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The hadronic weak decays of A, are studied in the framework of a constituent quark model. With the

combined analysis of the Cabbibo-favored processes, A, — Ax™, >0zt and Tt7°, we confirm that the
nonfactorizable transition mechanisms play a crucial role in the understanding of their compatible
branching ratios. We emphasize that the SU(3) flavor symmetry breaking effects, which is generally at the
order of 1-2%, can be amplified by the destructive interferences among the pole terms in the diagrams with
internal conversion. Some contributions are sensitive to the spatial distribution of the scalar-isoscalar
light-quark sector in the A, and its overlap with the light quarks in the final state hyperon. Namely, a

compact diquark configuration is disfavored.

DOI: 10.1103/PhysRevD.102.073005

I. INTRODUCTION

The hadronic weak decays of charmed baryons have
served as a probe for QCD factorization. However, for a
long time, due to the lack of precision measurements in
experiments, crucial questions on the decay mechanisms
have not been fully understood. In particular, it is not easy
to calculate the contributions from nonfactorizable had-
ronic effects and evaluate the role played by the color
suppressed processes. Early theoretical studies of these
processes based on different models can be found in the
literature, for instance, algebraic techniques [1-4] which
parametrized out typical amplitudes on the basis of sym-
metry considerations, and quark models [5-7] which
calculate certain processes using explicit constituent wave
functions. Interestingly, these prescriptions did not explic-
itly consider contributions from the color suppressed
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transitions, which were generally believed to be small.
In recent years other methods were applied to the study of
the hadronic weak decays of charmed baryons, such as the
topological diagram approach [8], QCD sum rules [9], and
spin-angular momentum structure analysis [10]. In addi-
tion, the weak decays of heavy baryons have been analyzed
in the framework of SU(3) flavor symmetry [11-18].
Within this approach, one can relate all the relevant decay
channels together and provide an overall systematic
description of these processes. Predictions can then be
made for those channels which have not yet been measured.
Initiated by the recent experimental progress on the A,
decay measurements, the current-algebra approach is also
used to revisit the A, decay in the MIT bag model [19]. In
this approach, the implementation of flavor symmetry is
based on the assumption of factorization, while the effects
of nonfactorizable processes are absorbed into some
universal parameters. For the factorizable processes it is
then assumed that the perturbative QCD (pQCD) should be
the dominant dynamics.

Qualitatively, given that the mass of the charm quark is
about 1.5 GeV, it is not obvious that the decay of a charm
quark into three light quarks should be dominated by the
pQCD contributions, although the weak decay is generally
a short-distance process. The quarks emitted by the weak
decay carry rather low momenta, thus, their hadronization
should include significant effects from final-state interac-
tion. Namely, the color-suppressed transitions and pole
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terms both cannot be neglected if they are allowed by the
quantum numbers. With the availability of high-precision
measurements [20,21], these controversial questions can be
possibly addressed in an explicit quark model calculation.
This motivates us to reinvestigate the hadronic weak decays
of the charmed baryon A.. Broader issues about the A,
decays can be found in the recent literature. See, e.g.,
Refs. [22,23] and references therein.

As the first step for a systematic quark-model descrip-
tion, we study the two-body hadronic decays of A into Az
and Xz which are the Cabbibo-favored processes. Our
calculation includes both the factorizable process of direct
pion emission and the processes that cannot be factorized.
The latter ones include the color-suppressed transitions and
pole contributions due to the flavor internal conversion. By
explicitly calculating these processes, we demonstrate that
their contributions cannot be neglected and their impact can
provide useful insights into the effective constituent quark
degrees of freedom in the quark model.

This paper is organized as follows. In Sec. II the
nonrelativistic quark model framework is presented. The
numerical results and discussions are given in Sec. III, and
a brief summary is given in Sec. IV. In the Appendix,
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FIG. 1.

details are supplied for the quark wave functions and
transition amplitudes.

II. FRAMEWORK

In this paper we focus on the hadronic decays of
A, = Art, 72, and £*z° which are all Cabbibo-
favored processes. At leading order, there are two typical
processes contributing to the weak pionic decays. One is
the direct weak emission of a pion, and the other is the
quark internal conversion inside the baryons. For the
second type of processes, the pion is emitted by strong
interaction vertices. The transitions involve the elementary
weak transformations of ¢ — s and d — u or ¢ — sdu.
These transition processes are illustrated in Fig. 1, where
(a) is the direct pion emission (DPE) process, (b) is the
color suppressed (CS) pion emission, and (c)-(f) show the
quark internal conversion processes. For Figs. 1(c)—(f)
the main contributions to these internal conversion proc-
esses should be via the intermediate pole terms. For these
processes, the quantum numbers of intermediate baryon
could be 1/2" for the parity-conserving (PC) process or
1/2~ for the parity-violating (PV) one.
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Ilustrations for the two-body hadronic weak decays of A, into Az and Z°z* at the quark level. a.) Direct pion emission

(DPE) process, b.) Color suppressed (CS) pion emission, and (c)-(f) Quark internal conversion processes.
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Some qualitative features can be learned from these
transition processes. Figure 1(a) is a typical factorizable
process and calculable in pQCD. In contrast, all the other
diagrams are nonfactorizable and dominated by nonpertur-
bative mechanisms. If Fig. 1(a) were the dominant decay
mechanism for the A, the branching ratio for A, — Az™
should be much larger than those for A, — Xz, as the ud
pair is spectator. However, the experimental branching ratios
for A, = Az and Zrx are very similar, with branching ratios
(1.30 £ 0.07)% for A. — Az, (1.20 +0.07)% for A, —
207+ and (1.2540.10)% for A, — 2% [24]. This is a

|

strong evidence for the non-negligible contributions from
those nonfactorizable processes in Figs. 1(b)—(f). By explicit
calculations of these contributions in the quark model, it is
interesting to compare the relative strengths among these
amplitudes and learn about the roles played by the color
suppressed [Fig. 1(b)] and pole terms [Figs. 1(c)—(f)].

A. Convention

Before proceeding to the detailed calculations, we define
the convention for the quark and antiquark fields:

a0 = [ (dip (m) S )b p)e ™ + 0,0 (),

27)3/2 F

N

1= [ G (m) S )bl e)e + 7, 0)d (e, 1)

pO

N

The commutation and anticommutation relations of the creation and annihilation operators are given by:

{b,(p). b} (p")} = {d,(p).d'(p')} = 6,¢5°(p —P'). (2)

The normalization of spinor is u; (p)uy (p) = vl (p)vy(p) = (p°/m)8,,. It should be noted that the spinor normalization must
match the convention of the quark (antiquark) field in order to keep the proper normalization of the quark (antiquark) field.
In this work the mesons and baryons are expressed with mock states [25], respectively,

|M(PC)J,JZ> = Z <L7LZ;S7 SZ

S.S.
J.J2) /dpldP253(P1 +P2 —Pc)lPN,L,L,(Pth))(sm

SZ’LZ;Ci
1)
X \C/l%z ¢i1,izb;‘,il,slypldzz‘izjzm|O>,
S.S.
|B(PC)“Z> . Z ok S ST / dpldpzdp363(p1 TP Ps _Pc)‘PN,L,LZ(P1,P2,P3))(s1.s"2,ss
SZ'LZ;Ci
€C CcHC I } I
X \1/25 i inisPe, i s 9y Pirin s pyPesisssps |00 5

where ¢;, s;, i;, (j=1,2,3) are color, spin, and flavor
indexes, respectively; yy ; ;_is the spatial wave function
which is taken as an harmonic oscillator wave function; y5-5:
is the spin wave function; ¢ is the flavor wave function, and
Oc.c,/ V3 and €cieres/ /6 are the color wave functions for the
meson and baryon, respectively. The detailed expressions of
these wave functions are given in Appendix B. The
normalization condition for the mock states are

<M(PIC)J,JZ|M(PC)J.JZ> = 53(P/c _Pc)7
<B(PIC>J,J:|B(PC)J,JZ> = 53(1)2 _Pc)' (4)
In the above Egs. (3)—(4), p; denotes the single quark

(antiquark) three-vector momentum, and P, (P.) denotes
the hadron momentum.

Considering the two-body decay A — B+ C, the §
matrix in our framework is given by:

S =1-2xi8*(P, — Py — Pc)M, (5)
with
8(P, — Py — Po)M = (BC|H,|A). (6)

Under this convention and by integrating over the phase
space, the decay width is finally written as:

lk|EgEc 1 2
M=, (7
i, 2, 1M ()

spin

I'(A— B+ C) = 8x?

where k is the three-momentum of the final state meson
(e.g., the pion) in the initial state rest frame, Ep and E. are
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the energies of the final-state particles B and C, respec-
tively, and J, is the spin of the initial state.

B. Nonrelativistic form of the effective Hamiltonian

In this work we adopt a nonrelativistic formalism. The
weak decay probes the short-range dynamics inside
hadrons, where a simple quark model is questionable.
But we believe that most features of the short-range
dynamics are parametrized and absorbed into the quark
wave functions. Also, the hadronization involves long-
distance dynamics, and it is consistently accounted for by
the overlap of the initial- and final-state wave functions.

1. Operators of the weak interaction

The effective weak Hamiltonian (i.e., the form of four-
fermion interactions) is generally written as [26-28]:

Gr PP
Hy = [aes sy ®

sin96><d>
—sinf- cosf¢ s)’

—sinf¢ u
r=rs) )
cos ¢ c

©)

where
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J(x) = (a j)(coséc
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FIG. 2. The quark level diagram for the color suppressed
transition process with quark labels.

According to its parity behavior under parity, Hy, can be
separated into a parity-conserving and a parity-violating
part,

Hy = HEC + HEY

where

PC _
HW

/dx],, X)) + 3, ()75 ()],

HEY :7g/dx[j;(x

This Hamiltonian contains the tree-level operators and
can be explicitly reduced into nonrelativistic forms for
the 2 — 2 internal conversion and 1 — 3 emission proc-
esses, respectively. For the Cabbibo-favored 2 — 2 quark
transition process, the relevant term is

)js () + s, () @) (10)

Hyaon = %vudvm@m; 0= =) a1 (1 = 75)ul)a@) (1 = 75)u(p,). (11)

The creation and annihilation operators are omitted here and in the follow-up formulas. The nonrelativistic expansion gives:

G

H€VC2—>2 F ud cs 3 Za
\/§ i#]
G

H€VV2—>2 = F ud cs Z
V2 7

x{—<<s;,i|aisz,i>—< s lojls: >>K

pi P\ _ (P _P

+i((siloilsi) x (s iloj

J

ol

where s; and m; the spin and mass of the ith quark,
respectively; the subscripts i and j (i, j = 1,2, 3 and i # )
indicate the quarks experiencing the weak interaction;

a; and Bj are the flavor-changing operators, namely,

&)+ p,—pi—p)(1

— (stileils.) (s lejls2 )

6 o)+, —pi—p))

14 p/ + Pi _ p;
2m; 2m 2m) 2m;

[

}
(=)

a; 'cj=06;;8; ,B<-+)dl- = o;ju;; V,q and V. are the Cabbibo-

i ijois
Kobayashi-Maskawa (CKM) matrix elements.

The 1 — 3 transition operator can contribute to the
direct pion emission and color suppressed processes.
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FIG. 3. The internal flavor conversion processes. The solid circle stands for the quark-pion vertex. (a)-(b) A-type pole terms and (c)-(d)
B-type pole terms.

Figure 2 illustrates the decay process of the CS at the = DPE processes make a difference between these two
quark level. In contrast, as for the DPE process, the light  processes. The calculation details will be given in next
quarks 4 and 5 form the pion and the other final quarks subsection. Here, we concentrate on the transition oper-
form the baryon of the final states. Apart from the color  ator for Fig. 2 which can be obtained with the explicit
factor, the different arrangements of quarks in the CS and  quark labels:

|

G p
HW. 1-3 — \/g Vudvcs (2”

= Hyf\ s+ HY s (13)

E 8 (ps — P —Ds —P4)ﬁ(1’/3’m§)7;4(1 —v5)u(p3, m3)i(ps, ms)y* (1 —ys)v(ps, my)

where f is a symmetry factor. It takes a value of 3 in the DPE process and 2 in the CS process. The parity-conserving and the
parity-violating parts are respectively written as

H€V¢1—>3 _%V"d “ (2 )%5 (3 —ps' —p4 —Ps){<s/31S3><S5§4|6|0> (Zp—55+zp—n;>
_ [(211;3 ,+2p—:> (s5/1]s3) — i(s}|o]s3) x <2p—n;—;nig>} (s554|6]0)
— (s3l6]s3) [(st+2’"‘4) (5554 ]110) — i(s554]e|0) x 2”’7‘;_;’,7515)]
(st (24 + 22 ) sl
Hiyis = %devw (Zﬁ)z 8 (p3 =Py —Pa —Ps)(—(s51]53) (s554[1]0) + (s’3|6|s3><s5§4|6|0))&g'>?§,, (14)

where 54 stands for the spin of particle 4 which is an antiquark. In order to evaluate the spin matrix element including
an antiquark the particle-hole conjugation [29] should be employed. With the particle-hole conjugation relation
|j,—m) = (=1)7*"|j, m), the antiquark spin transforms as follows: (1| = ||} and (]| = —|1). I is the dimension-two
unit matrix; @) is the flavor operator which transforms ¢ quark to s and I’, is the isospin operator for the pion production
process. It has the form of
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for n ",

. bib,
- { (15)

~J5buby  for 2°,
for Cabbibo-favored processes and will act on the ith quark
of the initial baryon after considering the pion flavor wave
function. As for the direct pion emission process, it is also a
1 - 3 weak interaction process. The operator for this
process has the same form as for the color suppressed
process except for the symmetry factor and delta functions.
Without causing ambiguities the operators for both 2 — 2
and 1 — 3 processes are labeled as Hy,. Their differences
are taken into account in the detailed calculations.

2. Quark-meson couplings in the chiral quark model

For the production of a pion in the internal flavor
conversion processes, the intermediate baryon pole terms
become dominant. This allows an implementation of the
chiral quark model [30] for the pion production via the
strong interaction vertices. The chiral quark model has been
often applied to the production of light pseudoscalar
mesons in various processes [31-33]. In the chiral quark
model the pion is treated as a fundamental particle. This
treatment will simplify the calculations of processes in
Figs. 1(c)-(f) by their equivalence of Fig. 3.

The tree-level quark-meson pseudovector coupling can
be deduced from the chiral quark model [30] and the
Hamiltonian can be written as:

iy =3 / dxfim@(x)yf;yg'qj(x)awm(x), (16)

where f,, is the pseudoscalar meson decay constant; g;(x)
is the jth quark field in the baryon and ¢,, represents the
meson field. In the nonrelativistic limit the above equation
can be expanded in the momentum space as:

1 1 G‘Pj; 6~pj> ]
Hy=—— S o, (22 )~k
\/(27r)32a)m;fm { <2mf 2m;
x 1 (o +  — ), (17)

where w,, and k are the energy and momentum of the
pseudoscalar meson in the rest frame of the initial state,

respectively; p{ and pjc are the initial and final momentum
of the jth quark, respectively; and 11, is the corresponding
isospin operator for producing the pseudoscalar via its
interaction with the jth active quark within the baryon. For
the production of the pion the isospin operator is written as:

biby for 7,
H=/{ bib, for 7+, (18)
J5bub, = bjby]  for 2°,

where bl' 4 and b, , are the creation and annihilation
operators for the u and d quarks.

C. Amplitudes

In this section, we formulate the charmed-baryon decays
with the operators and wave functions provided in the
previous sections. The relevant transition processes have
been given in Fig. 1. For convenience we label the initial
charmed baryon and final baryon as B.(P;;J;,J;) and
By(Py;Jy,J3), respectively. The pion is labeled as M, (k).
Our calculation is performed in the rest frame of A, thus
we have P, = —k.

At the tree level the nonrelativistic operators can be
written as the following form

Hy=CY 0, (19)

n

where C is an overall factor and O” is the direct product of
flavor, spin, and spatial operators:

On _ Oﬂavor O;pin O;patial‘ (20)

The transition matrix element can then be calculated in the
quark model:

(B'(Py3J 7. J7)|04|B(P: 1, J7))
Aflavor SpS7 1 2 spin N
- 101} |0 )
[{dr|O™|p) (x s

S},L};S;,L;

o <‘PNf,Lf,L~;.

Ni.L;.L:
r i )]

|Ozpat1al|lp ) (21)
where Jj; = S, + L}, and Zs«;,L;;sg.L; -] is a short-
hand notation for the Clebsch-Gordan sum; ¥, y, ¢ denote
the spatial, spin, and flavor wave functions, respectively, in
the nonrelativistic quark model [34,35]. Also, we take the
SU(6) spin-flavor wave functions in the calculation. It
should be noted that in reality the SU(6) spin-flavor
symmetry is broken due to the spin-dependent interactions.
But as discussed in the literature [34,36] the low-lying
baryons can still be reasonably described by the SU(6)
wave functions as the leading approximation. In the
processes of interest here the quark model uncertainties
appear as an overall effect and can be absorbed into the
quark model parameters. By adopting the SU(6) wave
functions for the final state light baryons we can signifi-
cantly simplify the calculations with the main conclusions
intact.

1. Amplitudes of the direct and color suppressed
pion emission processes

We now present some details on how to calculate these
matrix elements in our framework. The DPE shown in
Fig. 1(a) can be expressed as:
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T T

Mppg " = (By(Py3J . Jp)M (k)| Hyy 1 o5|B (P T3, T5)).

(22)

For the DPE process, the momentum conservation requires
Py =p, +p, +py and k = ps + py. This is guaranteed by
|

LyLLiLy

A <patial
IppE = <1//;z(k)q’Nf,Lf,L} (P f)|0§$,a{113

the delta function in Eq. (23) with the spatial wave
functions included. The calculation of flavor and spin part
can be found in [27,37]. The general form of the spatial
wave function convolution that appears in the calculation
for the DPE is written as

)I¥n, ;)

= / dp1dpzdp3dp3/dp4dps‘l’;f‘LfVL;(p1,pz,psf)53(Pf —Pp1 —P2—Dy)

X WS,O,O(I’47P5)53 (k—ps—pas)

0spatial

D ¥N,L.L:(P1:D2:P3)5 (P; —pi = P> = P3)

W.1-3
X 53(P3 —Ps—DPs —D3), (23)
where Osu‘;fl{h:% ;) is the function of quark momentum p;, such as ps/(2ms) + ps/(2my) or just 1 for H}Y, .
Since the DPE process is factorizable, its amplitude can also be written as:
M _CE oy (), (i (1= ) d|O)B (P, J 1 T 57, (1 = 75)e|Ba(Po J, J5)) (24)
DPE \/E udV cs ot WY 75 f\E ol Ty }/ﬂ 75 i\LivdisJi))s

where the pion creation is described by the axial current via

(M (k) luysy*d|0) = if zp*, (25)

where p# is the four momentum of z* and f is the pion
decay constant. This form indicates that the DPE term is
proportional to the pion momentum. In the hadronic weak
decays of light octet baryons, the contribution from the
DPE is much smaller than those from the pole terms [27].
This can be understood by the relatively large momentum
carried by the emitted pion and relatively large suppression
from the off-shell pole propagators. Within our framework,
by distinguishing the pole terms, we describe the color-
suppressed processes as contributions from the local

|

I FLELL
cs

|
current-current interactions that directly produce the pion
after the weak transition. This allows us to compare the
contributions between the DPE and CS processes.

The expression of the CS amplitude is similar to that of
the DPE process:

Jf,f};-]i,ff

Mg = <Bf(Pf§Jf7sz)M(k)|HW,la3|Bc(Pi;Ji’]§)>’

(26)

Note that, for the CS process the momentum conservation
requires P; = ps +p, +py and k =p; +p,, which is
different from the case of DPE. The spatial integral has
the following expression:

= <l//ﬂ(k)lPNf,Lf,L}(Pf)|O;II;?F§3 )¥w,.L.:(Pi))

= /dPlszdP3dP3’dP4dP5‘P7v/,L,,L; (175’p2’p3’)53(Pf —Ps —P>—D3)

X W(*),O,O(Pl,m) x & (k —p, —P4)0
X &5 (p3 —ps —ps —Py)-

Itis interesting to analyze the differences between these two

. ) Ly L3L; L Ly 3L, L

integral functions 7, and /s """ For these two
processes, apart fromthe 1/N . suppression on the CS process,
where N . is the number of colors, the difference between the
spatial configurations in their wave function convolutions

reflects the difference caused by the quark correlations. Note

spatial

Wie3 )Py, L2 (1 P2,P3)8 (P; = p1 — Py —P3)

(27)

|

that the branching ratios for A, — Az, 2%+ and =¥ 7% are at
the same order of magnitude. It implies the importance of
nonfactorizable mechanisms which should become non-
negligible in all these decay processes. Nevertheless, a
coherent description of these processes can also provide hints
on the nature of the light ud diquark structure.
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2. Amplitudes of baryon internal conversion processes

The baryon internal conversion processes shown in
Fig. 1(c)—(f) or Fig. 3 are also called pole terms. They
are two-step processes with the baryon weak transition
either preceding or following the strong pion emission.

included in one of the operators given in the previous
section. Taking A-type process as an example, we can write
the amplitude for the baryon internal conversion processes
as

. Tpd it T T 505
Because of the symmetry of the wave function, the Mpg/a" = Mpgape + Mpoie/apy » (28)
processes shown by Fig. 3(a)—(b) (labeled as A-type pole
terms) or (c)-(d) (labeled as B-type pole terms) can be where
|
Ty 500 . i
porearc = (By(Pid . J7) | Hy| By (Pys J;. J5)) (B (Pys 11 T7) [ HY o | Be(Pys J1. T7).

WAV

T,
Vs, —Mmp, +15"

i

Myl apy = (Bf(Py3Jy, J7) | Hy By (Pis T3, )

F <B/ (P ‘]t?J:Z)|HW2—>2|BC( Jw":» (29)

Pp, —mp,

in which |B,,(P;;J;,J3)) and |B,,(P;;J;,J3)) denote the intermediate baryon states of J© = 1/2% and 1/27,
and H, means 1% is taken for H,,. In principle, all possible intermediate baryons, namely resonances and continuum states,
should be included as the intermediate pole contributions for both parity conserved and parity violated processes [19].
However, the main contributions come from the intermediate states with low orbital momentum and energy close to their

respectively,

on-shell mass. For this reason, we only consider in this study the ground states and first orbital excitations.
For the intermediate baryon states, the nonrelativistic form for their propagators is applied:

1

2m

p—-m+il/2" p>—m>+iTm’

(30)

It should be cautioned that this treatment will bring uncertainties into the theoretical results since the intermediate states are
generally off-shell. However, such uncertainties can be absorbed into the quark model parameters for which the range of the

favored values by experimental data can be estimated.

Then, the parity conserved transition matrix element (B(p')|H%%_,|B.(p)) can be directly expressed as, considering the

simplified form of H{S,

(BP)HEG, o BP) = TV iV

A

x @ 1’P2»I’3) ﬂ

where ®(py.p,.p3;) and ®(p},p).p}) are the total wave
function of the initial and final state baryon, respectively.
Because of the symmetry of the total wave function, we can
fix the subscript i and j to be 1 and 2 to compute the
transition matrix element. The final amplitude will equal to
the result multiplied by a symmetry factor 6. Similarly, as
we did before, we can obtain the transition matrix element
(B(P)|HEY,_,|B.(P)) and (B(P')|H,|B.(P)).

ITII. NUMERICAL RESULTS AND DISCUSSIONS

A. Parameters and inputs

Before presenting the numerical results, we clarify the
parameters and inputs in our calculation as follows:

We adopt the same value m, = 0.35 GeV for the masses
of the u, d and s quarks. Taking the same mass for both
nonstrange and strange quarks means that we take the

/ dp dp>dp / dp)dpdp (P, + s — p1 — p2)5 0y — )

(1 —6;-62)®2(p1.p2.p3), (31)

|

SU@3) flavor symmetry as a leading approximation.
Accordingly, we describe the light baryon with the same
oscillator parameters o, = o), = 0.4 GeV which is consis-
tent with Refs. [33,38]. This treatment is based on an
empirical consideration of compromising the model uncer-
tainties and simplifications. In the nonrelativistic quark
model SU(3) flavor symmetry breaking effects explicitly
appear in the eignvalues of the Hamiltonian via the mass
term and mass-dependence in the kinetic energy and in
the potential. Meanwhile, the harmonic oscillator strength
for the correlations between the nonstrange and strange
quarks will also be different from that for the nonstrange
quarks. In Ref. [34] the harmonic oscillator strength
difference between s =0 and s = —1 states due to the

SU(3) symmetry breaking is expressed as @, — w; = o[l —
(2x+1)/3] with x=~m,/,/m; =0.6 is adopted.
However, as shown by Ref. [34] and later calculations
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TABLE L

The baryon masses and widths taken from PDG [24] in the calculation. Only the central values of the masses and widths are

listed. Note that the J© = 1/2~ states for both charmed and strange baryons have not been well determined. We assign :°(2806) and
(2792) for the charmed states and **(1620) and X**(1750) for the strange baryons with J© = 1/2".

Particles A A, 0 =t =H(1620)  =H(1750) X0 x50 e e
1J) 0(1/27) 0(1/2%) 1(1/2%) 1(1/2%)  1(1/27)  1(1/27)  1(1/2%) 1(1/27)  1(1/2%)  1(1/27)
Mass (GeV) 1116 2286  1.193  1.189 1.62 1.75 2453 2806 2452 2792
Width (GeV) e o 0.050 0050 000183 0072 00046  0.062

(see review of Ref. [36]), the harmonic oscillator strength
difference is actually small. With w, = @, in the equal-
mass treatment the same quality in the description of low-
lying light baryons can be achieved. This indicates that the
SU(3) flavor-symmetry breaking effects on the baryon
masses are leading order contributions but are subleading
ones on the wave functions. It leaves the leading SU(3)
flavor-symmetry breaking effects to be manifested by the
differences among baryon masses in the pole terms, and
allows us to make the approximation of adopting the
physical masses and widths in the propagators for the
intermediate states.

We take the charm quark mass m, = 1.5 GeV and adopt
for the wave function of the charmed baryon the parameters
a,=045GeV and a; = [3m./(2m, + m.)]"/*a,. The
explicit expressions are given in Appendix B. The pion
wave function is also expressed as a Gaussian with a
parameter R = 0.28 GeV. Since the pion is extremely light
and associated with the spontaneous chiral symmetry
breaking, our treatment is empirical and some intrinsic
uncertainties are unavoidable. However, we would like to
stress that the effects arising from the pion wave function
can be examined by varying the parameter R within a
reasonable range.

The intermediate states of the pole terms contribute
differently in these three decay processes. To be more
specific, we note that both ¥ and £* will contribute to the
A-type pole terms of all three decays. In contrast, 2 and
>0 will contribute to the B-types pole terms in A, — Az~
and A, — Xz, For the intermediate states in A, — Xtz
one notices that both £ and Z** can contribute. In our
calculation the intermediate states of pole terms are as
follows:

(i) ZT(1/2%), 2 (1620)(1/27) and Z**(1750)(1/27)

for the A-type pole terms in all three channels;

(i) X2(1/2%) and =:°(1/27) for the B-type pole terms

in A, - Azt and A, = X7t

(iii) ZF(1/2%) and ZE*(1/27) for the B-type pole terms

in A, - Zta°.
Although the quantum numbers of X%(2806) and X} (2792)
as the first orbital excitation states with J© = 1/2~ have not
yet be measured in experiment, their masses are consistent
with the quark model expectations [35]. Their masses are
adopted from the Particle Data Group [24] and listed in
Table I.

For those transitions involving the intermediate pole
terms the intermediate states are off-shell in the kinematic
regions of consideration. We leave the off-shell effects to be
described by the wave function convolutions which even-
tually play the role of an interaction form factors. The
internal conversion will then keep the energy and three-
momentum conservation, respectively, as shown in
Eq. (31). For instance, in Fig. 3(a) the amplitude for
X, — X is defined at the mass of X. which means that
Es = my_and Py = O in the ¥, rest frame. The propagators
also take off-shell values as required.

B. Numerical results and analyses

Comparing the decay channels of Az and X7z, one of the
interesting features is that the Az channel allows the direct
pion emission while it is forbidden in the X°z* channels.
This can be directly recognized because the ud quarks are
spectators in the factorizable transitions where the ¢ quark
decays into s + 7. Since the initial ud diquark is in color 3
with (1,4, J,q) = (0,0) the A, cannot decays into X'z " via
the DPE transition. For A, — ¥z it is suppressed by the
neutral current interaction. This makes the combined
analyses of these three channels useful for disentangling
the underlying mechanisms. Note that the experimental
data for the branching ratios of these three channels are
compatible. It suggests that the DPE process should not be
the only dominant contribution and other transition mech-
anisms must be considered. This should be a direct
evidence for the non-negligible role played by nonfactor-
izable processes in the nonleptonic decays of A.. Some
detailed formulations are given in Appendix C.

We also note that these three decay channels share a
similar form for the pole terms and for the color suppressed
term. The reason is because the final state A and X belong
to the same SU(3) flavor multiplet. Thus, their spatial wave
functions are the same at the leading order of the SU(3)
flavor symmetry. The amplitudes of the pole terms or color
suppressed term will be distinguished by the flavor tran-
sition factor. Note that the measured branching ratios of
these two channels are almost the same. It indicates that
they share the same mechanisms via the nonfactorizable
transitions.

Taking the color suppressed process as an example, the
flavor transition elements are given Table II. The only

nonvanishing element is (¢, i 71l#\ ). Note that in the

073005-9



NIU, RICHARD, WANG, and ZHAO

PHYS. REV. D 102, 073005 (2020)

TABLE II. The flavor matrix elements for the CS process.

Processes (hlas T, 1A ) (@alal Tl ¢h) (@8las T, 1104 ) (#51a7 T 104)

A, = 207" 0 -1/3 0 0

A, = Zta0 0 -1/3 0 0
TABLE III. The spin matrix elements for the parity-conserving transitions in the CS process. Note that the spin wave function of pion
is omitted.
o Q?/z.—uzwsmn M/z.—1/2> <)(/11/2.—1/2|OSPin |)(/1)/2,—1/z> M/zi—l/z‘owin |)(/11/2.—1/2> <)(€/2._1/2|OSpirl M/z-uz)
(5411]53) (555410 [0) z 3 L 0
(s30:|53)(s554(110) -3 0 0 =
(s4lols3) x (s5541610)). 0 3 -2 0

TABLE IV. The spin matrix elements for the parity-violating transitions in the CS process. Note that the spin wave function of pion is

omitted.

o <)(/11/2,—1/z|(95pin M/z,—1/z>

i1 20 1)

Wi p Ot 10 X a1 o O 1 1)

(s5]11s3) (s55411]0)
(s3lox]s3)
(s3loy]s3)
( )

s5lo.|s3) (s554]0,|0)

5554]0,[0)

“fofolog |
Sksksk- o

(
(s554|0y[0)
(

S o O
S

N

parity-violating process the contributing flavor operator is
between the ¢, and qﬁ’;o configurations. This means that

the parity-violating amplitudes can actually probe the
structure arising from the ud diquark-type of correlations
in the initial A. wave function. For the parity-conserving
process the nonvanishing transition matrix elements in the
spin-flavor spaces are via p — p type of transitions (The
A — 1 type is suppressed by the vanishing of the A-type
wave function in the initial A., if one adopts the quark
model). These features will allow us to examine the ud
correlation effects by the combined analyses of these three
channels.

In Tables III and IV the spin matrix elements for the
parity-conserving and parity-violating operators are listed,
respectively, for different spin configurations. Note that the
nonvanishing transition matrix elements should combine
the averaged values in both flavor and spin space.

Another feature distinguishing the factorizable DPE
process and nonfactorizable processes is that the ampli-
tudes have different dependence on the pion wave function.
As mentioned before, we introduce the pion wave function
using harmonic oscillator in our calculation. Although this
is a very coarse approximation, it demonstrates the relative
amplitude strengths between the factorizable and non-
factorizable transitions change in terms of the pion struc-
ture. As shown in Appendix C, the amplitude of the DPE
process for A, — Az is proportional to R3/2. In contrast,
the dependence of the nonfactorizable terms on the R in the
color suppressed process is very different and more
complicated. It means that the interference between the
factorizable DPE process and nonfactorizable processes is
indeed a nontrivial issue that should be investigated.

In Table V we show the calculated amplitudes for the
transition element with J; = J; = —1/2 for each type of

TABLE V. The amplitudes with J} = J; = —1/2 for different processes and the unit is 10~ GeV~'/2. Amplitudes Al1(PV) and
A2(PV) are given by the parity-violating intermediate states X**(1620) ([70,28]) and £**(1750) ([70,48]), respectively.

Processes  A(PC)  AI(PV) A2(PV) B(PC) B(PV)  CS(PC) CS(PV) DPE(PC) DPE(PV)
A, — Art =1650 0.74-0.023;i —2.57+0.10i 22.33+0.021i —10.72-0.33i 350 —4.17 —4247 2407
A, —» X0zt 19.67 —321+0.10i —2.23+0.090i —40.73 —0.040i 19.16 +0.60i —6.04  7.53 0 0

A, > Xt 19.64 —3.15+0.098i —2.19+0.088 —40.65—-0.10i 1928 +0.52i —6.04  7.51 0 0
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FIG. 4. The spatial wave function convolutions of the DPE process (blue line) and CS process (brown line). The left panel shows the
results with @, = o, = 0.45 GeV and the right one with a, = a, =2 GeV.

processes as a comparison. It shows that the parity-
conserving amplitudes of the pole terms are larger than
the parity-violating ones. Moreover, it shows that the
interference between the A-type and the B-type processes
are destructive. With the vertex couplings determined in the
quark model this sign difference can be attributed to the
signs of the propagators in these two types of processes.
Further interferences are provided by the CS process for all
these three channels. In the Az" decay channel the CS
amplitude is further suppressed in comparison with the
DPE amplitude, which is smaller than 1/N,=1/3.
However, if one combines the pole terms which are also
nonfactorizable and color-suppressed, the 1/N. suppres-
sion factor seems still to hold. It shows that the interfer-
ences between the factorizable DPE and nonfactorizable
processes lead to the compatible branching ratios for these
three decay channels.

The phenomenological impact of the correlation among
the light ud quarks can be investigated here. It is obvious
that the convolution of the spatial wave functions depends
|

on the structure of the hadrons that are involved. The
question is whether there is a spatial correlation between
the u and d quarks forming a compact structure, or simply a
quantum-number correlation with their total spin and
isospin 0. This can be examined by varying the parameter
a, of the wave function parameter which describes the
relatlve distribution between u and d. For small a,,, one gets
a loose Gaussian, and for large a,, one approaches a
o-function.

For the transition processes of A, - Az", we can
compare the spatial integrals for the DPE and CS processes
and examine the ud diquark correlations. The results are
shown in Fig. 4. Note that the Fourier transformation of a
Gaussian distribution function is still a Gaussian, we
actually show the integrands in the momentum space with
all the momenta except for |p,| integrated out. Namely, we
define functions /g and Ipp as the results with all the

momenta except |p,| integrated out for L300 and L9590

DPE »
and with the operator O} "% = 1 in the Jacobi coordinate

LES(p,) = / dp,dp, / dp,dp),dp,5* (k —p, — ps)

X53< P —p;,—

L’ (p,) = / dp.dps / dp,dp,dp,5* (k — p4 — ps)

1
><53< —1p, +2p4+pp M,Pf zpﬂ pp>53(M‘1P +2p,1 p,—

X53< P —D;,—

where

2m 1
,qu + EPQ —P;; —P4> ‘Po,o.o(P,;»PA)TE;,O,O(P;wPﬁ)lPao,o(Pl D)

Cij +p - k> ‘{’0,0.0(PpaPA)lPS,O,O(P;nPﬁ)Tao.O (P4.P5)

3 ( My 1 3 (Mg 1 !
X O ﬁPi—i-zp,{—l—pp—Ih o ﬁpi"i'ip/l_pp M/Pf 2P,1+Pp

(32)

1 1

(33)
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TABLE VI
data [20,24] and other model calculations [4,39].

The calculated branching ratios (in %) of the A, decays in this work are compared with experimental

BR(A. —» Ax')

BR(A, — X0z1) BR(A, — Z*2%)

PDG data [24] 1.30 £ 0.07
BESIII [20] 1.24 +0.07 £ 0.03
SU@3) [39] 1.3+0.2
Pole model [4] 1.30 +0.07
Current algebra [4] 1.30 +0.07
This work 1.30

1.29 £0.07 1.24 +£0.10
1.27 £0.08 £ 0.03 1.18 £0.10 £ 0.03
1.3£02 1.3£02
1.29 £0.07 1.244+0.10
1.29 £0.07 1.24 +£0.10
1.24 1.26

M =2m, + m,,
P,‘ = + + )
Py P2 TP3 (34)
P, = P1-p2)/2,
Py = (mpy +mepy —2myp3)/M,
and
M = 3my,
Py =ps+p5+p2, (35)
P, = (ps—p2)/2,
Py = (ps +p>—2p5)/3.
for the CS process, and
M' = 3m,,
P; =p, +p,+pi,
f=P1 TP2TD3 (36)

P, = (pP1 —p2)/2,
P, = (p1 +p2—2p%)/3

for the DPE process, respectively.

Figures 4(a) and 4(b) correspond to two different values
of @, =045 and 2 GeV, respectively. As a further
simplification we also take aj, = @,, namely, the ud pair
with (I,4,J,4) = (0,0) in the light baryon has the same
spatial distribution as in the A.. It shows that with the
increase of a), = a,, namely, if the ud diquark becomes
more compact, the CS contribution will be significantly
suppressed compared to the DPE. In another word, the
present experimental measurement favors that the

TABLE VIIL
eITorsS.

correlation between the ud diquark to be as extended as
a conventional hadron size instead of a compact structure.
Otherwise, the branching ratio for the Az channel would
be much larger than that for Xz.

The branching ratios of our final results are given in
Table VI, where the PDG data [24], BESIII new result [20],
results based on the SU(3) flavor symmetry (SU(3)) [39],
pole model and current algebra [4] are also listed. It shows
that the center values of our results are close to the
experimental data within the conventional quark model
parameter space.

We also investigate the uncertainty sources by examining
the sensitivities of the branching ratios to the model
parameters which are listed in Table VII. The amplitude
of direct pion emission is proportional to R3/?, while the
dependence of R for the CS amplitudes is more complicated
and less sharp. A variation by 20% of the central value of R
leads to nearly 100% change of the calculated branching
ratio for A, — Az". Such a dramatic sensitivity also
indicates the dominance of the DPE process in
A. = Azt. In contrast, the impact of R in A, — X0z
and X*7° turns out to be much less significant. This
phenomenon is useful for examining the consistency of
the model parameters since the experimental data can
provide more stringent constraints on the model parameters.

One also notices the large uncertainties arising from the
parameters a, in the spatial wave function of the charmed
baryons. It suggests that the branching ratios are more
sensitive to the harmonic oscillator strengths than to the
constituent quark masses. This is because of the strong
dependence of the transition amplitudes on a,, in the wave

Uncertainties of the partial decay widths (in %) caused by the quark model parameters with 20%

Input (GeV) BR(A, —» Ax™)

BR(A, - 2071) BR(A, — Z*70)

m, = 0.35+0.070 1.30 £ 0.46
m, = 15+0.30 1.30 £ 0.011
o) = a, =04+0.08 1.30 £ 0.50
a, = 0.45 4 0.086 1.30 £ 0.41
R =0.28 +0.056 1.30 £ 1.01
Combined 1.30 £1.29

1.24 +£0.22 1.26 £0.23
1.24 +0.053 1.26 +0.053
1.24 +0.083 1.26 £ 0.082
1.24 +£1.30 1.26 £1.32
1.24 £0.10 1.26 £0.10
1.24 +1.33 1.26 £ 1.35
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TABLE VIII. The asymmetry parameter «' and its uncertainties
caused by the quark model parameters with 20% errors.

A= Axt A, > 202t A, > ZtA0
PDG data [24] —-0.91£0.14 —0.45£0.32
Pole model [4] —-0.95 0.78 0.78
Current algebra [4] -0.99 —-0.49 -0.49

This work —0.16 £0.27 —-0.46 +0.20 —0.47 +£0.19

function convolutions. Although the large uncertainties
caused by a, by varying 20% of the adopted value may
raise concerns about the quark model predictive power, this
could also indicate that the hadronic weak decay observ-
ables are sensitive to the quark model parameters.
Therefore, the hadronic weak decay processes may provide
a better constraint on the quark model parameters. Further
study of this interesting issue should be necessary to
provide a more conclusive statement.

We can also calculate the parity asymmetry parameter in
our model which is defined as

_ 2Re(4'B)

AP + 8P o

where A and B are the S and P-wave amplitudes,
respectively, defined at hadronic level. The hadronic level
transition amplitude can be expressed as

M'(B; = By + P) = iity(my, Py)(A — Bys)u;(m;, P;)
= My, (B; —> B+ P)

+ Mpe(B; = B + P). (38)
where the parity-violating and conserving amplitudes in the
rest frame of the initial baryon can be written as,

o JEr+m
My (B; = By +P) = idy [=0 ot (39)
E:+m c-P
My (B; — By + P) = iB, [—L—L;" Iy (40
pc(Bi = By +P) =i 2my XV E, (40)

By comparing the above amplitudes with the corresponding
quark model amplitudes we can determine A and B. Then
with the parity asymmetry parameter can be extracted:

—2Re[(Mpy)* M)l

P E +
Ml i+ M S

A

(41)

Namely, the amplitudes M, - /py can be expressed in terms

of quark-model formalisms. The detailed expressions
of M},C/PV are given in Appendix C. In Table VIII the

calculated parity asymmetries and uncertainties for these
three channels are listed and compared with the PDG
averaged values [24], pole model calculation and current
algebra treatment [4]. It shows that the result for A, —
>+ 70 agrees with the experimental data, while the value for
the Azt appears to have quite significant discrepancies.
Notice, however, that the Az+ channel is sensitive to the
DPE mechanism and the strong dependence of the pion
wave function parameter R can result in quite significant
uncertainties. As a qualitative estimation we find that &/ =
—0.16 = 0.27 caused by the quark model parameters with
20% and the error is larger than the other two channels.
This, again, indicates the strong interfering effects between
the DPE and nonfactorizable amplitudes. In contrast, the
uncertainties caused by R in the Xz channels are much
smaller due to the absence of the DPE process and relative
suppression of the CS term relative to the pole terms.

IV. SUMMARY

In this paper we investigate the two-body hadronic weak
decay mechanism of A, in the framework of the non-
relativistic constituent quark model. We first consider the
Cabbibo-favored processes A, — Az, X°z", and Z*°.
These processes are correlated with each other and exhibit
interesting features that can help disentangle the underlying
dynamics. On the one hand, the Az" channel allows the
DPE process which is factorizable and plays a dominant
role, while the DPE process is absent in the Xz channels.
On the other hand, these channels share some common
features due to the SU(3) flavor symmetry in their non-
factorizable transitions. With the availability of experimen-
tal data we find that the nonfactorizable mechanisms from
the pole terms and CS processes contribute the same order
of magnitude as the DPE in A, — Az ™. This explains that
the compatible branching ratios among these channels.

The coherent study of these processes is found useful for
understanding the structure of the baryons. In particular, we
show that too strong a scalar-isoscalar ud correlation in A,
is not favored. Instead, it only needs to fulfill a quantum
correlation in the spin-isospin and color space. Although
the numerical results turn out to be sensitive to the
parameters of the wave function parameters, a good under-
standing is reached based on the constituent quark effective
degrees of freedom.

In the framework of the quark model, it is shown that
there are destructive interferences between the A-type and
B-type of pole terms in the transition amplitudes. This is
similar to the case of light hyperon hadronic weak decays
(e.g., see Ref. [26] for the most recent detailed analysis of
the A and =* decays into nucleon and pion). Due to the
destructive interferences it suggests that the SU(3) flavor
symmetry breaking can become complicated. A relatively
small symmetry breaking effects in each pole term can
result in much more significant effects after the destructive
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interferences. This may explain why the current algebra
treatment fails when describing some SU(3) flavor sym-
metry correlated channels [4]. Extension of this method to
other hadronic weak decay channels may bring more
insights into the role played by the nonfactorizable proc-
esses in A, decays and provide more evidence for the
quantum correlation for the light quarks. It is quite possible
that other processes may provide a better constraint on the
model uncertainties which will be investigated in the future.
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APPENDIX A: THE HARMONIC OSCILLATOR
HAMILTONIAN AND THE JACOBI
COORDINATES

Here, we briefly summarize our notations for the Jacobi
coordinates that are use to separate the center-of-mass
motion in nonrelativistic models, and treat explicitly the
harmonic-oscillator model that is used to parametrize the
baryon wave functions. There are several variants. Let us
first follow [34]. The Hamiltonian is

where p;, r; and m; denote the momentum, position and
mass of the ith quark, and K is the spring constant. With
m; =my, =m and m3 = m’, the Jacobi coordinates are
defined as [38]:

R, =5 (mry + mry + m'r) P=p +p+p3
p=r—r , p, = %(Pl -p2) (A2)
A=1(ri+r,—2r;) Pa:ﬁ(m/I’1+m/P2—2mI’3)
and the Hamiltonian becomes
P pr pro1 1
H= L 4 272, A3
2M+2m o i—l—zmpa)pp —l—zmwi (A3)

where M = m + my + ms3, m, = m/2 and m, = 2mm'/M are the reduced masses of the p and A degrees of freedom,

respectively; @, = /3K/m and w; =

\/2K/m, are the frequencies of the corresponding harmonic oscillators.

Then, the spatial wave functions on the harmonic oscillator basis can be obtained [27,33,38,40]. In the coordinate space,

a basis for the eigen wave functions is

1 . a
Pyir (Re.p.A) :Wexm—zﬂRc)Za omi Ly Ly =mIL L) (00, (R, (A4)
where N stands for {n,,1,;n;,1;}, and
. 2n! 1/2 a*r?
o (r) = [(n—l—l—i—l/Z)'} a3 exp <— 2> Ly (@) V(1) (AS)

where P is the total momentum of the three quark system. The function L (x) is the generalized Laguerre polynomial, and

@, and a; are the harmonic oscillator strengths defined by

5 V3Km
ap - m/)a)/) - ) 5

a%:miau:2 K

mm'’

T

(A6)
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In the momentum space the spatial wave function is written as:

Wy, (P.py.p1) = 53(P_Pc)z<lpvm;lbl‘ >l//np[pm<pp)l//;ul}L n(P2)- (A7)
where
. 2n! 121 2
Vi) = 0 || e (- 2 L ). (8)

One can also choose a slightly differently scaled Jacobi coordinates which are more convenient to implement the
permutation properties. R. and P are identical, but now

ﬁ:\/ii(rl —r) P, :\/%(Pl -p2) (A9)
A=L(r+r -2 p = A (m'py + mipy = 2mps)

The reduced masses are now 7z, = m and in; = 3mm'/M. APPENDIX B: WAVE FUNCTIONS

The frequencies and oscillator strengths become R .
q g In the framework of the nonrelativistic constituent quark

model, the wave functions of baryons or mesons consist of
’ @, four parts: (i) color; (ii) flavor; (iii) spin, and (iv) spatial
p m; wave function. The color wave function is unique for
; nonexotic color-singlet hadrons. We only list the spin,
@ = V3Km, a3 =34/ g ) (A10) flavor and spatial wave functions. In the light sector, it is
M useful to identify the behavior with respect to the permu-

tation group ;.

a 2 1. Baryon wave functions
P ~
(Zp = — a, = 50{/1. (All)

V2’ The spin wave functions for baryons are
|
1 ] 1

=M= 2y == (N + I =200,

0 L A _i —
A= (M-I A=+ =200, (B1)
)(g% =M1, )(g_% =,

1

£y = ML, == (1 L+ L) (B2)

The symbol p and 4 are used to label the two components of the mixed-symmetry pair. The symbol s is used to label the
symmetric states.

The flavor wave functions for A, X° and X" as the SU(3) flavor octet states [27] are

1 1
A = —— (sud + usd — sdu — dsu), = ——(usd + sdu — sud — dsu — 2dus + 2uds),
Ph=—5( ) A 2\/5( )
1 1
b = — (2uus — suu — usu), . =—(suu — usu),
b=l b e = o= us)
1 1
éo = 2\/§(sdu + sud + usd + dsu — 2uds — 2dus), o = E(sud—f— sdu — usd — dsu). (B3)
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For the flavor wave functions of charmed baryons there
are two bases adopted in the literature. One is the “uds”
basis which is used in our calculation. Namely, similar to
the hyperon wave functions, the flavor wave functions
of A, and X0 are obtained by making the replacement of
s — ¢ in the above hyperon wave functions [1].

The other one is the “udc” basis [33,35] in which only
the symmetry among the light quarks is implemented. It
reads

With the spin, flavor and spatial parts, we can construct
the total wave function of the baryons, which is denoted
|B>S*1LJP). In the light sector, the ground state reads

L
V2

and for charmed baryons

|B%S1/2%) = —= (#pxs.s. + ¢5x55.)Pooo.  (BS)

|AZS1/2%) = ¢a 255 oo,

dd for X0,
1 | ¢ OF &e 2281/2%) = ¢zc)(§,szlpo.0,o‘ (B6)
d)/\(: :—(ud— du)c, ¢2(: = 7§(ud+du)c for Zj,

V2 e for S+ For the first orbital excitation states, we have two
- ifferent modes, i.e., p and A configurations. In the light
¢ diffi d d A fi In the ligh

(B4)  sector, they are recombined into the single symmetric state
|
1
B2P1/27) = Y (1.L;1/2, S:[ 02 5 (P s, + Pps s )W) 0, + (Wps s, = Parss )WL) (B7)
L.+S.=J.
3 - 3 1 P .S P A a8 A
|B°P1/27) = Z <1’LZ’E’SZ|J‘]2>%[ 8255, V1L, +¢BZS,S,lPl.LZ]’ (B8)

L.4S.=J.

where W}, stands for ¥y ; with N = {0,0:0,1} and W], corresponds to N = {0, 1;0,0}. In the charm sector, they read

AP, 1/27) = Y (L L 1/2,8:01/2, 0 )a 255 Wh 1
L.+S.=J.

A2P1/27) = > (1L L3 1/28,01/2.0 ) it s W 1

L.+S.=J.
Z2P1/27) = > (LLs1/2,801/2,0.)bs it s Wi,
L.+S.=J.
[£2P,1/2) = D0 (LLa1/2.81/2. 0 )dbs 25 s ¥ - (B9)
L+S.=J,
2. Pion wave function b — —dii (B14)
The wave function of pseudoscalar mesons is written as:
The spatial wave function is expressed as:
@y 0(p1.p2) = 5 (p1 +p> —P)) x5 0w000P1.P2),
1 -p>)?
(B10) wo00P1.P2) = g P {—(I)ISTZ)] (B15)
where y§  is the spin wave:
| where R is the parameter of the meson wave function.
Ko =5 (1= 1), (B11)

APPENDIX C: AMPLITUDES FOR THE

0 POLE TERMS

and ¢,(p = n*, 7", 77) is the flavor wave function

¢ = ud, (B12) The transition amplitudes denoted by the baryon polari-
zation quantum numbers are to be provided. In addition,

¢ =———=(uit — dd), (B13) M7 s shortened to M7 as the spin of initial and
2 final states are all 1/2. We will provide the expressions for
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the amplitude of M~'/2=1/2 for each process and the

1/21/2 _ ~1/2.-1/2
pc T = —Mpe

Hermitian relation gives: M and

MYF? = Mp/*7"%. The amplitudes of M*1/2F1/2 gre
vanishing. It should be noted that the pole term processes
are two vertex process while the CS and DPE processes are

one vertex process. So the relative phase difference
between these two types processes is 7.

In the results given below, we use the second set of
Jacobi coordinates of Appendix A, but to alleviate the
writing, the tildes are omitted for the o’s. The following
functions are to be used later:

2
405,1(1,,

°= (WM) ’ #(k) = exp {—@}’ 7(k) = exp Pﬁ(?f“?)]’

P

(C1)

where m,, is the mass of the light quarks (u, d, s) and m, is the mass of the ¢ quark; k = |k| and w, denote the three-vector
momentum and energy of the pion, respectively. In order to use the typical value of the harmonic oscillator strengths
directly, all the amplitudes are expressed with the conventional the harmonic oscillator strengths. a, and @; are the harmonic
oscillator strengths for the charmed baryons and @ = o) = a, for the light baryons. For the pole terms, the propagator is
noted with P(my, m,) which is defined as

21’}12

P(my,my) = — (€2)

2 . ’
mi —mj + il m,

where m; is the mass of initial baryon or final baryon and m, is the mass of intermediate baryons. I',,, is the width of
intermediate baryons.

1. A, » Az*

(a) pole terms

: 3 k(6m, + wp)
-1/2-1/2 a _ q 0 )
MPole,A;PC - |:\/§VudvcsGF 71'3/2 §:| |: 12\/67[3/2\/C(Tofﬂmq ‘Fﬂ'(k):| P(m/\c’ my )’ (C3)
_1/2-1/2 .2 at (—6a* + ai — 15a3)m, + (—6a* + 5a; — 3a3)m,
Mpgiearpv = |1\/3VuaVesGr 32 2. 2 2 3
3 p3 2m.my(4o” + o7 + 3a;)
k(6 — 18a?
[—i (6m, + wy) awyg fﬂ(k)} Plmy , mges), (C4)
1443732 fao f ym ‘
1212 2 a* (60 +ai +3a%)m. +2(3a* + af + 3a%)m,
Mbpgie azpy = |1 gvudvcsGF 32 2 2 2 4
pa m.m,(4a” + a; + 3a;,)

k*(6m,, + wy) — 18a%w, }
X |1 F (k)| P(mpy ,m , C5
{ T3 Jarof iy (k)| P(ma,_, ms(1750)) (C5)

—1/2- k(6m, + wg) o

1/2-1/2 _ g T @0 , _

PoleBPC = Lmﬂw\/@fﬁmq F”(k)} { V3ViaVsGr ‘f} Ploma, msz), (c6)
MV {i 18a,a;(a; + 3a,)wg + (, + 3a;)k* (6m,, + wy) p (k)]
Pole.B:LV 864V/37°2a,a, f o\ /@om, "
V6 (e, +a) (@ + a,a))

—iV VG 2 . P(my, mg). C7
X |: VesViua F”3/2mq 402 + a/% n 302 §:| (mA mZCO) ( )

073005-17



NIU, RICHARD, WANG, and ZHAO PHYS. REV. D 102, 073005 (2020)

(b) direct pion emission term

oz o Y2y oy o k3@ 4 5@ cauak PP LR (C8)
DPE,PC 3 udlesTE lm, o +ai [(® +ad)(a® +ad) 3>+ a3)]’
1/ V,aV.G a>a;a,R 3/2 k?
M 1/2; ]/2:2\/5 ud?V cs F|: 14 :| exp | — . C9
DPEPV 24 (@ +a3) (@ + o) P 3(a® + a3) (©9)
(c) color suppressed terms
My pi' " = 2v/3V VG rk(a?aza,R)?
m.(a?(a3 + 3a3) + 3aal + 2R* (60 + 2a3 + 3a3) + m,a3(2a* + ai — 2R?))
x o/4 202 2 22 (402 4 o2 275/2
¥ meomy 207 (o + 3a;) 4 6aja; + 3R*(4a” + a; + 3a;)]
k? 360> + 25a/21 + 3(1% + 24R?
XX S 22 (2 + 302) + 62 + 3R + 2 + 3 | (C10)
a’(a; + 3a;) + 6aja; + 3R (4a” + a; + 3a;)
‘ 2 R 3/2
MY 4By VoG a’a;a,
CS.PY es Tud=E 20%(a + 3a3) + 630 + 3R*(4a” + af + 3a3)
k? 36a* + 25a; + 3aj + 24R? 1)
X exXp |—— )
P17 2422 (a7 +3a3) + 6a7a; + 3R*(4a” + aF + 3a;)

2.A, - Xz and A, - Xz+

The amplitudes of A, — X%z and A, — X7 have the same form. In the following, only the amplitudes of A, — X0z
are given.
(a) pole terms

~1/2:- 3 k(6m, + wy)
M”Z’.‘/z—[\@vu V. Gro H a f,,k]Pm M), C12
Pole,A:PC dVe: F”3/2§ 18v22 Janfom, (k)| P(my_, ms+) (C12)
172~ 2 4 (=60 4 a — 15a2)m, + (—6a* + 5a; — 303
MPI}I{EZ/’%III/’%/ - l'\/ivudvcsGFa( il aﬁ aﬂ)m 2 ( 2a 2a/1 af’)m45
AL 3 2 2m.m,(4a* + aF + 3a3)
S5K2(6m, + wy) — 1822w,
q3/2 : Oj:zr(k) P(mp, mye), (C13)
4327717 Jag f rmya
~1/2- 2 4 (607 + a3 4+ 3a2)m, +2(30* + aF 4 3a?
MP;]QZAZ!I/J%/: _i\/:Vuchsta_( ot o+ 3a)m 3 (2a (:3 @,)my
A 3 /2 m.m,(4a* + a; + 3a3)
k*(6m, + wg) — 182wy
' Fa(k) | P(my, : Cl4
{l 21607, fag fymya ( )} (ma,. my(1750)) (C14)
MR { Mom, ) (k)} {3\/ e “_35]7>(m b myy) (C15)
Pole,B;PC 18\/6ﬂ3/2 Cl)()fﬂmq T ud?V cs F7[3/2 305 50 )
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Pole,.B;PV

V2 [i 18a,a;(a; + 3a,)wg + (a, + 3a;)k*(6m, + w)
864V3 2aya, f .\ J@om,

Fu(0)|

X |:ivcs VudGF 7T3/2mq

(b) color suppressed term

M—1/2;—1/2(AC - X07t) = —

CS.pC

3V2 & (a, + o) (@ + a,a;)
Plimso. mes). Cl16
4a® + i + 3a’ 5] (mzo, mz0) (C16)
VM P (A = Art), (C17)
VMG (A = Axt). (C18)

—1/2:-1/2
MCS{PV / (A — 20”+) ==
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