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We apply the diabatic formalism, first introduced in molecular physics, to the description of heavy-quark
mesons. In this formalism the dynamics is completely described by a diabatic potential matrix whose
elements can be derived from unquenched lattice QCD studies of string breaking. For energies far below
the lowest open flavor meson-meson threshold, the resulting diabatic approach reduces to the well-known
Born-Oppenheimer approximation where heavy-quark meson masses correspond to energy levels in an
effective quark-antiquark potential. For energies close below or above that threshold, where the Born-
Oppenheimer approximation fails, this approach provides a set of coupled Schrödinger equations
incorporating meson-meson components nonperturbatively, i.e., beyond loop corrections. A spectral
study of heavy mesons containing cc̄ with masses below 4.1 GeV is carried out within this framework.
From it a unified description of conventional as well as unconventional resonances comes out.
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I. INTRODUCTION

The discovery of the χc1ð3872Þ in 2003 [1] may be
considered as the initio of a new era in heavy-quark meson
spectroscopy. This resonance and a plethora of new states
(ψð4260Þ, ψð4360Þ, Xð3915Þ, and many others, see [2])
discovered since then have masses and decay properties
that do not correspond to the conventional heavy quark
(Q)—heavy antiquark (Q) meson description, such as the
one provided by nonrelativistic or semirelativistic quark
models that has been so successful in the past [3–5]. A
feature of any of these unconventional states is that its mass
lies close below or above the lowest open flavour meson-
meson threshold with the same quantum numbers. This
suggests a possible relevant role of open flavour meson-
meson thresholds in the explanation of the structure of the
new states. As a matter of fact, the nonrelativistic Cornell
quark model [3,4] incorporates some of these effects
through meson loops where the interaction connecting
QQ and open flavor meson-meson is derived from the
QQ binding potential. Similar kind of loop contributions,
with quark pair creation models like the 3P0 one providing
the valence-continuum coupling, have been extensively

studied in the literature (see for instance [6,7]). However,
these perturbative loop contributions seem to be insufficient
for a detailed description of the new structures. This has led
to the building of phenomenological models involving
implicit or explicit meson-meson components, for example
in the forms of tetraquarks, meson molecules, and hadro-
quarkonium (see [8–11] and references therein).
Ab initio calculations from QCD have been also carried

out. From lattice QCD, a Born-Oppenheimer (B-O)
approximation for heavy-quark mesons has been developed
[12] (for a connection with effective field theories see [13]
and references therein). In this approximation, based on the
large ratio of the heavy quark mass to the QCD energy scale
associated with the gluon field, the heavy-quark meson
masses correspond to energy levels of a Schrödinger
equation for QQ in an effective potential. This potential
is defined by the energy of a stationary state of light-quark
and gluon fields in the presence of static Q and Q sources,
which is calculated in lattice QCD. Thus, conventional
quarkoniummasses are the energy levels in the ground state
potential calculated in quenched (without light quarks)
lattice QCD whose form is Cornell-like [14], whereas
quarkonium hybrid (QQg bound state where g stands for
a gluon) masses are energy levels in the quenched excited
state potentials. Although no tetraquark potentials have
been calculated yet from lattice QCD, some information on
them has been also extracted [15]. The immediate question
arising is whether these hybrid and tetraquark B-O poten-
tials may correctly describe or not the new states. The
answer to this question can be derived from [15], where an
assignment of the masses of some of the new states to
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energy levels in these potentials has been pursued. In
essence, quoting this reference, although the B-O approxi-
mation provides a starting point for a coherent description
of the new states based firmly on QCD, a detailed
description of them requires to go beyond quenched lattice
calculations and beyond the B-O approximation.
An intermediate step in this direction was taken in [16]

by identifying the unquenched lattice energy for static Q
and Q sources, when the QQ configuration mixes with one
or two open flavor meson-meson ones [17,18], with a QQ
potential. This unquenched approximation allows for some
physical understanding of threshold effects beyond hadron
loops. However, the description in terms of effective QQ
channels does not give detailed account of the configura-
tion mixing.
In this article we take a step further to go beyond the B-O

approximation. For this purpose we use the diabatic
approach developed in molecular physics for tackling the
configuration mixing problem (see for instance [19]). This
allows us to establish a general framework for a unified
description of conventional and unconventional heavy-
quark meson states. This framework is applied to the
calculation of Jþþ and the low-lying 1−− meson states
with Q ¼ c (charm quark) where there are sufficient data
available to test its validity.
In this manner a complete treatment of heavy-quark

meson states involving heavy quark-antiquark and meson-
meson degrees of freedom, that incorporates the results
from ab initio calculations in quenched and unquenched
lattice QCD, comes out.
The contents of the paper are organized as follows. In

Sec. II the mathematical formalism and the physical picture
leading to the B-O approximation for heavy-quark mesons
is revisited. In Sec. III we detail the diabatic approach and
in Sec. IV we adapt it to the description of heavy-quark
meson states. The application to meson states containing cc̄
is detailed in Sec. V. For the sake of simplicity we consider
states involving nonoverlapping thresholds with small
widths. The comparison of our results to existing data
serves as a stringent test of our treatment. Finally, in Sec. VI
our main conclusions are summarized.

II. BORN-OPPENHEIMER APPROXIMATION
IN QCD

The Born-Oppenheimer (B-O) approximation was devel-
oped in 1927 for the description of molecules [20], and
since then it has been a fundamental approximation in
chemistry. More recently it has been employed for the
description of heavy-quark meson bound states from QCD
[12,15]. Next, we briefly recall the main steps in its
construction for the description of a heavy-quark meson
system containing a heavy quark-antiquark (QQ) interact-
ing with light fields (gluons and light quarks), with
Hamiltonian

H ¼ KQQ þHlf
QQ

ð1Þ

where KQQ is the QQ kinetic energy operator

KQQ ¼ p2Q
2mQ

þ
p2
Q

2mQ

¼ p2

2μQQ

þ P2

2ðmQ þmQÞ
ð2Þ

with μQQ being the reducedQQmass, p (P) theQQ relative

(total) three-momentum, and Hlf
QQ

the part of the

Hamiltonian containing the light field energy operator
and the QQ—light-field interaction. Notice that Hlf

QQ

depends on the Q and Q positions but does not contain
any derivative with respect to the Q and Q coordinates.
A heavy-quark meson bound state jψi is a solution of the

characteristic equation

Hjψi ¼ Ejψi ð3Þ

where E is the energy of the state. Note that jψi contains
information on both the QQ and light fields.

A. Static limit

The first step in building the B-O approximation consists
in solving the dynamics of the light fields by neglecting the
QQ motion, i.e., setting the kinetic energy term KQQ equal

to zero. This corresponds to the limit where Q and Q are
infinitely massive, what can be justified because the Q and
Qmasses,mQ andmQ, are much bigger than the QCD scale
ΛQCD, which is the energy scale associated with the light
fields.
As we are interested in the internal structure of the

system and this does not depend on the center of mass
motion (which coincides with the QQ center of mass
motion in the infinite mass limit) it is convenient to use the
QQ relative position r ¼ rQ − rQ, and work in the QQ
center of mass frame where P ¼ 0.
In this static limit r is fixed, ceasing to be a dynamical

variable. This is, the components of r can be considered as
parameters, rather than operators, in the expression of Hlf

QQ

that will depend operationally on the light fields only. We
shall indicate this parametric dependence renaming Hlf

QQ

as Hlf
staticðrÞ.

It is then possible to solve the dynamics of the light fields
for any value of r:

ðHlf
staticðrÞ − ViðrÞÞjζiðrÞi ¼ 0 ð4Þ

where jζiðrÞi are the light field eigenstates, ViðrÞ the
corresponding eigenvalues, and i stands for the set of
quantum numbers labelling the eigenstates. Note that both
the eigenvalues and the eigenstates depend parametrically
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on r, and that for every value of r the eigenstates fjζiðrÞig
form a complete orthonormal set for the light fields:

hζjðrÞjζiðrÞi ¼ δji: ð5Þ

As for the eigenvalues ViðrÞ, they correspond to the
energies of stationary states of the light fields in the
presence of static Q and Q sources placed at a relative
position r, and can be calculated ab initio in lattice QCD.
More precisely, in quenched (with gluon but not light-

quark fields) lattice QCD [14] the ground state of the light
fields is associated with a QQ configuration, and up to spin
dependent terms that we shall not consider the static energy
of this ground state mimics the form of the phenomeno-
logical Cornell potential

VCðrÞ ¼ σr −
χ

r
þmQ þmQ − β ð6Þ

with σ, χ and β standing for the string tension, the color
Coulomb strength, and a constant fixing the origin of the
potential respectively.
On the other hand, unquenched (with gluon and light-

quark fields) lattice QCD calculations [17,18] have shown
that due to string breaking the association of the light field
ground state with a QQ configuration holds only for small
values of the relativeQQ distance r≡ jrj. When increasing
r the QQ configuration mixes significantly with meson-
meson configurations. More in detail: below (above) an
open-flavor meson-meson threshold the energy of a sta-
tionary state of the light fields changes with r, from the one
corresponding to the QQ (meson-meson) configuration to
the one of meson-meson (QQ) configuration, avoiding in
this manner the crossing of the static light field energies
corresponding to pure QQ and meson-meson configura-
tions that would take place at the threshold mass in absence
of string breaking. In Fig. 1 we have represented graphi-
cally this situation for QQ and one meson-meson threshold
(the representation for two meson-meson thresholds can be
seen in [17,18]).

B. Adiabatic expansion

Having solved the static problem for the light fields, the
next step in the construction of the B-O approximation
consists in reintroducing the QQ motion. This is done by
solving the bound state equation

�
p2

2μQQ

þHlf
staticðrÞ − E

�
jψi ¼ 0; ð7Þ

where E denotes the mass of the bound state, making use of
the so-called adiabatic expansion for jψi:

jψi ¼
X
i

Z
dr0ψ iðr0Þjr0ijζiðr0Þi ð8Þ

where jr0i is a state indicating the QQ relative position and
we have temporarily omitted spin degrees of freedom for
simplicity. The qualifier “adiabatic” refers to the fact that
each term in the expansion depends only on a single value
of r0, what can be related to the physical situation where the
light fields respond almost instantaneously to the motion of
the quark and antiquark. However, as will be shown in what
follows, this physical expansion is not mathematically
convenient when configuration mixing takes place. Note
that as the states jζiðr0Þi depend on r0, so do the coefficients
ψ i, one for each light field state.
Using (8) and multiplying on the left by hrj the bound

state equation can be rewritten as

X
i

�
−

ℏ2

2μQQ̄
∇2 þ ViðrÞ − E

�
ψ iðrÞjζiðrÞi ¼ 0; ð9Þ

then multiplying on the left by hζjðrÞj yields

X
i

�
−

ℏ2

2μQQ̄
hζjðrÞj∇2ψ iðrÞjζiðrÞi þ ðVjðrÞ − EÞδjiψ iðrÞ

�
¼ 0: ð10Þ

FIG. 1. Pictorial representation of lattice static energies. Dashed
line: ground state static light field energy in quenched lattice
QCD. Dotted line: meson-meson threshold. Dash-dotted lines:
ground and excited state static light field energies in unquenched
lattice QCD, showing an avoided crossing.
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The first term on the left-hand side of (10) can be developed as

hζjðrÞj∇2ψ iðrÞjζiðrÞi ¼ δji∇2ψ iðrÞ þ 2τjiðrÞ ·∇ψ iðrÞ þ τð2Þji ðrÞψ iðrÞ ð11Þ

with

τjiðrÞ≡ hζjðrÞj∇ζiðrÞi and τð2Þji ðrÞ≡ hζjðrÞj∇2ζiðrÞi ð12Þ

being the so-called nonadiabatic coupling terms (NACTs) of the first and second order, respectively.
Furthermore, using ∇hζjðrÞjζiðrÞi ¼ ∇δji ¼ 0 we have

τjiðrÞ≡ hζjðrÞj∇ζiðrÞi ¼ −h∇ζjðrÞjζiðrÞi≡ −τ�ijðrÞ; ð13Þ

from which it follows

h∇ζjðrÞj∇ζiðrÞi ¼
X
k

h∇ζjðrÞjζkðrÞi · hζkðrÞj∇ζiðrÞi ¼
X
k

τ�kjðrÞ · τkiðrÞ ¼ −
X
k

τjkðrÞ · τkiðrÞ≡ −ðτðrÞ2Þji; ð14Þ

so that

ð∇τðrÞÞji ¼ hζjðrÞj∇2ζiðrÞi þ h∇ζjðrÞj∇ζiðrÞi ¼ τð2Þji ðrÞ − ðτðrÞ2Þji ð15Þ

and finally

hζjðrÞj∇2ψ iðrÞjζiðrÞi ¼ δji∇2ψ iðrÞ þ 2τjiðrÞ ·∇ψ iðrÞ þ ðð∇ · τðrÞÞji þ ðτðrÞ2ÞjiÞψ iðrÞ≡ ðð∇þ τðrÞÞ2Þjiψ iðrÞ: ð16Þ

The bound state equation (10) then reads

X
i

�
−

ℏ2

2μQQ̄
ðð∇þ τðrÞÞ2Þji þ ðVjðrÞ − EÞδji

�
ψ iðrÞ ¼ 0:

ð17Þ

This is a multichannel equation where ψ iðrÞ stands for the
ith component of the heavy-quark meson wave function,
that is in general a mixing of QQ and meson-meson
components. Notice though that this is not the usual
Schrödinger equation because of the presence of the
NACTs τ inside the kinetic energy operator. These terms
introduce a coupling between the wave function compo-
nents and reflect the nontrivial interaction between the QQ
motion and the light field states.

C. Single channel approximation

The last step in the construction of the B-O approxima-
tion consists in neglecting the NACTs inside the kinetic
energy operator:

τjiðrÞ ¼ hζjðrÞj∇ζiðrÞi ≈ 0: ð18Þ

This is called the single channel approximation because
the bound state equation (17) then factorizes in a set of
decoupled single channel Schrödinger equations

�
−

ℏ2

2μQQ̄
∇2 þ ðVjðrÞ − EÞ

�
ψ jðrÞ ¼ 0 ð19Þ

where VjðrÞ, corresponding to the energy of the stationary
jth state of the light fields in the presence of static Q and Q
sources, plays the role of an effective potential.
Equations (4), (8), (18) and (19) define the B-O

approximation.
Notice that the single channel approximation can be

deemed reasonable only up to QQ distances for which the
NACTs can be neglected, i.e., for distances where the QQ
and meson-meson configuration mixing associated with the
light field eigenstates is negligible (for a specific calcu-
lation see Sec. IV C). This makes the B-O approximation to
be justified only for bound state energies far below the
lowest open flavor meson-meson threshold. In particular,
conventional heavy-quark meson masses, far below the
lowest open flavor meson-meson threshold, can be
described as the energy levels in the potential correspond-
ing to the quenched ground state of the light fields, i.e., the
Cornell potential.
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III. DIABATIC APPROACH

For energies close below or above an open flavor meson-
meson threshold the mixing between the QQ and meson-
meson configurations gives rise to nonvanishing NACTs,
so that the single channel approximation (18) cannot be
maintained. Instead, one has to deal with the set of coupled
equations (17), which is not practicable for two reasons:

(i) There is no yet direct lattice QCD calculation of the
NACTs τ.

(ii) When τ ≠ 0, the wave function components in the
expansion (8) do not correspond to pure QQ or
meson-meson but rather to a mixing of both, the
amount of mixing depending on r.

These drawbacks can be overcome through the use of the
diabatic approach, where one expands the bound state jψi
on a basis of light field eigenstates calculated at some fixed
point r0. As the fjζiðrÞig form a complete set for the light
fields whatever the value of r, switching from a fjζiðrÞig to
fjζiðr0Þig is equivalent to a r-dependent change of basis in
the light degrees of freedom.
The diabatic expansion of the bound state reads

jψi ¼
X
i

Z
dr0ψ̃ iðr0; r0Þjr0ijζiðr0Þi ð20Þ

where the coefficients ψ̃ i, one coefficient for each light field
state, are functions of r0 that depend parametrically on r0.
A nice physical feature of this expansion is that the light

field state jζiðr0Þi corresponding to each component ψ̃ i

does not depend on the QQ relative position r0. This means
that if one chooses the fixed point r0 far from the avoided
crossing, then the wave function components correspond to
either pureQQ or meson-meson for any value of r0. In other
words, in the diabatic approach one expands the bound
states in terms of the more intuitive Fock components (pure
QQ and pure meson-meson) instead of components which
are a mixing of QQ and meson-meson.
Substituting (20) in the bound state equation (7) and

projecting on hrj yields

X
i

�
−

ℏ2

2μQQ̄
∇2 þHlf

staticðrÞ − E

�
ψ̃ iðr; r0Þjζiðr0Þi ¼ 0

ð21Þ

where all the derivatives are taken with respect to r. If we
now multiply on the left by hζjðr0Þj, as ∇jζiðr0Þi ¼ 0 the
equation reads

X
i

�
−

ℏ2

2μQQ̄
δji∇2þVjiðr;r0Þ−Eδji

�
ψ̃ iðr;r0Þ¼0 ð22Þ

where

Vjiðr; r0Þ≡ hζjðr0ÞjHlf
staticðrÞjζiðr0Þi ð23Þ

is the so-called diabatic potential matrix.
The multichannel Schrödinger equation (22) together

with (23) and (20) define the diabatic approach which is
widely employed in molecular physics [19].
The complete equivalence between Eqs. (17) and (22)

has been shown elsewhere [19] and is reproduced, for the
sake of completeness, in Appendix A. In short, the
troublesome NACTs in (17) that break the single channel
approximation when configuration mixing is present (thus
invalidating the B-O framework) are taken into account in
(22) through the diabatic potential matrix. This is utterly
convenient since, as we shall see in Sec. IV B, the elements
of this matrix are directly related to the static light field
energy levels calculated in quenched and unquenched
lattice QCD.
It is also easy to show that when the single channel

approximation (18) holds the diabatic potential matrix (23)
becomes a diagonal matrix containing the static light field
energy levels calculated in quenched lattice QCD, and
consequently Eq. (22) reproduces the set of single channel
Schrödinger equations (19).
Therefore, the diabatic approach is a complete general

framework applicable to conventional heavy-quark mesons
lying far below the lowest open flavor meson-meson
threshold as well as to unconventional ones lying close
below or above that threshold.

IV. HEAVY-QUARK MESONS IN THE DIABATIC
FRAMEWORK

In order to apply the diabatic framework to the descrip-
tion of heavy-quark meson bound states we examine first
the case of a single meson-meson threshold. Then we
proceed to the generalization to an arbitrary number of
thresholds.

A. Spectroscopic equations

Let us consider one meson-meson threshold. Let us fix a
value for r0 such that the ground state of the light fields is
associated with the QQ configuration and the first excited
state with the meson-meson one. To make this more clear
we relabel the diabatic light field states as

jζ0ðr0Þi → jζQQi; jζ1ðr0Þi → jζM1M2
i; ð24Þ

and the diabatic wave function components as

ψ̃0ðr; r0Þ → ψQQðrÞ; ψ̃1ðr; r0Þ → ψM1M2
ðrÞ: ð25Þ

Accordingly, we rename the diabatic potential matrix
components (23) as

V00ðr; r0Þ → VQQðrÞ ¼ hζQQjHlf
staticðrÞjζQQi ð26aÞ
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V11ðr; r0Þ → VM1M2
ðrÞ ¼ hζM1M2

jHlf
staticðrÞjζM1M2

i ð26bÞ

V01ðr; r0Þ → VmixðrÞ ¼ hζQQjHlf
staticðrÞjζM1M2

i: ð26cÞ

Let us realize that having associated each component of
the wave function with pure QQ̄ or pure meson-meson, we
can easily incorporate to the kinetic energy operator the fact
that the reduced mass of the meson-meson component,
μM1M2

, is different from μQQ. Hence, we shall use −
ℏ2

2μ
QQ
∇2

and − ℏ2
2μM1M2

∇2 for the kinetic energy operators of the QQ

and meson-meson components respectively. (Note that this
improvement is possible only in the diabatic framework.)
Then, the bound state equations read

�
−

ℏ2

2μQQ

∇2 þ VQQðrÞ − E

�
ψQQðrÞ

þ VmixðrÞψM1M2
ðrÞ ¼ 0 ð27aÞ

�
−

ℏ2

2μM1M2

∇2 þ VM1M2
ðrÞ − E

�
ψM1M2

ðrÞ

þ VmixðrÞψQQðrÞ ¼ 0; ð27bÞ

or in matrix notation

ðKþ VðrÞÞΨðrÞ ¼ EΨðrÞ ð28Þ

where K is the kinetic energy matrix

K≡
0
B@− ℏ2

2μQQ̄
∇2 0

0 − ℏ2
2μM1M̄2

∇2

1
CA; ð29Þ

VðrÞ is the diabatic potential matrix

VðrÞ≡
�VQQ̄ðrÞ VmixðrÞ
VmixðrÞ VM1M2

ðrÞ
�
; ð30Þ

and ΨðrÞ is a column vector notation for the wave function:

ΨðrÞ≡
� ψQQðrÞ
ψM1M2

ðrÞ
�
: ð31Þ

In this notation the normalization of the wave function
reads

Z
drΨ†ðrÞΨðrÞ ¼ PðQQ̄Þ þ PðM1M̄2Þ ¼ 1 ð32Þ

where we have defined the QQ probability

PðQQÞ≡
Z

drjψQQðrÞj2 ð33Þ

and the meson-meson probability

PðM1M2Þ≡
Z

drjψM1M2
ðrÞj2: ð34Þ

The multichannel Schrödinger equation (27), or equiv-
alently (28), defines formally the diabatic approach for the
description of the heavy-quark meson system.

B. Mixing potential

To solve (27) we need to know the diabatic potential
matrix Eq. (30). Regarding the diagonal element VQQðrÞ,
we see from (26a) that it corresponds to the expectation
value of the static energy operator in the light field state
associated with a pure QQ configuration. This can be
identified with the ground state static energy calculated in
quenched lattice QCD, see Fig. 1, given by the Cornell
potential

VQQðrÞ ¼ VCðrÞ: ð35Þ

In the same way, from (26b) we identify the other diagonal
term VM1M2

ðrÞ with the static energy associated with a pure
meson-meson configuration, given by the threshold mass
TM1M2

(the sum of the meson masses)

VM1M2
ðrÞ ¼ TM1M2

≡mM1
þmM2

; ð36Þ

up to one pion exchange effects that we do not con-
sider here.
As for the off-diagonal term, the mixing potential

VmixðrÞ, we can use the eigenvalues of the diabatic potential
matrix to derive its form. As shown in Appendix A, these
eigenvalues correspond to the static energy levels that are
calculated in unquenched lattice QCD which have been
pictorially represented in Fig. 1. More precisely, the
eigenvalues of the diabatic potential matrix are the two
solutions V�ðrÞ of the secular equation

det VfðrÞ − V�ðrÞIg ¼ 0 ð37Þ

where I is the identity matrix. These solutions read

V�ðrÞ ¼
VCðrÞ þ TM1M̄2

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�VCðrÞ − TM1M̄2

2

�
2 þ VmixðrÞ2

r
; ð38Þ

from which we obtain

R. BRUSCHINI and P. GONZÁLEZ PHYS. REV. D 102, 074002 (2020)

074002-6



jVmixðrÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVþðrÞ − V−ðrÞÞ2 − ðVCðrÞ − TM1M̄2

Þ2
q

2
;

ð39Þ

where we have dropped the vector notation for r as the
energy levels calculated in lattice QCD depend only on the
modulus r ¼ jrj.
Equation (39) tells us that a detailed calculation of the

mixing potential jVmixðrÞj from ab initio lattice data on
V�ðrÞ is possible. As a matter of fact, an effective para-
metrization of VmixðrÞ from lattice data has been proposed
[18,21]. While we encourage work along this direction, we
resort to physical arguments to get the shape of jVmixðrÞj. In
this regard, the general form of the curves VþðrÞ and V−ðrÞ
near any threshold, reflecting the physical picture of the
QQ—meson-meson mixing, is expected to be similar as it
happens to be the case when two thresholds are incorpo-
rated into the lattice calculation [17,18]. Furthermore,
the same form is expected for Q ¼ b and Q ¼ c since
the underlying mixing mechanism (string breaking) is the
same. Therefore, we shall proceed to a parametrization of
jVmixðrÞj according to this general form, and we shall rely
on phenomenology to fix the values of the parameters.
Let us begin by observing that unquenched lattice QCD

results show that

jVþðrÞ − V−ðrÞj ≥ jVCðrÞ − TM1M̄2
j ð40Þ

for every value r, and that at the crossing radius rM1M2
c ,

defined by

VCðrM1M̄2
c Þ ¼ TM1M̄2

; ð41Þ

jVmixðrÞj gets approximately its maximum value

max
r

jVmixðrÞj ≈ jVmixðrM1M̄2
c Þj ¼ Δ

2
; ð42Þ

with Δ being the distance of the static energy levels at the
crossing radius

Δ≡ jVþðrM1M̄2
c Þ − V−ðrM1M̄2

c Þj: ð43Þ

On the other hand we have

V−ðrÞ ≈ VCðrÞ and VþðrÞ ≈ TM1M̄2
ð44Þ

for r ≪ rM1M̄2
c , and

V−ðrÞ ≈ TM1M2
and VþðrÞ ≈ VCðrÞ ð45Þ

for r ≫ rM1M2
c , so that

ðVþðrÞ − V−ðrÞÞ2 ≈ ðVCðrÞ − TM1M2
Þ2 ð46Þ

far from the crossing radius rM1M2
c . Consequently, from (39)

we obtain that VmixðrÞ vanishes in both asymptotic limits:

lim
r→0

VmixðrÞ ¼ lim
r→∞

VmixðrÞ ¼ 0: ð47Þ

To summarize, lattice QCD indicates that the mixing
potential jVmixðrÞj approaches a maximum value of Δ=2 at

r ≈ rM1M2
c and vanishes asymptotically as the distance from

the crossing radius increases. The simplest parametrization
that takes into account these behaviors, thus providing a
good fit to lattice QCD calculations of V�ðrÞ, is a Gaussian
shape:

jVmixðrÞj ¼
Δ
2
exp

	
−
ðVCðrÞ − TM1M̄2

Þ2
2Λ2



ð48Þ

where Λ is a parameter with dimensions of energy. To
better understand the physical meaning of Λ we write it in
terms of the string tension σ as

Λ≡ σρ ð49Þ

where ρ has now dimensions of length. Then at distances
for which VCðrÞ ≈ σrþmQ þmQ − β the mixing potential
can be also written as

jVmixðrÞj ≈
Δ
2
exp

	
−
ðr − rM1M̄2

c Þ2
2ρ2




from which it is clear that ρ, the width of the Gaussian
curve, fixes a radial scale for the mixing.

C. Configuration mixing

The knowledge of the diabatic potential matrix is quite
equivalent to the knowledge of the r-dependent change of
basis matrix from fjζ0ðrÞi; jζ1ðrÞig to fjζ0ðr0Þi; jζ1ðr0Þig.
Let us name, according to our previous notation, jζ−ðrÞi≡
jζ0ðrÞi and jζþðrÞi≡ jζ1ðrÞi the ground and excited states
of the light fields, with static energies V−ðrÞ and VþðrÞ
respectively. These are related to theQQ and meson-meson
states jζQQi≡ jζ0ðr0Þi and jζM1M2

i≡ jζ1ðr0Þi via

jζ−ðrÞi ¼ cosðθðrÞÞjζQQ̄i þ sinðθðrÞÞjζM1M̄2
i ð50aÞ

jζþðrÞi ¼ cosðθðrÞÞjζM1M2
i − sinðθðrÞÞjζQQi ð50bÞ

where θðrÞ is themixing angle between theQQ and meson-
meson configurations.
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As explained in Appendix A, the change of basis matrix
connecting the two sets of states,

� jζ−ðrÞi
jζþðrÞi

�
¼ A†ðrÞ

� jζQQ̄i
jζM1M̄2

i
�

ð51Þ

with

AðrÞ≡
�
cosðθðrÞÞ − sinðθðrÞÞ
sinðθðrÞÞ cosðθðrÞÞ

�
; ð52Þ

is also the matrix that diagonalizes the diabatic potential
matrix. Therefore it is possible to extract the mixing angle θ
from the matrix equation

AðrÞ VðrÞA†ðrÞ ¼ diagðV−ðrÞ; VþðrÞÞ ð53Þ

where diagðV−ðrÞ; VþðrÞÞ is a diagonal 2 × 2 matrix
containing the unquenched static light field energies. It
is sufficient to take any off-diagonal element of Eq. (53) to
obtain

VmixðrÞ cosð2θðrÞÞ ¼
TM1M̄2

− VCðrÞ
2

sinð2θðrÞÞ ð54Þ

from which we get the mixing angle as

θðrÞ ¼ 1

2
arctan

�
2VmixðrÞ

TM1M̄2
− VCðrÞ

�
: ð55Þ

Furthermore, from this expression of the mixing angle and
from Eqs. (50) we can also calculate the NACTs:

τ00ðrÞ ¼ τ11ðrÞ ¼ 0 ð56aÞ

τ01ðrÞ ¼ −τ10ðrÞ ð56bÞ

with

τ01ðrÞ≡ hζ−ðrÞj∇ζþðrÞi ¼ ðAðrÞ∇A†ðrÞÞ01 ¼ r̂
dθ
dr

: ð57Þ

Therefore the NACTs only vanish for values of r where θ is
constant. This happens for small (big) values of rwhere θ is
0 (π=2), corresponding to no mixing between the QQ and
meson-meson configurations in the light field eigenstates.

D. General case

The multichannel Schrödinger equation (27) defines the
heavy quark meson system when only one threshold is
considered, but in general it may be necessary to incor-
porate several meson-meson thresholds. In such a case one
has to extend the formalism, what is more easily done in the
matrix notation (28).

The generalization of the kinetic energy matrix is
straightforward:

K ¼

0
BBBBBBBB@

− ℏ2
2μ

QQ
∇2

− ℏ2

2μð1Þ
MM

∇2

. .
.

− ℏ2

2μðNÞ
MM

∇2

1
CCCCCCCCA

ð58Þ

where μðiÞ
MM

with i ¼ 1;…; N is the reduced mass of the ith
meson-meson component, N is the number of meson-
meson thresholds, and matrix elements equal to zero are not
displayed.
As for the extension of the diabatic potential matrix (30),

the presence of interaction terms between different meson-
meson components would make not practicable our pro-
cedure to extract the mixing potentials. Following what it is
usually done in molecular physics [19], we neglect some
interactions between components. Namely, in line with
lattice QCD studies of string breaking [18], we assume that
different meson-meson components do not interact with
each other.
It seems reasonable to think that this is a good approxi-

mation when dealing with relatively narrow, well-separated
thresholds. If so, we may consider the uncertainty of this
approximation to be proportional to the ratio between the
average of the threshold widths and the threshold mass
difference. More precisely, for values of this ratio smaller
than one we expect the threshold-threshold interaction to be
negligible. According to this, we restrict our study to
nonoverlapping, narrow thresholds.
Then, the diabatic potential matrix with N thresholds

reads

VðrÞ ¼

0
BBBBBB@

VCðrÞ Vð1Þ
mixðrÞ � � � VðNÞ

mixðrÞ
Vð1Þ
mixðrÞ Tð1Þ

MM

..

. . .
.

VðNÞ
mixðrÞ TðNÞ

MM

1
CCCCCCA

ð59Þ

where VCðrÞ stands for the Cornell potential, TðiÞ
MM

for the

mass of the ith threshold and VðiÞ
mixðrÞ for the mixing

potential between the QQ and the ith meson-meson
components.
In Fig. 2 we draw the eigenvalues of this matrix for cc̄

and the first three open flavor meson-meson thresholds.
The diabatic potential matrix (59) can be regarded as a

generalization of the two threshold model of string break-
ing introduced in [18], the two main differences being that
in our study each dynamical quark flavor can introduce
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more than one threshold and that we have parametrized the
coupling between quark-antiquark and meson-meson com-
ponents with a Gaussian instead of a constant.
Let us add that even tough there is presumably an infinite

number of possible meson-meson components, in practice
one needs to consider only a limited subset of them when
searching for bound states. As a matter of fact, a meson-
meson component hardly plays any role in the composition
of a bound state whose mass lies far below the correspond-
ing threshold.

E. Quantum numbers

Heavy-quark meson states are characterized by quantum
numbers IGðJPCÞ where I, G, J, P, C stand for the isospin,
G-parity, total angular momentum, parity, and charge
conjugation quantum numbers respectively.
Let us focus on isoscalars I ¼ 0 heavy-quark mesons, for

which G ¼ C. Since the diabatic potential matrix is spheri-
cally symmetric and spin-independent, the QQ component
of the wave function can be characterized by the relative
orbital angular momentum quantum number lQQ, the total
spin sQQ, the total angular momentum J and its projection
mJ so that

L2

QQ
Yml
l
QQ
ðr̂Þ ¼ ℏ2lQQðlQQ þ 1ÞYml

l
QQ
ðr̂Þ ð60aÞ

S2
QQ

ξms
s
QQ

¼ ℏ2sQQðsQQ þ 1Þξms
s
QQ

ð60bÞ

J2½Yl
QQ
ðr̂Þξs

QQ
�mJ
J ¼ ℏ2JðJ þ 1Þ½Yl

QQ
ðr̂Þξs

QQ
�mJ
J ð60cÞ

Jz½Yl
QQ
ðr̂Þξs

QQ
�mJ
J ¼ ℏmJ½Yl

QQ
ðr̂Þξs

QQ
�mJ
J ð60dÞ

where Yml
l ðr̂Þ is the spherical harmonic of degree l, ξms

s is
the eigenstate of the total QQ spin and ½Yl

QQ
ðr̂Þξs

QQ
�mJ
J is a

shorthand notation for the sum

½YlQQ
ðr̂ÞξsQQ

�mJ
J ≡ X

ml;ms

Cml;ms;mJ
l
QQ

;s
QQ

;JY
ml
l
QQ
ðr̂Þξms

s
QQ

ð61Þ

where Cml;ms;mJ
l;s;J is the Clebsch-Gordan coefficient. Given

this set of quantum numbers, the QQ component of the
wave function can be factorized as

ψQQðrÞ ¼ uðQQÞ
E;l

QQ
ðrÞ½Yl

QQ
ðr̂Þξs

QQ
�mJ
J ð62Þ

where uðQQÞ
E;l

QQ
ðrÞ is the QQ radial wave function.

The same can be done for the meson-meson components
of the wave function, considering the meson-meson relative
orbital angular momentum lM1M2

and the sum of their spins
sM1M2

. Therefore, with a straightforward extension of the
above notation we write

ψM1M2
ðrÞ ¼ uðM1M2Þ

E;lM1M2

ðrÞ½YlM1M2

ðr̂ÞξsM1M2

�mJ
J : ð63Þ

Note that for the spectroscopic state to have a definite value
of J, the QQ and all the meson-meson components must
have the same total angular momentum, hence the unified
notation for J.
A bound state made of QQ and meson-meson has

definite parity and C-parity only if all the wave function
components have the same parity under these transforma-
tions. This requirement translates into different conditions
depending on whether the wave function component is
associated with QQ or meson-meson. For the QQ compo-
nent, P and C quantum numbers are given by

P ¼ ð−1ÞlQQ
þ1 and C ¼ ð−1ÞlQQ

þs
QQ : ð64Þ

On the other hand, for each meson-meson component one
has

P ¼ PM1
PM2

ð−1ÞlM1M2 ð65Þ

where PM is the parity of the meson. As for C-parity, one
has to consider two distinct cases: ifM1 ¼ M2 the C-parity
of the meson-meson component is given by

C ¼ ð−1ÞlM1M2
þsM1M2 ; ð66Þ

if otherwise M1 ≠ M2 one can build both positive and
negative C-parity states

CjM1M2i� ¼ �jM1M2i� ð67Þ

FIG. 2. Static energies. Dashed line: cc̄ (Cornell) potential (6)
with σ ¼ 925.6 MeV=fm, χ ¼ 102.6 MeV fm, β ¼ 855MeV
and mc ¼ 1840MeV. Dotted lines: meson-meson thresholds
ðDD;DD�; DsDsÞ . Dash-dotted lines: r- dependent eigenvalues
of the diabatic potential matrix. For the sake of simplicity we have
assumed the same mixing potential parameters for all the meson-
meson components: Δcc̄ ¼ 130MeV and ρcc̄ ¼ 0.3 fm.
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taking the linear combinations

jM1M2i� ≡ 1ffiffiffi
2

p ðjM1M̄2i0 � CM1M2
jM2M1i0Þ ð68Þ

with jM1M2i0 being the isospin singlet state obtained from
the combination of the M1 and M2 isomultiplets and

CM1M2
≡ ð−1ÞlM1M2

þsM1M2
þlM1

þlM2
þsM1

þsM2
þjM1

þjM2 ð69Þ

where lM is the internal orbital angular momentum of the
meson, sM its internal spin and jM its total spin. The
derivation of Eqs. (68) and (69) is detailed in Appendix B.

F. Bound state solutions

Given a spherically-symmetric and spin-independent
diabatic potential matrix, each QQ configuration with a
distinct value of ðlQQ; sQQÞ can be treated as a channel
per se, and the same can be said for each meson-meson
configuration with a distinct value of ðlM1M2

; sM1M2
Þ. Then

finding the spectrum of a given JPC family boils down to
solving a multichannel, spherical Schrödinger equation
involving only those channels with the corresponding
JPC quantum numbers.
One should realize though that a complete numerical

nonperturbative solution of the spectroscopic equations (28)
is only possible for energies below the lowest JPC thresh-
old. Above it the asymptotic behavior of its meson-meson
component as a free wave, against the confined QQ wave,
prevents obtaining a physical solution. Nonetheless, an
approximate physical solution for energies above threshold
is still possible, under the assumption that the effect of an
open threshold on the above-lying bound states can be
treated perturbatively. More in detail, we proceed in the
following way:

(i) We build the effective JPC diabatic potential matrix
out of the Cornell QQ potential, the threshold
masses, and the QQ—meson-meson mixing po-
tentials.

(ii) We solve the spectroscopic equations for energies up
to the lowest JPC threshold mass, and we analyze the
ðn2Sþ1LJÞ QQ and meson-meson content of the
bound states.

(iii) We build a new JPC diabatic potential matrix
neglecting the QQ coupling to the lowest (first)
threshold. We solve it for energies in between the
lowest and the second thresholds and discard as
spurious any solution containing a ðn2Sþ1LJÞ QQ
state entering in the bound states calculated in (ii).
The rationale underlying this step is that a given
spectral state in between the lowest and the second
thresholds containing such a ðn2Sþ1LJÞ QQ com-
ponent would become, when the lowest threshold

were incorporated, the bound state below threshold
containing it found in (ii).

(iv) We build a new JPC diabatic potential matrix by
neglecting the coupling to the lowest threshold and
to the second one. We solve it for energies in
between the second and the third thresholds and
discard as spurious any solution containing a
ðn2Sþ1LJÞ QQ state entering in the bound states
calculated in (ii) and (iii), and so on.

(v) We assume that corrections to the physical states
thus obtained due to the coupling with open thresh-
olds can be implemented perturbatively.

The formulation of an appropriate perturbative scheme
for the calculation of these corrections, giving rise to mass
shifts as well as to decay widths to open flavor meson-
meson states, will be the subject of a forthcoming paper. On
the other hand there are certainly more corrections to the
spectrum that are not included in our treatment, in par-
ticular those due to spin interactions. Regarding the QQ
component, these effects can be incorporated by adding
spin-dependent operators (e.g., spin-spin, spin-orbit, ten-
sor) to the Cornell potential, what has proven to be very
effective for a detailed description of the low-lying spectral
states [5]. As for meson-meson components, the part of
these corrections involving quark and antiquark within the
same heavy-light meson are included through the meson
masses, whereas the remaining ones can be implemented
through the one pion exchange interaction between
mesons.
Assuming that these additional energy contributions

(fine and hyperfine splittings, one pion exchange correc-
tions, mass shifts from coupling to open thresholds) can be
taken into account using perturbation theory, we shall
concentrate henceforth on the calculation of the “unper-
turbed” heavy-quark meson spectrum. The technical pro-
cedure followed to solve the spectroscopic equations is
detailed in Appendixes C and D.

V. CHARMONIUMLIKE MESONS

The formalism we have developed in the previous
sections can be tested in charmoniumlike mesons (heavy
mesons containing cc̄) where, unlike in the bottomonium-
like case, there are several well-established experimental
candidates for unconventional isoscalar states, presumably
containing significant meson-meson components. In par-
ticular, we center on isoscalar states with masses up to
about 4.1 GeV, for which the relevant thresholds have very
small widths and do not overlap. A list of these thresholds
is shown in Table I.
The possible values of the meson-meson relative orbital

angular momentum contributing to any given set of
quantum numbers JPC are shown in Table II. Note that
we use the common notation DðsÞ to refer to charmed as
well as to charmed strange mesons and the shorthand
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notation DðsÞD�
ðsÞ for the meson-meson C-parity eigenstate

defined by Eq. (68).
In order to calculate the heavy-quark meson bound states

we have to fix the values of the parameters. For the Cornell
potential (6) we use the standard values [22]

σ ¼ 925.6 MeV=fm; ð70aÞ

χ ¼ 102.6 MeV fm; ð70bÞ

mc ¼ 1840 MeV ð70cÞ

and we choose

β ¼ 855 MeV ð70dÞ

in order to fit the 2s center of gravity. Let us note that one
could alternatively choose to fit the 1s or 1p centers of
gravity, or to get a reasonable fit to the three of them. Our
choice is based on the assumption that relativistic mass
effects in the higher states, which are at least in part
incorporated in β, are expected to deviate less from those in
the 2s states.
We should also mention that the value of the charm quark

mass we use is completely consistent with the one needed
to correctly describe cc̄ electromagnetic decays within the
Cornell potential model framework [23].
The low-lying spectrum from this Cornell potential for

Jþþ and 1−− isoscalar states is shown in Table III.
For the lowest Jþþ states it is worth to remark, apart

from the good average mass description, the excellent fit to

the mass of the lowest 1þþ state, χc1ð1pÞ (3510.9 MeV
versus the experimental mass 3510.7 MeV). However, an
accurate fit of the lowest ð0; 2Þþþ masses, in particular for
χc0ð1pÞ, would require the incorporation of correction
terms (e.g., spin-spin, spin-orbit, tensor) to the Cornell
radial potential. As for the first excited Jþþ states one could
expect a similar situation (the 2s states lie in between the
1p and 2p ones) in the absence of threshold effects that we
analyze in what follows.
As for the parameters of the mixing potential (48), we

have to rely on phenomenology since the only lattice
information available is for bb̄. We fix them by requiring
that our diabatic treatment fits the mass of some unconven-
tional experimental state lying close below threshold. In
particular, we can use the mass of χc1ð3872Þ, a well-
established experimental resonance lying just below the
DD� threshold, to infer the possible of values for Δcc̄
and ρcc̄.
As the crossing of the Cornell potential with the DD�

threshold takes place around rDD�
c ¼ 1.76 fm, we con-

servatively vary ρcc̄ from 0.1 fm to 0.8 fm, this last value

corresponding to almost half of rDD�
c . Then, for every value

of ρcc̄ we get the minimal value of Δcc̄ to accurately fit
the mass of χc1ð3872Þ. The calculated values are listed in
Table IV.

TABLE I. Low-lying open charm meson-meson thresholds
M1M2. Threshold masses TM1M2

from the charmed and charmed
strange meson masses quoted in [2].

M1M2 TM1M2
(MeV)

DD̄ 3730
DD�ð2007Þ 3872
Dþ

s D−
s 3937

D�ð2007ÞD�ð2007Þ 4014
Dþ

s D�−
s 4080

TABLE II. Values of lM1M2
corresponding to meson-meson

configurations with definite values of JPC. A missing entry means
that the particular meson-meson configuration cannot form a state
with the corresponding quantum numbers.

JPC lDðsÞDðsÞ
lDðsÞD

�
ðsÞ

lD�
ðsÞD

�
ðsÞ

0þþ 0 0, 2
1þþ 0,2 2
2þþ 2 2 0,2
1−− 1 1 1,3

TABLE III. Calculated Jþþ and 1−− charmonium masses,Mcc̄,
for spectroscopic nl states from the Cornell potential (6) with
parameters (70). Experimental mass centroids from [2], MExpt

cog ,
are listed for comparison.

JPC nl Mcc̄ (MeV) MExpt
cog (MeV)

1−− 1s 3082.5 3068.65� 0.13
2s 3673.2 3674.0� 0.3
1d 3795.8
3s 4097.0

ð0; 1; 2Þþþ 1p 3510.9 3525.30� 0.11
2p 3953.7

TABLE IV. Correlated values of the mixing potential param-
eters giving rise to a 0þð1þþÞ bound state with a mass close
below the DD� threshold.

ρcc̄ (fm) Δcc̄ (MeV)

0.1 290
0.2 165
0.3 130
0.4 115
0.5 108
0.6 104
0.7 102
0.8 101
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It should be pointed out that large values of Δcc̄
would deform the shape of the avoided energy crossings
as compared to the one calculated in lattice for bb̄,
against our bb̄ − cc̄ universality arguments for the
shape of the mixing potential. On the other hand, large
values of ρcc̄ would make the mixing angle between the cc̄
and a single M1M2 threshold, calculated from Eq. (55), to
have an asymptotic behavior in conflict with the one
observed in the lattice under the natural assumption that
this behavior is similar for bb̄ and cc̄. More precisely,
unquenched lattice QCD calculations of the mixing
angle [17] show that θ approaches π=2 quite rapidly for

r > rM1M2
c , thus ruling out a large radial scale for the

mixing. Henceforth we use

ρcc̄ ¼ 0.3 fm ð71aÞ

for this value gives the most accurate asymptotic behavior
of the mixing angle, see Fig. 3, and consequently

Δcc̄ ¼ 130 MeV: ð71bÞ

The resulting mixing potential is drawn in Fig. 4 for
M1M2 ¼ DD�. For any other threshold the only difference
comes from the substitution of the threshold mass.
Notice that we have drawn jVmixðrÞj with no sign

prescription for VmixðrÞ. This sign can be reabsorbed as
a relative phase between the charmonium and meson-
meson components. For the calculations in this paper a
positive sign has been taken. We have checked that for the
observables considered in this article the same results are
obtained with a negative sign. It should be realized though
that this could not be the case for other observables.
The calculated spectrum of Jþþ states, containing one cc̄

state with lcc̄ ¼ 1 (1p or 2p), is shown in Table V.

It is illustrative to compare these results with the cc̄
masses in Table III obtained with the Cornell potential. A
glance at these tables makes clear that the presence of the
thresholds gives rise to attraction in the sense that the
resulting masses are reduced with respect the correspond-
ing Cornell cc̄ masses. For the lowest-lying 0þðJþþÞ states
(J ¼ 0, 1, 2) there is a very small mass difference indicating
an almost negligible attraction for these states. This is
understood for the thresholds are far above in energy
(≥200 MeV) so that no significant mixing occurs (less
than 1% meson-meson probability).
The situation is completely altered for the first

excited 0þðJþþÞ states. Thus, the fitting of the first excited
1þþ resonance, χc1ð3872Þ with a measured mass of
3871.69� 0.17 MeV, requiring a mass reduction of
81 MeV with respect to the Cornell cc̄ mass, implies a
very strong mixing, 99% of DD� component, whereas for
the 0þþ and 2þþ states the predicted mixing is about 40%
(mainly from DsD̄s) and 15% (shared by DsDs and D�D̄�)
respectively, with corresponding mass reductions of
33 MeV and 20 MeV.
It is amazing that these ð0; 2Þþþ mass predictions are in

complete agreement with data regarding their positions
with respect to the DsDs threshold, both below it.

FIG. 3. Mixing angle between cc̄ and DD� with Δcc̄ ¼
130 MeV, ρcc̄ ¼ 0.3 fm and Cornell potential parameters (70).

FIG. 4. Mixing potential for cc̄ and DD� with Δcc̄ ¼ 130 MeV
and ρcc̄ ¼ 0.3 fm.

TABLE V. Calculated masses, cc̄ and meson-meson probabil-
ities for Jþþ charmoniumlike states. A missing entry means that
the corresponding component gives negligible (i.e., inferior to
1%) or no contribution to the state.

JPC Mass (MeV) cc̄ DD̄ DD� DsDs D�D̄� DsD̄�
s

1þþ 3510.0 100%
3871.7 1% 99%

0þþ 3509.1 100%
3920.4 59% 37% 4%

2þþ 3509.6 100%
3933.5 86% 7% 7%
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Moreover, their calculated numerical values are pretty close
to the measured ones. So, the calculated 2þþ mass,
3933.5 MeV, is very close to that of the experimental
resonance χc2ð3930Þ: 3927.2� 2.6 MeV. And the 0þþ

calculated mass, 3920.4 MeV, is consistent with the ones
of the experimental candidates: χc0ð3860Þ, with a measured
mass of 3862þ26þ40

−32−13 MeV, and Xð3915Þ with a measured
mass of 3918.4� 1.9 MeV, although in this last case the
assignment to a 2þþ state cannot be completely ruled out,
see [2] and references therein. This suggests that further
mass corrections for these sates as the ones due to spin-
dependent terms in the cc̄ potential, or to one pion
exchange in the meson-meson potential, or those taking
into account the effect of the lower threshold DD, or the
deviations from the assumption of the same values of the
mixing potential parameters for all the thresholds, are either
small and might be implemented perturbatively, or have
been partially taken into account through the effectiveness
of the parameters of the mixing potential.
It should also be emphasized that our nonperturbative

formalism provides us with the meson wave functions in
terms of their cc̄ and meson-meson components.
For χc1ð3872Þ the radial cc̄ and DD� (lDD� ¼ 0, 2) wave

function components are plotted in Fig. 5.
A look at this figure makes clear the prevalence of the

DD� channel with lDD� ¼ 0 for distances beyond 2 fm. As
the estimated Cornell rms radius for D is about 0.54 fm we
may conclude that χc1ð3872Þ, with a calculated rms radius
of 26.17 fm is at large distances a loose hadromolecular
state. At short distances, though, the ð23p1Þ cc̄ component,
with a rms radius of 1.01 fm plays a role at least as
prominent as the DD� one, see Fig. 5. These features are
quite in line with the indications from phenomenology
requiring a cc̄ component to give proper account of short
distance properties.

For the calculated 0þþ state the radial wave function is
drawn in Fig. 6.
As can be checked, the wave function with a rms radius

of 1.26 fm is made mainly of cc̄ and DsDs with a 59% and
37% probability respectively. This indicates a dominant
DD strong decay mode from cc̄ as it is experimentally the
case for χc0ð3860Þ. On the other hand, a J=ψω decay mode
may get a significant contribution from DsDs since it is
OZI allowed through the small ss̄ content of ω. This could
cause this mode to be also a dominant one as it is
experimentally the case for Xð3915Þ. Hence, it could be
that χc0ð3860Þ and Xð3915Þ are just the same resonance
observed through two different decay modes.
As for the calculated 2þþ state, the wave function, with a

rms radius of 1.06 fm, is plotted in Fig. 7. It is mostly that of
the cc̄ component. This is in accord with a very dominant

FIG. 5. Radial wave function of the calculated 0þð1þþÞ state
with a mass of 3871.7 MeV. cc̄ð23p1Þ, DD�ðlDD� ¼ 0Þ and
DD�ðlDD� ¼ 2Þ components are drawn with a solid, dashed and
dotted line respectively.

FIG. 6. Radial wave function of the calculated 0þð0þþÞ state
with a mass of 3920.4 MeV. cc̄ð23p0Þ, DsDsðlDsDs

¼ 0Þ,
D�D�ðlD�D� ¼ 0Þ and D�D�ðlD�D� ¼ 2Þ components are drawn
with a solid, dashed, dotted and dash-dotted line respectively.

FIG. 7. Radial wave function of the calculated 0þð2þþÞ state
with a mass of 3933.5 MeV. cc̄ð23p2Þ, DsDsðlDsDs

¼ 2Þ,
D�D�ðlD�D� ¼ 0Þ and D�D�ðlD�D� ¼ 2Þ components are drawn
with a solid, dashed, dotted and dash-dotted line respectively.
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DD strong decay mode as it is experimentally the case
for χc2ð3930Þ.
Certainly these qualitative arguments on the dominant

strong decay modes should be supported by trustable and
predictive quantitative calculations. As mentioned before,
the development of a consistent formalism for the calcu-
lation of the decay widths to open flavor meson-meson
states, which is out of the scope of this article, is in
progress. One should keep in mind though that the dearth of
current detailed quantitative decay data for comparison will
be a serious drawback to test it. We strongly encourage
experimental efforts along this line.
Regarding electromagnetic radiative transitions,

although important progress for the accurate calculation
of decays from the cc̄ component has been reported [23], a
reliable and consistent calculation incorporating the meson-
meson contribution as well is lacking. We encourage a
theoretical effort along this line.
One can do better, as we show next, for leptonic decays

from the low-lying 1−− states since the decay widths
depend on the wave function at the origin and the con-
tribution from meson-meson components is suppressed as
they are not in s-wave, see Table II.
The calculated 1−− spectrum of states is listed in

Table VI.
Again, a comparison with the cc̄ masses in Table III

makes clear that the presence of the thresholds gives rise to
attraction. As it was the case for Jþþ, the lowest state, lying
far below the lowest threshold, has no mixing at all being
the 1s cc̄ state. A pretty small mixing is present for the next
two higher states that can be mostly assigned to the 2s
ð95%Þ and 1d ð97%Þ cc̄ states respectively. It is worth to
mention that for the 1d state with a Cornell cc̄ mass of
3795.8 MeV, the DD threshold lying 66 MeV below does
not produce enough attraction to bring the state below
threshold.
The first state with a significant mixing, 36% ofDsD�

s , is
predicted at 4071 MeV and contains a 60% of 3s cc̄ and a
4% of 2d cc̄ as well. Its wave function is drawn in Fig. 8.
In this case the vicinity of the DsD�

s threshold at
4080 MeV to the 3s cc̄ Cornell mass at 4097 MeV
produces sufficient attraction to bring the state below
threshold, in agreement with data under its assignment

to the ψð4040Þ resonance with a measured mass of
4039� 1 MeV. Furthermore the expected dominant decay
modes, (DD̄;DD̄�; DsD̄s; D�D̄�) from cc̄, andDsDsγ from
DsD�

s , are in perfect accord with the ones observed
from eþe− → hadrons.
As for the well-measured leptonic width

ðΓðψð4040Þ → eþe−ÞÞExpt ¼ 0.86� 0.07 KeV; ð72Þ

we can trustfully predict the ratios

ΓTheor
ψð4040Þ→eþe−

ΓTheor
ψð1sÞ→eþe−

¼ jRψð4040Þð0Þj2
jRψð1sÞð0Þj2

M2
ψð1sÞ

M2
ψð4040Þ

≈ 0.18 ð73aÞ

and

ΓTheor
ψð4040Þ→eþe−

ΓTheor
ψð2sÞ→eþe−

¼ jRψð4040Þð0Þj2
jRψð2sÞð0Þj2

M2
ψð2sÞ

M2
ψð4040Þ

≈ 0.43 ð73bÞ

to be compared to

ΓExpt
ψð4040Þ→eþe−

ΓExpt
ψð1sÞ→eþe−

¼ 0.15� 0.03 ð74aÞ

and

ΓExpt
ψð4040Þ→eþe−

ΓExpt
ψð2sÞ→eþe−

¼ 0.37� 0.07: ð74bÞ

Hence, our results agree with data within the experi-
mental intervals. The reason for this agreement has to
do with the reduced probability of the 3s cc̄ component,
60%, induced by the mixing with the DsD�

s threshold.

TABLE VI. Calculated masses, cc̄ and meson-meson proba-
bilities for 1−− charmoniumlike states. A missing entry means
that the corresponding component gives negligible (i.e., inferior
to 1%) or no contribution to the state.

JPC Mass (MeV) cc̄ DD̄ DD� DsDs D�D̄� DsD̄�
s

1−− 3082.4 100%
3664.2 95% 4% 1%
3790.2 97% 2% 1%
4071.0 64% 36%

FIG. 8. Radial wave function of the calculated 0−ð1−−Þ
state with a mass of 4071 MeV. cc̄ð33s1Þ, cc̄ð23d1Þ and
DsD̄�

sðlDsD̄�
s
¼ 1Þ components are drawn with a solid, dashed

and dotted line respectively.
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This mixing is also responsible for the 4% of 2d cc̄
component. This small (big) 2d (3s) probability could
be increased (decreased) if a tensor interaction were
incorporated as a correction term to the Cornell potential.
Maybe the bias we observe in our results, both agreeing
with the maximum allowed experimental values, is an
indication in this sense. In any case a modest additional
probability reduction of the 3s cc̄ component should be
expected.
It is worth to mention that the explanation of the leptonic

width for ψð4040Þ has been linked in the literature to that of
ψð4160Þ through a very significant s-d mixing [24]. Our
results do not support this idea. Instead the DsD̄�

s − cc̄ð3sÞ
mixing appears to be the main physical mechanism under-
lying the ψð4040Þ decay to eþe−.
Unfortunately, at the current stage of our diabatic devel-

opment we cannot properly evaluate ψð4160Þ, the main
reason being that the dominant Cornell 2d cc̄ state lies only
100MeV below the first s-wave 1−− threshold,DD1, which
is composed of two overlapping thresholds,DD1ð2420Þ and
DD1ð2430Þ, the last one with a large width. Quite presum-
ably this double threshold gives a significant contribution by
itself to the leptonic width of ψð4160Þ.
This current limitation applies as well to the description

of unconventional states with masses above 4.1 GeV such
as ψð4260Þ lying close below theDD1 double threshold, or
ψð4360Þ and ψð4415Þ lying close below a multiple thresh-
old at 4429 MeV. The same limitation applies for Jþþ
states. Work along this line is in progress.

VI. SUMMARY AND CONCLUSIONS

A general formalism for a unified description of conven-
tional and unconventional heavy-quark meson states has
been developed and successfully applied to isoscalar Jþþ
and 1−− charmoniumlike states with masses below 4.1 GeV.
The formalism adapts the diabatic approach, widely used

in molecular physics to tackle the configuration mixing
problem, to the study of heavy-quark meson states involv-
ing quark-antiquark as well as meson-meson components.
A great advantage of using this approach, against the Born-
Oppenheimer (B-O) approximation commonly used for
heavy-quark mesons, is that the bound states are expanded
in terms ofQQ and meson-meson configurations instead of
the mixed configurations that correspond to the ground and
excited states of the light fields. Then instead of being
forced to use a single channel approximation to solve the
bound state problem as in B-O, what in practice is
equivalent to neglect the configuration mixing, one can
write a treatable multichannel Schrödinger equation where
the interaction between configurations is incorporated
through a diabatic potential matrix. Moreover, the diagonal
and off-diagonal elements of this potential matrix can be
directly related to the static energies obtained from ab initio
quenched (only QQ or meson-meson configuration) and

unquenched (QQ and meson-meson configurations) lattice
calculations. This connection defines the diabatic approach
in QCD.
It is worth to emphasize that this approach goes also

beyond the incorporation of hadron loop corrections to the
B-O scheme that have been used sometimes in the literature
to deal with unconventional charmoniumlike mesons.
Indeed, the diabatic bound state wave functions, given in
terms of quark-antiquark and meson-meson components,
allow for a complete nonperturbative evaluation of observ-
able properties.
This theoretical framework has been tested in the

charmoniumlike meson sector where there is compelling
evidence of the existence of mixed-configuration states, in
particular the very well-established 0þð1þþÞ resonance
χc1ð3872Þ that we use to fix our parametrization of the
mixing potential.
Although a complete (at all energies) spectral description

would require additional theoretical refinements, as for
example the incorporation of threshold widths, the results
obtained for states with mass below 4.1 GeV, for which the
significant thresholds are very narrow, are encouraging. All
the mass values are well reproduced and their locations
with respect to the thresholds correctly predicted making
clear the cc̄ − threshold attraction. This points out to the
diabatic approach as an appropriate framework for a unified
and complete nonperturbative description of heavy-quark
meson states.
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APPENDIX A: ADIABATIC-TO-DIABATIC
TRANSFORMATION

As the light field eigenstates jζiðrÞi form a complete
orthonormal set whatever the value of r, we can express (we
use hereby Einstein notation so that a sum over repeated
indices is understood)

jζjðr0Þi ¼ jζiðrÞiAijðr; r0Þ ðA1Þ

where Aijðr; r0Þ is a change of basis unitary matrix defined
formally by

Aijðr; r0Þ≡ hζiðrÞjζjðr0Þi: ðA2Þ

This matrix, which is a function of the coordinate r and
depends parametrically on the fixed point r0, is referred to
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in this context as the adiabatic-to-diabatic transformation
matrix (ADT matrix). Let us examine the conditions to be
satisfied by the ADT matrix for the adiabatic and diabatic
expansions to be equivalent [19].
Let us begin by inserting (A1) in the diabatic expansion

(20) and comparing with (8). We thus see that the ADT
matrix transforms the diabatic wave function in the
adiabatic one:

ψ iðrÞ ¼ Aijðr; r0Þψ̃ jðr; r0Þ: ðA3Þ

If we now plug (A3) into Eq. (17) and multiply on the left
by A† we obtain

�
−

ℏ2

2μQQ̄
A†
ikðð∇þ τÞ2ÞklAlj þ ðA†

ikVkAkj − δijEÞ
�
ψ̃ j ¼ 0;

ðA4Þ

where we have momentarily dropped the arguments r and
r0 to simplify the notation. Using

ðð∇þ τÞ2ÞklAljψ̃ j ¼ ðδkm∇þ τkmÞ · ðδml∇þ τmlÞAljψ̃ j

¼ ðδkm∇þ τkmÞ · ðAmj∇þ ð∇AÞmj þ τmlAljÞψ̃ j

¼ ½Akj∇2 þ 2ð∇AÞkj ·∇þ ð∇2AÞkj þ ð∇ · τÞklAlj þ 2τkl · ð∇AÞlj þ 2τkl · Alj∇þ ðτ2ÞklAlj�ψ̃ j

¼ ½Akj∇2 þ ðð∇AÞkj þ τklAljÞ ·∇þ ðδkl∇þ τklÞ · ðð∇AÞlj þ τlmAmjÞ�ψ̃ j; ðA5Þ

we can expand the kinetic term as

A†
ikðð∇þ τÞ2ÞklAlj ¼ δij∇2 þ A†

ikðð∇AÞkj þ τklAljÞ ·∇þ ðA†
il∇þ A†

ikτklÞ · ðð∇AÞlj þ τlmAmjÞ: ðA6Þ

Therefore, as in the diabatic representation the kinetic term
is diagonal, the ADT matrix must satisfy the first order
differential equation

∇Aijðr; r0Þ þ τikðrÞAkjðr; r0Þ ¼ 0; ðA7Þ

where we have restored the arguments r and r0.
Equation (A7), together with the boundary condition

Aijðr0; r0Þ ¼ δij, determines uniquely the ADT matrix for
every point in configuration space, if the NACTs are well
behaved. If otherwise the NACTs present singularities, the
ADT matrix may be multivalued [19]. We will not examine
this latter possibility here.
Substituting (A6)–(A7), Eq. (A4) becomes

�
−

ℏ2

2μQQ̄
δij∇2 þ ðA†

ikðr; r0ÞVkðrÞAkjðr; r0Þ − δijEÞ
�

× ψ̃ jðr; r0Þ ¼ 0; ðA8Þ

which can be recognized as the diabatic Schrödinger
equation (22) by requiring

A†
ikðr; r0ÞVkðrÞAkjðr; r0Þ ¼ Vijðr; r0Þ: ðA9Þ

This requirement tells us that the ADT matrix diagonalizes
the diabatic potential matrix, and that the eigenvalues of the
diabatic potential matrix are then the unquenched static
energies ViðrÞ.

It is thus proved that the diabatic and adiabatic expan-
sions are completely equivalent, so that the NACTs
together with the unquenched static energies carry the
same amount of physical information as the diabatic
potential matrix.

APPENDIX B: C-PARITY OF MESON-MESON
STATES

Although heavy-light mesons do not have definite
C-parity nor G-parity, meson-meson configurations with
I ¼ 0 can be rearranged in combinations with definite
C-parity. To build these combinations let us start by
observing the action of C-parity on some heavy-light
meson state M made of a light quark q and a heavy
antiquark Q:

CjMi ¼ ð−1ÞlMþsM jMi ðB1Þ

where lM and sM, the internal orbital angular momentum
and internal spin of the meson, are given in terms of the qQ
relative orbital angular momentum and total spin respec-
tively. Next we consider the action of C-parity on the
isospin singlet state formed by a qQ meson M1 and a QQ
meson M2

CjM1M2i0 ¼ ð−1ÞlM1
þsM2

þlM2
þsM2 jM1M2i0: ðB2Þ

We now exchange the positions and spin labels of the
mesons in jM1M2i0, thus obtaining an additional sign:
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jM1M2i0 ¼ ð−1ÞlM1M2
þsM1M2

þjM1
þjM2 jM2M1i0 ðB3Þ

where jM is the total spin of the meson given by the sum of
the meson internal orbital angular momentum and spin.

Note that the factor ð−1ÞlM1M2 comes from the exchange of
the positions and the factor ð−1ÞsM1M2

þjM1
þjM2 comes from

the exchange of the spin labels. Then substituting (B3) in
(B2) we obtain

CjM1M2i0 ¼ CM1M̄2
jM2M1i0 ðB4Þ

where

CM1M2
≡ ð−1ÞlM1M2

þsM1M2
þlM1

þlM2
þsM1

þsM2
þjM1

þjM2 : ðB5Þ

From Eq. (B4) it is then straightforward to prove that the
states

jM1M2i� ≡ 1ffiffiffi
2

p ðjM1M̄2i0 � CM1M2
jM2M1i0Þ ðB6Þ

have definite C-parity:

CjM1M2i� ¼ 1ffiffiffi
2

p ðCjM1M2i0 � CM1M̄2
CjM2M1i0Þ

¼ 1ffiffiffi
2

p ðCM1M̄2
jM2M1i0 � jM1M2i0Þ

¼ � 1ffiffiffi
2

p ðjM1M2i0 � CM1M̄2
jM2M1i0Þ

≡�jM1M2i�; ðB7Þ

where we have used the fact that C2M1M̄2
¼ ð�Þ2 ¼ 1.

APPENDIX C: VARIATIONAL METHOD

To solve the Schrödinger equation we use a variational
method, its essence being that given a Hamiltonian H
defined over a Hilbert space H, and defining the functional

F ½φ�≡ hφjHjφi
hφjφi ; ðC1Þ

where jφi ∈ Hnf0g is some non-null vector in the Hilbert
space, the eigenvectors ofH correspond to stationary points
of F , and the values of the functional on those stationary
points are the corresponding eigenvalues:

Hjψni ¼ Enjψni ⇔ δF ½ψn� ¼ 0 ∧ F ½ψn� ¼ En: ðC2Þ

To show this, we first reduce the variational problem of
finding the stationary points of F to an algebraic problem
by expanding the state jφi in terms of an orthonormal basis
of H

jφi ¼
X
i

φijeii; ðC3Þ

so that the functional F becomes an ordinary function of
the coordinates

F ½φ� → F ðφ1;φ2;…Þ ¼
P

j;kφ
�
jHjkφkP

jjφjj2
; ðC4Þ

where we have introduced the Hamiltonian matrix elements

Hij ≡ heijHjeji: ðC5Þ

Second, we determine which values of the coordinates φi
correspond to stationary points of F . With the functional
derivative becoming an ordinary one, the stationary points
are found as the solutions of

δF
δφ

→
∂F
∂φi

¼ 0: ðC6Þ

for every i. Using (C4) and expanding the derivatives we
obtain

2P
jjφjj2

�X
j

φ�
jHji − φ�

i

�P
j;kφ

�
jHjkφkP

jjφjj2
��

¼ 0 ðC7Þ

or equivalently

X
j

Hijφj ¼ F ðφ1;φ2;…Þφi: ðC8Þ

Equation (C8) is nothing but the characteristic equation for
H in the matrix representation provided by fjeiig.
Therefore it is proved that the states jφi corresponding
to stationary points of F are also eigenstates of H.
Moreover, Eq. (C8) shows that the value of the functional
F at the stationary point is precisely the corresponding
energy eigenvalue.
Technically speaking, the results presented here are

analytically valid only when using a complete, i.e., infinite,
orthonormal set. Since in realistic applications one employs
a limited set, the correspondence drawn here is only
approximate and so are the energies and eigenstates
obtained with the variational method.
A shortcoming of the variational method is that the

degree of approximation is not known a priori. To assure
this not to be any problem we choose an appropriate
orthonormal set of states reflecting some of the properties
of the physical states and employ a very high number of
states in the set.
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APPENDIX D: LAGUERRE ASSOCIATED
POLYNOMIALS

For the solution of the Schrödinger equation with a
spherical potential a natural (physical) choice for a basis
describing the radial wave function is the one of associated
Laguerre polynomials. These are explicitly defined by

Lk
nðxÞ ¼

Xn
i¼0

n!
i!

�
nþ k
n − i

�
ð−xÞi ðD1Þ

where ðkþn
n−iÞ is a binomial coefficient, and form an orthogo-

nal basis set of L2ð0;∞Þ with weighting function xke−x:

Z
∞

0

dx xke−xLk
nðxÞLk

mðxÞ ¼
ðnþ kÞ!

n!
δnm: ðD2Þ

More precisely, the solutions of the spherical Schrödinger
equation factorize in a spherical harmonic and a radial wave
function as

ψm
E;lðrÞ ¼ uE;lðrÞYm

l ðr̂Þ; ðD3Þ

where the radial wave function uE;lðrÞ has well-known
asymptotic behaviors. For bound states, these are

uE;lðrÞ ∼r→0

�
r
λE

�
l

and uE;lðrÞ ∼r→∞e−
r

2λE ðD4Þ

where λE is some length scale that may depend on the
bound state mass E. Knowing this we can write in general
the radial wave function as

uE;lðrÞ ¼ λ
−3
2

E

�
r
λE

�
l
UE;l

�
r
λE

�
e−

r
2λE ðD5Þ

where UE;lð r
λE
Þ must be some scalar function that does not

vanish for r → 0 and diverges at most as a power of r for
r → ∞. Then, normalization of the radial wave function

Z
∞

0

dr r2uE;lðrÞuE0;lðrÞ ¼ δEE0 ; ðD6Þ

reads

Z
∞

0

drffiffiffiffiffiffiffiffiffiffiffi
λEλE0

p r2lþ2

ðλEλE0 Þlþ1
e
−r

λEþλE0
2λEλE0

× UE;l

�
r
λE

�
UE0;l

�
r
λE0

�
¼ δEE0 : ðD7Þ

We can now compare this result with the one resulting from
(D2) when substituting x → r=λ, with λ being some
constant with dimensions of length. We obtain

Z
∞

0

dr
λ

�
r
λ

�
k
e−

r
λLk

n

�
r
λ

�
Lk
m

�
r
λ

�
¼ ðnþ kÞ!

n!
δnm; ðD8Þ

that corresponds to (D7) with 2lþ 2 ¼ k and λE ¼ λE0 ¼ λ
up to a normalization factor.
It is then quite clear that the most natural choice for a

basis is

emn;lðrÞ ¼ Nn;l

�
r
λ

�
l
L2lþ2
n

�
r
λ

�
e−

r
2λYm

l ðr̂Þ ðD9Þ

being Nn;l the normalization factor

Nn;l ≡
�
λ3

ðnþ 2lþ 2Þ!
n!

�
−1
2 ðD10Þ

such that the basis is orthonormal:

hemn;ljem
0

n0;l0 i ¼ δnn0δll0δmm0 : ðD11Þ

The basis defined by (D9)–(D10) is expected to provide
a reasonable description of the physical eigenstates as long
as the scale λ is roughly of the same order that the physical
scales λE involved and the number nmax of polynomials
used in the calculation is high enough.
Given that any numerical calculation of this kind is

performed on a discretized (rn − rn−1 ¼ δ) and limited
(rn ≤ rmax) radial configuration space, the hyperparameters
involved in this scheme are

(i) δ: the discretization step of r;
(ii) rmax: the maximum integration radius;
(iii) λ: the length scale in the associated Laguerre basis;
(iv) nmax: the number of associated Laguerre polyno-

mials used.
In this work we use δ ¼ 10−3 fm, rmax ¼ 150 fm, λ ¼
0.2 fm and nmax ¼ 150.
Note that when doing numerical calculations following

this procedure one should always check stability of the
results under changes of these hyperparameters, keeping in
mind that convergence with higher values of λ and nmax
demands bigger values for rmax, and that δ should always be
small enough in order to keep numerical integration errors
under control.
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