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We start by considering the production rates of sphalerons with different sizes ρ in the symmetric phase,
T > TEW. At small ρ, the distribution is cut off by the growing mass M ∼ 1=ρ, and at large ρ by the
magnetic screening mass. In the broken phase, T < TEW, the scale is set by the Higgs vacuum expectation
value vðTÞ. We introduce the concept of “sphaleron freeze-out” whereby the sphaleron production rate
matches the Hubble Universe expansion rate. At freeze-out the sphalerons are out of equilibrium.
Sphaleron explosions generate sound and even gravity waves, when a nonzero Weinberg angle makes them
nonspherical. We evaluate the magnitude of CP violation during the sphaleron explosions. We assess its
magnitude using the Standard Model Cabbibo-Kobayashi-Maskawa (CKM) quark matrix, first for nonzero
and then zero Dirac eigenstates. We find that its magnitude is maximal at the sphaleron freeze-out condition
with T ≈ 130 GeV. We proceed to estimate the amount of CP violation needed to generate the observed
magnitude of baryon asymmetry of the Universe, and find that it is about an order of magnitude above our
CKM-based estimates. We also relate the baryon asymmetry to the generation of Uð1Þ magnetic chirality,
which is expected to be conserved and perhaps visible in polarized intergalactic magnetic fields.
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I. INTRODUCTION

One of the central unsolved problems of physics
and cosmology is baryogenesis, the explanation of the
apparent baryon asymmetry (BAU) in the Universe.
Since the problem involves many areas of physics, our
introduction will be split into several parts for their brief
presentation. The common setting is the cosmological
electroweak phase transition (EWPT), whereby the uni-
verse undergoes a transition from a symmetric phase to a
broken phase with a nonzero vacuum expectation value
(VEV) for the Higgs field.
Most of the studies of the EWPT, from early works till

now, assumed the phase transition to be first order,
producing bubbles with large-scale deviations from equi-
librium [1]. Most studies of gravitational radiation were
carried in this setting. However, Ref. [2] and subsequent
lattice studies have shown that the standard model (SM) can
only undergo a first order transition for Higgs masses well
below theMH ≈ 125 GeV mass observed at LHC. The first
order transition remains possible only in the models that go

beyond the standard model (BSM), which we do not
discuss in this work.
Another possible scenario of the EWPT is the “hybrid”

or “cold” scenario, suggesting that the broken symmetry
phase happens at the end of the inflation epoch. Here, the
label “cold” refers to the fact that at the end of the reheating
and equilibration of the Universe, the temperature becomes
of the order of T ¼ 30–40 GeV, well below the critical
electroweak temperature TEW ≈ 160 GeV. Violent devia-
tions from equilibrium occur in this scenario [3,4]. Detailed
numerical studies [4,5] revealed “hot spots,” filled with
strong gauge fields, later identified [6] with certain multi-
quanta bags containing gauge quanta and top quarks. We
do not consider this scenario in this work.
Instead, we will focus on the least violent scenario

for the EWPT, a smooth crossover transition expected
from the minimal Standard Model. The main cosmological
parameters of the EWPT are by now well established.
For completeness they are briefly summarized in the
Appendix A.
Sphaleron transitions are topologically nontrivial large-

amplitude fluctuations of the gauge field, resulting in
change of their Chern-Simons number NCS. Because of
the chiral anomaly, in electroweak theory this also leads to
changed baryon B and lepton L charges. The introduction
to sphalerons is in Sec. II A and technical details (such as
the explicit solutions) are in Appendix B.
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As noted by Sakharov long ago [7], any mechanism
contributing to the BAU needs to include three key
components: (1) deviation from equilibrium; (2) baryon
number violation; and (3) CP violation.
It is well known that the SM includes all these conditions

“in principle.” One may expect certain deviations from
equilibrium in the expanding Universe, passing through
the phase transition. The sphaleron explosions produce
�3 units of baryon and lepton numbers. The CP violation
does happen, due to the well-known complex phase of
the Cabbibo-Kobayashi-Maskawa (CKM) quark matrix.
However, specific scenarios based on SM were so far
unable to reproduce the key observed BAU parameter, the
baryon-to-photon ratio

nB
nγ

∼ 6 × 10−10; ð1Þ

well documented at the time of primordial nucleosynthesis.
As a result, the mainstream of BAU studies has shifted

mostly to scenarios containing unknown physics BSM, in
which hypothetical sources of CP violation are introduced
(e.g., axion fields, or extended Higgs or neutrino sector
with a large CP violation). The so-called leptogenesis
scenarios use superheavy neutrino decays, occurring at
very high scales, and satisfying both large CP and out-of-
equilibrium requirements, with large lepton asymmetry
transformed into the baryon asymmetry by the electroweak
sphalerons at TEW. While one of these BSM scenarios may
well turn out to be the explanation for BAU, they still
remain purely hypothetical at this time, lacking any support
from current experiments.
The aim of this work is to provide a scenario within the

SM that maximizes BAU. We will estimate, as accurately as
possible at this time, the magnitude of BAU that the SM
predicts. Throughout, we will keep to a conservative and
minimal SM (MSM) scenario, in which the EWPT is
smooth, with a gradual building of the Higgs VEV vðTÞ
at T < Tc. The needed “out-of-equilibrium” conditions to
be discussed below, will be associated with “sphaleron
freeze-out” of large-size sphalerons, with the rates com-
parable with the universe expansion rate. Contrary to
popular opinion, it turns out to be only an order of
magnitude below what is phenomenologically needed.
We therefore think that this scenario deserves much more
detailed and quantitative studies.
The core of this paper is Sec. III A, in which we discuss

CP violation associated with sphaleron explosions. We
develop “eigenstate” formalism, generalizing momentum
representation used in standard Feynman diagrams. We
discuss then CP violation for nonzero and zero eigenvalue
sectors subsequently, finding that the latter produces effects
of the order of 10−9. We further show that this estimate
leads to BAU much larger than expected before, only about
a decade lower than the observed value.

In Sec. VII we discuss other potential observables
produced by the sphaleron explosions, namely production
of sounds, gravity waves, and helical magnetic fields.
The “sphaleron explosion” is described by a time-

dependent solution of the classical Yang-Mills equations.
A number of such solutions have been obtained numeri-
cally. Analytic solutions for pure-gauge sphalerons have
been obtained in [8] and in [9], of which we will use the
latter one. Some details of how it was obtained and some
basic formulas are summarized in Appendix B.
As we will see below, the word “explosion” is not a

metaphor here. Indeed, the time evolution of the stress
tensor Tμνðt; x⃗Þ does display an expanding shell of energy
density and pressure. Although we have not studied its
interaction with ambient matter in any detail, it is clear that
a significant fraction of the sphaleron mass should end up
in spherical sound waves.
In the symmetric phase, the sphaleron explosion is

spherically symmetric. It does not sustain a quadrupole
deformation and therefore cannot radiate direct gravita-
tional waves. However, the indirect gravitational waves can
still be generated at this stage, through the process

soundþ sound → gravity wave

pointed out in [10]. After the EWPT, at T < TEW, the
nonzero VEV breaks the symmetry and the sphalerons (and
their explosions) are no longer spherically symmetric. With
a nonzero and time-dependent quadrupole moment, they
generate direct gravitational radiation. We will calculate
the corresponding matrix elements of the stress tensor in
Sec. VII A.
The EWPT has also been suggested to be a source for

large scale magnetic fields in the universe. The existence
and properties of intergalactic magnetic fields are hotly
debated by observational astronomers, cosmologists, and
experimentalists specialized in the detection of very high
energy cosmic rays. Currently, there are lower and upper
limits on the magnitude of these fields. The issues of the
chirality of these fields as well as their correlation scale are
still open questions, with suggestions ranging from larger
than the visible size of the universe (in case of preinflation
chiral fluctuations) to sub-Galaxy size. Many things may
happen on the way from the big bang to today’s magnetic
fields.
We discuss the properties of magnetic clouds generated

by sphaleron explosions in Sec. VII B. Our main point is
that the sphaleron-induced BAU must also be related with
the chiral imbalance of quarks and leptons produced in
sphaleron transitions. This chiral imbalance is then trans-
ferred to linkage of magnetic fields. Since the linkage is
expected to be conserved in plasmas, it may be observable
today, via the selection of a magnetic helicity in the
intergalactic magnetic fields.
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II. SPHALERONS NEAR THE CROSSOVER EW
PHASE TRANSITION

A. Sphaleron, the introduction

The multidimensional effective potential VðNCSÞ pos-
sesses a one-parameter sphaleron path, along which ther-
mal fluctuation can cause a slow “climb” uphill, to the
saddle points at half-integer NCS, the sphalerons (e.g.,
from NCS ¼ 0 to NCS ¼ 1

2
). The explicit static and purely

magnetic gauge configuration was originally found in [11].
When perturbed, the saddle point configuration leads to a
classical roll down in the form of a time-dependent solution
known as the sphaleron explosion. The Chern-Simons
number in such processes changes back from half-integer
to integer (e.g., from NCS ¼ 1

2
to NCS ¼ 1 or 0).

At low temperatures T < TEW, in the symmetry-broken
phase, sphalerons have large mass, and the transition rate is
strongly suppressed by the corresponding Boltsmann
factor. However, in the symmetric (unbroken) phase with
vðT > TEWÞ ¼ 0, the sphaleron rate is only suppressed by
the (fifth) power of the coupling [12,13], without exponent
Γ=T4 ∼ α5EW ∼ 10−7. In the broken phase after the EWPT
with vðT < TEWÞ ≠ 0, it is suppressed further, by a
Boltzmann factor exp½−MsphðTÞ=T� with a T-dependent
sphaleron mass. Some basic information about the electro-
weak sphaleron rate is given in Appendix B. We start this
work by discussing the sphaleron size distribution. This is
done separately for (a) unbroken and (b) broken phases
[with nonzero Higgs VEV vðTÞ ≠ 0].
In case (a) one can ignore the Higgs part of the action and

focus on the gauge part. At small sizes the distribution is cut
off because the sphaleron mass is increasing m ∼ 1=ρ (by
dimension), with the pure gauge solution discussed in [8,9].
At large sizes, the limiting factor is the magnetic screening
mass which we will extract from lattice data [14]. We then
interpolate between the “large size” and “small size”
expressions, with the overall normalization of the rate
tuned to available lattice data [15].
In case (b) we follow the original work in [11], by

inserting the appropriate parameters of the effective electro-
weak action near TEW calculated in [16]. Specifically, we
use a one-parameter Ansatz depending on the parameter R,
for which both the mass MðRÞ and the rms size ρðRÞ are
calculated. The results will be summarized in Fig. 1 below.

B. The temperature dependence of the
sphaleron rates

To assess the temperature of the sphaleron rate, we first
start in the symmetric phase with zero Higgs VEV and
T > TEW. The change in the baryon number is related to
the sphaleron rate through [17,18]

1

NB

dNB

dt
¼ 39Γ

4T3
: ð2Þ

The sphaleron rate calculated from earlier lattice studies
and also derived from Bodeker model is

Γ ¼ κ

�
gT
mD

�
2

α5WT
4 ð3Þ

with κ ∼ 50 extracted from the lattice fit. The lattice work
[15] yields a more accurate evaluation for the rate

Γ
T4

¼ ð18� 4Þα5EW ≈ 1.5 × 10−7: ð4Þ

While (4) appears small, its folding in time at the
electroweak transition temperature TEW is large,

1

NB

dNB

dt
¼ 3.2 × 109

1

tEW
: ð5Þ

Therefore, the baryon production rate in the symmetric
phase strongly exceeds the expansion rate of the Universe
H ∼ 1=tEW, by 9 orders of magnitude. Therefore, prior to
EWPT, T ≥ TEW, the sphaleron transitions are in thermal
equilibrium. According to Sakharov, this excludes the
formation of BAU. In fact, this even suggests a total wash
of baryon-lepton (BL) asymmetry. This particular conclu-
sion will be circumvented below, by the sphaleron freeze-
out phenomenon.
Another important result of the lattice work [15] is the

temperature dependence of the sphaleron rate in the
symmetry broken phase

FIG. 1. The sphaleron suppression rates as a function of the
sphaleron size ρ in GeV−1. The solid curve corresponds to the
unbroken phase v ¼ 0 at T ¼ TEW. Four sets of points, top to
bottom, are for a well broken phase, at T ¼ 155, 150, 140,
130 GeV. They are calculated via Ansatz B described in
Appendix C, and normalized to lattice-based rates. The horizontal
dashed line indicates the Hubble expansion rate relative to these
rates.
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Log

�
ΓðT < TEWÞ

T4

�
¼ −ð147.7� 1.9Þ þ ð0.83� 0.01Þ

�
T

GeV

�
: ð6Þ

It would be useful for our subsequent discussion to
reparametrize this rate, expressing it in terms of the
sphaleron mass through the temperature-dependent Higgs
VEV vðTÞ, namely

Γ
T4

∼ exp

�
−
ΔMv

T

�
ð7Þ

with

ΔMvðTÞ ≈
vðTÞ2
9 GeV

: ð8Þ

By comparing this rate to the Hubble value for the
Universe expansion rate at the time tEW, the authors of
Ref. [15] concluded that the sphaleron transitions become
irrelevant when the temperature is below

Tdecoupling ¼ 131.7� 2.3 GeV: ð9Þ

So, our subsequent discussion is limited to the times when
the temperature is in the range

TEW ≈ 160 GeV < T < Tdecoupling ≈ 130 GeV:

Note that by this time, the Higgs VEV (A6) reaches only a
fraction of its value today, in the fully broken phase,
i.e., vðT ¼ 0Þ ≈ 246 GeV.

C. The sphaleron size distribution

The lattice results recalled above gave us valuable
information of the mean sphaleron rates and thus masses.
However, for the purposes of this work, we need to know
their size distribution. As we will detail below, baryo-
genesis driven by CP violation is biased toward sphalerons
of sizes larger than average, while the gravity wave signal
and seeds of magnetic clouds are biased to smaller sizes.

1. Unbroken phase and small sizes

Let us start with the small-size ρ part of the distribution. In
this regime, we can ignore the Higgs VEV, even when it is
nonvanishing, a significant simplification. By dimensional
argument it is clear that MsphðρÞ ∼ 1=ρ. It is also clear that
small-size sphalerons should be spherically symmetric.
The classical sphaleron-path configurations in pure

gauge theory were analytically found in [8]. The method
used is “constrained minimization” of the energy, keeping
their size ρ and their Chern-Simons numberNCS fixed. This
gave the explicit shape of the sphaleron barrier. At the
highest point of the barrier NCS ¼ 1

2
, the sphaleron mass is

MsphðρÞ ¼
3π2

g2ρ
: ð10Þ

Later the same solutions were obtained in [9] by a dif-
ferent method, via an off-center conformal transformation
of the Euclidean solution (the instanton) of the Yang-Mills
equation. Some of the results are reviewed in Appendix B.
It provides not only a static sphaleron configuration but
also the whole sphaleron explosion process in relatively
simple analytic form, to be used below.

2. Unbroken phase and large sizes

Now we turn to the opposite limit of large-size
sphalerons. Since the sphaleron itself is a magnetic
configuration, at large ρ one should consider magnetic
screening effects. Unlike the simpler electric screening,
the magnetic screening does not appear in perturbation
theory [19]. It is purely nonperturbative and likely due to
magnetic monopoles.
The magnetic massMm conjectured by Polyakov to scale

as Mm ¼ Oðg2TÞ was confirmed by lattice studies. While
in the QCD plasma the coupling is large and the difference
between the electric and magnetic masses is only a factor of
2 or so, in the electroweak plasma the coupling is small
αEW ∼ 1=30, and therefore the magnetic screening mass is
smaller than the thermal momenta by about 2 orders of
magnitude,

Mm

3T
∼
αEW
3

∼ 10−2: ð11Þ

The key consequence for the sphalerons is that their sizes
would be about 2 orders of magnitude larger than the
interparticle distances in the electroweak plasma.
The part of the gauge action related with the screening

mass is

ΔSscreening ¼
M2

m

2

Z
d4xðAa

i Þ2: ð12Þ

For static sphalerons, the integral over the Matsubara time
is trivial, giving 1=T. Parametrically, we have Mm ∼ g2T,
A ∼ 1=gρ, so that

M2
m

Z
d4xðAa

i Þ2 ∼ ðg2TÞ2
�
1

gρ

�
2 ρ3

T
∼ g2Tρ: ð13Þ

At high temperature, the pure SU(2) lattice simulations in
[14] give
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MmðTÞ ≈ 0.457g2T: ð14Þ

Inserting (14) in (12) and using the pure gauge sphaleron
configuration yield the screening factor for large size
sphalerons

Γ
T4

∼ expð−ð0.457Þ2π2g2TρÞ: ð15Þ

D. The broken phase not too close to TEW

In this case one can follow what has been done in the
original sphaleron paper [11], substituting into it appro-
priate couplings of the effective theory at finite temperature
calculated in [16].

We used the so-called Ansatz B, expressing the spha-
leron mass MðRÞ and its rms ρðRÞ versus its parameter R.
Since this material is rather standard, we put the related
expressions in the Appendix C. The results will be given in
the next subsection.

1. The sphaleron size distribution

We start with the unbroken phase, T > TEW. The
sphaleron size distribution can now be constructed using
the mean mass (8), as well as the small and large size limits
(10) and (15). More specifically, the distribution interpo-
lates between the small and large size distributions which
merge at ρ ¼ ρmid ¼ 0.8 GeV to give (7)

Pðρ; TÞ ∼ exp

�
−
3π2

g2T

�
1

ρ
−

1

ρmid

��
× exp½−ð0.457Þ2π2g2Tðρ − ρmidÞ�: ð16Þ

In Fig. 1 we show the sphaleron size distribution at the
critical temperature (the solid line) and four temperatures
below it, in the broken phase. We see that the appearance of
a nonzero Higgs VEV leads not only to a suppression of the
rate, but also to a dramatic decrease of the sphaleron sizes.
The lowest temperature shown, TL ≈ 130 GeV, corre-
sponds to the sphaleron rate that reaches the Universe
expansion rate (Hubble).
The intercept of each curve with the dashed horizontal

line gives (the smallest and) the largest size sphalerons
which have rates comparable to the Universe expansion
rate, and should therefore be “at freeze-out,” out of thermal
equilibrium. One can see that for four sets of points shown,
ρmax changes from about 1=ð10 GeVÞ to 1=ð30 GeVÞ. Very
close to the critical temperature TEW the sphalerons may
be significantly larger in size, as seen from a comparison
to the black curve. However, the related uncertainty does
not matter, as we will show below, because in this region
the CP asymmetry is extremely small, growing toward
T ¼ 130 GeV.

III. CP VIOLATION AND THE SPHALERON
EXPLOSIONS

A. Introductory discussion of CP violation induced
by the CKM matrix

In this section we discuss whether the “minimal” CP
violation in the SM, following from the experimentally well
studied complex contribution of the CKM matrix, can
generate the required level of asymmetry. Needless to say,
this question was addressed by many in talks and text-
books, but it is worth reviewing it again here.
The CP violation in the SM is induced by the nonzero

phase of the CKM matrix. Its magnitude is known to be
strongly scale dependent. Naively, at TEW all particle

momenta are of the order of p ∼ 3T ∼ 500 GeV, above
all quark masses. As originally shown by Jarlskog [20], at
such a high scale the magnitude of the CP violation needs
to be proportional to the product of two different factors.
The first is the so-called “Jarlskog determinant” J con-
taining the sine of theCP-violating phase sinðδÞ times sines
and cosines of the mixing angles. J has a geometric
meaning, so it is invariant under reparametrization of the
CKM matrix. Its numerical value is J ∼ 3 × 10−5. The
second factor is the (dimension 12) product of the string of
squared up and down quark mass differences

Δ≡ ðm2
b −m2

dÞðm2
b −m2

sÞðm2
d −m2

sÞ
× ðm2

c −m2
t Þðm2

c −m2
uÞðm2

t −m2
uÞ; ð17Þ

which ensures that CP asymmetry vanishes whenever any
two masses of up-kind or down-kind quarks are equal. The
resulting CP asymmetry at electroweak momentum scale
p ∼ πT is very small, ACP ∼ J · Δ=p12 ∼ 10−21 [21], which
seemingly dash any hopes that the SM CP violation may
significantly contribute to BAU. Explicit perturbative
calculations of the CP-violating parts of the effective
Lagrangian at finite temperatures [22] also show that at
temperatures T ∼ 130 GeV we discuss the overall CP
violation magnitude is negligibly small.
However, such calculations cannot be directly applied to

sphalerons and their explosions, because their fields are
strong WμðxÞ ∼ 1=g and one cannot use perturbative
expansion in their power. We therefore use an eigenstate
formalism, using as a basis set of eigenstates of the
simplified Dirac operator, for unmixed massless fermions.
The CKMmixing and fermion masses are treated explicitly.
If so, the integration over intermediate momenta in the
Feynman diagrams changes to sums over eigenvalues λ.
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The distribution over λ has two parts, (i) the nonzero
spectrum; and (ii) the topological zero mode λ ¼ 0. We
estimate below the correspondingCP violation in these two
sectors, subsequently.
For the sector with nonzero λ our calculation of the

CP-violating effects shows a dramatic dependence on λ
(shown in Fig. 3). In agreement with Smit’s arguments [23],
there is no effect in the fourth order in CKM mixing alone,
and it appears only, e.g., when two powers of a Z field
are involved. We also find that the CP violation can be as
large as ∼J ∼ 10−5 for λ ∼ 1 GeV, in a “sweet spot”
between the masses of the light and heavy quarks.
However, gluon scattering on quarks shifts the lowest λ
to the so-called Klimov-Weldon mass: the result of that
would be a small CP violation comparable to the old
Shaposhnikov’s estimate [21].
Before discussing our (quite different) results from our

estimates of the CP violation associated with the zero
mode, let us mention the key point. The zero mode is of
topological origin, it is related with the chiral anomaly, and
it describes the states of quarks produced out of vacuum by
the sphaleron field.
While the background of a sphaleron explosion is

analytically known only for some restricted setting (zero
temperature and zero Higgs VEV), a generic argument of
the topological stability tells us that the Dirac zero mode
(and the baryon number violation with it) should be
preserved also in the presence of finite-T plasma perturba-
tions (such as quark scattering off thermal gluons). In this
respect, the zero Dirac eigenmode is different from “small
momenta” scenarios associated with them, such as [24].
Let us add at this point that a strict relation between the

Chern-Simons number and the baryon charge has been
demonstrated in lattice study [25]. While short of calculat-
ing the Dirac eigenvalue spectrum and explicitly observing
the zero mode in any configurations describing sphaleron
transitions, it, however, will display the topological stability
of the basic mechanism, based on the chiral anomaly.
We estimate the magnitude of the CP violation at a

generic zero Dirac eigenvalue from the (flavor-dependent)
phases of the outgoing quark waves (the zero mode
itself). We do it for production of different quark types
separately, and for light u and d quarks we found it to be of
magnitude 10−9.
It is important to note at this point that while our results

contain some differences of squared masses of quarks, they
do not include the full product of the string of all mass
differences Δ (17). This leads to a debate whether such
answers can be correct, and therefore we repeat here that it
need not be universally present in any CP-violating
process. (Indeed, if this is the case we would never know
about CP violation since one would not be able to observe
it experimentally.)
Let us give example in which it is seen explicitly. TheCP

violation originally discovered in neutral K decays is of

magnitude ∼10−3, but these processes are complicated by
the relation to the K0 − K̄0 mass difference. Consider a
much simpler example, a “direct CP violation” in exclusive
charged meson (or baryon) decays, induced by reactions of
the type b → q̄qq0 (e.g., b → c̄cs) or many others. The tree
diagram of the decay has two CKM matrix elements, and
CP violation comes from the interference with the so-called
“penguin” diagrams, with an additional gluon, producing
a q̄q pair. This second diagram has in general a sum over
up-type quarks U ¼ u, c, t and therefore CKM matrix
elements VbU and VUq0 . CP asymmetry of such decays is
not only observed, but is rather large, suppressed only by
the strong coupling constant and some numerical smallness
of a loop, such as 1=4π.
Our point here is based on the following observa-

tion: out of three generation of down quarks, only two
(say, b, s) are involved, while the remaining one (say, d)
is not. Therefore, an expression for CP asymmetry
cannot possibly contain md, and therefore factors ðm2

b −
m2

dÞðm2
s −m2

dÞ cannot be there. The presence of the Δ
factor is not really a universal feature of CP violation;
in particular, it is not the case in certain exclusive
processes.
(We do know that in the Universe with, say, md ¼ ms,

there should be no CP violation. It happens as follows:
when jmd −msj gets very small, a hadronic spectrum
would be rearranged so that CP-violating amplitudes for
some exclusive processes would need to be added together,
partially canceling each other and restoring the jmd −msj
in the appropriate kinematical region.)

B. CP-violating perturbative effective action

While the sphaleron decay process has been dis-
cussed at the classical level (see Appendix B), the
CP-violating effects appear at the one-loop level with
the contribution from all generations of quarks and
their interferences. We are not aware of any consistent
calculation of the corresponding CP violation during the
sphaleron decays.
The determinant of the Dirac operator in such field

LogðdetðD̂ÞÞ generates the effective action, induced by
the one-loop fermion process, which is similar to the
well-known Heisenberg-Euler effective action in QED,
with the CP-violating part extracted from its imagi-
nary part.
The resulting operators in effective Lagrangian are

classified by a two-integer mþ n form, with m being
the power of the W fields and n the combined power of
derivatives, Z and Higgs ϕ fields. Studies along these
perturbative lines were started by Smit [23] who found that
the lowest 4þ 0 order operators produce no CP violation.
The calculation in [26] reported a nonzero contribution to
order (4þ 2) from the following dimension-six P-odd and
C-even operator:
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ϵμνλσðZμW
þ
νλW

−
α ðWþ

σ W−
α þWþ

αW−
σ Þ þ c:c:Þ: ð18Þ

Another group [27], however, found a different set of
(4þ 2) operators, which are C-odd and P-even. This
calculation has been extended to nonzero temperature
and 6þ 2 operators in [22]. The corresponding coefficients
are complicated functions of all quark masses, the temper-
ature, and the Higgs VEV.
It is not a trivial task to find an example of the field which

would give a nonvanishing expectation value for these
operators. In particular, it should be T-odd, and thus
involve time evolution or electric field strength: therefore
sphalerons themselves would not contribute, only their
explosions. We have checked using the analytic solution for
the sphaleron explosion [8,9] described in Appendix B that
it does give a nonvanishing expectation value for the
operator (18). It would be interesting to check if this is
also the case for other 4þ 2, 6þ 2 operators identified
in [22,27].

C. Diagrams in eigenstate formalism

The effective action described above is perturbative,
obtained from an expansion in powers of electroweak
coupling and field gWμ. This approach is, generally speak-
ing, inapplicable for nonperturbative fields (instantons,
sphalerons, etc.), for which gWμ ∼Oð1Þ and all terms of
a perturbative series are of the same magnitude. Yet there is
an effective one-loop effective action, Seff ¼ log detð=DÞ of
the Dirac operator, the slash here and below means the
convolution with the Dirac matrices γμ.
Using left-right spinor notations, this operator has the

matrix form

det

�
i=D M

M† i=∂
�

¼ detði=∂Þ det
�
i=DþM

1

i=∂M
†
�
; ð19Þ

where the interaction with the electroweak gauge fields W,
Z is in left-left sector, the mass-generating interactions with
Higgs have left-right and right-left structure, and the right-
right sector is free. Recall that M is a (diagonal) mass
matrix in flavor space.
The left-left part can be written in the form

i=D ¼ ði∂μ þ gWμ þ gZμÞ1̂γμ þ gWμðV̂ − 1̂Þγμ; ð20Þ

where a hat indicates flavor matrices, with V̂ being a
(weakly nondiagonal) CKM matrix. Let us then introduce
eigenstates of the operator in the former bracket

ði∂μ þ gWμ þ gZμÞ1̂γμψλðxÞ ¼ λψλðxÞ; ð21Þ

which treats all quarks as universal (flavor diagonal)
massless objects. (Therefore this part of the Dirac

operator remains conformal, and its zero mode can thus
be analytically obtained using conformal off-center trans-
formation from the instanton, as described in Appendix B.)
The remaining part of the Dirac operator can be treated

perturbatively, formally using ðV̂ − 1̂Þ as a small parameter.
This setting leads to close loop Feynman diagrams, in
which propagators can be represented by the sum over
modes

Sðx; yÞ ¼
X
λ

ψ�
λðyÞψλðxÞ

λþM=p−1Mþ ð22Þ

and vertices containing flavor matrices ðV̂ − 1̂Þ and the
matrix element of two modes of the current times the
gamma matrix and the field hλj=Wjλ0i. In such a represen-
tation one needs to sum over λ’s in each propagator, as
momenta in the usual free field diagrams.
In order to simplify the discussion as much as possible,

we defer consideration of the eigenvalue spectrum and
summations involved for later, assuming first that we single
out one particular mode with a particular value of λ. Let us
also focus for now only on diagonal matrix elements, and
use shorthand notation

hλji=∂jλi ¼ =pλλ; hλj=Wjλi ¼ =Wλλ: ð23Þ

Furthermore, we will focus on flavor traces, thus indicating
up and down propagators in a form

Su ¼
1

λþM2
u==pλλ

; Sd ¼
1

λþM2
d==pλλ

; ð24Þ

where we notice that W vertices alternate between up and
down flavors. For example, the generic four-W diagram (0)
in Fig. 2 takes the form

u,c,t

d,s,b

WW

W W

(0)

u,c,t

d,s,b

WW

W W

u,c,t

d,s,b

WW

W W

u,c,t

d,s,b

WW

W W

u,c,t

d,s,b

WW

W W

(1)

(2a) (2b) (2c)

FIG. 2. Schematic description of the fourth order one-quark-
loop diagrams with four-W boson insertions shown in blue
squares. The additional Zμ and Aμ fields [diagram (0)], one
(1), and two (2a, 2b, 2c) are shown in red circles.
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Trð=WλλV̂Ŝu=WλλV̂
†Ŝd=WλλV̂Ŝu=WλλV̂

†ŜdÞ:

It is now straightforward to perform the multiplication
of these flavor CKM matrices and propagators with six
known quark masses, for all five diagrams shown in Fig. 3,
including lowest order insertions of flavor-neutral Z and/or
electromagnetic Aem fields, shown in Fig. 2 by red circles.
The electromagnetic field insertions obviously carry quark
electric charges, eu ¼ 2=3 and ed ¼ −1=3.
The explicit flavor traces for these higher order diagrams

show that (1, 2b, 2c) do not lead to CP-violating OðδÞ
terms in the resulting effective Lagrangian also. The only
one that does is diagram (2a), with the result

ImFZZðλÞ ¼ λ6ImTrðV̂SdV̂†SuV̂SdZSdV̂
†SuZSuÞ

¼ JΔ2λ6

Πf¼1..6ðλ2 þm2
fÞ2

: ð25Þ

We recall that J is the famed Jarlskog combination of the
CKM cos and sin of all angles times the sin of the CP-
violating phase, and Δ is a product of quark squared mass
differences (17). Diagram (2a) with 2-Z and 2-Aem would
then carry an obvious prefactor

C2a ¼
�
ðZλÞ2 −

2

9
ðAem

λ ÞÞ2
�
: ð26Þ

Since these two terms have opposite signs, no universal
statement about the sign of the CP violation in an arbitrary
background can be made.
In Fig. 3 we show (25) as a function of the eigenvalue

scale λ. It is clear that the magnitude of the CP violation
depends on the absolute scale very strongly. When the
momentum scale is at the electroweak value ∼100 GeV
(the right-hand side of the plot), it is 10−19. But in the
“sweet spot,” between the masses of the light and heavy
quark λ ∈ ð0.2–2Þ GeV, the asymmetry is suppressed only
by about ∼10−6.

IV. EIGENVALUES AND PLASMA EFFECTS

In the preceding section we discussed a generic part of
the effective CP-violating Lagrangian related with Dirac
eigenvalue λ. The lesson we learned is that CP asymmetry
is strongest if λ ∼ 1 GeV. Now we will face the question of
whether such eigenvalues are, in fact, present in the realistic
eigenvalue spectral function.
The sphalerons and their explosions have so far been

considered classically, via appropriate solutions of the Yang-
Mills (and Dirac) equations. The most symmetric case [9]
(see Appendix B) corresponds to symmetric phase T > TEW
in which there is no Higgs VEVand the gauge fields are only
the SUð2Þ ones, without electromagnetic ones. In such a
setting, the only dimensional parameter, on which the λ
spectrum may depend, is given by the sphaleron size ρ,
defining the field strength E, B ∼ 1=gρ2. That is why we
started by studying the sphaleron size distributions. It is
indeed found that, very close to TEW, the sphalerons can be
rather large, with fields in the sweet spot B ∼ 1 GeV2 range,
with very favorable CP magnitude.
However, the actual sphaleron explosions happen in a

primordial plasma. In the primordial plasma, fermions are
modified by their interactions with the thermal medium.
While leptons have electroweak interactions only, quarks
interact strongly with ambient gluons, with a much stronger
coupling constant gs.
A generic argument is that the gauge fields are classical

W, Z ∼Oð1=gEWÞ while thermal fields of the plasma are
∼Oðg0EWÞ, so in the leading order they are not modified.
However, since we consider sphalerons of different sizes,
there appears a parameter ρT. On top of it, thermal fields
have a large number of degrees of freedom, so the
corrections to a classical approximation needs to be
studied.
The issue gets more urgent at the level of the one-loop

quark-induced action we use in studies of CP violation.
Quark fields, unlike gauge ones, are not classical. The
eigenmodes we consider are all normalized to a unit value.
Plasma-induced polarization (quark mass) operators come
not only from weak interactions but also from thermal
gluons. Therefore the formal suppression parameter is ∼αs,
which is not so small. A full inclusion of all Dirac modes

10–2 0.1 1 10 100

10–19

10–16

10–13

10–10

10–7

FIG. 3. CP-violating contribution ImFZZðλÞ from diagram (2a)
of Fig. 2 versus λ (GeV).
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following a sphaleron explosion in a plasma is still beyond
the scope of this work. In this section we provide a
qualitative discussion and estimates.

A. Electric screening

Let us recall the argument put forth at the beginning of
Sec. II D 1: since the sphalerons are magnetic objects, they
can be as large as allowed by the magnetic screening mass,

ρ ≤
1

Mm
∼

1

g2T
:

Thus, it can differ from the basic thermal scale T by
about 2 orders of magnitude. However, a sphaleron
explosion generates an (electroweak) electric field as well.
Originally directed radially, it accelerates quarks and
leptons from their initial state as zero modes to their
positive and physical energy final states, violating baryon
and lepton numbers. In the final stage, only the transverse
electric fields remain, producing physical W and Z that are
transversely polarized to the radial direction. We recall that
under these conditions all particles are massless or have
small masses, as the Higgs VEV is zero or small.
The electric screening mass isME ∼ gT, so the screening

length is about g times shorter than the magnetic screening
length. The “plasma on-shell masses” of W and Z are
also MW;Z ∼ gT. Both effects are incorporated by an addi-
tional thermal contribution to the effective Lagrangian (in
momentum representation)

ΔLplasma ¼
1

2
ΠμνðT; kσÞAμðkσÞAνðkσÞ ð27Þ

with the one-loop polarization operator Π calculated
already in Ref. [28]. So, what qualitative modification
can these electric thermal effects produce?
Classically, the sphaleron explosion produces W and

Z with momenta p ∼ 1=ρ, and their total number is of
the order of the action NW<Z ∼ 1=g2 ∼ 100. In the thermal
plasma this is no longer possible. The available energy is not
sufficient to produce that many gauge quanta since
their thermal masses are MW;Z ∼ gT. Furthermore, at the
momenta p ∼ 1=ρ corresponding to the initial sphaleron
sizes, the plasma modes are not W, Z plasmons but rather
collective modes of hydrodynamical origin, corresponding
to the longitudinal sounds (phonons) and transverse
(rotational and purely diffusive) motions. (How exactly
the energy is divided between those modes we have not
assessed yet: it may be needed for gravity wave predictions.)
As we already noted earlier, due to the nonzeroWeinberg

angle, some part of sphaleron energy goes to QED electro-
magnetic fields and eventually to polarized magnetic
clouds. Their polarization tensor includes not the electro-
weak but the electric coupling constant, which is smaller,
and so their interaction with the plasma can probably be
neglected, once they are produced.

The quark modes acquire larger plasma-induced masses,
and one may wonder if those can prevent the B, L number
violation phenomenon itself.
At this point, a historical comment may be made. When

Farrar and Shaposhnikov [24] realized that theCP violation
induced by the CKMmatrix have the sweet spot mentioned
above, they focused on the dynamics of the quarks with
small momenta p ∼ 1 GeV ≪ T. Specifically, they argued
that under certain conditions the strange quarks are totally
reflected from the boundary of the bubble (they assumed
the transition to be first order), while the up/down quarks
are not. This scenario has been later criticized, based on
higher order corrections to the quark dispersion curves, and
the conclusions in [24] have been refuted. For pedagogical
reasons, let us split the refuting arguments into three,
reflecting on their increased sophistication.
The first argument says that the Euclidean thermal

formulation with antiperiodic fermionic boundary condi-
tions implies that the minimal fermionic energies are set by
the lowest Matsubara mode

ωM ¼ πT ∼ 300 GeV: ð28Þ

Indeed, the typical fermionic momenta are of this order, and
the CKM-induced CP violation at this scale is ∼10−19 as
we detailed above.
The second argument is based on the emergence of a

“thermal Klimov-Weldon” quark mass

MKW ¼ gsTffiffiffi
6

p ∼ 50 GeV ð29Þ

induced by the real part of the forward scattering amplitude
of a gluon on a quark.
Both arguments were essentially rejected by Farrar and

Shaposhnikov, who pointed to the fact that while both
effects are indeed there, there are still quarks with small
momenta p ≪ T;Mq in the Dirac spectrum.
The third argument, which is stronger, was given in

[29,30]. It is based on the decoherence suffered by a quark
while traveling in a thermal plasma, as caused by the
imaginary part of the forward scattering amplitude (related
by unitarity to the cross section of nonforward scatterings
on gluons). Basically, they argued that if a quark starts with
a small momentum, it will not be able to keep it small for a
necessarily long time, due to such scattering. The imagi-
nary part is about

ImðMqÞ ∼ αsT ∼ 20 GeV: ð30Þ
We now return to the sphaleron explosions we have

presented, and ask how such plasma effects can affect
their quark production. The most obvious question is that
of “insufficient energy.” Indeed, if each quark carries a
“thermal Klimov-Weldon mass” as the smallest energy at
small momenta, is there even enough energy to produce the
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expected nine quarks? Altogether, these nine masses
amount to about 450 GeV, which is comparable to the
total sphaleron mass (10) at a size ρ ∼ 1 GeV−1. Therefore,
the classical treatment used above, in which the back-
reaction of the quarks on the explosion were neglected, by
solving the Dirac equation in a background field approxi-
mation, should be significantly modified.
However, there is a simple way around the “insufficient

energy” argument. In thermal field theory the sign of the
imaginary part of the effective quark mass operator can be
both positive or negative. This corresponds to the fact that
instead of producing new quarks, the sphaleron amplitude
can instead absorb thermal antiquarks from the plasma.
Still we would argue that, unlike the Farrar-

Shaposhnikov scenario [24], our sphaleron-induced
baryon number violation should survive all plasma effects.
We do not classify quarks by their momenta, but rather
by the virtualities or eigenvalues of the Dirac operator λ, in
the background of a sphaleron explosion solution.
It is true that the plasma effect will modify the spectral

densityPðλÞ in a way that most of the virtualities λ are equal
to or larger than the thermal Klimov-Weldon mass (29)

jλj > MKW:

According to Fig. 3, this puts the CP asymmetry to be of
order ∼10−17, way too small for BAU.

B. Fermion zero modes and “topological stability”
of B, L number violations

A sphaleron explosion is a phenomenon in which the
gauge topology of the background field is changing. The
topological theorems require the existence of a topological
zero mode of the Dirac operator in the spectral density,
PðλÞ ∼ δðλÞ. For the analytic form of a sphaleron explosion,
discussed in Appendix B, it was explicitly found in
Ref. [9]. The same technique, an off-center conformal
transformation of the Oð4Þ symmetric Euclidean instanton
solution, applied to instanton zero mode, leads to
Minkowski zero mode, which provides a detailed descrip-
tion of the wave function of outgoing fermions.
Although no explicit solution is known in the back-

ground of thermal gluon plasma, we argue that no plasma
effects can negate the existence of the zero mode, which is
robust and immune to any perturbations of the sphaleron
fields, provided those do not change their topology. Indeed,
the sphaleron explosion implies changing the Chern-
Simons number of the gauge configuration, which is locked
to the change in the quark and lepton numbers by the chiral
anomaly.
For a skeptical reader, let us provide an example from

practical lattice gauge theory simulations, which may
perhaps be convincing. At a temperature at and above
the critical T > Tc, in a quark-gluon plasma (QGP) phase,
there are plenty of thermal gluons. And yet, when a

configuration with the topological charge Q ¼ �1 is
identified on the lattice, an exact Dirac eigenvalue with
λ ¼ 0 is observed, within the numerical accuracy, typically
10−9 or better. Also, the spatial shape of this eigenvalue is
in very good agreement with that calculated using semi-
classical instanton-dyons [31]. Zillions of thermal gluons
apparently have no visible effect on the shape of these
modes, in spite of the fact that the gauge fields themselves
are undoubtedly strongly modified. Of course, this example
is in a Euclidean time setting, while the sphaleron explosion
is in a Minkowskian time setting. Real time simulations
are much more costly and have only been done, with
fermions, in a few works, such as [25]. However, it is
beyond doubt that the baryon number violation phenome-
non, by itself, is topologically robust and immune to
thermal modifications.

V. CP VIOLATION FOR OUTGOING QUARKS

Now that we argued that the Dirac operator should still
have an exact zero mode for a sphaleron explosion, even in
the plasma, we now further ask how its presence in the
Dirac operator determinant can affect the estimates of the
CP violation we made earlier.
Let us return to the Dirac operator (19), in left-right nota-

tions, adding effects of quark-gluon scattering. Interaction
with gluons, represented by the Klimov-Weldon mass (or
more generally, the forward scattering amplitude at an
appropriate momentum) should be added to both (left-left)
and (right-right) parts of the Dirac operator

det

�
i=DþMKW þMLR

1

i=∂ þMKW
M†

RL

�
:

Note that the nondiagonal fermion masses (LR and RL)
flipping chirality can only come from interaction with the
Higgs scalar field, violating chiral symmetry. When there is
no Higgs VEV (at T > Tc), to lowest order the last term is
absent. At the next order, it is proportional to the corre-
sponding Yukawa couplings for different fermion species.
What we argued above means that the plasma-deformed

first LL operator i=DþMKW should, as the vacuum version,
have a zero eigenvalue. For that, we write

i=D ¼ ði=∂ þ gAμÞ1̂þ gAμðM̂CKM − 1̂Þ; ð31Þ

where hats indicate matrices in quark flavors. The topo-
logical zero mode λ ¼ 0 follows from the flavor-diagonal
part, as a zero eigenvalue of the first bracket

ði=∂ þ gAμ1̂Þψλ ¼ λψλ: ð32Þ

The so-called “topological stability” implies that the zero
eigenvalue does not have any perturbative corrections.
The remaining part of the Dirac operator (31) can

formally be considered small and thus treated
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perturbatively, providing a small modification of the known
explicit solution to the Dirac equation in the background of
sphaleron explosion. The deviation of the gauge field term
from 1̂ through

gAμðV̂CKM − 1̂Þ

would provide vertices for flavor changing quarks, and the
mass term, in the form

MLR
1

i=∂ þMKW
M†

RL;

would provide perturbative corrections to the quark propa-
gators connecting these vertices. As we will see, this
flavor-dependent part is key for evaluating the magnitude
of CP violation.

As explained by ’t Hooft long ago [32], the physical
meaning of the zero mode of the instanton (or its analytic
continuation to Minkowski time [9] we imply here) is the
wave function of the outgoing fermion produced. The CP
violation induced by the quarks “on their way out” appear
due to interferences of certain diagrams with different
intermediate states. As a result of that, the production
probabilities of quarks and antiquarks are not equal. The
method to calculate the effect was previously developed by
Burnier and one of us [33].
Consider an outgoing quark, accelerated by the electric

field of the sphaleron explosion, and interacting on its way
with the W field times V̂CKM − 1 twice. The full probability
for the quark production contains sums over all possible
intermediate flavor states. For example, if the quark started
as the b quark, then one has a triple sum over intermediate
flavors

Pb ¼
X
IJK

ðAðb → I ¼ t; c; u → J ¼ b; s; dÞ × AðJ ¼ b; s; d ← K ¼ t; c; u ← bÞÞ: ð33Þ

We now note the three key features of this expression:
(i) the intermediate up quarks t, c, u in each amplitude

need not be the same. The interference of multiple
paths in flavor space, induced by the CKM matrix
angles, may lead to CP violation.

(ii) the total number of CKM matrices V̂CKM is four,
which is just enough to make this CP-violating
contribution nonzero.

(iii) the combination V̂þ
CKMV̂CKMV̂

þ
CKMV̂CKM and its

complex conjugate is not the same as for the
corresponding (b̄) antiquark.

In light of this, the probability to produce a quark and an
antiquark are not equal, i.e., AAq ≠ AAq. More specifically,
let us write the convolution for a particular initial up-quark
state labeled as U0,

AAU0 ∼
X

D1;U;D2

TrðP̂U0Wðx1ÞV̂CKMSD1;D1ðx1; x2Þ

×Wðx2ÞV̂þ
CKMS̃

U1;U1ðx2; x3ÞWðx3ÞV̂CKMSD2;D2ðx3; x4ÞWðx4ÞV̂þ
CKMP̂U0Þ; ð34Þ

where V̂CKM is a 3 × 3 CKM matrix (indices not shown) and PU0 at both ends are projectors onto the original quark type.
The propagators Sðx; yÞ are diagonal flavor matrices with their indices shown. There are three options for each index, D1,
D2 ¼ b, s, d, and U0, U1 ¼ t, c, u, so for each quark the probability has 33 ¼ 27 interfering terms. The intermediate
propagator S̃U1;U1 has a tilde, which indicates that it should include the propagation from point x3 to infinity and its
conjugate propagation from infinity to point x4. Therefore, its additional phase depends on the distance between these
points. The corresponding amplitudes for the antiquarks involve complex conjugate (not Hermitian conjugate) CKM
matrices relative to the quark amplitude, namely,

AAU0 ∼
X

D1;U;D2

TrP̂U0Wðx1ÞV̂�
CKMS

D1;D1ðx1; x2Þ

×Wðx2ÞV̂T
CKMS̃

U1;U1ðx2; x3ÞWðx3ÞV̂�
CKMS

D2;D2ðx3; x4ÞWðx4ÞV̂T
CKMP̂U0: ð35Þ

The difference in the probability of production of a quark
and antiquark is denoted by

ΔPQ ≡ ImðAAQ − AAQÞ:

We now note the following:
(i) the propagators of quarks of different flavors

between the same relative points have different
phases;
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(ii) the locations in the amplitude x1;2 need not be the
same as the locations x3;4 in the conjugate ampli-
tude, so in principle we need to integrate over all of
these locations independently.

For a qualitative estimate of (34) and (35) we
write the nontrivial flavor-dependent phases in the
propagators as

SQQ ¼ eiϕQ;

suppressing for an estimate their dependence on the
coordinates, and perform the sums with U0 referring
to all six initial types of quarks. The lengthy result is
given in Appendix C. As already indicated, these phases
come from the last term in the Dirac operator. Apart from
the common phase induced by the =p in it, there are flavor-
dependent phases induced by the last term in the Dirac
operator

ϕQ ¼ m2
Qjx1 − x2j
MKW

: ð36Þ

Using for the coordinate distance traveled the sphaleron
size (maximal at freeze-out line)

jx1 − x2j ≈ ρmax ∼ 1=10–1=30 GeV−1;

we introduce a new (temperature-dependent) mass scale

Mρ ≡
�

MKW

ρmaxðTÞ
�

1=2
∼ 40 GeV: ð37Þ

Using this notation, the additional phases are just a ratio of
(flavor and temperature-dependent) quark mass to Mρ,
squared:

ϕQ ¼ m2
Q

M2
ρ
: ð38Þ

When the quark masses are smaller than Mρ, the
corresponding phases are small.
Let us now recall that we are discussing the Universe at

temperatures across the electroweak transition, with the
Higgs VEV vðTÞemerging from zero to eventually its value
in the broken phase as we have it today. For a specific
expression see the lattice result (A6). All quark masses
grow in proportions to the VEV, and therefore the ensuing
CP violation grows. We will divide this stage of the
evolution into two substages.
Stage 1: In the quark production probabilities, the four

vertices with CKM matrices are connected by three pro-
pagators, leading to expressions cubic in ϕQ ∼ ðmQ=MρÞ2,
after expanding the expressions in Appendix C. The end of
stage 1 happens when the largest of the phases, that due to
the top quark, reaches Oð1Þ, or

mt ≈Mρ ∼ 40 GeV: ð39Þ
At this time all other quark masses are much smaller than
the top quark mass, respective to their Yukawa couplings,
and their phases are therefore small. The lengthy expres-
sions in Appendix C can be simplified by expanding these
exponents to first order in the phases. Say, the one for the d
quark contains the heaviest quark masses in the expression,
and the corresponding CP asymmetry is

ACP ∼ 2J
m2

bðTÞm2
cðTÞ

M4
ρðTÞ

∼ 2J

�
m2

bð0Þm2
cð0Þ

mtð0Þ4
��

mtð0Þ4
M4

ρ

�
≈ J × 1.2 × 10−7 × 350 ∼ 10−9: ð40Þ

Stage 2: This corresponds to a top quark mass large,
mt > Mρ, making the phase also large, ϕt ≫ 1. Since it
means a rapidly oscillating exponent, we assume that

e�iϕt ≈ 0

and drop all factors with a top quark phase. If one starts
from a light quark U0 ¼ u, the resulting expression
contains the mass differences with the heaviest remaining
masses of b, c quarks, namely,

2J
ðm2

b −m2
sÞðm2

c −m2
uÞ

M4
ρ

: ð41Þ

It is similar to the expression we had before, but with
masses continuing to grow. The numerator grows as the

fourth power of VEV ∼ vðTÞ4, and the denominator
approximately as its second power due to sphaleron size
shrinkage. As a result, the temperature dependence
is ∼v2ðTÞ ∼ ðTEW − TÞ.
Eventually, the temperature falls to T ¼ 130 GeV below

which the sphalerons freeze out completely. The prefactor
2J ∼ 6 × 10−5 and the CP asymmetry (41) is about

ACP ∼ 0.25 × 10−9 ð42Þ

comparable to what one gets by the end of stage 1.
Some remarks are now in order here. Note that if one

starts with the first generation u quark, the intermediate
ones kept are b and c, of the third and second generations.
So, as required, all three generations are involved. Yet this
does not mean that all six quark flavors need to be
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involved: in particular, the answer ΔPu (in Appendix D)
contains a factor ðm2

b −m2
sÞ but not ðm2

d −m2
sÞ, as there is

no d quark anywhere. Thus there is no m2
s in our answer.

The situation is exactly the same as in the exclusive b
decays as we discussed earlier. Only the masses of the
quarks explicitly involved in the process, not all six mass
differences, need to be present. The full Jarlskog mass
factor is not required in exclusive reactions.
So far we considered single quark loops, separate for

each of six quark species. Two CKM matrices were put on
its outgoing line, and two more into its line of the
conjugated amplitude. However, sphaleron explosions
create nine quarks simultaneously. [The ones that depend
on SUð2Þ orientation can, e.g., be u, c, t quarks of three
colors each.] Intermediate states induced by CKM can
interfere with those on other quark lines, with some Pauli
blocking. There are also QCD and QED-induced final state
interactions, which are T-odd but flavor dependent. A full
scale calculation of a complete nine-particle determinant is
at the moment not performed.
Let us give an example of the partial cancellation we

have in mind. The CP violation for the d quark, ΔPd
(in Appendix D), has the same magnitude of the CP
violation (41) but has the opposite sign. Therefore, in the
symmetric phase at T > TEW, when orientation of the
sphaleron zero mode in the SUð2Þ group space is spheri-
cally symmetric, one may worry about cancellation of
the CP violations, between contributions of sphalerons
that produce more u or more d quarks. Such cancella-
tions, similar to what is seen in leading order effective
Lagrangians, are expected to happen only partially when
higher order effects (e.g., including electromagnetic inter-
actions) are taken into account. As the SUð2Þ symmetry
gets broken at T < TEW (the phase we discuss), there is no
longer any symmetry between up and down weak isospin
orientations. The specific Lagrangian for quark interaction
with the Z field takes the well-known form

Lq̄qZ ¼ −
g

2 cosðθWÞ
X
i

q̄iZμγ
μðgiV − giAγ

5Þqi ð43Þ

in which vector and axial constants are different for up and
down quarks:

giV ¼ tðiÞ − 2Qisin2ðθWÞ; giA ¼ tðiÞ;

where tð�Þ ¼ �1=2 is a weak isospin and Qi ¼
ð2=3;−1=3Þ are quark electric charges. Therefore the u
and d CP-violating terms do not cancel each other. Since
Qu −Qd ¼ þ1 and the sine of the Weinberg angle
sinðθWÞ ≈ 1

2
are both of order 1, the effective CP violation

in the sphaleron explosion remains of order 10−9.
Completing this section, let us recapitulate the assump-

tions made and provide additional comments on further
steps of this program: (1) we used the sphaleron size ρ as a

placeholder for the distance between points at which the
fields appear. In the real calculation, coordinates should be
integrated over with projections to currents in an actual
Feynman diagram defined on top of the fermionic zero
mode of the sphaleron explosion; (2) we eliminated the
term with the largest phase, that with the top quark mass,
assuming that the oscillating term leads to the cancellation
of all terms and zero answer. This contribution can be
studied further; (3) we put all CKM matrices on a single
line of particular flavor and pick up the largest contribution.
A complete calculation with nine lines and the final state
QED/QCD interactions is yet to be done.
Note that we are discussing the cosmological time near

the phase transition; the quark masses under consideration
are not fixed but vary in time, from zero to their physical
values in the broken phase, due to a changing Higgs VEV v.
Suppose we consider the situation in which the largest
phase is of order one. We estimate this to happen when

mtðTÞ ∼
ffiffiffiffiffiffiffiffi
E=ρ

p
∼Mρ: ð44Þ

This delicate estimate is straightforward in logic but relies
on a key assumption, namely, that the energy of the
outgoing quark is larger than E ∼MKW. Naively, it cannot
be smaller for free quarks in the electroweak plasma, as
their interaction with the gluons makes their energy of order
MKW even at zero momentum. Yet this assumption can be
amended by the fact that the outgoing quarks are not free.
They are still in the sphaleron field where it is worth
recalling that they satisfy

ð−D2 þ g2Gμνσ
μνÞψλ ¼ λ2ψλ; ð45Þ

which contains not only the momentum squared, but
also the g2A2, g2Gμν term. For a sphaleron, the latter is
about ∼10=ρ2, with the sign depending on the location.
Therefore, the eigenvalue spectrum does not start at
λ > MKW sharply, but extends to smaller values. Indeed,
the quarks produced are pulled from the lower continuum,
or the Dirac sea.The numerical value estimated above
contains 1=λ4, and thus the result depends on the tail of
the spectral density at smaller λ.

VI. BARYOGENESIS

A. Sphaleron transitions out of equilibrium

Before we discuss freeze-out of the sphaleron transitions,
it is instructive to recall an analogous case of freeze-out of
the “little bang” in heavy ion collisions. A good example is
the production of antinucleons N̄. In the 1990s the cascade
codes predicted a small yield of N̄, based on the fact that on
average many baryons surround an antinucleon. Since the
annihilation cross section σNN̄ is large, the antinucleon
lifetime τ ∼ 1=ðnNσNN̄hviÞ must be quite short. However,
the data showed otherwise, with a number of produced
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antinucleons much larger than predicted by the numerical
codes. The explanation was given in [34]. The annihilation
creates multipion final states with Nπ ∼ 6, and the inverse
reaction Nπ → NN̄ was ignored because of certain preju-
dice, that the multiparticle collision has a negligible rate.
Explicit calculations showed otherwise, in agreement with
the detailed balance in thermal equilibrium.
This equilibrium is violated only after the so-called

chemical freeze-out, when the rate Γinelastic of the inelastic
reactions changing Nπ and NN gets smaller than the
expansion rate of the fireball H ¼ ∂μuμ (the Hubble of
the little bang). While the particle numbers become time
independent, the thermal state of the expanding fireball is
described via time-dependent chemical potentials, μπðtÞ
and μNðtÞ. The annihilation channel contains the fugacity
factor expð−2μN=TÞ, while the inverse reaction channel
contains the fugacity expð−Nπμπ=TÞ. Since

Nπμπ > 2μN; ð46Þ

the inverse production process gets more suppressed than
the direct annihilation process. Only then does the anti-
baryon population start to be somewhat depleted.
We now return to Sakharov’s conditions for BAU, the

deviation from thermal equilibrium. The sphaleron tran-
sitions basically consist of two different stages. The first is
a complicated diffusion of the gauge fields moving uphill
(say, from NCS ¼ 0 to 1

2
) by thermal fluctuations, driving

the fields to the sphaleron configuration at NCS ¼ 1=2.
Fortunately, we do not need to understand it. In equilibrium
the sphaleron population is given by the Boltzmann factor
expð−Esp=TÞ. The second is the sphaleron decay rolling
downhill, say, from NCS ¼ 1

2
to 1, as described by the real-

time solution of the equations of motion in Appendix C.
The process is purely Minkowskian with an amplitude eiS

and a real action, hence it has unit probability of realization.
In equilibrium, the principle of a detailed balance

requires that the backward reaction with t → −t has a rate
equal to the forward reaction. Contrary to common preju-
dice, this means that a large number of gauge quanta

NW ∼ 1=αEW ≫ 1

plus 12 fermions (required by the anomaly relation) can
combine into a coherent field configuration. According to
Einstein’s fluctuation-dissipation relation, random thermal
fluctuations driving the system uphill exactly compensate
the number of sphalerons rolling downhill. As Sakharov
argued, the presence of CP and thus T violation in the
matrix element of the process does not matter, since it is the
kinetic prefactors that cancel each other. The thermal
occupation factors, Sakharov argued, depend only on
masses and/or energies, which are CP invariant.

However, since the Universe is expanding and cools
below TEW, the Higgs VEV vðTÞ is growing. The height
of the topological mountains is growing with it. Uphill
transitions with rates smaller than the Hubble rate
H ∼ 1=tEW no longer happen. The remaining configura-
tions on the sphaleron path just roll down. They are out of
equilibrium, as they are not replaced by the upward-going
fluctuations anymore. So, their decay fixes a “time arrow,”
a condition in which the CP-complex nature of the
amplitude can affect probabilities.
Admittedly, in this work we have not addressed the

dynamics of the freeze-out quantitatively. Perhaps one
can do so using the Langevin equation. It may also be
possible for lattice real-time studies to model a slow
Universe expansion. We can only argue at this point that
the approach assuming instantaneous transition from the
equilibrium occupations to noninteracting states works
quite well in heavy ion collisions, where it accurately
predicts the yield ratios for many particle species.
The sphaleron decays get frozen when their rate

expð−Bsphρv2ðTÞÞ < 10−9: ð47Þ

More specifically, for the large-ρ tail and in the small-v
regime near Tc, the inverse reaction of multiquanta colli-
sions gets frozen first. The argument is based on the
observation that the corrections to the sphaleron mass
ΔEsp ¼ Cspρv2 is smaller than the modification of the
thermal Boltzmann factor of the inverse reaction. The latter
can be written as corrections to ultrarelativistic energies of
W bosons due to their mass Ep ≈ pþM2

W=2p, so the
energy in their thermal exponent changes by

ΔEW ¼
XNW

i¼1

ΔEi ≈
NW

2p

�
MWð0Þ

vð0Þ=vðTÞ
�

2

ð48Þ

after rescaling theW mass. Since 1=p ∼ ρ, this correction is
of order ∼ρv2, but the coefficient NW is parametrically
larger with NW ∼ 100 ¼ Oð1=αEWÞ.

B. Contribution to BAU from out-of-equilibrium
sphalerons

Our next step is to calculate the BAU produced by the
large-size sphalerons which are out of equilibrium. As
detailed above, this requires moving to the freeze-out point,
thereby sacrificing nine orders of magnitude in the rate with
Ffreeze−out ∼ 10−9. This is the regime where the sphalerons
decay but are not regenerated. Each electroweak sphaleron
changes the baryon number by 3 units, i.e., nine quarks
each carrying 1

3
baryon charge. The baryon number density

normalized to the entropy density of matter follows by
integrating the rate over the freeze-out time ΔtFO
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�
nB
s

�
¼ 3ACP ×

�
ΓFfreeze−out

TEWsEW

�
× ½TEWtEW� ×

�
tFO − tEW

tEW

�
: ð49Þ

Here ACP is the CP asymmetry, the relative difference
between baryon number production and annihilation in a
single sphaleron transition. The second factor in square
brackets is the out-of-equilibrium sphaleron rate normal-
ized to the total entropy density sEW=T3

EW ¼ 2π2

45
106.75

(where 106.75 is the number of effective degrees of
freedom), which amounts to about 3.2 × 10−18. The next
factor is the cosmological time in units of the electroweak
temperature, which is long and about

TEWtEW ≈ 2.2 × 1015: ð50Þ
The fourth (last) bracket is the available time till freeze-out
normalized to the total time. Using Friedmann evolution
numbers in Appendix A one gets

tFO − tEW
tEW

≈ 0.5: ð51Þ

Since the entropy in the adiabatic expansion of the
Universe is conserved, it is the same at the big bang
nucleosynthesis (BBN) time which is mostly in the form of
black body photons. The standard Bose gas relation
between the entropy density and the photon density is
nγ ¼ 0.1388sγ . Substituting all these estimates in (49) gives
the baryon-to-photon ratio�

nB
nγ

�
¼ 7.6 × 10−2ACP: ð52Þ

Since the phenomenological value for this ratio, from the
BBN fits, is known to be�

nB
nγ

�
BBN

¼ 6 × 10−10; ð53Þ

we conclude that the amount of CP violation required to
produce the observed BAU is

ACP ≈ 0.8 × 10−8: ð54Þ
Our estimates of the CP asymmetry above gave about
ACP ∼ 10−9, an order of magnitude smaller than needed to
explain BAU. We think that this discrepancy is still inside
the uncertainty of our (quite crude) estimates (54).

VII. OTHER POTENTIAL OBSERVABLES
PRODUCED BY SPHALERON EXPLOSIONS

A. Production of sound and gravity waves

Most of the studies on the gravity wave generation by the
EWPT focus on scenarios based on the first order transition

or the “cold” transition, as those usually yield large density
fluctuations. To our knowledge, the smooth cross over the
transition of the minimal SM has not been considered.
Since the sphaleron explosions give rise to significant

deviations from a homogeneous stress tensor of the plasma

ΔTμν ∼ GμλGν
λ ∼

1

g4T4
; ð55Þ

one may expect radiation of the gravity waves. The stress
tensor from the analytically known sphaleron field (B10)
yields long expressions which are not suitable for repro-
duction here. Instead, we show in Fig. 4 the behavior of
T00ðt; rÞ (the energy density) and T33ðt; rÞ (the pressure),
which illustrates the time-development of the exploding
sphaleron in a spherical shell.
The key point here is to assess the scale dependence of

both the sound and the gravity waves triggered by the
explosion, which can be expressed using the power-
per-volume dE=d4x. Dimensional reasoning shows that
the average scale is shifted to smaller sphaleron sizes. The
measure for small size sphalerons
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FIG. 4. Components of the stress tensor [times r2, namely,
r2T00ðt; rÞ upper plot, r2T33ðt; rÞ lower plot] as a function of r,
the distance from the center, at times t=ρ ¼ 0.1, 1, 2, left to right.
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dρ
ρ5

PðρÞ ¼ dρ exp

�
−

3π2

g2Tρ
− 5 logðρÞ

�
ð56Þ

is peaked at

ρ� ¼
3π

20αEWT
≈

1

10 GeV
; ð57Þ

which is about an order of magnitude smaller than the peak
of the distribution (Fig. 1).
Also, for T > Tc we do not expect direct gravitation

emission from the sphaleron explosion. In this regime the
Higgs VEV vanishes, and nothing breaks the rotational
symmetry of the gauge field leading to spherically sym-
metric sphaleron explosions. As a result, these explosions
cannot directly generate gravitational waves no matter how
violent they are. This is not the case for T < Tc as we
discuss below.
There is an indirect way to a gravitational signal as

discussed in [10]. Spherical sphaleron explosions do excite
the underlying medium through hydrodynamical sound
waves and vortices. Of course, the medium viscosity will
eventually kill them, but since the damping rate scales as
Γ ∼ ηk2, at small k (large wavelength) this time can be long.
A random set of sound sources creates acoustic turbulence.
Under certain conditions it may turn into the regime of
inverse cascade and propagate many orders of magnitude,
perhaps to the infrared cutoff, the horizon size of the
Universe. It is a 2 → 1 generic process [10]

soundþ sound → gravity wave;

which operates during the whole lifetime of the sound.
Just after the transition, at T < TEW, a nonzero Higgs

VEV leads to different masses of various quarks, leptons,
and gauge bosons. This “mass separator” split the expand-
ing spherical shell of the explosion into separate regions.
Also, a nonzeroWeinberg angle (or the nonzero g0 coupling
of the Higgs to the Abelian Uð1Þ field) produces an elliptic
deformation of the sphaleron explosion. It is created by the
following part of the action:

ΔSa ¼
m2

Z −m2
W

2

Z
d4x

ffiffiffi
g

p
gμνZμZν; ð58Þ

where the metric is explicitly shown. Writing it as a flat
metric plus perturbation gμν ¼ ημν þ hμν and expanding in
hμν is the standard way to derive the corresponding stress
tensor, which is

ΔTμν
a ¼ m2

Z −m2
W

2

�
−ZμZν þ ημν

2
Z2

�
: ð59Þ

Here, the prefactor is proportional to v2ðTÞ, nonzero only
after EWPT, at T < TEW.

The power produced by the gravity wave is proportional
to the squared matrix element jMj2 of the Fourier resolved
stress tensor by the gravity wave with momentum k⃗,

Mðh; kÞ ¼
Z

d4xΔTμνðxÞhμν
eik·x

r
: ð60Þ

We recall that the polarization tensor for the gravity wave
hμν is traceless, and transverse, i.e., nonzero only in the 2D

plane normal to k⃗. For example, for k⃗ in the one direction,
the pertinent contributions in (60) are T22 − T33 or T23 for
the respective polarizations.
The main part of the stress tensor gives a vanishing

matrix element, as it should, but the asymmetric part of the
stress tensor produces gravitational radiation. In Fig. 5 we
show the dependence of the gravity wave matrix element as
a function of kρ. As expected, it is maximal at kρ ∼ 1. We
have already evaluated the most important sphaleron size in
(57). As a result, the expected gravitational wave momen-
tum should be k ∼ 1=ρ� ≈ 10–30 GeV.

B. Helical magnetogenesis

The symmetry breaking by the Higgs VEV at T < Tc
leads to mass separation of the original non-Abelian field
A3
μ into a massive Zμ and a massless aμ, related by a rotation

involving the Weinberg angle. The expanding outer shell of
the sphaleron explosion contains massless photons and
near-massless quarks and leptons u, d, e, ν.
The anomaly relation implies that the non-Abelian

Chern-Simons number during the explosion defines the
chiralities of the light fermions, which can be transferred to
the so-called magnetic helicityZ

d3xA · B ∼ B2ξ4 ∼ const: ð61Þ

The configurations with nonzero (61) are called helical. We
conclude that the primordial sphaleron explosions may
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FIG. 5. The dimensionless matrix element M=ðM2
Z −M2

WÞ2 in
(60) versus kρ, for a gravity wave propagating in the one direction
with transverse polarization giving T22 − T33.
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seed the helical clouds of primordial magnetic fields. Since
the sphaleron rate is small, Γ=T4 < 10−7, these seeds are
produced independently from each other, as spherical shells
expanding luminally.
The requirement for the inverse cascade effect is chiral

unbalance which is at the origin of the chiral magnetic
effect (CME). Locally the trapped and comoving light
fermions produced by the sphaleron explosion are chiral.
The time during which chirality is conserved is given by the
appropriate fermion masses. For magnetic fields it is the
electron mass, which at the sphaleron freeze-out time is

meðTFOÞ ¼ me
vðTFOÞ
vð0Þ ∼ 20 KeV: ð62Þ

The size growth of the chiral (linked) magnetic cloud is
diffusive. For a magnetically driven plasma with a large
electric conductivity σ, a typical magnetic field B⃗ diffuses
as

dB⃗
dt

¼ D∇2B⃗ ð63Þ

with the diffusion constant D ¼ 1=ð4πσÞ ∼ 1=T. It follows
that the magnetic field size grows as

R2ðtÞ ¼ DΔt ∼
Δt
T

; ð64Þ

where the inverse cascade time Δt is limited by the electron
mass

Δt ∼ 1=meðTFOÞ: ð65Þ

As a result, the size of the chiral magnetic cloud is

RðΔtÞ ∼
�

1

meðTFOÞT
�1

2

∼ 4 · fm: ð66Þ

We note that this is a few orders of magnitude larger than
the UV scale of the problem 1=T ∼ 0.001 fm and far from
the IR cutoff of the problem, the horizon at ∼2.7 mm.
One of the chief observations is that the magnitude of

CKM induced CP violation is strongly scale dependent. It
increases with the sphaleron size to a maximum, perhaps as
large as maxPCP ∼ 10−9. Therefore, the sphaleron seeded
magnetic clouds would start with such an initial asymme-
try. Their subsequent evolution goes beyond the scope of
this work. However, we expect that during the evolution the
left- and right-linked clouds will annihilate. Since helicity
in magnetohydrodynamics is conserved, we expect the
asymmetry to grow with time till only one chirality
remains, as is the case for baryon number.
After the CME is switched off, ordinary magnetohy-

drodynamical evolution continues to expand the cloud size
and to decrease its field strength. This evolution is stopped

only when the matter is no longer a plasma, that is, at the
recombination era.

VIII. SUMMARY

The main purpose of this paper is to revive the discussion
of the cosmological EWPT, in connection to the generation
of the baryon asymmetry and helical magnetic clouds. In
contrast to many other works, we have kept our analysis
within the minimal SM, using the established fact, from
lattice simulations, that the transition is a smooth crossover.
The Higgs VEV in it is gradually growing, instead of
abruptly jumping, as in the previous first order scenarios.
We have focused on the primordial dynamics of the

sphaleron explosions. By now, their overall rate is more or
less understood, in both the symmetric and slightly broken
phases, from lattice simulations. We have used this knowl-
edge to study the sphaleron size distribution, by con-
straining the small and large ρ-tail distribution to known
results.
The small-size end of the sphaleron size distribution, at

ρ ∼ 1=ð40 GeVÞ was found to dominate the production of
sound waves, as well as direct gravitational radiation.
These sound waves may or may not be involved in the
inverse acoustic cascade, advocated in [10]. However, if
they do, long wavelength sounds would reach the horizon
at the time, and then be converted to gravity waves, in a
frequency range accessible by eLISA.
In a specific time range between the transition and

sphaleron freeze-out t ∈ ½tEW; tFO�, we showed that all
three Sakharov conditions are satisfied, so the Standard
Model does generate some baryon asymmetry. The mag-
nitude depends crucially on the CP violation during the
sphaleron explosion process.
We started our studies of CP violation from straight-

forward estimates of diagrams containing four W (and
CKM matrices) with two more Z bosons added to get a
nonzero result. We used the quark Dirac eigenstates as a
generic basis. The results should still be convoluted with a
spectral density for the particular background. Because of
the various interactions with ambient gluons, the quark
Dirac eigenspectrum is mostly located at λ ∼MKW (the
effective mass generated by the forward scattering off
gluons). If so, the resulting CP asymmetry is about 10
orders of magnitude smaller than needed for the observed
BAU ratio. This is a well-known problem, resulting in a
pessimistic view of the whole approach.
However, the so-called “topological stability” comes to

the rescue. There are good reasons to believe that the Dirac
operator in the background of a sphaleron explosion
still possesses a topological zero mode, surviving gluon
rescattering. This in turn implies that the only place where
the Klimov-Weldon mass matters is in the effective mass
term for right-handed quarks, as M2

q=MKW. These (flavor-
dependent) mass contributions cause additional phase shifts
in the outgoing quark waves during their production
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process. Moderately involved calculations of the resulting
CP asymmetry set its value at about ∼10−9, suppressed by
the Jarlskog combination of CKM phases and the fourth
powers of the corresponding quark masses.
Comparing to what is needed to solve the famed BAU

problem, it is about an order of magnitude off. We think it is
well inside the uncertainties of our crude estimates.
Anyway, we have shown that a minimal standard model
can generate BAU many orders of magnitude larger than
previously expected. Clearly, further scrutiny of this sce-
nario is needed.
Finally, we have shown that like the BAU, CP asym-

metry at sphaleron explosions should also be at the origin
of helical magnetic fields. The conservation of the (Abelian
version) of the Chern-Simons number, magnetic linkage,
should then keep it till today, and so potentially observable.
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APPENDIX A: BASICS OF ELECTROWEAK
PHASE TRANSITION

The transition temperature for the electroweak symmetry
breaking was known from the mean field analysis of the
Higgs potential and was further detailed by lattice studies in
[15]. It is a crossover transition at

TEW ¼ ð159� 1Þ GeV: ðA1Þ
The temperature of the Universe today is Tnow ¼ 2.73 K.
The ensuing redshift z factor is

zEW ¼ TEW

Tnow
≈ 6.8 × 1014: ðA2Þ

During the radiation dominated era, the relation of time to
temperature is given by Friedmann relation

t ¼
�

90

32π3NDOFðtÞ
�1

2 MP

T2
: ðA3Þ

Inserting the Planck Mass MP ¼ 1.2 × 1019 GeV, the
transition temperature and the effective number of degrees
of freedom NDOF ¼ 106.75, we find the time after the big
bang to be

tEW ∼ 0.9 × 10−11 s; ctEW ≈ 2.7 mm: ðA4Þ
As explained in the main text, the main phenomena
discussed happen near the sphaleron freeze-out time,
which, according to Ref. [15], is at TFO ≈ 130 GeV. The
corresponding cosmological time is then

tFO ∼ 1.36 × 10−11 s; ctFO ≈ 4 · mm: ðA5Þ

The Higgs VEV vðTÞ grows gradually, from zero at the
critical TEW. It was confirmed by [15] that the squared
Higgs VEV grows approximately linearly

v2ð140 GeV < T < TEWÞ
T2

≈ 9

�
1 −

T
TEW

�
: ðA6Þ

This scaling is consistent with the naive Landau-Ginzburg
treatment of the Higgs potential. The coefficient is also in
agreement with the two-loop perturbative calculations. At
freeze-out its value is

vðTFOÞ ≈ 167 GeV; ðA7Þ

approximately 2=3 of the value in the fully broken phase.
In the symmetric phase T > TEW, the normalized spha-

leron rate remains constant, which according to [15] is

Γ
T4

≈ 1.5 × 10−7; ðA8Þ

consistent with the expected magnitude of 18α5EW from
perturbative calculations.
If the seeded magnetic field would be simply produced at

the electroweak scale TEW, and then just grow with the
Universe with the redshift factor zEW, its resulting spatial
scale today would be

ξ ∼
zEW
TEW

¼ 6.8 × 1014 × 10−18 m ≈ 0.7 mm: ðA9Þ

The primary phase of the inverse magnetic cascade can
only reach from the microscale of 1=TEW ∼ 0.001 fm to the
horizon at that time, ctEW, about 13 orders of magnitude
away. If that would be the end of the inverse cascade, the
correlation length of the magnetic chirality would be

ξ ∼
zEW

1=ctEW
∼ 6.8 × 1014 × 2.7 × 10−4 m ≈ 1012 m:

ðA10Þ

This distance may appear large on a human scale, but in
units used for intergalactic distances it is tiny 1

3
× 10−11 Mpc.

This scale is also the same as the predicted maximal
wavelength of the gravity waves emitted at the electro-
weak transition today, in the hypothetical inverse acoustic
cascade [10].

APPENDIX B: PURE GAUGE SPHALERONS AND
THEIR EXPLOSION

Both static and time-dependent exploding solutions for
the pure-gauge sphaleron have been originally discussed by
Carter, Ostrovsky, and Shuryak (COS) [8]. Its simpler
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derivation, to be used below, has been discussed by
Shuryak and Zahed [9]. The construction relies on an
off-center conformal transformation of theOð4Þ symmetric
Euclidean solution, which is analytically continued to
Minkowski spacetime. The focus of the work in [9] was
primarily the detailed description of the fermion
production.
The original Oð4Þ-symmetric solution is given by the

following ansatz:

gAa
μ ¼ ηaμν∂νFðyÞ;

FðyÞ ¼ 2

Z
ξðyÞ

0

dξ0fðξ0Þ ðB1Þ

with ξ ¼ Logðy2=ρ2Þ and ηaμν the ’t Hooft symbol. Upon
substitution of the gauge fields in the gauge Lagrangian one
finds the effective action for fðξÞ,

Seff ¼
Z

dξ

�
_f2

2
þ 2f2ð1 − fÞ2

�
; ðB2Þ

corresponding to the motion of a particle in a double-well
potential. In the Euclidean formulation, as written, the
effective potential is inverted

VE ¼ −2f2ð1 − fÞ2; ðB3Þ

and the solution going from one maximum to another is the
well-known Belavin-Polyakov-Schwarz-Tyupkin (BPST)
instanton, a path connecting the two maxima of VE, at
f ¼ 0, 1. Any other solution of the equation of motion
following from Seff obviously generalizes to a solution of
the Yang-Mills equations for Aa

μðxÞ as well. The sphaleron
itself is the static solution at the top of the potential between
the minima with f ¼ −1=2.
The next step is to perform an off-center conformal

transformation

ðxþ aÞμ ¼
2ρ2

ðyþ aÞ2 ðyþ aÞμ ðB4Þ

with aμ ¼ ð0; 0; 0; ρÞ. It changes the original spherically
symmetric solution to a solution of the Yang-Mills equa-
tion depending on the new coordinates xμ, with separate
dependences on time x4 and the three-dimensional
radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
.

The last step is the analytic continuation to Minkowski
time t, via x4 → it. The original parameter ξ in terms of
these Minkowskian coordinates, which we still call xμ, has
the form

ξ ¼ 1

2
Log

�
y2

ρ2

�
¼ 1

2
Log

�ðtþ iρÞ2 − r2

ðt − iρÞ2 − r2

�
; ðB5Þ

which is pure imaginary. To avoid carrying the extra i, we
use the real substitution

ξE → −iξM ¼ arctan

�
2ρt

t2 − r2 − ρ2

�
; ðB6Þ

and in what follows we will drop the suffix E. Switching
from imaginary to real ξ corresponds to switching from the
Euclidean to the Minkowski spacetime solution. It changes
the sign of the acceleration, or the sign of the effective
potential VM ¼ −VE, to that of the normal double-well
problem.
The needed solution of the equation of motion has been

given in [9]

fðξÞ ¼ 1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffi
2ϵ

pq
dn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffi
2ϵ

pq
ðξ − KÞ; 1ffiffiffiffi

m
p

��
;

ðB7Þ

where dnðz; kÞ is one of the elliptic Jacobi functions,
2ϵ ¼ E=Es, 2m ¼ 1þ 1=

ffiffiffiffiffi
2ϵ

p
, and E ¼ VðfinÞ is the

conserved energy of the mechanical system normalized
to that of the sphaleron energy Es ¼ Vðf ¼ 1=2Þ ¼ 1=8.
Since the start from exactly the maximum takes a divergent
time, we will start by pushing the sphaleron from nearby
the turning point with

fð0Þ ¼ fin ¼
1

2
− κ; f0ð0Þ ¼ 0: ðB8Þ

The small displacement κ ensures that “rolling downhill”
from the maximum takes a finite time and that the half-
period K—given by an elliptic integral—in the expression
is not divergent. In the plots below we will use κ ¼ 0.01,
but the results dependent on its value very weakly.
The solution above describes a particle tumbling peri-

odically between two turning points, and so the expression
above defines a periodic function for all ξ. However, as it is
clear from (B6), for our particular application the only
relevant domain is ξ ∈ ½−π=2; π=2�. The solution fðξÞ in it
is shown in Fig. 6. Using the first three nonzero terms of its
Taylor expansion

FIG. 6. The function fðξÞ in the needed range of its argument
ξ ∈ ½−π=2; π=2�.

SPHALERONS, BARYOGENESIS, AND HELICAL … PHYS. REV. D 102, 073003 (2020)

073003-19



f ≈ 0.49292875 − 0.0070691232ξ2

− 0.0011773ξ4 − 0.0000781531899ξ6; ðB9Þ

we find a parametrization with an accuracy of 10−5,
obviously invisible in the plot and more than enough for
our considerations.
The components of the gauge potentials have the

form [9]

gAa
4 ¼ −fðξÞ 8tρxa

½ðt − iρÞ2 − r2�½ðtþ iρÞ2 − r2� ;

gAa
i ¼ 4ρfðξÞ δaiðt

2 − r2 þ ρ2Þ þ 2ρϵaijxj þ 2xixa
½ðt − iρÞ2 − r2�½ðtþ iρÞ2 − r2� ;

ðB10Þ

which are manifestly real. From those potentials we have
generated rather lengthy expressions for the electric and
magnetic fields, and eventually for the stress tensor and
some CP-violating operators using Mathematica.
Let us only mention that the (static) sphaleron solution is

purely magnetic, with gAa
4 ¼ 0. The magnetic field squared

and summed over all indices give the spherically symmetric
simple expression

B⃗2 ¼ 96ρ4

ðρ2 þ r2Þ4 : ðB11Þ

We note that the specific expressions for pure-gauge
sphaleron explosions were compared with numerical
real-time simulations [35] where they occur inside the
“hot spots” with very good agreement [36]. In the “cold
scenario” numerically studied the sphaleron size was not
determined by the Higgs VEV in the broken phase, but by
the size of the hot spots with the unbroken phase.
Unfortunately, a large size tail of the sphaleron distribution
on which we focused in this work cannot be studied in
similar simulations, as their probability is prohibitively low
to reach it statistically.

APPENDIX C: SPHALERONS DOMINATED BY
HIGGS VEV

At T somewhat below TEW, when the Higgs VEV vðTÞ is
sufficiently developed, one may return to the original
expressions developed by Klinkhamer and Manton [11],
modified from T ¼ 0 by using appropriate renormalized
parameters. With two profile functions, fðξÞ, hðξÞ of
normalized distance ξ ¼ gvr, the sphaleron mass is given
by the following integral:

M ¼ 4πv
g

Z
∞

0

dξ

�
4ðf0Þ2 þ 8

ξ2
f2ð1 − fÞ2 þ ξ2

2
ðh0Þ2 þ h2ð1 − fÞ2 þ ξ2

4

λ

g2
ðh2 − 1Þ2

�
: ðC1Þ

The mass and size scales include temperature-dependent
vðTÞ which we took from the lattice simulation [15]

vðTÞ
T

≈ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
TEW

s
: ðC2Þ

Renormalization of all Standard Model parameters at
finite temperatures near TEW has been evaluated, via
dimensional reduction, in the fundamental paper [16].

From it, extrapolated to physical Higgs mass in vacuum,
we extracted, at T of interest, the following values of the
coupling:

λ̄3
ḡ23

≈ 0.22; ḡ23 ≈ 0.39; ðC3Þ

and ignore their running in the temperature interval of
interest.
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FIG. 7. (a) The profile functions fðξÞ, hðξÞ versus ξ, for R ¼ 1, shown by black solid and blue dashed lines, respectively. (b) Root-
mean-square size ρðRÞ as a function of parameter R.
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For calculation we use the so-called ansatz B of [11] with a single parameter R

fðξÞ ¼ ξ2

RðRþ 4Þ ; hðξÞ ¼ σRþ 1

σRþ 2

ξ

R
ðξ < RÞ; ðC4Þ

fðξÞ ¼ 1 −
4

Rþ 4
eðR−ξÞ=2; hðξÞ ¼ 1 −

R
σRþ 2

1

ξ
eσðR−ξÞ ðξ > RÞ ðC5Þ

with σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · λ=g2

p
. These functions are plotted in Fig. 7(a), which, among other features, show their continuity at ξ ¼ R.

Putting these profiles into the functional (C1), one obtains the sphaleron mass MðRÞ. We also calculated the rms radius of
the sphaleron ρðRÞ, defined by inserting extra ξ2 into the energy density. In the main text we useMðρÞ representation, with
R as a parameter.

APPENDIX D: CP VIOLATION AND DIFFERENCES OF QUARK PHASES
DURING QUARK PRODUCTION

The multiplication of four CKM matrices by propagators, containing additional phases induced by the quark mass terms
in the Dirac operator, leads to the following expressions:

ΔPt ¼ 2Je−iϕc−iϕt−iϕuðeiϕd − eiϕsÞðeiϕc − eiϕtÞðeiϕc − eiϕuÞðeiϕt − eiϕuÞ;
ΔPc ¼ 2Je−iϕc−iϕt−iϕuðeiϕb − eiϕdÞðeiϕc − eiϕtÞðeiϕc − eiϕuÞðeiϕt − eiϕuÞ;
ΔPu ¼ 2Je−iϕc−iϕt−iϕuðeiϕb − eiϕsÞðeiϕc − eiϕtÞðeiϕc − eiϕuÞðeiϕt − eiϕuÞ;
ΔPb ¼ 2Je−iϕc−iϕt−iϕuðeiϕd − eiϕsÞðeiϕc − eiϕtÞðeiϕc − eiϕuÞðeiϕt − eiϕuÞ;
ΔPs ¼ 2Je−iϕc−iϕt−iϕuðeiϕb − eiϕdÞðeiϕc − eiϕtÞðeiϕc − eiϕuÞðeiϕt − eiϕuÞ;
ΔPd ¼ 2Je−iϕc−iϕt−iϕuðeiϕb − eiϕsÞðeiϕt − eiϕcÞðeiϕc − eiϕuÞðeiϕt − eiϕuÞ;

with

J ¼ cosðθ12Þ cosðθ13Þ2 cosðθ23Þ sinðθ12Þ sinðθ13Þ sinðθ23Þ sinðδÞ: ðD1Þ

The squared cos is not a misprint. The structure of these expressions is a reminder of the requirement that CP violation
would vanish if any pair of masses is degenerate. Indeed, in this case we would be able to redefine the CKM matrix and
eliminate the complex phase.
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