
 

Decay of a bound muon into a bound electron
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When a muon bound in an atom decays, there is a small probability that the daughter electron remains
bound. That probability is evaluated. Surprisingly, a significant part of the rate is contributed by the
negative energy component of the wave function, neglected in a previous study. A simple integral
representation of the rate is presented. In the limit of close muon and electron masses, an analytic formula is
derived.
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I. INTRODUCTION

Electrostatic binding of a muon μ− in an atom changes its
decay characteristics. Coulomb attraction decreases the
phase space available to the decay products but enhances
the daughter electron wave function. Muon motion smears
the energy spectrum of electrons. All these effects largely
cancel in the lifetime of the muon [1] but they do slow
down the decay by a factor that, for small atomic numbers
Z, reads

ΓððZμ−Þ → eνμν̄eNÞ ¼
�
1 −

ðZαÞ2
2

�
Γðμ → eνμν̄eÞ; ð1Þ

and can be interpreted as the time dilation; the characteristic
velocity of the bound muon is Zα.
Another possible effect, of primary interest in this paper,

is the decay into an electron that remains bound to the
nucleus N. For the actual small ratio of electron to muon
masses, me=mμ ≃ 1=207, that process is very rare, espe-
cially for weak binding in atoms with moderate Z.
We study it as a part of a program of characterizing
bound muon decays, motivated by upcoming experiments
COMET [2] and Mu2e [3].
Throughout this paper we use c ¼ ℏ ¼ 1 and treat the

nucleus N as static, spin 0, and pointlike, neglecting effects
of its recoil and finite size. We denote its number of protons
by Z. The notation ðZμ−Þ or ðZe−Þ denotes a muon or an
electron bound in the 1s state, forming a hydrogen-like
atom. We assume that no other particles are bound to the

nucleus (we neglect screening or Pauli blocking due to
other electrons).
The decay ðZμ−Þ → ðZe−Þνμν̄e was previously studied

in the very elegant and detailed paper [4]. We reevaluate it
and find discrepancies with that pioneering study, particu-
larly for large values of Z. This is most likely explained by
negative energy components of the Dirac wave functions,
neglected in [4] (as discussed in its Appendix A). Here
we use exact Dirac wave functions in the Coulomb field
of a pointlike nucleus. Effects of extended nuclear charge
distribution were found to be very small in [4] so we
neglect them.
Earlier studies of the differences between the decay of a

free and of a bound muon include [5–8]. More recently, the
spectrum of produced electrons was determined in [9–11].
This paper is organized as follows. In Sec. II,

momentum space wave functions are used to compute
the rate Γ½ðZμ−Þ → ðZe−Þνμν̄e�, as in Ref. [4]. Significant
differences are found so the result is checked with
position space wave functions in Sec. III. That approach
turns out to be much simpler; a one-dimensional integral
representation is found, replacing the triple integral of
Ref. [4]. In the limit of nearly equal masses,me → mμ, the
remaining integration is done analytically and a closed
formula for the rate is obtained in Sec. IV. Section V
presents conclusions and the Appendix summarizes the
formalism of Ref. [4].
In order to deal with binding effects, we describe the

initial and the final states by solutions of a stationary Dirac
equation. We treat the weak interaction that leads to the
decay as a harmonic perturbation. This description is exact
to all orders in Zα, including relativistic and thus positron
and antimuon effects. We expect corrections to the result to
be suppressed by powers of the fine structure constant
OðαðZαÞnÞ, n > 0, due to real and virtual radiative effects.
Additional corrections due to the finite mass of the nucleus
and its structure are also expected.
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This theoretical framework has been used for other
atomic processes such as electromagnetic decays of excited
atomic states and interactions of an atom with an external
field [12–18].
Our work is somewhat analogous to the first study

of the bound electron magnetic moment, by Gregory
Breit [12], who determined the gyromagnetic ratio
g ¼ 2½1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

p
�=3. In his study, a bound electron

interacts with an external field, just like in the decay
process considered here. In the limit Z → 0, the g-factor
tends to the free-electron value, g → 2. Breit’s result is
exact to all orders in Zα, just like we claim our result is.
Breit’s 1928 calculation was analyzed from the

point of view of a nonrelativistic effective theory [19].
That analysis reveals negative-energy contributions
[see Fig. 2(b) and the discussion following Eq. (12) in
Ref. [19]]. We conclude that the negative-energy con-
tributions are correctly included in a treatment based on
the Dirac wave function.
Our present study is conceptually parallel to Breit’s. The

only differences are that the initial and final states have
different masses; and, instead of an external magnetic field,
the electroweak field induces the transition. In both cases
the full result is given by a double series, in powers of
Zα (describing the binding) and of α (describing self-
interactions and, in case of the muon decay, real photon
radiation). The structure of this double series is shown, for
example, in Eq. (5) in Ref. [20]. We expect a similar series
to exist for the present problem of the bound muon decay.
The soundness of the underlying theory has been tested by
experiments providing the best determination of the elec-
tron mass [21].

II. MOMENTUM SPACE DERIVATION
OF THE DECAY RATE

A. Wave function and its normalization
in momentum space

We consider the muon in the ground state of a
hydrogen-like ion and are interested in the final-state
electron also in the ground state. Both muon and electron
wave functions are 1s solutions of the Dirac equation and
differ only by the mass, respectively mμ and me. Below
we present formulas for a generic mass m. The position
space wave function ΦðxÞ will be presented below in
Eq. (18). Taking its Fourier transform (see Appendix 1 in
Ref. [4]) we obtain

Φ̃�ðkÞ ¼
Z

d3xΦðxÞe−ik·x ð2Þ

¼
�

f̃ðkÞϕ�
g̃ðkÞ σ·kk ϕ�

�
k ¼ jkj; ð3Þ

where ϕþ ¼
�
1

0

�
and ϕ− ¼

�
0

1

�
are two-component

spinors describing spin projections �1=2 on the z axis.
We assume that the muon decays in the state ϕþ. We will
use the simplified notation f; g ¼ f̃ðkÞ; g̃ðkÞ and the
dimensionless variable q ¼ k

mαZ
,

f ¼ 2γþ1Γðγ þ 1Þ
qðmαZÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1þ γÞ
Γð1þ 2γÞ

s
Imð1 − iqÞ−γ−1; ð4Þ

g ¼ 2γþ1ð1 − γÞΓðγÞ
αZq2ðmαZÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1þ γÞ
Γð1þ 2γÞ

s

× Imf½1 − iqðγ þ 1Þ�ð1 − iqÞ−γ−1g; ð5Þ

where αZ ¼ Zα, γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2Z

p
, and α ≃ 1=137 is the fine

structure constant. Equations (4) and (5) are numerically
identical with Eqs. (A3) and (A4) in [4]; the functional
form we present seems to lead to slightly faster numerical
integrations. We employ the basis [[22], Eq. (3.7)],

w1ðkÞ ¼ c

0
BBBBB@

1

0
kz

k0þm

kþ
k0þm

1
CCCCCA; w2ðkÞ ¼ c

0
BBBBB@

0

1
k−

k0þm

− kz
k0þm

1
CCCCCA; ð6Þ

w3ðkÞ ¼ c

0
BBBBB@

kz
k0þm

kþ
k0þm

1

0

1
CCCCCA; w4ðkÞ ¼ c

0
BBBBB@

k−
k0þm

− kz
k0þm

0

1

1
CCCCCA; ð7Þ

with c ¼
ffiffiffiffiffiffiffiffiffi
k0þm
2m

q
, k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, and k� ¼ kx � iky. In

analogy with Eq. (A6) in [4], we expand the bound wave
function in this basis,

ΦþðkÞ ¼
ffiffiffiffiffiffiffi
2m
2k0

r
½Aþw1ðkÞ þ A−w2ðkÞ

þ B⋆þw4ð−kÞ þ B⋆
−w3ð−kÞ� ð8Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þm
2k0

s
2
666664Aþ

0
BBBBB@

1

0
kz

k0þm

kþ
k0þm

1
CCCCCAþ A−

0
BBBBB@

0

1
k−

k0þm

− kz
k0þm

1
CCCCCA

þ B⋆þ

0
BBBBB@

− k−
k0þm

kz
k0þm

0

1

1
CCCCCAþ B⋆

−

0
BBBBB@

− kz
k0þm

− kþ
k0þm

1

0

1
CCCCCA

3
777775: ð9Þ
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For example, for the spin projection þ1=2,

Aþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þm
2k0

s �
f þ kg

k0 þm

�
; ð10Þ

A− ¼ 0; ð11Þ

B⋆þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þm
2k0

s
kþ

�
−

f
k0 þm

þ g
k

�
; ð12Þ

B⋆
− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þm
2k0

s
kz

�
−

f
k0 þm

þ g
k

�
; ð13Þ

in agreement with (A7) in [4] except for B⋆
−, for which we

find the opposite overall sign. We proceed to check the
normalization,

Z
d3k
ð2πÞ3 ðjAþj2 þ jA−j2 þ jBþj2 þ jB−j2Þ ¼ 1: ð14Þ

We confirm that the B� part of this integral is very small,
0.16% even for Z ¼ 80, in agreement with a comment
below (A8) in [4]. Indeed, the B� part of the normali-
zation integral, interpreted as the probability of finding a
positron in the atom, is Oðα5ZÞ when Z → 0. For this
reason, the negative energy components of the wave
function were neglected in [4]. The positive and negative
energy components can be separated by acting on the
wave function with Casimir projectors,

PA ¼ m
k0

ðw1w
†
1 þ w2w

†
2Þ ¼

=kþm
2k0

γ0; ð15Þ

PB ¼ γ0
=k −m
2k0

; ð16Þ

such that P2
A;B ¼ PA;B and PA þ PB ¼ 1. We find that the

rate calculated with PA-projected wave functions is
substantially larger than when full wave functions are
used. These results are compared in Fig. 1, where we plot
the rate divided by

Γ0 ¼
G2

Fm
5
μ

192π3
; ð17Þ

the free muon decay rate at tree level, in the limit of a

massless electron; GF ¼
ffiffi
2

p
g2

8M2
W
is the Fermi constant [23].

The solid line in Fig. 1 shows the full wave function
result, and the dots show the result with projectors PA.
For small and moderate Z, up to Z ≃ 40, the results are
close, and start to diverge quite strongly for larger nuclei.
Since the B� contribution to the normalization is small

even for large Z, these results are unexpected. We thus

proceed to check them in the position space. As a reward,
we find that alternative method to be simpler. It will allow
us to derive a closed formula for the rate in the limit of close
electron and muon masses.

III. BOUND μ− TO BOUND e − DECAY IN
POSITION SPACE

In this section, we calculate the bound state transition
rate ðZμ−Þ → ðZe−Þνμν̄e using position space wave func-
tions for the decaying muon and the produced electron [24],

ΦðrÞ ¼ ψn¼1;j¼1
2
;�ðr; θ;ϕÞ ¼

fðrÞffiffiffiffiffiffi
4π

p u�; ð18Þ

where

fðrÞ ¼ ð2mαZÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ

2Γð1þ 2γÞ

s
ð2mrαZÞγ−1 exp ð−mrαZÞ;

ð19Þ

and the mass m is either mμ for the muon or me for the
electron. In the Dirac representation

u� ¼ =ρ

�
ϕ�
0

�
; ð20Þ

with ρμ ¼ ðρ0; ρÞ ¼ ð1; i 1−γZα r̂Þ. Since this approach differs
from Ref. [4], we present it in some detail.

A. Factorizing neutrinos

It is convenient to decompose the decay into two stages:
first the muon decays into the electron and a fictitious

FIG. 1. Rate of the bound-to-bound decay ðZμ−Þ → ðZe−Þ þ
νν̄ normalized to the free muon decay rate Γ0, as a function of the
atomic number Z. The solid line shows our results found using
complete wave functions. Red dots are the values obtained by
neglecting negative energy components of wave functions. Errors
due to this approximation grow with the atomic number Z.
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spin-one boson A; next, boson A decays into the νν̄ pair.
The kinematically allowed range of the mass mA of the
boson A, parametrized by a dimensionless variable z,
mA ¼ zmμ, is z ∈ ½0; zmax ¼ ðEμ − EeÞ=mμ�, where Eμ;e

are the muon and electron energies; they should be replaced
by muon and electron masses in the case of a free muon
decay. The decay rate is an integral over z,

Γðμ → eνν̄Þ ¼ 256πΓ0

g2mμ

Z
zmax

0

Γ½μ− → e−A�z3dz; ð21Þ

where g is the weak coupling constant. One advantage
of Eq. (21) is that it holds both for a free and for a bound
muon decay. It is simpler to deal with a two-body decay
μ → eA than with μ → eνν̄. Binding effects as well as
radiative corrections (ignored in the present paper) affect
only Γðμ → eAÞ.
As an example of using (21) consider a free muon decay.

Then zmax ¼ 1 − δ, δ ¼ me=mμ, and

Γðμ → eAÞ ¼ g2

32π
ð1þ z2 − 2z4 þ δ2z2 − 2δ2 þ δ4Þ qðzÞ

z2
;

ð22Þ

where qðzÞ is the momentum of A; for a free muon decay,

qðzÞ ¼ λ1=2ð1;δ2;z2Þ
2

mμ with the Källén function λðx; y; zÞ ¼
x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ. Integration over z gives

Γðμ → eνν̄Þ ¼ Γ0ð1 − 8δ2 − 24δ4 ln δþ 8δ6 − δ8Þ; ð23Þ

reproducing the correct electron mass dependence [25].

B. Decay rate

The amplitude for the ðZμÞ → ðZeÞ þ A transition is

M ¼ gffiffiffi
2

p
Z

d3r exp ðiq · rÞΦ̄μðrÞ=ϵλA⋆LΦeðrÞ; ð24Þ

where L ¼ 1−γ5
2

and λA labels the polarization state of A.
The triple r integration is done analytically. Angular
integrations lead to spherical Bessel functions, and the
r-integration results in a relatively compact formula. After
squaring the amplitude, we find, using kA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2max − z2

p
and a ¼ 1−γ

αZ
,

Γ½ðZμ−Þ → ðZe−Þ þ A�

¼ mμg2

2π
kAðN2

a þ N2
b þ F2

a þ F2
bÞ;

Na ¼
ffiffiffi
2

p zmax

z
½4a2ðC2 − S3Þ þ ð1þ a2ÞS1�;

Nb ¼
ffiffiffi
2

p kA
z
ð1þ a2ÞS1;

Fa ¼ 4a2ðC2 − S3Þ − 2ð1 − a2ÞS1;
Fb ¼ 4aðS2 − C1Þ; ð25Þ

where the quantities Cn (and analogously Sn with cos →
sin) are

Cn ¼
1þ γ

8

�
4δ

ð1þ δÞ2
�

γþ1
2 Γð1þ 2γ − nÞ
knΓð1þ 2γÞ

× ð1þ k2Þn−12 −γ cos ½ð1þ 2γ − nÞ arctan k�; ð26Þ

k ¼ kA
αZð1þ δÞ : ð27Þ

The rate Γ½ðZμ−Þ → ðZe−Þ þ νν̄� can now be expressed as
a single integral over z, a variable equivalent to the invariant
mass of the neutrinos, from zero to zmax ¼ γð1 − δÞ,

1

Γ0

Γ½ðZμ−Þ → ðZe−Þ þ νν̄�

¼ 128

Z
zmax

0

ðN2
a þ N2

b þ F2
a þ F2

bÞkAz3dz: ð28Þ

This is the main result of this paper. Note that the position
space calculation results in a single integral representation
for the rate. This is much simpler than the result of Ref. [4],
where two additional integrations remain, over the magni-
tude and the polar angle of the argument of the momentum
space wave function. Those integrations seem to be more
involved than the corresponding radial and angular inte-
grations in the position space. In the following section we
perform the remaining integration over z in the limit of
close electron and muon masses.

IV. LIMITING CASE OF SIMILAR ELECTRON
AND MUON MASSES

We expect out results to agree with Ref. [4] for small Z,
since the only conceptual difference between our approaches
involves negative energy components, and those are sup-
pressed by powers of αZ. Here we demonstrate this agree-
ment with a simple closed formula in the limiting case of
nearly equal masses. We write

mμ −me ¼ ϵmμ; ð29Þ
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and consider a hypothetical situation where ϵ is small. In the
limit ϵ → 0, the decay rate computed in Ref. [4] [cf. Eq. (A7)
in the Appendix] is

Γ½ðZμ−Þ → ðZe−Þνμν̄e�

¼
Z

m1−m2

0

djqjG
2
Fq

2

12π3
KðjqjÞ

¼ γ5ϵ5
G2

Fm
5
μ

15π3
f½F1ð0Þ − F2ð0Þ�2 þ F1ð0ÞF2ð0Þg: ð30Þ

In this approximation of almost equal muon and electron
masses, the momentum transferred to the neutrinos q is
approximately zero. Therefore, the form factors F1 and F2

given in Eq. (30) are evaluated at jqj ¼ 0 which gives

F1ð0Þ ¼
Z

d3k
ð2πÞ3 ψμðkÞψ�

eðkÞ
2k0 þmμ

3k0
¼ 2

3
þ 1

3
hL−1i;

F2ð0Þ ¼
Z

d3k
ð2πÞ3 ψμðkÞψ�

eðkÞ
k0 −mμ

3k0
¼ 1

3
−
1

3
hL−1i;

ð31Þ

where the mean inverse Lorentz factor hL−1i is

hL−1i ¼
Z

d3k
ð2πÞ3 jψμðkÞj2

mμ

k01
:

Hence, Eq. (30) becomes

Γ
Γ0

¼ 64

5
ϵ5γ5

1þ hL−1i þ hL−1i2
3

: ð32Þ

Numerical results Γ½ðZμ−Þ→ðZe−Þνμν̄e�
Γ0

for the limiting case of
almost equal masses are shown in Table I.
In the equal mass limit, using jqjr → 0, our momentum

space as well as position space treatments lead to the
expression

Γ½ðZμ−Þ → ðZe−Þνμν̄e�
Γ0

¼ 64

5
ϵ5γ5

1þ γ þ γ2

3
: ð33Þ

The analogous limit of the free muon decay rate, Eq. (23),

is 64
5
ϵ5. Thus the binding effects given by γ5 1þγþγ2

3
¼

1–3α2Z þOðα4ZÞ in the case of the decay into a bound
electron are more pronounced than in the case of the decay
into a free electron, given in Eq. (1). For a free electron,
the effect can be approximated by a single factor of
γ ≃ 1 − α2Z þOðα4ZÞ.
Numerical evaluation of Eq. (33) is given in the last

column of Table I. For small Z, we have hL−1i ≈ γ and
hence the corresponding results coincide in this case of
equal muon and electron masses. This is not the case for
large Z, where hL−1i is larger than γ.

V. CONCLUSION

We have calculated the decay rate of a bound muon to
bound electron using Dirac wave functions for different
values of Z in two formalisms. Numerical results in
momentum and in position space coincide, provided that
complete wave functions (both positive and negative
energy components) are used. If the negative energy parts
of the wave functions are neglected, as was done in Ref. [4],
the results are significantly larger. For Z ¼ 80 the differ-
ence is about 38%.
This is surprising since the probability of finding

positrons in a hydrogen-like atom or ion is very small
even for Z ¼ 80. Our tentative interpretation is that the
probability of the decay into a bound electron is very
suppressed and that this suppression is relatively less severe
for the negative energy components. We note that the decay
vertex couples positive and negative energy components
without a suppression factor of αZ. Also, the decay rate
involves an interference of large A� with small B� wave
function terms, whereas the normalization integral involves
the small B� only in second powers, thus greatly decreas-
ing their contribution [see Eq. (14)].
In order to check this unexpected result, we developed a

position space approach. It resulted in a simple one-
dimensional integral representation of the rate, Eq. (28).
The remaining integral has been done in the limiting case of
close electron and muon masses, Eq. (33), giving a closed
formula valid for all αZ.
In closing, we quote from Sidney Coleman’s field theory

lectures [26]: Dirac’s theory gives excellent results to order
ðv=cÞ2 for the hydrogen atom, even without considering
pair production and multi-particle intermediate states. This
is a fluke.
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TABLE I. Numerical values of Γ½ðZμ−Þ → ðZe−Þνμν̄e�=Γ0 in
an artificial situation with the electron only slightly lighter that
the muon, ϵ ¼ 1 −me=mμ ¼ 0.01, for a small Z ¼ 10 and a large
Z ¼ 80: using the formalism of Ref. [4], Eq. (A6) (second
column), its limit for me ≃mμ, Eq. (32) (third column), and the
me ≃mμ limit of our approach, Eq. (33) (fourth column). As
expected, the agreement is better for small Z (first line).

Z Eq. (A6) Eq. (32) Eq. (33)

10 1.25 × 10−9 1.26 × 10−9 1.26 × 10−9

80 3.85 × 10−10 3.83 × 10−10 3.72 × 10−10
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APPENDIX: BOUND MUON DECAY IN THE
FORMALISM OF REF. [4]

In this Appendix, we summarize the formalism of
Ref. [4] for the transition B1 → B2 þ X, where B1 and
B2 are bound states.
The invariant amplitude of ðZμ−Þ → ðZe−Þνμν̄e decay is

MB1→B2
¼ 4GFffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mB1
mB2

p
NμS

μ
sr; ðA1Þ

where the subscripts B1 and B2 represent the ðZμ−Þ and
ðZe−Þ states, respectively. The masses of the bound states
are, with M denoting the nucleus mass (note that in our
approach the nucleus is treated as infinitely heavy and M
does not appear),

mB1
¼ M þm1; m1 ¼ mμ − Eb;μ;

mB2
¼ M þm2; m2 ¼ me − Eb;e; ðA2Þ

where Eb;μðeÞ are the binding energies. In Eq. (A1), the
neutrino part is given by

Nμ ¼ ūðpνμÞγμLυðpνeÞ; ðA3Þ

and the charged current part is

Sμsr¼
Z

d3k1
ð2πÞ3ψμðk1Þψ�

eðk1−qÞūsðe;k1−qÞffiffiffiffiffiffiffi
2k02

p γμL
urðμ;k1Þffiffiffiffiffiffiffi

2k01
p :

ðA4Þ

Here, k1, k2, pνe and pνμ are the 4-momenta of the muon,
electron, νe and νμ, respectively, and the subscripts r and s
are spin indices ðr; s ¼ �1=2Þ.
The corresponding decay rate for ðZμ−Þ → ðZe−Þνμν̄e

can be calculated as

dΓ ¼ 1

2mB1

dΦjMB1→B2
j2: ðA5Þ

After integration over the phase space and neglecting terms
suppressed by 1=M, the decay rate is [4]

Γ ¼ G2
F

12π3

Z
m1−m2

0

djqjq2KðjqjÞ; ðA6Þ

where

KðjqjÞ ¼ ½q2 þ 2ðm1 −m2Þ2�ðF2
1 þ F2

2Þ þ
q2

m2
μ
½4ðm1 −m2Þ2 − q2�ðF2

3 þ F2
4Þ

− 6q2
�
F1F2 þ

q2

m2
μ
F3F4 þ

m1 −m2

mμ
ðF1 − F2ÞðF3 − F4Þ

�
; ðA7Þ

and q2 ¼ q20 − q2 ¼ ðm1 −m2Þ2 − q2. The form factors Fi are defined as

Fiðq2Þ ¼
Z

d3k1
ð2πÞ3 ψμðk1Þψ�

eðk1 − qÞ hiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k01k

0
2ðk01 þmμÞðk02 þmeÞ

q ; ðA8Þ

with

h1 ¼ ðk01 þmμÞðk02 þmeÞ þ q0½ð1 − CÞðk01 þmμÞ − Cðk02 þmeÞ� þ ðB − CÞq20 þ A;

h2 ¼ ðC − BÞq2 þ 2A;

h3 ¼ ½ð1 − CÞðk01 þmμÞ þ ðB − CÞq0�mμ;

h4 ¼ ½Cðk02 þmeÞ − ðB − CÞq0�mμ ðA9Þ

and the expressions of A, B and C are given in Eq. (35) of [4]. We mention that in the expressions for h1 and h2 in Eq. (A9),
the sign of A is different than in [4] [cf. Eq. (34) there].
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