to pure QQ or
meson-meson but rather to a mixing of both, the
amount of mixing depending on r.

These drawbacks can be overcome through the use of the
diabatic approach, where one expands the bound state |y)
on a basis of light field eigenstates calculated at some fixed
point ry. As the {|{;(r))} form a complete set for the light
fields whatever the value of r, switching from a {|{;(r))} to
{|¢(ry)) } is equivalent to a r-dependent change of basis in
the light degrees of freedom.

The diabatic expansion of the bound state reads

W) =3 [ @ ne) o)

where the coefficients i7;, one coefficient for each light field
state, are functions of #’ that depend parametrically on ry.

A nice physical feature of this expansion is that the light
field state |{;(rg)) corresponding to each component {;
does not depend on the QQ relative position . This means
that if one chooses the fixed point r far from the avoided
crossing, then the wave function components correspond to
either pure QQ or meson-meson for any value of . In other
words, in the diabatic approach one expands the bound
states in terms of the more intuitive Fock components (pure
QQ and pure meson-meson) instead of components which
are a mixing of QQ and meson-meson.

Substituting (20) in the bound state equation (7) and
projecting on (r| yields

Z(‘h—zvz + Hyye(r) = E>1/7i(’7’0)|é“i(ro)> =0

i 2ug0
(21)
where all the derivatives are taken with respect to r. If we

now multiply on the left by (¢;(ry)|, as V|{;(rp)) = O the
equation reads

h2 -
Z<—2—_5ﬂV2+Vﬁ(","o)—E5ji>l//i(","o)—0 (22)
i Ho0

where

Vii(r.ro) = (£;(ro) | Hgyic (r)|Ci(ro)) (23)

is the so-called diabatic potential matrix.

The multichannel Schrédinger equation (22) together
with (23) and (20) define the diabatic approach which is
widely employed in molecular physics [19].

The complete equivalence between Eqs. (17) and (22)
has been shown elsewhere [19] and is reproduced, for the
sake of completeness, in Appendix A. In short, the
troublesome NACTs in (17) that break the single channel
approximation when configuration mixing is present (thus
invalidating the B-O framework) are taken into account in
(22) through the diabatic potential matrix. This is utterly
convenient since, as we shall see in Sec. IV B, the elements
of this matrix are directly related to the static light field
energy levels calculated in quenched and unquenched
lattice QCD.

It is also easy to show that when the single channel
approximation (18) holds the diabatic potential matrix (23)
becomes a diagonal matrix containing the static light field
energy levels calculated in quenched lattice QCD, and
consequently Eq. (22) reproduces the set of single channel
Schrodinger equations (19).

Therefore, the diabatic approach is a complete general
framework applicable to conventional heavy-quark mesons
lying far below the lowest open flavor meson-meson
threshold as well as to unconventional ones lying close
below or above that threshold.

IV. HEAVY-QUARK MESONS IN THE DIABATIC
FRAMEWORK

In order to apply the diabatic framework to the descrip-
tion of heavy-quark meson bound states we examine first
the case of a single meson-meson threshold. Then we
proceed to the generalization to an arbitrary number of
thresholds.

A. Spectroscopic equations
Let us consider one meson-meson threshold. Let us fix a
value for r( such that the ground state of the light fields is
associated with the QQ configuration and the first excited
state with the meson-meson one. To make this more clear
we relabel the diabatic light field states as

Co(ro)) = 16gg).  161(ro)) = [Ey3,)-  (24)

and the diabatic wave function components as
Wo(r.ro) = wop(r),  Wilrre) = vy 3,(r).  (25)

Accordingly, we rename the diabatic potential matrix
components (23) as

Voo(r.ro) = Vg(r) = (o5 Hwc (MIEgg)  (26a)
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Vi(r.rg) — VM1M2<") = <CM1M2|Hlsftatic(r)|CM1M2> (26b)

_ 1f
VOl (I‘, rU) - Vmix(r) - <§Q§|H5tatic(r)|é’M|M2>' (260)
Let us realize that having associated each component of
the wave function with pure QQ or pure meson-meson, we
can easily incorporate to the kinetic energy operator the fact
that the reduced mass of the meson-meson component,
o . L v )
M3, 18 different from u op- Hence, we shall use Bigs \%

%2 for the kinetic energy operators of the QQ

MM,
and meson-meson components respectively. (Note that this
improvement is possible only in the diabatic framework.)

Then, the bound state equations read

and —5

h2
<—2 _V2 + VQ§<I') —E>l[/Q§(I‘)
Hoo

+ Vmix(")l//MlM2 (I’) =0 (278')
h? )
(‘ 2”M|M2 Ve + VMIMZ (r) - E) Ymm, (r)
Vs (P g (1) = 0. (27b)
or in matrix notation
(K+V(r)¥(r) = E¥(r) (28)
where K is the kinetic energy matrix
— 12 0
K=| "% : , (29)
0 __h VZ
2MM1M2
V(r) is the diabatic potential matrix
Vog (r) Vmix (I‘)
V(r) = < ee ) (30)
V mix (r) VM]MZ (r)

and ¥(r) is a column vector notation for the wave function:

¥(r) = ( Voolr) > (31)

Ym M, (r)

In this notation the normalization of the wave function
reads

/ ¥ () (r) = P(0D) + P(MIT) =1 (32)

where we have defined the QQ probability

P(00) = / drly g ) (33)

and the meson-meson probability

P(M, ) = / drlyryy 3. () (34)

The multichannel Schrédinger equation (27), or equiv-
alently (28), defines formally the diabatic approach for the
description of the heavy-quark meson system.

B. Mixing potential

To solve (27) we need to know the diabatic potential
matrix Eq. (30). Regarding the diagonal element VQa(r),
we see from (26a) that it corresponds to the expectation
value of the static energy operator in the light field state
associated with a pure QQ configuration. This can be
identified with the ground state static energy calculated in
quenched lattice QCD, see Fig. 1, given by the Cornell
potential

Vop(r) = Ve(r). (35)

In the same way, from (26b) we identify the other diagonal
term V), 5 (r) with the static energy associated with a pure
meson-meson configuration, given by the threshold mass
T M\, (the sum of the meson masses)

Vi, ) = Ty 57, = My, + myz . (36)

up to one pion exchange effects that we do not con-
sider here.

As for the off-diagonal term, the mixing potential
Vmix (F), we can use the eigenvalues of the diabatic potential
matrix to derive its form. As shown in Appendix A, these
eigenvalues correspond to the static energy levels that are
calculated in unquenched lattice QCD which have been
pictorially represented in Fig. 1. More precisely, the
eigenvalues of the diabatic potential matrix are the two
solutions V. (r) of the secular equation

detV{(r) = Vo (r)I} =0 (37)
where T is the identity matrix. These solutions read

Vel(r) + Ty i,
2

- WM)Z + Vi (r)%, - (38)

from which we obtain

Vi(r) =
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VL) = V() = (Velr) = Tagi, )
[Vain ()] = ,

2
(39)

where we have dropped the vector notation for r as the
energy levels calculated in lattice QCD depend only on the
modulus r = |r|.

Equation (39) tells us that a detailed calculation of the
mixing potential |V, ;. (r)| from ab initio lattice data on
V. (r) is possible. As a matter of fact, an effective para-
metrization of V ;, (r) from lattice data has been proposed
[18,21]. While we encourage work along this direction, we
resort to physical arguments to get the shape of |V, (r)|. In
this regard, the general form of the curves V() and V_(r)
near any threshold, reflecting the physical picture of the
Q O—meson-meson mixing, is expected to be similar as it
happens to be the case when two thresholds are incorpo-
rated into the lattice calculation [17,18]. Furthermore,
the same form is expected for Q = b and Q = ¢ since
the underlying mixing mechanism (string breaking) is the
same. Therefore, we shall proceed to a parametrization of
|V mix ()| according to this general form, and we shall rely
on phenomenology to fix the values of the parameters.

Let us begin by observing that unquenched lattice QCD
results show that

V() = VoDl 2 Ve(r) = Taym,| (40)

for every value r, and that at the crossing radius rICW‘MZ,
defined by

Ve(re"™) = Ty, i, (41)
|Vmix (7)| gets approximately its maximum value

7 A
m?x|vmix(r)| ~ |Vmix(r£/[1Mz)| =5

> @

with A being the distance of the static energy levels at the
crossing radius

A=V (rE) = V(). (43)
On the other hand we have
V_(r)=Ve(r) and V. (r) =Ty u, (44)
for r <« rQ/I‘MZ, and

V_(r)~T,

wa, and Vo (r)xVe(r)  (45)

for r > ré” ‘Mz, so that

(Vi(r) =V_(r)» (Ve(r) =Ty 5,)*  (46)

far from the crossing radius rﬂ’l‘ﬁz. Consequently, from (39)
we obtain that V ;, (r) vanishes in both asymptotic limits:

hngvmix(r) = lim Vmix(r) =0. (47)

7

To summarize, lattice QCD indicates that the mixing
potential |V, ()| approaches a maximum value of A/2 at

r ~ r¥"™2 and vanishes asymptotically as the distance from
the crossing radius increases. The simplest parametrization
that takes into account these behaviors, thus providing a
good fit to lattice QCD calculations of V. (r), is a Gaussian
shape:

r)=1Lym 2
|Vmix(r)| :gexp{_(VC( )ZAZ : 2) } (48)

where A is a parameter with dimensions of energy. To
better understand the physical meaning of A we write it in
terms of the string tension ¢ as

A=op (49)

where p has now dimensions of length. Then at distances
for which V¢ (r) ~ or + mg + mg — f the mixing potential
can be also written as

(r— réw'Mz)z}

A
|Vmix(r)|zexp{_ 2p2

2

from which it is clear that p, the width of the Gaussian
curve, fixes a radial scale for the mixing.

C. Configuration mixing

The knowledge of the diabatic potential matrix is quite
equivalent to the knowledge of the r-dependent change of
basis matrix from {|{o(r)). |£1(r))} to {|£o(r0)). [€1(ro)) }-
Let us name, according to our previous notation, |{_(r)) =
|Co(r)) and |&, (7)) = |, (r)) the ground and excited states
of the light fields, with static energies V_(r) and V. (r)
respectively. These are related to the QQ and meson-meson

states |C55) = |Co(ro)) and |£y, 37,) = [£1(ro)) via
C-(r)) = cos(0(r))|Lgp) + sin(0(r)|Cu, i) (50a)
1£.(r)) = cos(0(r))Iyy,7,) — sin(6(r))[{g5)  (50b)

where 6(r) is the mixing angle between the QQ and meson-
meson configurations.
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As explained in Appendix A, the change of basis matrix
connecting the two sets of states,

(E-oliz)

B cos(0(r))
Alr) = <sm<e<r>>

with
—sin(6(r))
cos(6(r) ) (52)

is also the matrix that diagonalizes the diabatic potential
matrix. Therefore it is possible to extract the mixing angle 6
from the matrix equation

A(r) V(nAT(r) = diag(V_(r). V.(r))  (53)

where diag(V_(r),V,(r)) is a diagonal 2 x 2 matrix
containing the unquenched static light field energies. It
is sufficient to take any off-diagonal element of Eq. (53) to
obtain

Vel(r)

Vi (r) cos(26(r)) = TM‘Mz%sin(ZH(r)) (54)

from which we get the mixing angle as

1 2V i
0(r) = - arctan <¢) ) (55)
2 TM1M2 - Vc(r )
Furthermore, from this expression of the mixing angle and
from Eqgs. (50) we can also calculate the NACTs:

To0(r) = 711(r) =0 (56a)

701 (r) = =710(r) (56b)

with

701(r) = ({L(NIVEL(r) = (A(r) VAT (r)g, = f%- (57)

Therefore the NACTs only vanish for values of » where 6 is
constant. This happens for small (big) values of » where 9 is
0 (r/2), corresponding to no mixing between the QQ and
meson-meson configurations in the light field eigenstates.

D. General case

The multichannel Schrédinger equation (27) defines the
heavy quark meson system when only one threshold is
considered, but in general it may be necessary to incor-
porate several meson-meson thresholds. In such a case one
has to extend the formalism, what is more easily done in the
matrix notation (28).

The generalization of the kinetic energy matrix is
straightforward:

n? V2
245

_ R V2

2;4(1)_

__n g2
2™

MM

where ugyﬁ with i = 1, ..., N is the reduced mass of the ith

meson-meson component, N is the number of meson-
meson thresholds, and matrix elements equal to zero are not
displayed.

As for the extension of the diabatic potential matrix (30),
the presence of interaction terms between different meson-
meson components would make not practicable our pro-
cedure to extract the mixing potentials. Following what it is
usually done in molecular physics [19], we neglect some
interactions between components. Namely, in line with
lattice QCD studies of string breaking [18], we assume that
different meson-meson components do not interact with
each other.

It seems reasonable to think that this is a good approxi-
mation when dealing with relatively narrow, well-separated
thresholds. If so, we may consider the uncertainty of this
approximation to be proportional to the ratio between the
average of the threshold widths and the threshold mass
difference. More precisely, for values of this ratio smaller
than one we expect the threshold-threshold interaction to be
negligible. According to this, we restrict our study to
nonoverlapping, narrow thresholds.

Then, the diabatic potential matrix with N thresholds
reads

1 N
Ve(r) V£ni>x<r) Vgni))(<r)
(1) (1)
Vmix(r) T
V(r) = e (59)
N N
Vr(ni))((r) T,(w%

where V(r) stands for the Cornell potential, 7' for the

MM
mass of the ith threshold and Vf;)ix(r) for the mixing
potential between the QQ and the ith meson-meson
components.

In Fig. 2 we draw the eigenvalues of this matrix for c¢
and the first three open flavor meson-meson thresholds.

The diabatic potential matrix (59) can be regarded as a
generalization of the two threshold model of string break-
ing introduced in [18], the two main differences being that

in our study each dynamical quark flavor can introduce
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4.2 1 =

4.0 1 "

I— - gt P—
— "
P

3.8 1

V (GeV)
\
|
|

3.6 - R

e

0.8 1.0 1.2 14 1.6
r (fm)

FIG. 2. Static energies. Dashed line: c¢¢ (Cornell) potential (6)
with ¢ = 925.6 MeV/fm, y = 102.6 MeV fm, f = 855 MeV
and m. = 1840 MeV. Dotted lines: meson-meson thresholds
(DD, DD*, D;Dy) . Dash-dotted lines: r- dependent eigenvalues
of the diabatic potential matrix. For the sake of simplicity we have
assumed the same mixing potential parameters for all the meson-
meson components: A.; = 130 MeV and p.; = 0.3 fm.

more than one threshold and that we have parametrized the
coupling between quark-antiquark and meson-meson com-
ponents with a Gaussian instead of a constant.

Let us add that even tough there is presumably an infinite
number of possible meson-meson components, in practice
one needs to consider only a limited subset of them when
searching for bound states. As a matter of fact, a meson-
meson component hardly plays any role in the composition
of a bound state whose mass lies far below the correspond-
ing threshold.

E. Quantum numbers

Heavy-quark meson states are characterized by quantum
numbers 1¢(JF€) where 1, G, J, P, C stand for the isospin,
G-parity, total angular momentum, parity, and charge
conjugation quantum numbers respectively.

Let us focus on isoscalars / = 0 heavy-quark mesons, for
which G = C. Since the diabatic potential matrix is spheri-
cally symmetric and spin-independent, the QQ component
of the wave function can be characterized by the relative
orbital angular momentum quantum number /5, the total

00’
spin 5,5, the total angular momentum J and its projection
my so that

2 mp (s 2 m
LQQYQQ( F) =115y I)Y (r) (60a)

2 mS J— 2 mS
S 0%sgs = s0g(Sgg T Dés (60b)
PLYPE T = RII D[, _(PE T (60c)
LY, B8 I = hmy(¥, (g, T3 (60d)

where Y}"(F) is the spherical harmonic of degree [, &
the eigenstate of the total QQ spin and [Y ’QE( )ESQE] 7isa

shorthand notation for the sum

Yy m, _ sy Ym, P)EMs 61

Y, => Lo g Y (F)Esgs  (61)
mpmg

where Cm’ Mg the Clebsch-Gordan coefficient. Given

this set of quantum numbers, the QQ component of the
wave function can be factorized as

voalr) =2 (Y PE L ()
(QQ) ' D radi -
where uy (r) is the QQ radial wave function.

The same can be done for the meson-meson components
of the wave function, considering the meson-meson relative
orbital angular momentum /,, 5; and the sum of their spins

14742

Sy ¥, Therefore, with a straightforward extension of the

above notation we write

v, ) = u (Y, ®e P (63)

MMy MIMZ MMy

Note that for the spectroscopic state to have a definite value
of J, the QQ and all the meson-meson components must
have the same total angular momentum, hence the unified
notation for J.

A bound state made of QQ and meson-meson has
definite parity and C-parity only if all the wave function
components have the same parity under these transforma-
tions. This requirement translates into different conditions
depending on whether the wave function component is
associated with QQ or meson-meson. For the QQ compo-
nent, P and C quantum numbers are given by

P=(-1)'o"" and C=(-1)a"0. (64
On the other hand, for each meson-meson component one
has
[ —
P = Py, Py (=1)™m (65)
where P, is the parity of the meson. As for C-parity, one

has to consider two distinct cases: if M; = M, the C-parity
of the meson-meson component is given by

C = (1) iy (66)

if otherwise M| # M, one can build both positive and
negative C-parity states

CIM\M,) . = +|M\M,). (67)
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taking the linear combinations
1
V2

with |M M), being the isospin singlet state obtained from
the combination of the M; and M, isomultiplets and

M M,), = (1M My), jZCM|M2|MzM1>0) (68)

CMIMZ = (_I)IM]MZJ'_SMIMZJ'_IMI +1M2+SM1 +SM2+jM1 +jﬁ2 (69)
where /), is the internal orbital angular momentum of the
meson, §,, its internal spin and j,, its total spin. The
derivation of Egs. (68) and (69) is detailed in Appendix B.

F. Bound state solutions

Given a spherically-symmetric and spin-independent
diabatic potential matrix, each QQ configuration with a
distinct value of (/5.5,5) can be treated as a channel
per se, and the same can be said for each meson-meson
configuration with a distinct value of ({;, 77 5, 7,)- Then

finding the spectrum of a given J¥C family boils down to
solving a multichannel, spherical Schrodinger equation
involving only those channels with the corresponding
JPC quantum numbers.

One should realize though that a complete numerical
nonperturbative solution of the spectroscopic equations (28)
is only possible for energies below the lowest JFC thresh-
old. Above it the asymptotic behavior of its meson-meson
component as a free wave, against the confined QQ wave,
prevents obtaining a physical solution. Nonetheless, an
approximate physical solution for energies above threshold
is still possible, under the assumption that the effect of an
open threshold on the above-lying bound states can be
treated perturbatively. More in detail, we proceed in the
following way:

(i) We build the effective J”C diabatic potential matrix
out of the Cornell QQ potential, the threshold
masses, and the QQ—meson-meson mixing po-
tentials.

(i) We solve the spectroscopic equations for energies up
to the lowest J”€ threshold mass, and we analyze the
(n**'L;) QQ and meson-meson content of the
bound states.

(iii) We build a new JPC diabatic potential matrix
neglecting the QQ coupling to the lowest (first)
threshold. We solve it for energies in between the
lowest and the second thresholds and discard as
spurious any solution containing a (n>*!L;) QQ
state entering in the bound states calculated in (ii).
The rationale underlying this step is that a given
spectral state in between the lowest and the second
thresholds containing such a (n>5*!'L;) QQ com-
ponent would become, when the lowest threshold

were incorporated, the bound state below threshold
containing it found in (ii).

(iv) We build a new JPC diabatic potential matrix by
neglecting the coupling to the lowest threshold and
to the second one. We solve it for energies in
between the second and the third thresholds and
discard as spurious any solution containing a
(n**1L,) QQ state entering in the bound states
calculated in (ii) and (iii), and so on.

(v) We assume that corrections to the physical states
thus obtained due to the coupling with open thresh-
olds can be implemented perturbatively.

The formulation of an appropriate perturbative scheme
for the calculation of these corrections, giving rise to mass
shifts as well as to decay widths to open flavor meson-
meson states, will be the subject of a forthcoming paper. On
the other hand there are certainly more corrections to the
spectrum that are not included in our treatment, in par-
ticular those due to spin interactions. Regarding the QQ
component, these effects can be incorporated by adding
spin-dependent operators (e.g., spin-spin, spin-orbit, ten-
sor) to the Cornell potential, what has proven to be very
effective for a detailed description of the low-lying spectral
states [5]. As for meson-meson components, the part of
these corrections involving quark and antiquark within the
same heavy-light meson are included through the meson
masses, whereas the remaining ones can be implemented
through the one pion exchange interaction between
mesons.

Assuming that these additional energy contributions
(fine and hyperfine splittings, one pion exchange correc-
tions, mass shifts from coupling to open thresholds) can be
taken into account using perturbation theory, we shall
concentrate henceforth on the calculation of the “unper-
turbed” heavy-quark meson spectrum. The technical pro-
cedure followed to solve the spectroscopic equations is
detailed in Appendixes C and D.

V. CHARMONIUMLIKE MESONS

The formalism we have developed in the previous
sections can be tested in charmoniumlike mesons (heavy
mesons containing c¢¢) where, unlike in the bottomonium-
like case, there are several well-established experimental
candidates for unconventional isoscalar states, presumably
containing significant meson-meson components. In par-
ticular, we center on isoscalar states with masses up to
about 4.1 GeV, for which the relevant thresholds have very
small widths and do not overlap. A list of these thresholds
is shown in Table I.

The possible values of the meson-meson relative orbital
angular momentum contributing to any given set of
quantum numbers J”C are shown in Table II. Note that
we use the common notation Dy to refer to charmed as
well as to charmed strange mesons and the shorthand
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TABLE 1. Low-lying open charm meson-meson thresholds
M{M,. Threshold masses TMIMZ from the charmed and charmed
strange meson masses quoted in [2].

M1M2 TMIHZ (MeV)
DD 3730
DD*(2007) 3872
D{ Dy 3937
D*(2007)D* (2007) 4014
DD~ 4080

notation DD ) ( ) for the meson-meson C-parity eigenstate
defined by Eq. (68).

In order to calculate the heavy-quark meson bound states
we have to fix the values of the parameters. For the Cornell
potential (6) we use the standard values [22]

6 = 925.6 MeV/fm, (70a)
x = 102.6 MeV fm, (70Db)
m. = 1840 MeV (70c)
and we choose
p =855 MeV (70d)

in order to fit the 2s center of gravity. Let us note that one
could alternatively choose to fit the 1s or 1p centers of
gravity, or to get a reasonable fit to the three of them. Our
choice is based on the assumption that relativistic mass
effects in the higher states, which are at least in part
incorporated in f3, are expected to deviate less from those in
the 2s states.

We should also mention that the value of the charm quark
mass we use is completely consistent with the one needed
to correctly describe cc electromagnetic decays within the
Cornell potential model framework [23].

The low-lying spectrum from this Cornell potential for
JT* and 17~ isoscalar states is shown in Table III.

For the lowest J™ states it is worth to remark, apart
from the good average mass description, the excellent fit to

TABLE II. Values of [, M\, corresponding to meson-meson
configurations with definite values of J7€. A missing entry means
that the particular meson-meson configuration cannot form a state
with the corresponding quantum numbers.

PC _ _ _
J leDm leDE\v) lDZ\)D(.\,}
0+ 0 0,2
1+t 0,2 2
2+ 2 2 0,2
1-- 1 1 1,3

TABLEIII. Calculated J™* and 17~ charmonium masses, M .z,
for spectroscopic nl states from the Cornell potential (6) with
parameters (70). Experimental mass centroids from [2], Mfé‘é’[,

are listed for comparison.

Jre nl M. (MeV) MeP (MeV)

1= Is 3082.5 3068.65 + 0.13
2s 3673.2 3674.0 0.3
1d 3795.8
3s 4097.0

(0,1,2)*+ 1p 3510.9 352530 +0.11
2p 3953.7

the mass of the lowest 11+ state, y. (1p) (3510.9 MeV
versus the experimental mass 3510.7 MeV). However, an
accurate fit of the lowest (0,2)"™" masses, in particular for
Xe,(1p), would require the incorporation of correction
terms (e.g., spin-spin, spin-orbit, tensor) to the Cornell
radial potential. As for the first excited J™* states one could
expect a similar situation (the 2s states lie in between the
1p and 2p ones) in the absence of threshold effects that we
analyze in what follows.

As for the parameters of the mixing potential (48), we
have to rely on phenomenology since the only lattice
information available is for bb. We fix them by requiring
that our diabatic treatment fits the mass of some unconven-
tional experimental state lying close below threshold. In
particular, we can use the mass of y.(3872), a well-
established experimental resonance lying just below the
DD* threshold, to infer the possible of values for A ;
and p_z.

As the crossing of the Cornell potential with the DD*

threshold takes place around r?ﬁ* = 1.76 fm, we con-
servatively vary p.; from 0.1 fm to 0.8 fm, this last value

corresponding to almost half of r22". Then, for every value
of p.z we get the minimal value of A_; to accurately fit
the mass of y.;(3872). The calculated values are listed in
Table IV.

TABLE IV. Correlated values of the mixing potential param-
eters giving rise to a Ot (17+) bound state with a mass close
below the DD* threshold.

Pee (fm) A (MeV)
0.1 290
0.2 165
0.3 130
0.4 115
0.5 108
0.6 104
0.7 102
0.8 101
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It should be pointed out that large values of A_;
would deform the shape of the avoided energy crossings
as compared to the one calculated in lattice for bb,
against our bb —cC universality arguments for the
shape of the mixing potential. On the other hand, large
values of p.; would make the mixing angle between the c¢
and a single M, M, threshold, calculated from Eq. (55), to
have an asymptotic behavior in conflict with the one
observed in the lattice under the natural assumption that
this behavior is similar for bb and c¢. More precisely,
unquenched lattice QCD calculations of the mixing
angle [17] show that @ approaches /2 quite rapidly for
r> M thus ruling out a large radial scale for the
mixing. Henceforth we use

Pee = 0.3 fm (71a)

for this value gives the most accurate asymptotic behavior
of the mixing angle, see Fig. 3, and consequently

A =130 MeV. (71b)

The resulting mixing potential is drawn in Fig. 4 for
M M, = DD*. For any other threshold the only difference
comes from the substitution of the threshold mass.

Notice that we have drawn |V ;(r)| with no sign
prescription for V. (r). This sign can be reabsorbed as
a relative phase between the charmonium and meson-
meson components. For the calculations in this paper a
positive sign has been taken. We have checked that for the
observables considered in this article the same results are
obtained with a negative sign. It should be realized though
that this could not be the case for other observables.

The calculated spectrum of J* states, containing one ¢¢
state with [, = 1 (1p or 2p), is shown in Table V.

0.5 1

0.4 1

0.3 1

0/m

0.2

0.1 1

0.0

r (fm)

FIG. 3. Mixing angle between c¢¢ and DD* with A, =
130 MeV, p.: = 0.3 fm and Cornell potential parameters (70).

0.06 1

0.04

|Vinix| (GeV)

0.02 1

0.00 1

r (fm)

FIG. 4. Mixing potential for c¢ and DD* with Az = 130 MeV
and p.; = 0.3 fm.

It is illustrative to compare these results with the c¢
masses in Table III obtained with the Cornell potential. A
glance at these tables makes clear that the presence of the
thresholds gives rise to attraction in the sense that the
resulting masses are reduced with respect the correspond-
ing Cornell ¢¢ masses. For the lowest-lying 0" (J*) states
(J =0, 1, 2) there is a very small mass difference indicating
an almost negligible attraction for these states. This is
understood for the thresholds are far above in energy
(>200 MeV) so that no significant mixing occurs (less
than 1% meson-meson probability).

The situation is completely altered for the first
excited 0" (J™) states. Thus, the fitting of the first excited
17+ resonance, y, (3872) with a measured mass of
3871.69 £0.17 MeV, requiring a mass reduction of
81 MeV with respect to the Cornell c¢ mass, implies a
very strong mixing, 99% of DD* component, whereas for
the 07" and 27 states the predicted mixing is about 40%
(mainly from D,D,) and 15% (shared by D,D, and D*D*)
respectively, with corresponding mass reductions of
33 MeV and 20 MeV.

It is amazing that these (0,2)"" mass predictions are in
complete agreement with data regarding their positions
with respect to the DD, threshold, both below it.

TABLE V. Calculated masses, c¢¢ and meson-meson probabil-
ities for J™* charmoniumlike states. A missing entry means that
the corresponding component gives negligible (i.e., inferior to
1%) or no contribution to the state.

JP¢ Mass MeV) c¢¢ DD DD* D,D, D*D* D,D:
1 3510.0 100%
3871.7 1% 99%
0+ 3509.1 100%
3920.4 59% 37% 4%
2+ 3509.6 100%
3933.5 86% 7% 7%
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Moreover, their calculated numerical values are pretty close
to the measured ones. So, the calculated 2™+ mass,
3933.5 MeV, is very close to that of the experimental
resonance y.,(3930): 3927.2+£2.6 MeV. And the 0"
calculated mass, 3920.4 MeV, is consistent with the ones
of the experimental candidates: y. (3860), with a measured

mass of 386213519 MeV, and X(3915) with a measured
mass of 3918.4 = 1.9 MeV, although in this last case the
assignment to a 27" state cannot be completely ruled out,
see [2] and references therein. This suggests that further
mass corrections for these sates as the ones due to spin-
dependent terms in the cc¢ potential, or to one pion
exchange in the meson-meson potential, or those taking
into account the effect of the lower threshold DD, or the
deviations from the assumption of the same values of the
mixing potential parameters for all the thresholds, are either
small and might be implemented perturbatively, or have
been partially taken into account through the effectiveness
of the parameters of the mixing potential.

It should also be emphasized that our nonperturbative
formalism provides us with the meson wave functions in
terms of their ¢¢ and meson-meson components.

For y. (3872) the radial ¢ and DD* (I,,5. = 0, 2) wave
function components are plotted in Fig. 5.

A look at this figure makes clear the prevalence of the
DD* channel with /5. = 0 for distances beyond 2 fm. As
the estimated Cornell rms radius for D is about 0.54 fm we
may conclude that y, (3872), with a calculated rms radius
of 26.17 fm is at large distances a loose hadromolecular
state. At short distances, though, the (2°p,) ¢¢ component,
with a rms radius of 1.01 fm plays a role at least as
prominent as the DD* one, see Fig. 5. These features are
quite in line with the indications from phenomenology
requiring a ¢¢ component to give proper account of short
distance properties.

7 (fm)

FIG. 5. Radial wave function of the calculated 07 (1) state
with a mass of 3871.7 MeV. ¢¢(2°p;), DD*(I,5 = 0) and
DD*(l,,5 = 2) components are drawn with a solid, dashed and
dotted line respectively.

r (fm)

FIG. 6. Radial wave function of the calculated 07 (0"*) state
with a mass of 39204 MeV. c&(23py), Dsbs(laﬁ\. =0),
D*D*(l,.5- = 0) and D*D*(l,).;- = 2) components are drawn
with a solid, dashed, dotted and dash-dotted line respectively.

For the calculated 0" state the radial wave function is
drawn in Fig. 6.

As can be checked, the wave function with a rms radius
of 1.26 fm is made mainly of ¢¢ and DD, with a 59% and
37% probability respectively. This indicates a dominant
DD strong decay mode from c¢ as it is experimentally the
case for y. (3860). On the other hand, a J/w® decay mode
may get a significant contribution from DD since it is
OZI allowed through the small s5 content of w. This could
cause this mode to be also a dominant one as it is
experimentally the case for X(3915). Hence, it could be
that y. (3860) and X(3915) are just the same resonance
observed through two different decay modes.

As for the calculated 27 state, the wave function, with a
rms radius of 1.06 fm, is plotted in Fig. 7. It is mostly that of
the c¢¢ component. This is in accord with a very dominant

r (fm)

FIG. 7. Radial wave function of the calculated 0" (2**) state
with a mass of 3933.5 MeV. c¢(23p,), Dsbs(laﬁ\. =2),
D*D*(l,.5- = 0) and D*D*(l,).;- = 2) components are drawn
with a solid, dashed, dotted and dash-dotted line respectively.
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DD strong decay mode as it is experimentally the case
for y.,(3930).

Certainly these qualitative arguments on the dominant
strong decay modes should be supported by trustable and
predictive quantitative calculations. As mentioned before,
the development of a consistent formalism for the calcu-
lation of the decay widths to open flavor meson-meson
states, which is out of the scope of this article, is in
progress. One should keep in mind though that the dearth of
current detailed quantitative decay data for comparison will
be a serious drawback to test it. We strongly encourage
experimental efforts along this line.

Regarding  electromagnetic  radiative  transitions,
although important progress for the accurate calculation
of decays from the c¢ component has been reported [23], a
reliable and consistent calculation incorporating the meson-
meson contribution as well is lacking. We encourage a
theoretical effort along this line.

One can do better, as we show next, for leptonic decays
from the low-lying 17~ states since the decay widths
depend on the wave function at the origin and the con-
tribution from meson-meson components is suppressed as
they are not in s-wave, see Table II.

The calculated 17~ spectrum of states is listed in
Table VI

Again, a comparison with the c¢ masses in Table III
makes clear that the presence of the thresholds gives rise to
attraction. As it was the case for J*, the lowest state, lying
far below the lowest threshold, has no mixing at all being
the 1s cc state. A pretty small mixing is present for the next
two higher states that can be mostly assigned to the 2s
(95%) and 1d (97%) cc states respectively. It is worth to
mention that for the 1d state with a Cornell c¢ mass of
3795.8 MeV, the DD threshold lying 66 MeV below does
not produce enough attraction to bring the state below
threshold.

The first state with a significant mixing, 36% of DD}, is
predicted at 4071 MeV and contains a 60% of 3s cc and a
4% of 2d cc as well. Its wave function is drawn in Fig. 8.

In this case the vicinity of the DD} threshold at
4080 MeV to the 3s cc¢ Cornell mass at 4097 MeV
produces sufficient attraction to bring the state below
threshold, in agreement with data under its assignment

TABLE VI. Calculated masses, ¢¢ and meson-meson proba-
bilities for 17~ charmoniumlike states. A missing entry means
that the corresponding component gives negligible (i.e., inferior
to 1%) or no contribution to the state.

JF¢ Mass MeV) ¢¢ DD DD* D,D, D*D* D/D;
1= 3082.4 100%

3664.2 95% 4% 1%

3790.2 97% 2% 1%

4071.0 64% 36%

FIG. 8. Radial wave function of the calculated 07(177)
state with a mass of 4071 MeV. c¢(3%s,), c¢(2%d;) and
DD (Ip p» = 1) components are drawn with a solid, dashed
and dotted line respectively.

to the w(4040) resonance with a measured mass of
4039 + 1 MeV. Furthermore the expected dominant decay
modes, (DD, DD*, D,D,, D*D*) from c¢, and DD,y from
DD, are in perfect accord with the ones observed
from eTe~ — hadrons.

As for the well-measured leptonic width

(T(¥(4040) — e*e™))gyp = 0.86 £0.07 KeV,  (72)

we can trustfully predict the ratios

heor
FT(Z&&O)—»e*e |R (4040) ( )| y(Ls)
ox ~0.18  (73a)
I w(ls)—ete” |Rw Ls) O 4040
and
Theor
Fl//(4040)—>€+€ |Rl[/ 4040) ( )| 1// (2s) 0.43 3b
[Theor R ~ . (7 )
w(2s)—ete” | w(2s) ( )| 404()
to be compared to
FExpt
M0 0,15 +0.03 (74a)
FExpt
y(ls)—ete”
and
FExpt
Bzl .37 +0.07. (74b)
FExpl
y(2s)—ete”

Hence, our results agree with data within the experi-
mental intervals. The reason for this agreement has to
do with the reduced probability of the 35 c¢¢ component,
60%, induced by the mixing with the D D} threshold.
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This mixing is also responsible for the 4% of 2d cc
component. This small (big) 2d (3s) probability could
be increased (decreased) if a tensor interaction were
incorporated as a correction term to the Cornell potential.
Maybe the bias we observe in our results, both agreeing
with the maximum allowed experimental values, iS an
indication in this sense. In any case a modest additional
probability reduction of the 3s ¢¢ component should be
expected.

It is worth to mention that the explanation of the leptonic
width for y(4040) has been linked in the literature to that of
w(4160) through a very significant s-d mixing [24]. Our
results do not support this idea. Instead the D,D? — ¢¢(3s)
mixing appears to be the main physical mechanism under-
lying the w(4040) decay to eTe™.

Unfortunately, at the current stage of our diabatic devel-
opment we cannot properly evaluate y(4160), the main
reason being that the dominant Cornell 24 cc state lies only
100 MeV below the first s-wave 1=~ threshold, DD, which
is composed of two overlapping thresholds, DD, (2420) and
DD, (2430), the last one with a large width. Quite presum-
ably this double threshold gives a significant contribution by
itself to the leptonic width of y(4160).

This current limitation applies as well to the description
of unconventional states with masses above 4.1 GeV such
as (4260) lying close below the DD, double threshold, or
w(4360) and y(4415) lying close below a multiple thresh-
old at 4429 MeV. The same limitation applies for J©+
states. Work along this line is in progress.

VI. SUMMARY AND CONCLUSIONS

A general formalism for a unified description of conven-
tional and unconventional heavy-quark meson states has
been developed and successfully applied to isoscalar J*
and 17~ charmoniumlike states with masses below 4.1 GeV.

The formalism adapts the diabatic approach, widely used
in molecular physics to tackle the configuration mixing
problem, to the study of heavy-quark meson states involv-
ing quark-antiquark as well as meson-meson components.
A great advantage of using this approach, against the Born-
Oppenheimer (B-O) approximation commonly used for
heavy-quark mesons, is that the bound states are expanded
in terms of QQ and meson-meson configurations instead of
the mixed configurations that correspond to the ground and
excited states of the light fields. Then instead of being
forced to use a single channel approximation to solve the
bound state problem as in B-O, what in practice is
equivalent to neglect the configuration mixing, one can
write a treatable multichannel Schrodinger equation where
the interaction between configurations is incorporated
through a diabatic potential matrix. Moreover, the diagonal
and off-diagonal elements of this potential matrix can be
directly related to the static energies obtained from ab initio
quenched (only QQ or meson-meson configuration) and

unquenched (QQ and meson-meson configurations) lattice
calculations. This connection defines the diabatic approach
in QCD.

It is worth to emphasize that this approach goes also
beyond the incorporation of hadron loop corrections to the
B-O scheme that have been used sometimes in the literature
to deal with unconventional charmoniumlike mesons.
Indeed, the diabatic bound state wave functions, given in
terms of quark-antiquark and meson-meson components,
allow for a complete nonperturbative evaluation of observ-
able properties.

This theoretical framework has been tested in the
charmoniumlike meson sector where there is compelling
evidence of the existence of mixed-configuration states, in
particular the very well-established 0" (17") resonance
X, (3872) that we use to fix our parametrization of the
mixing potential.

Although a complete (at all energies) spectral description
would require additional theoretical refinements, as for
example the incorporation of threshold widths, the results
obtained for states with mass below 4.1 GeV, for which the
significant thresholds are very narrow, are encouraging. All
the mass values are well reproduced and their locations
with respect to the thresholds correctly predicted making
clear the cc — threshold attraction. This points out to the
diabatic approach as an appropriate framework for a unified
and complete nonperturbative description of heavy-quark
meson states.
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APPENDIX A: ADIABATIC-TO-DIABATIC
TRANSFORMATION

As the light field eigenstates |{;(r)) form a complete
orthonormal set whatever the value of r, we can express (we
use hereby Einstein notation so that a sum over repeated
indices is understood)

|Cj("0)> = |Ci(")>Aij("7"o)

where A;;(r, 1) is a change of basis unitary matrix defined
formally by

(A1)

Aij(r.ro) = (Ci(r)[¢;(ro))- (A2)

This matrix, which is a function of the coordinate r and
depends parametrically on the fixed point r, is referred to
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in this context as the adiabatic-to-diabatic transformation
matrix (ADT matrix). Let us examine the conditions to be
satisfied by the ADT matrix for the adiabatic and diabatic
expansions to be equivalent [19].

Let us begin by inserting (A1) in the diabatic expansion
(20) and comparing with (8). We thus see that the ADT
matrix transforms the diabatic wave function in the
adiabatic one:

(A3)
!

wi(r) = Ajj(r.ro)i;(r.ro).

If we now plug (A3) into Eq. (17) and multiply on the left
by AT we obtain

h2
2400

AL ((V+1)%) A, + (AiTkaAkj — 6,E) |y; =0,

L

(A4)

where we have momentarily dropped the arguments r and
ry to simplify the notation. Using

(V+0)1) A0 = GV + Tim) - 8V + Tt) Al

(
= (5kmv + Tkm) : (Amjv + (VA)mj + TmlAlj)li/j
)

= [A;,; V2 +2(VA iVt (va)kj +(V-1)Aj + 2t - (VA); + 274 - AV + (7)) Ayl

J

= [A;V? + (VA); +tAy) -V + 6V + 1) - (VA)j + 11, A,)) 10

we can expand the kinetic term as

Ajk((v +7)%) Ay = 6,V + A,Tk((VA)kj +ThAL) -V + (A:‘rzv + A;Lk"kl) “((VA)j + TimAnj)-

Therefore, as in the diabatic representation the kinetic term
is diagonal, the ADT matrix must satisfy the first order
differential equation
VA;j(r.ro) + 7i(r)Ay(r.ro) =0, (A7)
where we have restored the arguments r and r,.
Equation (A7), together with the boundary condition
A;j(ro.rg) = 6;;, determines uniquely the ADT matrix for
every point in configuration space, if the NACTs are well
behaved. If otherwise the NACTSs present singularities, the
ADT matrix may be multivalued [19]. We will not examine

this latter possibility here.
Substituting (A6)—(A7), Eq. (A4) becomes

fl2
2u0p
xyr;(r,rg) =0,

5V + (Al (r.ro) Vi(r) Ay, (r.ro) = 3,E)
(A8)

which can be recognized as the diabatic Schrédinger
equation (22) by requiring

Al (r, ro)Vi(r)Ag(r.rg) = V;i(r.ry). (A9)
This requirement tells us that the ADT matrix diagonalizes
the diabatic potential matrix, and that the eigenvalues of the

diabatic potential matrix are then the unquenched static
energies V;(r).

(AS)

(A6)

It is thus proved that the diabatic and adiabatic expan-
sions are completely equivalent, so that the NACTs
together with the unquenched static energies carry the
same amount of physical information as the diabatic
potential matrix.

APPENDIX B: C-PARITY OF MESON-MESON
STATES

Although heavy-light mesons do not have definite
C-parity nor G-parity, meson-meson configurations with
I =0 can be rearranged in combinations with definite
C-parity. To build these combinations let us start by
observing the action of C-parity on some heavy-light
meson state M made of a light quark ¢ and a heavy
antiquark Q:

CIM) = (~1)bton[B1) (B1)
where [, and s,,, the internal orbital angular momentum
and internal spin of the meson, are given in terms of the ¢Q
relative orbital angular momentum and total spin respec-
tively. Next we consider the action of C-parity on the
isospin singlet state formed by a ¢Q meson M, and a QQ
meson M,

CIM My) o = (=1)™ 5 0 (3, M), (B2)

We now exchange the positions and spin labels of the
mesons in |MM,),, thus obtaining an additional sign:
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|M1M2>0 = (—1)1M1ﬁz+leﬁ2+jM, +ix,

M>My),  (B3)

where j, is the total spin of the meson given by the sum of
the meson internal orbital angular momentum and spin.
Note that the factor (—1 )ZM "> comes from the exchange of
the positions and the factor (—1)*# "1™/, comes from
the exchange of the spin labels. Then substituting (B3) in
(B2) we obtain

CIM My)y = Cyy 41,IM2 M) (B4)

where

CMIMZ = (_1)1M1ﬁ2+xM1ﬁ2+1M1 +[M2+SM] +Sﬁz+j}\4] Jl’jﬁz . (BS)
From Eq. (B4) it is then straightforward to prove that the
states

_ 1 i} -
IMM5).. =—=(IMM>), +Cy 3, |M2My))  (B6)

V2

have definite C-parity:

_ 1 _ _
CIMM,),. = —=(C|MMy)y % Cyy, 07, CIMM,),)

-5

= —(Cy,m1,IMaM ) + M M5),)

V2
1
:iﬁ

= +|M M),

(M My) £ Cpy a1, | MM ))
(B7)

2 (42—
where we have used the fact that Cj, ; = (£)* = L.

9

APPENDIX C: VARIATIONAL METHOD

To solve the Schrodinger equation we use a variational
method, its essence being that given a Hamiltonian H
defined over a Hilbert space H, and defining the functional

Fly] = 2Hlo)

(plo) (€D

where |@) € H\{0} is some non-null vector in the Hilbert
space, the eigenvectors of H correspond to stationary points
of F, and the values of the functional on those stationary
points are the corresponding eigenvalues:

Han> = En|l//n> < 5-7:[Wn] =0A f[Wn] =E,. <C2)
To show this, we first reduce the variational problem of
finding the stationary points of F to an algebraic problem

by expanding the state |¢) in terms of an orthonormal basis
of H

(C3)

o) =Y oler).

so that the functional F becomes an ordinary function of
the coordinates

= >k H i

Ej|(pj|2 (C4)

Flol = Flor, 2. .

where we have introduced the Hamiltonian matrix elements

Hij = (e;|Hle;). (C5)
Second, we determine which values of the coordinates ¢,
correspond to stationary points of F. With the functional
derivative becoming an ordinary one, the stationary points
are found as the solutions of

SF OF
RN =0
op  Op;

(Co)

for every i. Using (C4) and expanding the derivatives we
obtain

2 ( (ijfﬂfokf/’k»
o (Dot - (FEET) ) =0 (@)
e Z / e
or equivalently

ZHU‘P/ = F(p1, 02, .- )i (C8)
J

Equation (C8) is nothing but the characteristic equation for
H in the matrix representation provided by {|e;)}.
Therefore it is proved that the states |@p) corresponding
to stationary points of F are also eigenstates of H.
Moreover, Eq. (C8) shows that the value of the functional
JF at the stationary point is precisely the corresponding
energy eigenvalue.

Technically speaking, the results presented here are
analytically valid only when using a complete, i.e., infinite,
orthonormal set. Since in realistic applications one employs
a limited set, the correspondence drawn here is only
approximate and so are the energies and eigenstates
obtained with the variational method.

A shortcoming of the variational method is that the
degree of approximation is not known a priori. To assure
this not to be any problem we choose an appropriate
orthonormal set of states reflecting some of the properties
of the physical states and employ a very high number of
states in the set.
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APPENDIX D: LAGUERRE ASSOCIATED
POLYNOMIALS

For the solution of the Schrodinger equation with a
spherical potential a natural (physical) choice for a basis
describing the radial wave function is the one of associated
Laguerre polynomials. These are explicitly defined by

i) =30 ()

i=0

(D1)

k+n
n—i

nal basis set of 1.2(0, o) with weighting function x

where (“") is a binomial coefficient, and form an orthogo-

ke—x:

:(n—l-k)!

n!

/ " dxxke*LE(x)LE (x) Sum. (D2)
0

More precisely, the solutions of the spherical Schrodinger
equation factorize in a spherical harmonic and a radial wave
function as

W) = up (DY) (), (D3)
where the radial wave function ug,(r) has well-known
asymptotic behaviors. For bound states, these are

l r
uE,,(r)r:()(ﬂL) and ug,(r) <% (D4)

E

where Ag is some length scale that may depend on the
bound state mass E. Knowing this we can write in general
the radial wave function as

ar\! r\ o
) =33 () s 5 )

where U ;(;-) must be some scalar function that does not

(D5)

vanish for r — 0 and diverges at most as a power of r for
r — oo. Then, normalization of the radial wave function

Aoo dr rPug, (rjug,(r) = dgp, (D6)
reads
/oo dr F2+2 e_rﬁ;;,
0 \/’W (/115/115’)1Jrl
XU, <é>uE’.l </1—2/> = Ogp- (D7)

We can now compare this result with the one resulting from
(D2) when substituting x — r/A, with 1 being some
constant with dimensions of length. We obtain

odr (r\k , (r r (n+k)!
— (=) ek )LE (=) = S
FE Q) en()s() ="

that corresponds to (D7) with 2/ +2 = kand Ay = A = 4
up to a normalization factor.

It is then quite clear that the most natural choice for a
basis is

(D8)

i
) =N (3) 122 () err) 09)

being N, ; the normalization factor

20+ 2)17-3
an = |:ﬂ% M] (DIO)
' n!
such that the basis is orthonormal:
<e:’l1-,1|e:ln’:1’> = 5nn/6ll'5mm’~ (Dl 1)

The basis defined by (D9)—(D10) is expected to provide
a reasonable description of the physical eigenstates as long
as the scale 4 is roughly of the same order that the physical
scales Ay involved and the number n,,, of polynomials
used in the calculation is high enough.

Given that any numerical calculation of this kind is
performed on a discretized (r, —r,_; = 0) and limited
(r, < rmay) radial configuration space, the hyperparameters
involved in this scheme are

(1) o: the discretization step of r;

(1) 7pax: the maximum integration radius;

(iii) A: the length scale in the associated Laguerre basis;

(iv) N the number of associated Laguerre polyno-

mials used.
In this work we use 6 = 1073 fm, r,, = 150 fm, 1 =
0.2 fm and n,, = 150.

Note that when doing numerical calculations following
this procedure one should always check stability of the
results under changes of these hyperparameters, keeping in
mind that convergence with higher values of 1 and n,,,
demands bigger values for r,,,,, and that 6 should always be
small enough in order to keep numerical integration errors
under control.
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