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The hadronic weak decays of Λc are studied in the framework of a constituent quark model. With the
combined analysis of the Cabbibo-favored processes, Λc → Λπþ, Σ0πþ, and Σþπ0, we confirm that the
nonfactorizable transition mechanisms play a crucial role in the understanding of their compatible
branching ratios. We emphasize that the SU(3) flavor symmetry breaking effects, which is generally at the
order of 1–2%, can be amplified by the destructive interferences among the pole terms in the diagrams with
internal conversion. Some contributions are sensitive to the spatial distribution of the scalar-isoscalar
light-quark sector in the Λc, and its overlap with the light quarks in the final state hyperon. Namely, a
compact diquark configuration is disfavored.
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I. INTRODUCTION

The hadronic weak decays of charmed baryons have
served as a probe for QCD factorization. However, for a
long time, due to the lack of precision measurements in
experiments, crucial questions on the decay mechanisms
have not been fully understood. In particular, it is not easy
to calculate the contributions from nonfactorizable had-
ronic effects and evaluate the role played by the color
suppressed processes. Early theoretical studies of these
processes based on different models can be found in the
literature, for instance, algebraic techniques [1–4] which
parametrized out typical amplitudes on the basis of sym-
metry considerations, and quark models [5–7] which
calculate certain processes using explicit constituent wave
functions. Interestingly, these prescriptions did not explic-
itly consider contributions from the color suppressed

transitions, which were generally believed to be small.
In recent years other methods were applied to the study of
the hadronic weak decays of charmed baryons, such as the
topological diagram approach [8], QCD sum rules [9], and
spin-angular momentum structure analysis [10]. In addi-
tion, the weak decays of heavy baryons have been analyzed
in the framework of SU(3) flavor symmetry [11–18].
Within this approach, one can relate all the relevant decay
channels together and provide an overall systematic
description of these processes. Predictions can then be
made for those channels which have not yet been measured.
Initiated by the recent experimental progress on the Λc
decay measurements, the current-algebra approach is also
used to revisit the Λc decay in the MIT bag model [19]. In
this approach, the implementation of flavor symmetry is
based on the assumption of factorization, while the effects
of nonfactorizable processes are absorbed into some
universal parameters. For the factorizable processes it is
then assumed that the perturbative QCD (pQCD) should be
the dominant dynamics.
Qualitatively, given that the mass of the charm quark is

about 1.5 GeV, it is not obvious that the decay of a charm
quark into three light quarks should be dominated by the
pQCD contributions, although the weak decay is generally
a short-distance process. The quarks emitted by the weak
decay carry rather low momenta, thus, their hadronization
should include significant effects from final-state interac-
tion. Namely, the color-suppressed transitions and pole
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terms both cannot be neglected if they are allowed by the
quantum numbers. With the availability of high-precision
measurements [20,21], these controversial questions can be
possibly addressed in an explicit quark model calculation.
This motivates us to reinvestigate the hadronic weak decays
of the charmed baryon Λc. Broader issues about the Λc
decays can be found in the recent literature. See, e.g.,
Refs. [22,23] and references therein.
As the first step for a systematic quark-model descrip-

tion, we study the two-body hadronic decays of Λc into Λπ
and Σπ which are the Cabbibo-favored processes. Our
calculation includes both the factorizable process of direct
pion emission and the processes that cannot be factorized.
The latter ones include the color-suppressed transitions and
pole contributions due to the flavor internal conversion. By
explicitly calculating these processes, we demonstrate that
their contributions cannot be neglected and their impact can
provide useful insights into the effective constituent quark
degrees of freedom in the quark model.
This paper is organized as follows. In Sec. II the

nonrelativistic quark model framework is presented. The
numerical results and discussions are given in Sec. III, and
a brief summary is given in Sec. IV. In the Appendix,

details are supplied for the quark wave functions and
transition amplitudes.

II. FRAMEWORK

In this paper we focus on the hadronic decays of
Λc → Λπþ, Σ0πþ, and Σþπ0, which are all Cabbibo-
favored processes. At leading order, there are two typical
processes contributing to the weak pionic decays. One is
the direct weak emission of a pion, and the other is the
quark internal conversion inside the baryons. For the
second type of processes, the pion is emitted by strong
interaction vertices. The transitions involve the elementary
weak transformations of c → s and d → u or c → sd̄u.
These transition processes are illustrated in Fig. 1, where
(a) is the direct pion emission (DPE) process, (b) is the
color suppressed (CS) pion emission, and (c)-(f) show the
quark internal conversion processes. For Figs. 1(c)–(f)
the main contributions to these internal conversion proc-
esses should be via the intermediate pole terms. For these
processes, the quantum numbers of intermediate baryon
could be 1=2þ for the parity-conserving (PC) process or
1=2− for the parity-violating (PV) one.

(a)

(c)

(e) (f)

(d)

(b)

FIG. 1. Illustrations for the two-body hadronic weak decays of Λc into Λπþ and Σ0πþ at the quark level. a.) Direct pion emission
(DPE) process, b.) Color suppressed (CS) pion emission, and (c)-(f) Quark internal conversion processes.
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Some qualitative features can be learned from these
transition processes. Figure 1(a) is a typical factorizable
process and calculable in pQCD. In contrast, all the other
diagrams are nonfactorizable and dominated by nonpertur-
bative mechanisms. If Fig. 1(a) were the dominant decay
mechanism for the Λc, the branching ratio for Λc → Λπþ
should be much larger than those for Λc → Σπ, as the ud
pair is spectator. However, the experimental branching ratios
forΛc → Λπþ andΣπ are very similar, with branching ratios
ð1.30� 0.07Þ% for Λc → Λπþ, ð1.20� 0.07Þ% for Λc →
Σ0πþ and ð1.25� 0.10Þ% for Λc → Σþπ0 [24]. This is a

strong evidence for the non-negligible contributions from
those nonfactorizable processes in Figs. 1(b)–(f). By explicit
calculations of these contributions in the quark model, it is
interesting to compare the relative strengths among these
amplitudes and learn about the roles played by the color
suppressed [Fig. 1(b)] and pole terms [Figs. 1(c)–(f)].

A. Convention

Before proceeding to the detailed calculations, we define
the convention for the quark and antiquark fields:

qðxÞ ¼
Z

dp

ð2πÞ3=2
�
m
p0

�
1=2X

s

½usðpÞbsðpÞeip·x þ vsðpÞd†sðpÞe−ip·x�;

q̄ðxÞ ¼
Z

dp

ð2πÞ3=2
�
m
p0

�
1=2X

s

½ūsðpÞb†sðpÞe−ip·x þ v̄sðpÞdsðpÞeip·x�: ð1Þ

The commutation and anticommutation relations of the creation and annihilation operators are given by:

fbsðpÞ; b†s0 ðp0Þg ¼ fdsðpÞ; d†s0 ðp0Þg ¼ δss0δ
3ðp − p0Þ: ð2Þ

The normalization of spinor is u†sðpÞus0 ðpÞ ¼ v†sðpÞvs0 ðpÞ ¼ ðp0=mÞδss0 . It should be noted that the spinor normalization must
match the convention of the quark (antiquark) field in order to keep the proper normalization of the quark (antiquark) field.
In this work the mesons and baryons are expressed with mock states [25], respectively,

jMðPcÞJ;Jzi ¼
X

Sz;Lz;ci

hL;Lz; S; SzjJ; Jzi
Z

dp1dp2δ3ðp1 þ p2 − PcÞΨN;L;Lz
ðp1; p2ÞχS;Szs1;s2

×
δc1c2ffiffiffi

3
p ϕi1;i2b

†
c1;i1;s1;p1

d†c2;i2;s2;p2 j0i;

jBðPcÞJ;Jzi ¼
X

Sz;Lz;ci

hL;Lz; S; SzjJ; Jzi
Z

dp1dp2dp3δ3ðp1 þ p2 þ p3 − PcÞΨN;L;Lz
ðp1; p2; p3ÞχS;Szs1;s2;s3

×
ϵc1c2c3ffiffiffi

6
p ϕi1;i2;i3b

†
c1;i1;s1;p1

b†c2;i2;s2;p2b
†
c3;i3;s3;p3

j0i; ð3Þ

where cj, sj, ij, (j ¼ 1; 2; 3) are color, spin, and flavor
indexes, respectively; ψN;L;Lz

is the spatial wave function
which is taken as an harmonic oscillator wave function; χS;Sz
is the spin wave function; ϕ is the flavor wave function, and
δc1c2=

ffiffiffi
3

p
and ϵc1c2c3=

ffiffiffi
6

p
are the color wave functions for the

meson and baryon, respectively. The detailed expressions of
these wave functions are given in Appendix B. The
normalization condition for the mock states are

hMðP0
cÞJ;Jz jMðPcÞJ;Jzi ¼ δ3ðP0

c − PcÞ;
hBðP0

cÞJ;Jz jBðPcÞJ;Jzi ¼ δ3ðP0
c − PcÞ: ð4Þ

In the above Eqs. (3)–(4), pi denotes the single quark
(antiquark) three-vector momentum, and Pc (P0

c) denotes
the hadron momentum.

Considering the two-body decay A → Bþ C, the S
matrix in our framework is given by:

S ¼ I − 2πiδ4ðPA − PB − PCÞM; ð5Þ
with

δ3ðPA − PB − PCÞM ≡ hBCjHIjAi: ð6Þ

Under this convention and by integrating over the phase
space, the decay width is finally written as:

ΓðA → Bþ CÞ ¼ 8π2
jkjEBEC

MA

1

2JA þ 1

X
spin

jMj2; ð7Þ

where k is the three-momentum of the final state meson
(e.g., the pion) in the initial state rest frame, EB and EC are
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the energies of the final-state particles B and C, respec-
tively, and JA is the spin of the initial state.

B. Nonrelativistic form of the effective Hamiltonian

In this work we adopt a nonrelativistic formalism. The
weak decay probes the short-range dynamics inside
hadrons, where a simple quark model is questionable.
But we believe that most features of the short-range
dynamics are parametrized and absorbed into the quark
wave functions. Also, the hadronization involves long-
distance dynamics, and it is consistently accounted for by
the overlap of the initial- and final-state wave functions.

1. Operators of the weak interaction

The effective weak Hamiltonian (i.e., the form of four-
fermion interactions) is generally written as [26–28]:

HW ¼ GFffiffiffi
2

p
Z

dx
1

2
fJ−;μðxÞ; Jþμ ðxÞg; ð8Þ

where

Jþ;μðxÞ ¼ ð ū c̄ Þγμð1 − γ5Þ
�

cos θC sin θC
− sin θC cos θC

��
d

s

�
;

J−;μðxÞ ¼ ð d̄ s̄ Þ
�
cos θC − sin θC
sin θC cos θC

�
γμð1 − γ5Þ

�
u

c

�
:

ð9Þ

According to its parity behavior under parity, HW can be
separated into a parity-conserving and a parity-violating
part,

HW ¼ HPC
W þHPV

W ;

where

HPC
W ¼ GFffiffiffi

2
p

Z
dx½j−μ ðxÞjþ;μðxÞ þ j−5;μðxÞjþ;μ

5 ðxÞ�;

HPV
W ¼ GFffiffiffi

2
p

Z
dx½j−μ ðxÞjþ;μ

5 ðxÞ þ j−5;μðxÞjþ;μðxÞ�: ð10Þ

This Hamiltonian contains the tree-level operators and
can be explicitly reduced into nonrelativistic forms for
the 2 → 2 internal conversion and 1 → 3 emission proc-
esses, respectively. For the Cabbibo-favored 2 → 2 quark
transition process, the relevant term is

HW;2→2 ¼
GFffiffiffi
2

p VudVcs
1

ð2πÞ3 δ
3ðp0i þ p0j − pi − pjÞūðp0iÞγμð1 − γ5ÞuðpiÞūðp0jÞγμð1 − γ5ÞuðpjÞ: ð11Þ

The creation and annihilation operators are omitted here and in the follow-up formulas. The nonrelativistic expansion gives:

HPC
W;2→2 ¼

GFffiffiffi
2

p VudVcs
1

ð2πÞ3
X
i≠j

α̂ð−Þi β̂ðþÞ
j δ3ðp0i þ p0j − pi − pjÞð1 − hsz;i0 jσijsz;iihsz;j0 jσjjsz;jiÞ;

HPV
W;2→2 ¼

GFffiffiffi
2

p VudVcs
1

ð2πÞ3
X
i≠j

α̂ð−Þi β̂ðþÞ
j δ3ðp0i þ p0j − pi − pjÞ

×
�
−ðhs0z;ijσijsz;ii − hs0z;ijσjjsz;jiÞ

��
pi
2mi

−
pj
2mj

�
þ
�

p0i
2m0

i
−

p0j
2m0

j

��

þ iðhs0z;ijσijsz;ii × hs0z;ijσjjsz;jiÞ
��

pi
2mi

−
pj
2mj

�
−
�

p0i
2m0

i
−

p0j
2m0

j

���
; ð12Þ

where si and mi the spin and mass of the ith quark,

respectively; the subscripts i and j (i, j ¼ 1, 2, 3 and i ≠ j)

indicate the quarks experiencing the weak interaction;

α̂i and β̂j are the flavor-changing operators, namely,

α̂ð−Þi cj¼δijsi, β̂
ðþÞ
j di ¼ δijui; Vud and Vcs are the Cabbibo-

Kobayashi-Maskawa (CKM) matrix elements.
The 1 → 3 transition operator can contribute to the

direct pion emission and color suppressed processes.

FIG. 2. The quark level diagram for the color suppressed
transition process with quark labels.
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Figure 2 illustrates the decay process of the CS at the
quark level. In contrast, as for the DPE process, the light
quarks 4 and 5 form the pion and the other final quarks
form the baryon of the final states. Apart from the color
factor, the different arrangements of quarks in the CS and

DPE processes make a difference between these two
processes. The calculation details will be given in next
subsection. Here, we concentrate on the transition oper-
ator for Fig. 2 which can be obtained with the explicit
quark labels:

HW;1→3 ¼
GFffiffiffi
2

p VudVcs
β

ð2πÞ3 δ
3ðp3 − p03 − p5 − p4Þūðp03; m0

3Þγμð1 − γ5Þuðp3; m3Þūðp5; m5Þγμð1 − γ5Þvðp4; m4Þ

¼ HPC
W;1→3 þHPV

W;1→3; ð13Þ

where β is a symmetry factor. It takes a value of 3 in the DPE process and 2 in the CS process. The parity-conserving and the
parity-violating parts are respectively written as

HPC
W;1→3 ¼

GFffiffiffi
2

p VudVcs
β

ð2πÞ3 δ
3ðp3 − p30 − p4 − p5Þ

�
hs03jIjs3ihs5s̄4jσj0i

�
p5
2m5

þ p4
2m4

�

−
��

p03
2m3

0 þ
p3
2m3

�
hs03jIjs3i − ihs03jσjs3i ×

�
p3
2m3

−
p03
2m0

3

��
hs5s̄4jσj0i

− hs03jσjs3i
��

p5
2m5

þ p4
2m4

�
hs5s̄4jIj0i − ihs5s̄4jσj0i ×

�
p4
2m4

−
p5
2m5

��

þ hs03jσjs3i
�

p03
2m0

3

þ p3
2m3

�
hs5s̄4jIj0i

�
α̂ð−Þ3 Î0π;

HPV
W;1→3 ¼

GFffiffiffi
2

p VudVcs
β

ð2πÞ3 δ
3ðp3 − p03 − p4 − p5Þð−hs03jIjs3ihs5s̄4jIj0i þ hs03jσjs3ihs5s̄4jσj0iÞα̂ð−Þ3 Î0π; ð14Þ

where s̄4 stands for the spin of particle 4 which is an antiquark. In order to evaluate the spin matrix element including
an antiquark the particle-hole conjugation [29] should be employed. With the particle-hole conjugation relation
jj;−mi → ð−1Þjþmjj; mi, the antiquark spin transforms as follows: h↑̄j → j↓i and h↓̄j → −j↑i. I is the dimension-two
unit matrix; α̂ð−Þ is the flavor operator which transforms c quark to s and Î0π is the isospin operator for the pion production
process. It has the form of

(a)

(c) (d)

(b)

FIG. 3. The internal flavor conversion processes. The solid circle stands for the quark-pion vertex. (a)-(b) A-type pole terms and (c)-(d)
B-type pole terms.
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Î0π ¼
� b†ubu for πþ;

− 1ffiffi
2

p b†ubd for π0;
ð15Þ

for Cabbibo-favored processes and will act on the ith quark
of the initial baryon after considering the pion flavor wave
function. As for the direct pion emission process, it is also a
1 → 3 weak interaction process. The operator for this
process has the same form as for the color suppressed
process except for the symmetry factor and delta functions.
Without causing ambiguities the operators for both 2 → 2
and 1 → 3 processes are labeled as HW . Their differences
are taken into account in the detailed calculations.

2. Quark-meson couplings in the chiral quark model

For the production of a pion in the internal flavor
conversion processes, the intermediate baryon pole terms
become dominant. This allows an implementation of the
chiral quark model [30] for the pion production via the
strong interaction vertices. The chiral quark model has been
often applied to the production of light pseudoscalar
mesons in various processes [31–33]. In the chiral quark
model the pion is treated as a fundamental particle. This
treatment will simplify the calculations of processes in
Figs. 1(c)–(f) by their equivalence of Fig. 3.
The tree-level quark-meson pseudovector coupling can

be deduced from the chiral quark model [30] and the
Hamiltonian can be written as:

Hm ¼
X
j

Z
dx

1

fm
q̄jðxÞγjμγj5qjðxÞ∂μϕmðxÞ; ð16Þ

where fm is the pseudoscalar meson decay constant; qjðxÞ
is the jth quark field in the baryon and ϕm represents the
meson field. In the nonrelativistic limit the above equation
can be expanded in the momentum space as:

Hm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32ωm

p X
j

1

fm

�
ωm

�
σ · pjf
2mf

þ σ · pji
2mi

�
− σ · k

�

× Îjmδ3ðpjf þ k − pjiÞ; ð17Þ

where ωm and k are the energy and momentum of the
pseudoscalar meson in the rest frame of the initial state,
respectively; pji and pjf are the initial and final momentum

of the jth quark, respectively; and Îjm is the corresponding
isospin operator for producing the pseudoscalar via its
interaction with the jth active quark within the baryon. For
the production of the pion the isospin operator is written as:

Îjπ ¼

8>><
>>:

b†ubd for π−;

b†dbu for πþ;
1ffiffi
2

p ½b†ubu − b†dbd� for π0;

ð18Þ

where b†u;d and bu;d are the creation and annihilation
operators for the u and d quarks.

C. Amplitudes

In this section, we formulate the charmed-baryon decays
with the operators and wave functions provided in the
previous sections. The relevant transition processes have
been given in Fig. 1. For convenience we label the initial
charmed baryon and final baryon as BcðPi; Ji; J

z
i Þ and

BfðPf; Jf; J
z
fÞ, respectively. The pion is labeled as MπðkÞ.

Our calculation is performed in the rest frame of Λc, thus
we have Pf ¼ −k.
At the tree level the nonrelativistic operators can be

written as the following form

HI ≡ C
X
n

Ôn; ð19Þ

where C is an overall factor and Ôn is the direct product of
flavor, spin, and spatial operators:

Ôn ¼ ÔflavorÔspin
n Ôspatial

n : ð20Þ
The transition matrix element can then be calculated in the
quark model:

hB0ðPf; Jf; J
z
fÞjÔnjBðPi; Ji; J

z
i Þi

¼
X

Szf;L
z
f ;S

z
i ;L

z
i

½hϕfjÔflavorjϕiihχ
Sf;S

z
f

f jÔspin
n jχSi;S

z
i

i i

× hΨNf;Lf;L
z
f

f jÔspatial
n jΨNi;Li;L

z
i

i i�; ð21Þ
where Jzf=i ¼ Szf=i þ Lz

f=i and
P

Szf;L
z
f ;S

z
i ;L

z
i
½� � �� is a short-

hand notation for the Clebsch-Gordan sum; Ψ, χ, ϕ denote
the spatial, spin, and flavor wave functions, respectively, in
the nonrelativistic quark model [34,35]. Also, we take the
SU(6) spin-flavor wave functions in the calculation. It
should be noted that in reality the SU(6) spin-flavor
symmetry is broken due to the spin-dependent interactions.
But as discussed in the literature [34,36] the low-lying
baryons can still be reasonably described by the SU(6)
wave functions as the leading approximation. In the
processes of interest here the quark model uncertainties
appear as an overall effect and can be absorbed into the
quark model parameters. By adopting the SU(6) wave
functions for the final state light baryons we can signifi-
cantly simplify the calculations with the main conclusions
intact.

1. Amplitudes of the direct and color suppressed
pion emission processes

We now present some details on how to calculate these
matrix elements in our framework. The DPE shown in
Fig. 1(a) can be expressed as:
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M
Jf;J

z
f ;Ji;J

z
i

DPE ¼ hBfðPf; Jf; J
z
fÞMðkÞjHW;1→3jBcðPi; Ji; J

z
i Þi:
ð22Þ

For the DPE process, the momentum conservation requires
Pf ¼ p1 þ p2 þ p30 and k ¼ p5 þ p4. This is guaranteed by

the delta function in Eq. (23) with the spatial wave
functions included. The calculation of flavor and spin part
can be found in [27,37]. The general form of the spatial
wave function convolution that appears in the calculation
for the DPE is written as

I
Lf;L

z
f ;Li;L

z
i

DPE ¼ hψπðkÞΨNf;Lf;L
z
f
ðPfÞjÔspatial

W;1→3ðpiÞjΨNi;Li;L
z
i
ðPiÞi

¼
Z

dp1dp2dp3dp30dp4dp5Ψ�
Nf;Lf;L

z
f
ðp1; p2; p30 Þδ3ðPf − p1 − p2 − p30 Þ

× ψ�
0;0;0ðp4; p5Þδ3ðk − p5 − p4ÞÔspatial

W;1→3ðpiÞΨNi;Li;L
z
i
ðp1; p2; p3Þδ3ðPi − p1 − p2 − p3Þ

× δ3ðp3 − p4 − p5 − p30 Þ; ð23Þ

where Ôspatial
W;1→3ðpiÞ is the function of quark momentum pi, such as p5=ð2m5Þ þ p4=ð2m4Þ or just 1 for HPV

W;1→3.
Since the DPE process is factorizable, its amplitude can also be written as:

M
Jf;J

z
f ;Ji;J

z
i

DPE ¼ GFffiffiffi
2

p VudVcshMðkÞπþjūγμð1 − γ5Þdj0ihBfðPf; Jf; J
z
fÞjs̄γμð1 − γ5ÞcjBiðPi; Ji; J

z
i Þi; ð24Þ

where the pion creation is described by the axial current via

hMðkÞπþjūγ5γμdj0i ¼ ifπpμ; ð25Þ

where pμ is the four momentum of πþ and fπ is the pion
decay constant. This form indicates that the DPE term is
proportional to the pion momentum. In the hadronic weak
decays of light octet baryons, the contribution from the
DPE is much smaller than those from the pole terms [27].
This can be understood by the relatively large momentum
carried by the emitted pion and relatively large suppression
from the off-shell pole propagators. Within our framework,
by distinguishing the pole terms, we describe the color-
suppressed processes as contributions from the local

current-current interactions that directly produce the pion
after the weak transition. This allows us to compare the
contributions between the DPE and CS processes.
The expression of the CS amplitude is similar to that of

the DPE process:

M
Jf;J

z
f ;Ji;J

z
i

CS ¼ hBfðPf; Jf; J
z
fÞMðkÞjHW;1→3jBcðPi; Ji; J

z
i Þi;
ð26Þ

Note that, for the CS process the momentum conservation
requires Pf ¼ p5 þ p2 þ p30 and k ¼ p1 þ p4, which is
different from the case of DPE. The spatial integral has
the following expression:

I
Lf;L

z
f ;Li;L

z
i

CS ¼ hψπðkÞΨNf;Lf;L
z
f
ðPfÞjÔspatial

W;1→3ðpiÞjΨNi;Li;L
z
i
ðPiÞi

¼
Z

dp1dp2dp3dp30dp4dp5Ψ�
Nf;Lf;L

z
f
ðp5; p2; p30 Þδ3ðPf − p5 − p2 − p30 Þ

× ψ�
0;0;0ðp1; p4Þ × δ3ðk − p1 − p4ÞÔspatial

W;1→3ðpiÞΨNi;Li;L
z
i
ðp1; p2; p3Þδ3ðPi − p1 − p2 − p3Þ

× δ3ðp3 − p4 − p5 − p30 Þ: ð27Þ

It is interesting to analyze thedifferences between these two

integral functions I
Lf;L

z
f ;Li;L

z
i

DPE and I
Lf;L

z
f ;Li;L

z
i

CS . For these two
processes, apart fromthe1=Nc suppressionon theCSprocess,
whereNc is the number of colors, the difference between the
spatial configurations in their wave function convolutions
reflects the difference caused by the quark correlations. Note

that the branching ratios forΛc → Λπþ,Σ0πþ andΣþπ0 areat
the same order of magnitude. It implies the importance of
nonfactorizable mechanisms which should become non-
negligible in all these decay processes. Nevertheless, a
coherent description of these processes can also provide hints
on the nature of the light ud diquark structure.
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2. Amplitudes of baryon internal conversion processes

The baryon internal conversion processes shown in
Fig. 1(c)–(f) or Fig. 3 are also called pole terms. They
are two-step processes with the baryon weak transition
either preceding or following the strong pion emission.
Because of the symmetry of the wave function, the
processes shown by Fig. 3(a)–(b) (labeled as A-type pole
terms) or (c)-(d) (labeled as B-type pole terms) can be

included in one of the operators given in the previous
section. Taking A-type process as an example, we can write
the amplitude for the baryon internal conversion processes
as

M
Jf;J

z
f ;Ji;J

z
i

Pole;A ¼ M
Jf;J

z
f ;Ji;J

z
i

Pole;A;PC þM
Jf;J

z
f ;Ji;J

z
i

Pole;A;PV ; ð28Þ

where

M
Jf;J

z
f ;Ji;J

z
i

Pole;A;PC ¼ hBfðPf; Jf; J
z
fÞjHπjBmðPi; Ji; J

z
i Þi

i

=pBm
−mBm

þ i ΓBm
2

hBmðPi; Ji; J
z
i ÞjHPC

W;2→2jBcðPi; Ji; J
z
i Þi;

M
Jf;J

z
f ;Ji;J

z
i

Pole;A;PV ¼ hBfðPf; Jf; J
z
fÞjHπjB0

mðPi; Ji; J
z
i Þi

i

=pB0
m
−mB0

m
þ i

ΓB0m
2

hB0
mðPi; Ji; J

z
i ÞjHPV

W;2→2jBcðPi; Ji; J
z
i Þi; ð29Þ

in which jBmðPi; Ji; J
z
i Þi and jB0

mðPi; Ji; J
z
i Þi denote the intermediate baryon states of JP ¼ 1=2þ and 1=2−, respectively,

and Hπ means Îjπ is taken for Hm. In principle, all possible intermediate baryons, namely resonances and continuum states,
should be included as the intermediate pole contributions for both parity conserved and parity violated processes [19].
However, the main contributions come from the intermediate states with low orbital momentum and energy close to their
on-shell mass. For this reason, we only consider in this study the ground states and first orbital excitations.
For the intermediate baryon states, the nonrelativistic form for their propagators is applied:

1

p −mþ iΓ=2
≅

2m
p2 −m2 þ iΓm

: ð30Þ

It should be cautioned that this treatment will bring uncertainties into the theoretical results since the intermediate states are
generally off-shell. However, such uncertainties can be absorbed into the quark model parameters for which the range of the
favored values by experimental data can be estimated.
Then, the parity conserved transition matrix element hBðp0ÞjHPC

W;2→2jBcðpÞi can be directly expressed as, considering the
simplified form of HPC

W;2→2,

hBðP0ÞjHPC
W;2→2jBcðPÞi ¼

GFffiffiffi
2

p VudVcs
6

ð2πÞ3
Z

dp1dp2dp3

Z
dp01dp

0
2dp

0
3δ

3ðp01 þ p02 − p1 − p2Þδ3ðp03 − p3Þ

×Φ�ðp01; p02; p03Þα̂ð−Þ1 β̂ðþÞ
2 ð1 − σ1 · σ2ÞΦðp1; p2; p3Þ; ð31Þ

where Φðp1; p2; p3Þ and Φðp01; p02; p03Þ are the total wave
function of the initial and final state baryon, respectively.
Because of the symmetry of the total wave function, we can
fix the subscript i and j to be 1 and 2 to compute the
transition matrix element. The final amplitude will equal to
the result multiplied by a symmetry factor 6. Similarly, as
we did before, we can obtain the transition matrix element
hBðP0ÞjHPV

W;2→2jBcðPÞi and hBðP0ÞjHπjBcðPÞi.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Parameters and inputs

Before presenting the numerical results, we clarify the
parameters and inputs in our calculation as follows:
We adopt the same valuemq ¼ 0.35 GeV for the masses

of the u, d and s quarks. Taking the same mass for both
nonstrange and strange quarks means that we take the

SU(3) flavor symmetry as a leading approximation.
Accordingly, we describe the light baryon with the same
oscillator parameters α0λ ¼ α0ρ ¼ 0.4 GeV which is consis-
tent with Refs. [33,38]. This treatment is based on an
empirical consideration of compromising the model uncer-
tainties and simplifications. In the nonrelativistic quark
model SU(3) flavor symmetry breaking effects explicitly
appear in the eignvalues of the Hamiltonian via the mass
term and mass-dependence in the kinetic energy and in
the potential. Meanwhile, the harmonic oscillator strength
for the correlations between the nonstrange and strange
quarks will also be different from that for the nonstrange
quarks. In Ref. [34] the harmonic oscillator strength
difference between s ¼ 0 and s ¼ −1 states due to the
SU(3) symmetry breaking is expressed as ωρ − ωλ ¼ ω½1 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2xþ 1Þ=3p � with x ≃mu=d=ms ¼ 0.6 is adopted.
However, as shown by Ref. [34] and later calculations
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(see review of Ref. [36]), the harmonic oscillator strength
difference is actually small. With ωρ ¼ ωλ in the equal-
mass treatment the same quality in the description of low-
lying light baryons can be achieved. This indicates that the
SU(3) flavor-symmetry breaking effects on the baryon
masses are leading order contributions but are subleading
ones on the wave functions. It leaves the leading SU(3)
flavor-symmetry breaking effects to be manifested by the
differences among baryon masses in the pole terms, and
allows us to make the approximation of adopting the
physical masses and widths in the propagators for the
intermediate states.
We take the charm quark mass mc ¼ 1.5 GeV and adopt

for the wave function of the charmed baryon the parameters
αρ ¼ 0.45 GeV and αλ ¼ ½3mc=ð2mq þmcÞ�1=4αρ. The
explicit expressions are given in Appendix B. The pion
wave function is also expressed as a Gaussian with a
parameter R ¼ 0.28 GeV. Since the pion is extremely light
and associated with the spontaneous chiral symmetry
breaking, our treatment is empirical and some intrinsic
uncertainties are unavoidable. However, we would like to
stress that the effects arising from the pion wave function
can be examined by varying the parameter R within a
reasonable range.
The intermediate states of the pole terms contribute

differently in these three decay processes. To be more
specific, we note that both Σþ and Σ�þ will contribute to the
A-type pole terms of all three decays. In contrast, Σ0

c and
Σ�0
c will contribute to the B-types pole terms in Λc → Λπþ

and Λc → Σ0πþ. For the intermediate states in Λc → Σþπ0

one notices that both Σþ
c and Σ�þ

c can contribute. In our
calculation the intermediate states of pole terms are as
follows:

(i) Σþð1=2þÞ, Σ�þð1620Þð1=2−Þ and Σ�þð1750Þð1=2−Þ
for the A-type pole terms in all three channels;

(ii) Σ0
cð1=2þÞ and Σ�0

c ð1=2−Þ for the B-type pole terms
in Λc → Λπþ and Λc → Σ0πþ;

(iii) Σþ
c ð1=2þÞ and Σ�þ

c ð1=2−Þ for the B-type pole terms
in Λc → Σþπ0.

Although the quantum numbers of Σ�
cð2806Þ and Σ�

cð2792Þ
as the first orbital excitation states with JP ¼ 1=2− have not
yet be measured in experiment, their masses are consistent
with the quark model expectations [35]. Their masses are
adopted from the Particle Data Group [24] and listed in
Table I.

For those transitions involving the intermediate pole
terms the intermediate states are off-shell in the kinematic
regions of consideration. We leave the off-shell effects to be
described by the wave function convolutions which even-
tually play the role of an interaction form factors. The
internal conversion will then keep the energy and three-
momentum conservation, respectively, as shown in
Eq. (31). For instance, in Fig. 3(a) the amplitude for
Σc → Σ is defined at the mass of Σc which means that
EΣ ¼ mΣc

and PΣ ¼ 0 in the Σc rest frame. The propagators
also take off-shell values as required.

B. Numerical results and analyses

Comparing the decay channels of Λπ and Σπ, one of the
interesting features is that the Λπ channel allows the direct
pion emission while it is forbidden in the Σ0πþ channels.
This can be directly recognized because the ud quarks are
spectators in the factorizable transitions where the c quark
decays into sþ πþ. Since the initial ud diquark is in color 3̄
with ðIud; JudÞ ¼ ð0; 0Þ the Λc cannot decays into Σ0πþ via
the DPE transition. For Λc → Σþπ0 it is suppressed by the
neutral current interaction. This makes the combined
analyses of these three channels useful for disentangling
the underlying mechanisms. Note that the experimental
data for the branching ratios of these three channels are
compatible. It suggests that the DPE process should not be
the only dominant contribution and other transition mech-
anisms must be considered. This should be a direct
evidence for the non-negligible role played by nonfactor-
izable processes in the nonleptonic decays of Λc. Some
detailed formulations are given in Appendix C.
We also note that these three decay channels share a

similar form for the pole terms and for the color suppressed
term. The reason is because the final state Λ and Σ belong
to the same SU(3) flavor multiplet. Thus, their spatial wave
functions are the same at the leading order of the SU(3)
flavor symmetry. The amplitudes of the pole terms or color
suppressed term will be distinguished by the flavor tran-
sition factor. Note that the measured branching ratios of
these two channels are almost the same. It indicates that
they share the same mechanisms via the nonfactorizable
transitions.
Taking the color suppressed process as an example, the

flavor transition elements are given Table II. The only

nonvanishing element is hϕλ
Σ0 jα̂ð−Þ3 Î0π;1jϕρ

Λc
i. Note that in the

TABLE I. The baryon masses and widths taken from PDG [24] in the calculation. Only the central values of the masses and widths are
listed. Note that the JP ¼ 1=2− states for both charmed and strange baryons have not been well determined. We assign Σ�0

c ð2806Þ and
Σ�þ
c ð2792Þ for the charmed states and Σ�þð1620Þ and Σ�þð1750Þ for the strange baryons with JP ¼ 1=2−.

Particles Λ Λc Σ0 Σþ Σ�þð1620Þ Σ�þð1750Þ Σ0
c Σ�0

c Σþ
c Σ�þ

c

IðJPÞ 0ð1=2þÞ 0ð1=2þÞ 1ð1=2þÞ 1ð1=2þÞ 1ð1=2−Þ 1ð1=2−Þ 1ð1=2þÞ 1ð1=2−Þ 1ð1=2þÞ 1ð1=2−Þ
Mass (GeV) 1.116 2.286 1.193 1.189 1.62 1.75 2.453 2.806 2.452 2.792
Width (GeV) � � � � � � � � � � � � 0.050 0.050 0.00183 0.072 0.0046 0.062
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parity-violating process the contributing flavor operator is
between the ϕρ

Λc
and ϕλ

Σ0 configurations. This means that
the parity-violating amplitudes can actually probe the
structure arising from the ud diquark-type of correlations
in the initial Λc wave function. For the parity-conserving
process the nonvanishing transition matrix elements in the
spin-flavor spaces are via ρ → ρ type of transitions (The
λ → λ type is suppressed by the vanishing of the λ-type
wave function in the initial Λc, if one adopts the quark
model). These features will allow us to examine the ud
correlation effects by the combined analyses of these three
channels.
In Tables III and IV the spin matrix elements for the

parity-conserving and parity-violating operators are listed,
respectively, for different spin configurations. Note that the
nonvanishing transition matrix elements should combine
the averaged values in both flavor and spin space.

Another feature distinguishing the factorizable DPE
process and nonfactorizable processes is that the ampli-
tudes have different dependence on the pion wave function.
As mentioned before, we introduce the pion wave function
using harmonic oscillator in our calculation. Although this
is a very coarse approximation, it demonstrates the relative
amplitude strengths between the factorizable and non-
factorizable transitions change in terms of the pion struc-
ture. As shown in Appendix C, the amplitude of the DPE
process for Λc → Λπþ is proportional to R3=2. In contrast,
the dependence of the nonfactorizable terms on the R in the
color suppressed process is very different and more
complicated. It means that the interference between the
factorizable DPE process and nonfactorizable processes is
indeed a nontrivial issue that should be investigated.
In Table V we show the calculated amplitudes for the

transition element with Jzf ¼ Jzi ¼ −1=2 for each type of

TABLE II. The flavor matrix elements for the CS process.

Processes hϕλ
Σjα̂ð−Þ3 Î0π;1jϕλ

Λc
i hϕλ

Σjα̂ð−Þ3 Î0π;1jϕρ
Λc
i hϕρ

Σjα̂ð−Þ3 Î0π;1jϕλ
Λc
i hðϕρ

Σjα̂ð−Þ3 Î0π;1jϕρ
Λc
i

Λc → Σ0πþ 0 −1=3 0 0
Λc → Σþπ0 0 −1=3 0 0

TABLE III. The spin matrix elements for the parity-conserving transitions in the CS process. Note that the spin wave function of pion
is omitted.

Ospin hχλ1=2;−1=2jOspinjχλ1=2;−1=2i hχλ1=2;−1=2jOspinjχρ1=2;−1=2i hχρ1=2;−1=2jOspinjχλ1=2;−1=2i hχρ1=2;−1=2jOspinjχρ1=2;−1=2i
hs03jIjs3ihs5s̄4jσzj0i

ffiffi
2

p
3

− 1ffiffi
6

p − 1ffiffi
6

p 0

hs03jσzjs3ihs5s̄4jIj0i − 1

3
ffiffi
2

p 0 0 1ffiffi
2

p

ðhs03jσjs3i × hs5s̄4jσj0iÞz 0 2iffiffi
6

p − 2iffiffi
6

p 0

TABLE IV. The spin matrix elements for the parity-violating transitions in the CS process. Note that the spin wave function of pion is
omitted.

Ospin hχλ1=2;−1=2jOspinjχλ1=2;−1=2i hχλ1=2;−1=2jOspinjχρ1=2;−1=2i hχρ1=2;−1=2jOspinjχλ1=2;−1=2i hχρ1=2;−1=2jOspinjχρ1=2;−1=2i
hs03jIjs3ihs5s̄4jIj0i − 1ffiffi

2
p 0 0 − 1ffiffi

2
p

hs03jσxjs3ihs5s̄4jσxj0i
ffiffi
2

p
3

1ffiffi
6

p 1ffiffi
6

p 0

hs03jσyjs3ihs5s̄4jσyj0i
ffiffi
2

p
3

1ffiffi
6

p 1ffiffi
6

p 0

hs03jσzjs3ihs5s̄4jσzj0i
ffiffi
2

p
3

1ffiffi
6

p 1ffiffi
6

p 0

TABLE V. The amplitudes with Jzf ¼ Jzi ¼ −1=2 for different processes and the unit is 10−9 GeV−1=2. Amplitudes A1ðPVÞ and
A2ðPVÞ are given by the parity-violating intermediate states Σ�þð1620Þ (½70; 28�) and Σ�þð1750Þ (½70; 48�), respectively.
Processes AðPCÞ A1ðPVÞ A2ðPVÞ BðPCÞ BðPVÞ CSðPCÞ CSðPVÞ DPEðPCÞ DPEðPVÞ
Λc → Λπþ −16.50 0.74 − 0.023i −2.57þ 0.10i 22.33þ 0.021i −10.72 − 0.33i 3.50 −4.17 −42.47 24.07
Λc → Σ0πþ 19.67 −3.21þ 0.10i −2.23þ 0.090i −40.73 − 0.040i 19.16þ 0.60i −6.04 7.53 0 0
Λc → Σþπ0 19.64 −3.15þ 0.098i −2.19þ 0.088 −40.65 − 0.10i 19.28þ 0.52i −6.04 7.51 0 0
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processes as a comparison. It shows that the parity-
conserving amplitudes of the pole terms are larger than
the parity-violating ones. Moreover, it shows that the
interference between the A-type and the B-type processes
are destructive. With the vertex couplings determined in the
quark model this sign difference can be attributed to the
signs of the propagators in these two types of processes.
Further interferences are provided by the CS process for all
these three channels. In the Λπþ decay channel the CS
amplitude is further suppressed in comparison with the
DPE amplitude, which is smaller than 1=Nc ¼ 1=3.
However, if one combines the pole terms which are also
nonfactorizable and color-suppressed, the 1=Nc suppres-
sion factor seems still to hold. It shows that the interfer-
ences between the factorizable DPE and nonfactorizable
processes lead to the compatible branching ratios for these
three decay channels.
The phenomenological impact of the correlation among

the light ud quarks can be investigated here. It is obvious
that the convolution of the spatial wave functions depends

on the structure of the hadrons that are involved. The
question is whether there is a spatial correlation between
the u and d quarks forming a compact structure, or simply a
quantum-number correlation with their total spin and
isospin 0. This can be examined by varying the parameter
αρ of the wave function parameter which describes the
relative distribution between u and d. For small αρ, one gets
a loose Gaussian, and for large αρ, one approaches a
δ-function.
For the transition processes of Λc → Λπþ, we can

compare the spatial integrals for the DPE and CS processes
and examine the ud diquark correlations. The results are
shown in Fig. 4. Note that the Fourier transformation of a
Gaussian distribution function is still a Gaussian, we
actually show the integrands in the momentum space with
all the momenta except for jpρj integrated out. Namely, we
define functions ICS and IDPE as the results with all the
momenta except jpρj integrated out for L0;0;0;0

CS and L0;0;0;0
DPE ,

and with the operatorOi;spatial
W;1→3 ≡ 1 in the Jacobi coordinate

L0;0;0;0
CS ðpρÞ ¼

Z
dp1dp4

Z
dpλdp0ρdp0λδ

3ðk − p1 − p4Þ

× δ3
�
mq

M
Pi þ

1

2
pλ þ pρ − p1

�
δ3
�
mq

M
Pi þ

1

2
pλ − pρ −

mq

M0 Pf −
1

2
p0λ þ p0ρ

�

× δ3
�
mc

M
Pi − pλ −

2mq

M0 Pf þ
1

2
p0λ − p0ρ − p4

�
Ψ0;0;0ðpρ; pλÞΨ�

0;0;0ðp0ρ; p0λÞΨ�
0;0;0ðp1; p4Þ; ð32Þ

L0;0;0;0
DPE ðpρÞ ¼

Z
dp4dp5

Z
dpλdp0ρdp0λδ

3ðk − p4 − p5Þ

× δ3
�
mq

M
Pi þ

1

2
pλ þ pρ −

mq

M0 Pf −
1

2
p0λ − p0ρ

�
δ3
�
mq

M
Pi þ

1

2
pλ − pρ −

mq

M0 Pf −
1

2
p0λ þ p0ρ

�

× δ3
�
mc

M
Pi − pλ −

mq

M0 Pf þ p0λ − k

�
Ψ0;0;0ðpρ; pλÞΨ�

0;0;0ðp0ρ; p0λÞΨ�
0;0;0ðp4; p5Þ; ð33Þ

where

(a) (b)

FIG. 4. The spatial wave function convolutions of the DPE process (blue line) and CS process (brown line). The left panel shows the
results with αρ ¼ α0ρ ¼ 0.45 GeV and the right one with αρ ¼ α0ρ ¼ 2 GeV.
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8>>><
>>>:

M ¼ 2mq þmc;

Pi ¼ p1 þ p2 þ p3;

pρ ¼ ðp1 − p2Þ=2;
pλ ¼ ðmcp1 þmcp2 − 2mqp3Þ=M;

ð34Þ

and

8>>><
>>>:

M0 ¼ 3mq;

Pf ¼ p5 þ p03 þ p2;

p0ρ ¼ ðp5 − p2Þ=2;
p0λ ¼ ðp5 þ p2 − 2p03Þ=3:

ð35Þ

for the CS process, and

8>>><
>>>:

M0 ¼ 3mq;

Pf ¼ p1 þ p2 þ p03;

p0ρ ¼ ðp1 − p2Þ=2;
p0λ ¼ ðp1 þ p2 − 2p03Þ=3

ð36Þ

for the DPE process, respectively.
Figures 4(a) and 4(b) correspond to two different values

of αρ ¼ 0.45 and 2 GeV, respectively. As a further
simplification we also take α0ρ ¼ αρ, namely, the ud pair
with ðIud; JudÞ ¼ ð0; 0Þ in the light baryon has the same
spatial distribution as in the Λc. It shows that with the
increase of α0ρ ¼ αρ, namely, if the ud diquark becomes
more compact, the CS contribution will be significantly
suppressed compared to the DPE. In another word, the
present experimental measurement favors that the

correlation between the ud diquark to be as extended as
a conventional hadron size instead of a compact structure.
Otherwise, the branching ratio for the Λπþ channel would
be much larger than that for Σπ.
The branching ratios of our final results are given in

Table VI, where the PDG data [24], BESIII new result [20],
results based on the SU(3) flavor symmetry (SU(3)) [39],
pole model and current algebra [4] are also listed. It shows
that the center values of our results are close to the
experimental data within the conventional quark model
parameter space.
We also investigate the uncertainty sources by examining

the sensitivities of the branching ratios to the model
parameters which are listed in Table VII. The amplitude
of direct pion emission is proportional to R3=2, while the
dependence of R for the CS amplitudes is more complicated
and less sharp. A variation by 20% of the central value of R
leads to nearly 100% change of the calculated branching
ratio for Λc → Λπþ. Such a dramatic sensitivity also
indicates the dominance of the DPE process in
Λc → Λπþ. In contrast, the impact of R in Λc → Σ0πþ

and Σþπ0 turns out to be much less significant. This
phenomenon is useful for examining the consistency of
the model parameters since the experimental data can
provide more stringent constraints on the model parameters.
One also notices the large uncertainties arising from the

parameters αρ in the spatial wave function of the charmed
baryons. It suggests that the branching ratios are more
sensitive to the harmonic oscillator strengths than to the
constituent quark masses. This is because of the strong
dependence of the transition amplitudes on αρ in the wave

TABLE VI. The calculated branching ratios (in %) of the Λc decays in this work are compared with experimental
data [20,24] and other model calculations [4,39].

BRðΛc → ΛπþÞ BRðΛc → Σ0πþÞ BRðΛc → Σþπ0Þ
PDG data [24] 1.30� 0.07 1.29� 0.07 1.24� 0.10
BESIII [20] 1.24� 0.07� 0.03 1.27� 0.08� 0.03 1.18� 0.10� 0.03
SU(3) [39] 1.3� 0.2 1.3� 0.2 1.3� 0.2
Pole model [4] 1.30� 0.07 1.29� 0.07 1.24� 0.10
Current algebra [4] 1.30� 0.07 1.29� 0.07 1.24� 0.10
This work 1.30 1.24 1.26

TABLE VII. Uncertainties of the partial decay widths (in %) caused by the quark model parameters with 20%
errors.

Input (GeV) BRðΛc → ΛπþÞ BRðΛc → Σ0πþÞ BRðΛc → Σþπ0Þ
mq ¼ 0.35� 0.070 1.30� 0.46 1.24� 0.22 1.26� 0.23
mc ¼ 1.5� 0.30 1.30� 0.011 1.24� 0.053 1.26� 0.053
α0λ ¼ α0ρ ¼ 0.4� 0.08 1.30� 0.50 1.24� 0.083 1.26� 0.082
αρ ¼ 0.45� 0.086 1.30� 0.41 1.24� 1.30 1.26� 1.32
R ¼ 0.28� 0.056 1.30� 1.01 1.24� 0.10 1.26� 0.10
Combined 1.30� 1.29 1.24� 1.33 1.26� 1.35
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function convolutions. Although the large uncertainties
caused by αρ by varying 20% of the adopted value may
raise concerns about the quark model predictive power, this
could also indicate that the hadronic weak decay observ-
ables are sensitive to the quark model parameters.
Therefore, the hadronic weak decay processes may provide
a better constraint on the quark model parameters. Further
study of this interesting issue should be necessary to
provide a more conclusive statement.
We can also calculate the parity asymmetry parameter in

our model which is defined as

α0 ¼ 2ReðA�BÞ
jAj2 þ jBj2 ; ð37Þ

where A and B are the S and P-wave amplitudes,
respectively, defined at hadronic level. The hadronic level
transition amplitude can be expressed as

M0ðBi → Bf þ PÞ ¼ iūfðmf;PfÞðA − Bγ5Þuiðmi;PiÞ
≡M0

PVðBi → Bf þ PÞ
þM0

PCðBi → Bf þ PÞ: ð38Þ

where the parity-violating and conserving amplitudes in the
rest frame of the initial baryon can be written as,

M0
PVðBi → Bf þ PÞ ¼ iA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef þmf

2mf

s
χ†fχi; ð39Þ

M0
PCðBi → Bf þ PÞ ¼ iB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef þmf

2mf

s
χ†f

σ · Pf

Ef þmf
χi: ð40Þ

By comparing the above amplitudes with the corresponding
quark model amplitudes we can determine A and B. Then
with the parity asymmetry parameter can be extracted:

α0 ¼ −2Re½ðM0
PVÞ�M0

PC�
jM0

PCj2 jPf j
Efþmf

þ jM0
PV j2 Efþmf

jPf j
: ð41Þ

Namely, the amplitudes M0
PC=PV can be expressed in terms

of quark-model formalisms. The detailed expressions
of M0

PC=PV are given in Appendix C. In Table VIII the

calculated parity asymmetries and uncertainties for these
three channels are listed and compared with the PDG
averaged values [24], pole model calculation and current
algebra treatment [4]. It shows that the result for Λc →
Σþπ0 agrees with the experimental data, while the value for
the Λπþ appears to have quite significant discrepancies.
Notice, however, that the Λπþ channel is sensitive to the
DPE mechanism and the strong dependence of the pion
wave function parameter R can result in quite significant
uncertainties. As a qualitative estimation we find that α0 ¼
−0.16� 0.27 caused by the quark model parameters with
20% and the error is larger than the other two channels.
This, again, indicates the strong interfering effects between
the DPE and nonfactorizable amplitudes. In contrast, the
uncertainties caused by R in the Σπ channels are much
smaller due to the absence of the DPE process and relative
suppression of the CS term relative to the pole terms.

IV. SUMMARY

In this paper we investigate the two-body hadronic weak
decay mechanism of Λc in the framework of the non-
relativistic constituent quark model. We first consider the
Cabbibo-favored processes Λc → Λπþ, Σ0πþ, and Σþπ0.
These processes are correlated with each other and exhibit
interesting features that can help disentangle the underlying
dynamics. On the one hand, the Λπþ channel allows the
DPE process which is factorizable and plays a dominant
role, while the DPE process is absent in the Σπ channels.
On the other hand, these channels share some common
features due to the SU(3) flavor symmetry in their non-
factorizable transitions. With the availability of experimen-
tal data we find that the nonfactorizable mechanisms from
the pole terms and CS processes contribute the same order
of magnitude as the DPE in Λc → Λπþ. This explains that
the compatible branching ratios among these channels.
The coherent study of these processes is found useful for

understanding the structure of the baryons. In particular, we
show that too strong a scalar-isoscalar ud correlation in Λc
is not favored. Instead, it only needs to fulfill a quantum
correlation in the spin-isospin and color space. Although
the numerical results turn out to be sensitive to the
parameters of the wave function parameters, a good under-
standing is reached based on the constituent quark effective
degrees of freedom.
In the framework of the quark model, it is shown that

there are destructive interferences between the A-type and
B-type of pole terms in the transition amplitudes. This is
similar to the case of light hyperon hadronic weak decays
(e.g., see Ref. [26] for the most recent detailed analysis of
the Λ and Σ� decays into nucleon and pion). Due to the
destructive interferences it suggests that the SU(3) flavor
symmetry breaking can become complicated. A relatively
small symmetry breaking effects in each pole term can
result in much more significant effects after the destructive

TABLE VIII. The asymmetry parameter α0 and its uncertainties
caused by the quark model parameters with 20% errors.

Λc → Λπþ Λc → Σ0πþ Λc → Σþπ0

PDG data [24] −0.91� 0.14 � � � −0.45� 0.32
Pole model [4] −0.95 0.78 0.78
Current algebra [4] −0.99 −0.49 −0.49
This work −0.16� 0.27 −0.46� 0.20 −0.47� 0.19
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interferences. This may explain why the current algebra
treatment fails when describing some SU(3) flavor sym-
metry correlated channels [4]. Extension of this method to
other hadronic weak decay channels may bring more
insights into the role played by the nonfactorizable proc-
esses in Λc decays and provide more evidence for the
quantum correlation for the light quarks. It is quite possible
that other processes may provide a better constraint on the
model uncertainties which will be investigated in the future.
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APPENDIX A: THE HARMONIC OSCILLATOR
HAMILTONIAN AND THE JACOBI

COORDINATES

Here, we briefly summarize our notations for the Jacobi
coordinates that are use to separate the center-of-mass
motion in nonrelativistic models, and treat explicitly the
harmonic-oscillator model that is used to parametrize the
baryon wave functions. There are several variants. Let us
first follow [34]. The Hamiltonian is

H ¼
X3
i¼1

p2i
2mi

þ 1

2
K
X
i<j

ðri − rjÞ2; ðA1Þ

where pi, ri and mi denote the momentum, position and
mass of the ith quark, and K is the spring constant. With
m1 ¼ m2 ¼ m and m3 ¼ m0, the Jacobi coordinates are
defined as [38]:

8>><
>>:

Rc ¼ 1
M ðmr1 þmr2 þm0r3Þ

ρ ¼ r1 − r2
λ ¼ 1

2
ðr1 þ r2 − 2r3Þ

;

8>><
>>:

P ¼ p1 þ p2 þ p3
pρ ¼ 1

2
ðp1 − p2Þ

pλ ¼ 1
M ðm0p1 þm0p2 − 2mp3Þ

: ðA2Þ

and the Hamiltonian becomes

H ¼ P2

2M
þ p2ρ
2mρ

þ p2λ
2mλ

þ 1

2
mρω

2
ρρ2 þ

1

2
mλω

2
λλ

2; ðA3Þ

where M ¼ m1 þm2 þm3, mρ ¼ m=2 and mλ ¼ 2mm0=M are the reduced masses of the ρ and λ degrees of freedom,
respectively; ωρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3K=m

p
and ωλ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=mλ

p
are the frequencies of the corresponding harmonic oscillators.

Then, the spatial wave functions on the harmonic oscillator basis can be obtained [27,33,38,40]. In the coordinate space,
a basis for the eigen wave functions is

ΨN;L;Lz
ðRc; ρ; λÞ ¼

1

ð2πÞ3=2 exp ð−iP · RcÞ
X
m

hlρ; m; lλ; Lz −mjL; Lziψ̃αρ
nρlρm

ðρÞψ̃αλ
nλlλLz−mðλÞ; ðA4Þ

where N stands for fnρ; lρ; nλ; lλg, and

ψ̃α
nlmðrÞ ¼

�
2n!

ðnþ lþ 1=2Þ!
�
1=2

αlþ3=2 exp

�
−
α2r2

2

�
Llþ1=2
n ðα2r2ÞYlmðrÞ; ðA5Þ

where P is the total momentum of the three quark system. The function Lν
nðxÞ is the generalized Laguerre polynomial, and

αρ and αλ are the harmonic oscillator strengths defined by

α2ρ ¼ mρωρ ¼
ffiffiffiffiffiffiffiffiffiffi
3Km

p

2
; α2λ ¼ mλωλ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K
mm0

M

r
: ðA6Þ
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In the momentum space the spatial wave function is written as:

ΨNLLz
ðP; pρ; pλÞ ¼ δ3ðP − PcÞ

X
m

hlρ; m; lλ; Lz −mjL;Lziψαρ
nρlρm

ðpρÞψαλ
nλlλLz−mðpλÞ; ðA7Þ

where

ψα
nlmðpÞ ¼ ðiÞlð−1Þn

�
2n!

ðnþ lþ 1=2Þ!
�
1=2 1

αlþ3=2 exp

�
−

p2

2α2

�
Llþ1=2
n ðp2=α2ÞYlmðpÞ: ðA8Þ

One can also choose a slightly differently scaled Jacobi coordinates which are more convenient to implement the
permutation properties. Rc and P are identical, but now

8<
:

ρ̃ ¼ 1ffiffi
2

p ðr1 − r2Þ
λ̃ ¼ 1ffiffi

6
p ðr1 þ r2 − 2r3Þ

;

8<
:

p̃ρ ¼ 1ffiffi
2

p ðp1 − p2Þ
p̃λ ¼ 3ffiffi

6
p

M
ðm0p1 þm0p2 − 2mp3Þ

; ðA9Þ

The reduced masses are now m̃ρ ¼ m and m̃λ ¼ 3mm0=M.
The frequencies and oscillator strengths become

ω̃ρ ¼
ffiffiffiffiffiffiffi
3K
m̃ρ

s
; ω̃λ ¼

ffiffiffiffiffiffiffi
3K
m̃λ

s
;

α̃2ρ ¼
ffiffiffiffiffiffiffiffiffiffi
3Km

p
; α̃2λ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K
mm0

M

r
; ðA10Þ

the correspondence being

αρ ¼
α̃ρffiffiffi
2

p ; αλ ¼
ffiffiffi
2

3

r
α̃λ: ðA11Þ

APPENDIX B: WAVE FUNCTIONS

In the framework of the nonrelativistic constituent quark
model, the wave functions of baryons or mesons consist of
four parts: (i) color; (ii) flavor; (iii) spin, and (iv) spatial
wave function. The color wave function is unique for
nonexotic color-singlet hadrons. We only list the spin,
flavor and spatial wave functions. In the light sector, it is
useful to identify the behavior with respect to the permu-
tation group s3.

1. Baryon wave functions

The spin wave functions for baryons are

χρ1
2
;1
2

¼ 1ffiffiffi
2

p ð↑↓↑ − ↓↑↑Þ; χλ1
2
;1
2

¼ −
1ffiffiffi
6

p ð↑↓↑þ ↓↑↑ − 2↑↑↓Þ;

χρ1
2
;−1

2

¼ 1ffiffiffi
2

p ð↑↓↓ − ↓↑↓Þ; χλ1
2
;−1

2

¼ 1ffiffiffi
6

p ð↑↓↓þ ↓↑↓ − 2↓↓↑Þ: ðB1Þ

χs3
2
;3
2

¼ ↑↑↑; χs3
2
;−3

2

¼ ↓↓↓;

χs3
2
;1
2

¼ 1ffiffiffi
3

p ð↑↑↓þ ↑↓↑þ ↓↑↑Þ; χs3
2
;−1

2

¼ 1ffiffiffi
3

p ð↑↓↓þ ↓↑↓þ ↓↓↑Þ: ðB2Þ

The symbol ρ and λ are used to label the two components of the mixed-symmetry pair. The symbol s is used to label the
symmetric states.
The flavor wave functions for Λ, Σ0 and Σþ as the SU(3) flavor octet states [27] are

ϕλ
Λ ¼ −

1

2
ðsudþ usd − sdu − dsuÞ; ϕρ

Λ ¼ 1

2
ffiffiffi
3

p ðusdþ sdu − sud − dsu − 2dusþ 2udsÞ;

ϕλ
Σþ ¼ 1ffiffiffi

6
p ð2uus − suu − usuÞ; ϕρ

Σþ ¼ 1ffiffiffi
2

p ðsuu − usuÞ;

ϕλ
Σ0 ¼ 1

2
ffiffiffi
3

p ðsduþ sudþ usdþ dsu − 2uds − 2dusÞ; ϕρ
Σ0 ¼ 1

2
ðsudþ sdu − usd − dsuÞ: ðB3Þ
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For the flavor wave functions of charmed baryons there
are two bases adopted in the literature. One is the “uds”
basis which is used in our calculation. Namely, similar to
the hyperon wave functions, the flavor wave functions
of Λc and Σ0

c are obtained by making the replacement of
s → c in the above hyperon wave functions [1].
The other one is the “udc” basis [33,35] in which only

the symmetry among the light quarks is implemented. It
reads

ϕΛc
¼ 1ffiffiffi

2
p ðud− duÞc; ϕΣc

¼

8>><
>>:

ddc for Σ0
c;

1ffiffi
2

p ðudþ duÞc for Σþ
c ;

uuc for Σþþ
c :

ðB4Þ

With the spin, flavor and spatial parts, we can construct
the total wave function of the baryons, which is denoted
jB2Sþ1LJPi. In the light sector, the ground state reads

jB2S1=2þi ¼ 1ffiffiffi
2

p ðϕρ
Bχ

ρ
S;Sz

þ ϕλ
Bχ

λ
S;Sz

ÞΨ0;0;0; ðB5Þ

and for charmed baryons

jΛ2
cS1=2þi ¼ ϕΛc

χρS;SzΨ0;0;0;

jΣ2
cS1=2þi ¼ ϕΣc

χλS;SzΨ0;0;0: ðB6Þ

For the first orbital excitation states, we have two
different modes, i.e., ρ and λ configurations. In the light
sector, they are recombined into the single symmetric state

jB2P1=2−i ¼
X

LzþSz¼Jz

h1; Lz; 1=2; SzjJJzi
1

2
½ðϕρ

Bχ
λ
S;Sz

þ ϕλ
Bχ

ρ
S;Sz

ÞΨρ
1;Lz

þ ðϕρ
Bχ

ρ
S;Sz

− ϕλ
Bχ

λ
S;Sz

ÞΨλ
1;Lz

�; ðB7Þ

jB3P1=2−i ¼
X

LzþSz¼Jz

h1; Lz;
3

2
; SzjJJzi

1ffiffiffi
2

p ½ϕρ
Bχ

s
S;Sz

Ψρ
1;Lz

þ ϕλ
Bχ

s
S;Sz

Ψλ
1;Lz

�; ðB8Þ

whereΨλ
1;Lz

stands for ΨN;Lz
with N ¼ f0; 0; 0; 1g andΨρ

1;Lz
corresponds to N ¼ f0; 1; 0; 0g. In the charm sector, they read

jΛ2
cPλ1=2−i ¼

X
LzþSz¼Jz

h1; Lz; 1=2; Szj1=2; JziϕΛc
χρS;SzΨ

λ
1;Lz

;

jΛ2
cPρ1=2−i ¼

X
LzþSz¼Jz

h1; Lz; 1=2Szj1=2; JziϕΛc
χλS;SzΨ

ρ
1;Lz

;

jΣ2
cPλ1=2−i ¼

X
LzþSz¼Jz

h1; Lz; 1=2; Szj1=2; JziϕΣc
χλS;SzΨ

λ
1;Lz

;

jΣ2
cPρ1=2−i ¼

X
LzþSz¼Jz

h1; Lz; 1=2; Szj1=2; JziϕΣc
χρS;SzΨ

ρ
1;Lz

: ðB9Þ

2. Pion wave function

The wave function of pseudoscalar mesons is written as:

Φ0;0;0ðp1; p2Þ ¼ δ3ðp1 þ p2 − PÞϕpχ
a
0;0ψ0;0;0ðp1; p2Þ;

ðB10Þ
where χa0;0 is the spin wave:

χa0;0 ¼
1ffiffiffi
2

p ð↑↓ − ↓↑Þ; ðB11Þ

and ϕpðp ¼ πþ; π0; π−Þ is the flavor wave function

ϕπþ ¼ ud̄; ðB12Þ

ϕπ0 ¼ −
1ffiffiffi
2

p ðuū − dd̄Þ; ðB13Þ

ϕπ− ¼ −dū: ðB14Þ

The spatial wave function is expressed as:

ψ0;0;0ðp1; p2Þ ¼
1

π3=4R3=2 exp

�
−
ðp1 − p2Þ2

8R2

�
; ðB15Þ

where R is the parameter of the meson wave function.

APPENDIX C: AMPLITUDES FOR THE
POLE TERMS

The transition amplitudes denoted by the baryon polari-
zation quantum numbers are to be provided. In addition,
MJf;J

z
f ;Ji;J

z
i is shortened to MJzf ;J

z
i as the spin of initial and

final states are all 1=2. We will provide the expressions for
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the amplitude of M−1=2;−1=2 for each process and the

Hermitian relation gives: M1=2;1=2
PC ¼ −M−1=2;−1=2

PC and

M1=2;1=2
PV ¼ M−1=2;−1=2

PV . The amplitudes of M�1=2;∓1=2 are
vanishing. It should be noted that the pole term processes
are two vertex process while the CS and DPE processes are

one vertex process. So the relative phase difference
between these two types processes is π.
In the results given below, we use the second set of

Jacobi coordinates of Appendix A, but to alleviate the
writing, the tildes are omitted for the α’s. The following
functions are to be used later:

ξ ¼
�

4αλαρ
4α2 þ α2λ þ 3α2ρ

�
3=2

; F πðkÞ ¼ exp

�
−

k2

6α2

�
; F 0

πðkÞ ¼ exp

�
−
k2

24

�
1

α2λ
þ 3

α2ρ

��
; ðC1Þ

where mq is the mass of the light quarks (u, d, s) and mc is the mass of the c quark; k≡ jkj and ω0 denote the three-vector
momentum and energy of the pion, respectively. In order to use the typical value of the harmonic oscillator strengths
directly, all the amplitudes are expressed with the conventional the harmonic oscillator strengths. αρ and αλ are the harmonic
oscillator strengths for the charmed baryons and α ¼ α0λ ¼ α0ρ for the light baryons. For the pole terms, the propagator is
noted with Pðm1; m2Þ which is defined as

Pðm1; m2Þ ¼
2m2

m2
1 −m2

2 þ iΓm2
m2

; ðC2Þ

where m1 is the mass of initial baryon or final baryon and m2 is the mass of intermediate baryons. Γm2
is the width of

intermediate baryons.

1. Λc → Λπ +

(a) pole terms

M−1=2;−1=2
Pole;A;PC ¼

� ffiffiffi
3

p
VudVcsGF

α3

π3=2
ξ

��
−

kð6mq þ ω0Þ
12

ffiffiffi
6

p
π3=2

ffiffiffiffiffiffi
ω0

p
fπmq

F πðkÞ
�
PðmΛc

; mΣþÞ; ðC3Þ

M−1=2;−1=2
Pole;A1;PV ¼

�
i

ffiffiffi
2

3

r
VudVcsGF

α4

π3=2
ð−6α2 þ α2λ − 15α2ρÞmc þ ð−6α2 þ 5α2λ − 3α2ρÞmq

2mcmqð4α2 þ α2λ þ 3α2ρÞ
ξ

�

×

�
−i

k2ð6mq þ ω0Þ − 18α2ω0

144
ffiffiffi
3

p
π3=2

ffiffiffiffiffiffi
ω0

p
fπmqα

F πðkÞ
�
PðmΛc

; mΣ�þÞ; ðC4Þ

M−1=2;−1=2
Pole;A2;PV ¼

�
−i

ffiffiffi
2

3

r
VudVcsGF

α4

π3=2
ð6α2 þ α2λ þ 3α2ρÞmc þ 2ð3α2 þ α2λ þ 3α2ρÞmq

mcmqð4α2 þ α2λ þ 3α2ρÞ
ξ

�

×

�
i
k2ð6mq þ ω0Þ − 18α2ω0

72
ffiffiffi
3

p
π3=2

ffiffiffiffiffiffi
ω0

p
fπmqα

F πðkÞ
�
PðmΛc

; mΣð1750ÞÞ; ðC5Þ

M−1=2;−1=2
Pole;B;PC ¼

�
kð6mq þ ω0Þ

18
ffiffiffi
6

p
π3=2

ffiffiffiffiffiffi
ω0

p
fπmq

F 0
πðkÞ

��
−

ffiffiffi
3

p
VudVcsGF

α3

π3=2
ξ

�
PðmΛ; mΣ0

c
Þ; ðC6Þ

M−1=2;−1=2
Pole;B;PV ¼

�
i
18αραλðαλ þ 3αρÞω0 þ ðαρ þ 3αλÞk2ð6mq þ ω0Þ

864
ffiffiffi
3

p
π3=2αλαρfπ

ffiffiffiffiffiffi
ω0

p
mq

F 0
πðkÞ

�

×
�
−iVcsVudGF

ffiffiffi
6

p

π3=2mq

α3ðαρ þ αλÞðα2 þ αραλÞ
4α2 þ α2λ þ 3α2ρ

ξ

�
PðmΛ; mΣ�0

C
Þ: ðC7Þ
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(b) direct pion emission term

M−1=2;−1=2
DPE;PC ¼ −

ffiffiffi
2

p

3
VudVcsGF

k

π9=4mq

3α2 þ 5α2λ
α2 þ α2λ

�
α2αλαρR

ðα2 þ α2λÞðα2 þ α2ρÞ
�
3=2

exp

�
−

k2

3ðα2 þ α2λÞ
�
; ðC8Þ

M−1=2;−1=2
DPE;PV ¼ 2

ffiffiffi
2

p VudVcsGF

π9=4

�
α2αλαρR

ðα2 þ α2λÞðα2 þ α2ρÞ
�
3=2

exp

�
−

k2

3ðα2 þ α2λÞ
�
: ðC9Þ

(c) color suppressed terms

M−1=2;−1=2
CS;PC ¼ 2

ffiffiffi
3

p
VcsVudGFkðα2αλαρRÞ3=2

×
mcðα2ðα2λ þ 3α2ρÞ þ 3α2λα

2
ρ þ 2R2ð6α2 þ 2α2λ þ 3α2ρÞ þmqα

2
λð2α2 þ α2ρ − 2R2ÞÞ

π9=4mcmq½2α2ðα2λ þ 3α2ρÞ þ 6α2λα
2
ρ þ 3R2ð4α2 þ α2λ þ 3α2ρÞ�5=2

× exp

�
−
k2

24

36α2 þ 25α2λ þ 3α2ρ þ 24R2

2α2ðα2λ þ 3α2ρÞ þ 6α2λα
2
ρ þ 3R2ð4α2 þ α2λ þ 3α2ρÞ

�
; ðC10Þ

M−1=2;−1=2
CS;PV ¼ −4

ffiffiffi
3

p
VcsVudGF

�
α2αλαρR

2α2ðα2λ þ 3α2ρÞ þ 6α2λα
2
ρ þ 3R2ð4α2 þ α2λ þ 3α2ρÞ

�
3=2

× exp

�
−
k2

24

36α2 þ 25α2λ þ 3α2ρ þ 24R2

2α2ðα2λ þ 3α2ρÞ þ 6α2λα
2
ρ þ 3R2ð4α2 þ α2λ þ 3α2ρÞ

�
: ðC11Þ

2. Λc → Σ0π + and Λc → Σ0π +

The amplitudes of Λc → Σ0πþ and Λc → Σ0πþ have the same form. In the following, only the amplitudes of Λc → Σ0πþ
are given.
(a) pole terms

M−1=2;−1=2
Pole;A;PC ¼

� ffiffiffi
3

p
VudVcsGF

α3

π3=2
ξ

��
kð6mq þ ω0Þ

18
ffiffiffi
2

p
π3=2

ffiffiffiffiffiffi
ω0

p
fπmq

F πðkÞ
�
PðmΛc

; mΣþÞ; ðC12Þ

M−1=2;−1=2
Pole;A1;PV ¼

�
i

ffiffiffi
2

3

r
VudVcsGF

α4

π3=2
ð−6α2 þ α2λ − 15α2ρÞmc þ ð−6α2 þ 5α2λ − 3α2ρÞmq

2mcmqð4α2 þ α2λ þ 3α2ρÞ
ξ

�

×

�
i
5k2ð6mq þ ω0Þ − 18α2ω0

432π3=2
ffiffiffiffiffiffi
ω0

p
fπmqα

F πðkÞ
�
PðmΛc

; mΣ�þÞ; ðC13Þ

M−1=2;−1=2
Pole;A2;PV ¼

�
−i

ffiffiffi
2

3

r
VudVcsGF

α4

π3=2
ð6α2 þ α2λ þ 3α2ρÞmc þ 2ð3α2 þ α2λ þ 3α2ρÞmq

mcmqð4α2 þ α2λ þ 3α2ρÞ
ξ

�

×

�
i
k2ð6mq þ ω0Þ − 18α2ω0

216π3=2
ffiffiffiffiffiffi
ω0

p
fπmqα

F πðkÞ
�
PðmΛc

; mΣð1750ÞÞ; ðC14Þ

M−1=2;−1=2
Pole;B;PC ¼

�
kð6mq þ ω0Þ

18
ffiffiffi
6

p
π3=2

ffiffiffiffiffiffi
ω0

p
fπmq

F0
πðkÞ

��
3VudVcsGF

α3

π3=2
ξ

�
PðmΣ0 ; mΣ0

c
Þ; ðC15Þ
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M−1=2;−1=2
Pole;B;PV ¼

�
i
18αραλðαλ þ 3αρÞω0 þ ðαρ þ 3αλÞk2ð6mq þ ω0Þ

864
ffiffiffi
3

p
π3=2αλαρfπ

ffiffiffiffiffiffi
ω0

p
mq

F0
πðkÞ

�

×

�
iVcsVudGF

3
ffiffiffi
2

p

π3=2mq

α3ðαρ þ αλÞðα2 þ αραλÞ
4α2 þ α2λ þ 3α2ρ

ξ

�
PðmΣ0 ; mΣ�0

c
Þ: ðC16Þ

(b) color suppressed term

M−1=2;−1=2
CS;PC ðΛc → Σ0πþÞ ¼ −

ffiffiffi
3

p
M−1=2;−1=2

CS;PC ðΛc → ΛπþÞ; ðC17Þ

M−1=2;−1=2
CS;PV ðΛc → Σ0πþÞ ¼ −

ffiffiffi
3

p
M−1=2;−1=2

CS;PV ðΛc → ΛπþÞ: ðC18Þ

[1] F. Hussain and M. Scadron, Nuovo Cim. Soc. Ital. Fis. 79A,
248 (1984).

[2] G. Kaur and M. P. Khanna, Phys. Rev. D 44, 182 (1991).
[3] H. Y. Cheng and B. Tseng, Phys. Rev. D 46, 1042 (1992);

55, 1697(E) (1997).
[4] H. Y. Cheng and B. Tseng, Phys. Rev. D 48, 4188 (1993).
[5] J. G. Korner, G. Kramer, and J. Willrodt, Z. Phys. C 2, 117

(1979).
[6] J. G. Körner and M. Kramer, Z. Phys. C 55, 659 (1992).
[7] T. Uppal, R. C. Verma, and M. P. Khanna, Phys. Rev. D 49,

3417 (1994).
[8] H. J. Zhao, Y. K. Hsiao, and Y. Yao, J. High Energy Phys. 02

(2020) 165.
[9] L. S. Kisslinger and B. Singha, Int. J. Mod. Phys. A 34,

1950015 (2019).
[10] W. H. Liang and E. Oset, Eur. Phys. J. C 78, 528 (2018).
[11] M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527

(1990).
[12] K. K. Sharma and R. C. Verma, Phys. Rev. D 55, 7067

(1997).
[13] C. D. L, W. Wang, and F. S. Yu, Phys. Rev. D 93, 056008

(2016).
[14] C. Q. Geng, C. W. Liu, T. H. Tsai, and Y. Yu, Phys. Rev. D

99, 114022 (2019).
[15] C. Q. Geng, C. W. Liu, and T. H. Tsai, Phys. Lett. B 790,

225 (2019).
[16] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, Eur.

Phys. J. C 78, 593 (2018).
[17] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, Phys.

Rev. D 97, 073006 (2018).
[18] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, J. High

Energy Phys. 11 (2017) 147.
[19] H. Y. Cheng, X.W. Kang, and F. Xu, Phys. Rev. D 97,

074028 (2018).
[20] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.

116, 052001 (2016).

[21] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 95,
111102 (2017).

[22] H. Y. Cheng and C. K. Chua, Phys. Rev. D 92, 096009
(2015).

[23] M. Gronau, J. L. Rosner, and C. G. Wohl, Phys. Rev. D 97,
116015 (2018); 98, 073003(A) (2018).

[24] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[25] C. Hayne and N. Isgur, Phys. Rev. D 25, 1944 (1982).
[26] J. M. Richard, Q. Wang, and Q. Zhao, arXiv:1604.04208.
[27] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal,

Hadron Transitions in The Quark Model, (Gordon and
Breach, New York, USA, 1988), p. 311.

[28] A. Le Yaouanc, O. Pene, J. C. Raynal, and L. Oliver, Nucl.
Phys. B149, 321 (1979).

[29] G. Racah, Phys. Rev. 62, 438 (1942).
[30] A. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).
[31] Z. P. Li, H. X. Ye, and M. H. Lu, Phys. Rev. C 56, 1099

(1997).
[32] Q. Zhao, J. S. Al-Khalili, Z. P. Li, and R. L. Workman, Phys.

Rev. C 65, 065204 (2002).
[33] X. H. Zhong and Q. Zhao, Phys. Rev. D 77, 074008

(2008).
[34] N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978).
[35] L. A. Copley, N. Isgur, and G. Karl, Phys. Rev. D 20, 768

(1979).
[36] S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45,

S241 (2000).
[37] E. S. Ackleh, T. Barnes, and E. S. Swanson, Phys. Rev. D

54, 6811 (1996).
[38] H. Nagahiro, S. Yasui, A. Hosaka, M. Oka, and H. Noumi,

Phys. Rev. D 95, 014023 (2017).
[39] C. Q. Geng, Y. K. Hsiao, Y. H. Lin, and L. L. Liu, Phys.

Lett. B 776, 265 (2018).
[40] M. Pervin, W. Roberts, and S. Capstick, Phys. Rev. C 72,

035201 (2005).

HADRONIC WEAK DECAYS OF λc IN THE QUARK … PHYS. REV. D 102, 073005 (2020)

073005-19

https://doi.org/10.1007/BF02813365
https://doi.org/10.1007/BF02813365
https://doi.org/10.1103/PhysRevD.44.182
https://doi.org/10.1103/PhysRevD.46.1042
https://doi.org/10.1103/PhysRevD.55.1697
https://doi.org/10.1103/PhysRevD.48.4188
https://doi.org/10.1007/BF01474126
https://doi.org/10.1007/BF01474126
https://doi.org/10.1007/BF01561305
https://doi.org/10.1103/PhysRevD.49.3417
https://doi.org/10.1103/PhysRevD.49.3417
https://doi.org/10.1007/JHEP02(2020)165
https://doi.org/10.1007/JHEP02(2020)165
https://doi.org/10.1142/S0217751X19500155
https://doi.org/10.1142/S0217751X19500155
https://doi.org/10.1140/epjc/s10052-018-5997-4
https://doi.org/10.1103/PhysRevD.42.1527
https://doi.org/10.1103/PhysRevD.42.1527
https://doi.org/10.1103/PhysRevD.55.7067
https://doi.org/10.1103/PhysRevD.55.7067
https://doi.org/10.1103/PhysRevD.93.056008
https://doi.org/10.1103/PhysRevD.93.056008
https://doi.org/10.1103/PhysRevD.99.114022
https://doi.org/10.1103/PhysRevD.99.114022
https://doi.org/10.1016/j.physletb.2019.01.025
https://doi.org/10.1016/j.physletb.2019.01.025
https://doi.org/10.1140/epjc/s10052-018-6075-7
https://doi.org/10.1140/epjc/s10052-018-6075-7
https://doi.org/10.1103/PhysRevD.97.073006
https://doi.org/10.1103/PhysRevD.97.073006
https://doi.org/10.1007/JHEP11(2017)147
https://doi.org/10.1007/JHEP11(2017)147
https://doi.org/10.1103/PhysRevD.97.074028
https://doi.org/10.1103/PhysRevD.97.074028
https://doi.org/10.1103/PhysRevLett.116.052001
https://doi.org/10.1103/PhysRevLett.116.052001
https://doi.org/10.1103/PhysRevD.95.111102
https://doi.org/10.1103/PhysRevD.95.111102
https://doi.org/10.1103/PhysRevD.92.096009
https://doi.org/10.1103/PhysRevD.92.096009
https://doi.org/10.1103/PhysRevD.97.116015
https://doi.org/10.1103/PhysRevD.97.116015
https://doi.org/10.1103/PhysRevD.98.073003
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.25.1944
https://arXiv.org/abs/1604.04208
https://doi.org/10.1016/0550-3213(79)90244-X
https://doi.org/10.1016/0550-3213(79)90244-X
https://doi.org/10.1103/PhysRev.62.438
https://doi.org/10.1016/0550-3213(84)90231-1
https://doi.org/10.1103/PhysRevC.56.1099
https://doi.org/10.1103/PhysRevC.56.1099
https://doi.org/10.1103/PhysRevC.65.065204
https://doi.org/10.1103/PhysRevC.65.065204
https://doi.org/10.1103/PhysRevD.77.074008
https://doi.org/10.1103/PhysRevD.77.074008
https://doi.org/10.1103/PhysRevD.18.4187
https://doi.org/10.1103/PhysRevD.20.768
https://doi.org/10.1103/PhysRevD.20.768
https://doi.org/10.1016/S0146-6410(00)00109-5
https://doi.org/10.1016/S0146-6410(00)00109-5
https://doi.org/10.1103/PhysRevD.54.6811
https://doi.org/10.1103/PhysRevD.54.6811
https://doi.org/10.1103/PhysRevD.95.014023
https://doi.org/10.1016/j.physletb.2017.11.062
https://doi.org/10.1016/j.physletb.2017.11.062
https://doi.org/10.1103/PhysRevC.72.035201
https://doi.org/10.1103/PhysRevC.72.035201

