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Entropy and energy are found to be closely tied on our quest for quantum gravity. We point out an
interesting connection between the recently proposed outer entropy, a coarse-grained entropy defined for a
compact spacetime domain motivated by the holographic duality, and the Bartnik-Bray quasilocal mass
long known in the mathematics community. In both scenarios, one seeks an optimal spacetime fill-in of a
given closed, connected, spacelike, codimension-two boundary. We show that for an outer-minimizing
mean-convex surface, the Bartnik-Bray inner mass matches exactly with the irreducible mass correspond-
ing to the outer entropy. The equivalence implies that the area laws derived from the outer entropy are
mathematically equivalent as the monotonicity property of the quasilocal mass. It also gives rise to new
bounds between entropy and the gravitational energy, which naturally gives the gravitational counterpart to
Wall’s ant conjecture. We also observe that the equality can be achieved in a conformal flow of metrics,
which is structurally similar to the Ceyhan-Faulkner proof of the ant conjecture. We compute the small
sphere limit of the outer entropy and it is proportional to the bulk stress tensor as one would expect for a
quasilocal mass. Last, we discuss some implications of taking quantum matter into consideration in the
semiclassical setting.
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I. INTRODUCTION

The outer entropy is initially proposed by Engelhardt and
Wall (EW) [1,2] as a coarse-grained entropy for black hole.
Motivated by the Jaynes’ principle of maximum entropy
[3,4], a coarse-grained entropy for black hole could be
defined as the maximal entropy over what we do not know
inside the horizon while holding fixed what we can observe
in the exterior. Formally, the outer entropy of an apparent
horizon Σ in asymptotically anti–de Sitter (AdS) spacetime
is given by

SðΣÞ ≔ sup
ρ

SvNðρÞ∶DðΩ̄Þ fixed; ð1Þ

where SvNðρÞ denotes the von Neumann entropy of the
boundary quantum ρ dual to the classical geometry
characterized by some initial data set ðN; h; KÞ, where
N ¼ Ω ∪Σ Ω̄ and h, K are the first and second fundamental
forms.DðΩ̄Þ is the domain of dependence of ðΩ̄; h; KÞ on a
partial Cauchy slice Ω̄ connecting Σ to the boundary B

(∂Ω̄ ¼ Σ ∪ B), and we call it the outer wedge OWðΣÞ. Let
us also define the interior spacetime that we would like to
maximize the entropy over as the Cauchy development of
the other half of the initial data ðΩ; h; KÞ, which we refer as
the fill-in and its Cauchy development as the inner wedge
IWðΣÞ ≔ DðΩÞ. The EW construction is essentially moti-
vated by the holographic duality. In particular, the Hubeny-
Ryu-Rangamani-Takayanagi (HRRT) prescription [5–8]
implies that one can treat the coarse-grained entropy over
quantum states on the boundary as the optimization over
geometric data in the bulk. We will later review the precise
bulk definition. EW proved that the outer entropy of an
apparent horizon is given by the AreaðΣÞ=4GNℏ, consistent
with what we know about the black hole thermal entropy.
Besides the matching value, this variational formulation of
the entropy has a statistical interpretation that immediately
yields the area laws of the spacelike and null holographic
screens [9,10]. Soon after EW’s work, Bousso, Nomura and
Remmen (BNR) [11,12] generalized the EW method to
solve for the outer entropy of untrapped surfaces, which we
henceforth dub as the BNR algorithm.
In general relativity, there are other instances of such

optimization-over-geometries construction that are not
motivated by considerations of entropy or the holographic
principle. In search of a good definition quasilocal mass
associated with a codimension-2 surface Σ, there are
several proposals involving optimizations. One example
is a promising proposal by Wang and Yau [13], where they
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seek to minimize the Hamiltonian over permissible iso-
metric embeddings of the target surface into the Minkowski
reference. Here, we focus on another quasilocal mass
definition that has been proposed and studied for a few
decades, which resembles in many aspects with the outer
entropy. This is called the Bartnik-Bray mass [14–18].
Motivated by the Arnowitt-Deser-Misner (ADM) mass and
the positive mass theorem [19,20], Bartnik proposed [14] a
definition of quasilocal mass, the Bartnik mass MBðΣÞ, via
looking for a minimal-ADM-mass extension of a given
compact spacetime domain ðΩ; h; KÞ bounded by Σ ¼ ∂Ω.
Intuitively, one can think of the Bartnik mass as the
“quasilocalized” ADM mass.
Our main object of interest is the dual version of the

Bartnik mass given by Bray [16,17]. In 1999, based on his
proof of the Riemannian Penrose inequality (RPI) [16],
Bray proposed a slightly modified version of the Bartnik
mass, named as the Bartnik-Bray outer mass, MouterðΣÞ,
together with its dual, called the Bartnik-Bray inner mass,
MinnerðΣÞ, where the constraint and optimization domain
are exchanged and the infimum is replaced by the
supremum. The inner mass is defined as the irreducible
mass corresponding to the maximal area of the minimal
surface homologous to the given Σ. Note that Bray used
inner referring to the variational region, whereas EW used
outer referring to the fixed region. Albeit the opposite
names, the authors actually proposed the same optimization
construction up to different conditions and motivations.
Physically speaking, both variational definitions try to
fill the interior of a surface with the largest black hole.
They can be categorized as instances of the fill-in problem,
which has been studied by geometers in different contexts
[17,21–23]. Without ambiguity, we will now simply refer
them as the inner mass and the outer mass. We shall point
out that BNR also realize the outer entropy can be a good
candidate for quasilocal mass due to its monotonicity [12],
and the AdS version is proposed in [24]. However, the outer
entropy by definition can also depend on the data on the
outer wedge, so it is not a quasilocal quantity [18]. In this
work, we show that this insight can be traced back to Bray
and Bartnik [14,16], and the outer entropy can be quasi-
localized for an outer-minimizing surface.
We shall start by reviewing the definitions of the outer

entropy and Bartnik-Bray quasilocal mass in Secs. II
and III. In Sec. IV, we show that for an outer-minimizing
mean-convex surface, the outer entropy and the inner mass
are equivalent. Fundamental insights can be drawn from
this connection and we will discuss them in Sec. V. For
example, the area laws associated with the holographic
screens are mathematically equivalent to the monotonicity
of the Bartnik-Bray quasilocal mass. The equivalence also
leads to several interesting inequalities relating the outer
entropy and the purely gravitational energy. In particular,
we show that given some cut Σ on an initial data set
ðN; h; KÞ, the Penrose inequality implies the infimum of

the total mass of the spacetime over all possible extensions
is lower bounded by the outer entropy SðΣÞ. We move on to
conjecture that the equality holds, which in many ways
resembles the ant conjecture due to Wall concerning matter
fields [25]. We also show that the equality can be
asymptotically approached under a conformal flow of
metrics, in a way that is structurally similar to Ceyhan
and Faulkner’s proof of the ant conjecture, via the Connes
cocycle flow [26]. We believe this correspondence is not
merely a coincidence. Our conjecture provides a new
perspective on the question of why one can only depict
gravitational energy quasilocally rather than locally (unlike
the energy of ordinary matter, which is represented by a
local energy-momentum tensor). Furthermore, under sim-
plifying assumptions, we compute the small sphere limit of
the outer entropy and inner mass using the BNR algorithm
in Sec. VI. We found that the small sphere limit of the outer
entropy is given by the local bulk stress tensor, exactly as
one would expect for a quasilocal mass. Last in Sec. VII,
we consider the possibility of elevating the classical
gravitational ant conjecture to semiclassical regime by
adding the contribution of energy and entropy of matter.
We in turn propose a quantum Penrose inequality that is
worth further considerations. We finish with some dis-
cussions on future directions in Sec. VIII.
Let us state some assumptions and fix the notations

before we proceed. We work in the classical limit in the
bulk, which could be the large N strong coupling limit of
the AdS=CFT correspondence [27–29] or else some specu-
lative form of flat space holography1 [30–37]. We do not
consider the quantum corrections to the HRRT prescription.
We will be considering a topological codimension-two
sphere Σ embedded in a n-dimensional spacetime ðM; gÞ.
We will consider both asymptotically flat (AF) and asymp-
totically hyperbolic (AH) initial data satisfying the dom-
inant energy condition (DEC), as usually assumed in the
studies of the Bartnik mass [38] to guarantee a well-posed
initial value formulation.2 MðN; h; KÞ denotes the total
mass of the data set. AðΣÞ denotes the area of Σ ⊂ N. We
denote the outer and inner wedges of Σ as OWðΣÞ; IWðΣÞ
respectively. When there are multiple connected boundary
components in the spacetime, we shall consider Σ to
enclose one chosen end with the conformal boundary B.
We allow the fill-ins ðΩ; h; KÞ of Σ to have multiple
disconnected boundary components (ends). The metric
on Σ is γ. The mean curvature of Σ in ðN; h; KÞ associated
with the outward-pointing unit normal ν is denoted as H,
and the mean curvature along Σ of N in ðM; gÞ associated
with the future-pointing unit normal n is denoted as trΣK.

1The same generalizations are also used by BNR [11,12].
2Instead of DEC, the weaker null energy condition (NEC) is

assumed in earlier works on the outer entropy. Here we are
treating things more generally so we stick to the DEC to avoid
any subtle situations where the quantities we consider are ill-
defined. In any case, our main result only explicitly needs NEC.
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We define H ≔ trΣKn −Hν as the mean curvature vector
of Σ in ðM; gÞ. In the case ofN being null, n, ν are replaced
by the ingoing and outgoing null vectors l� normal to Σ,
and the associated mean curvatures are the expansion rates
θ�. We say the surface is locally extremal if H ¼ 0, i.e.,
the null expansions vanish, θ� ¼ 0. The marginally outer-
trapped surface (MOTS) is given by θþ ¼ 0; θ− ≤ 0. The
apparent horizon on a Cauchy slice is the outermost MOTS
on it. We shall also use � to indicate quantities associated
with the ingoing/outgoing null congruences.
We finish this section by defining the notions of outer-

minimizing and normal.
Definition 1.—A topological codimension-two sphere Σ

is called outer-minimizing in ðN; h; KÞ if for any surface
Σ0 ⊂ N enclosing Σ,

AðΣÞ ≤ AðΣ0Þ: ð2Þ

Furthermore, a Σ homologous to B is called outer-
minimizing if there exists a partial Cauchy data ðΩ̄; h; KÞ
connecting Σ to B, such that Σ is outer-minimizing
in ðΩ̄; h; KÞ.
We shall address the significance of the outer-minimizing

condition later. As an example, note that an apparent horizon
is outer-minimizing in particular [39,40].
Definition 2.—A topological codimension-two sphere Σ

is mean-convex if the mean curvature vector H is inward
spacelike.
The condition ofH being inward spacelike meansH ≥ 0

and jHj ≥ jtrΣKj with respect to any choice of embedding
slice. Equivalently, one can demand the null expansions
θ�jΣ to take definite but opposite signs on Σ, i.e.,�θ� ≥ 0.
Hence, in terms of the relativistic terminologies, the
condition translates to Σ being either untrapped or margin-
ally trapped, or is termed as normal surfaces in [12].3 We
will focus on outer-minimizing mean-convex surfaces and
provide some contexts of these two conditions in Sec. IV.

II. THE OUTER ENTROPY
AS A BULK QUANTITY

The outer entropy is formally defined as (1). This is,
however, not how the outer entropy is classically defined in
the bulk, and the entropy is not evaluated directly through
density operators in the previous works. Nevertheless,
it is clear from the motivation above what the bulk
definition should be. In the large N strong coupling limit,
according to the HRRT prescription in holographic duality
[5–8], the entropy of the marginal quantum state dual to the
classical bulk geometry is measured by the area of the
locally extremal surface with the minimal area, called

the Hubeny-Rangamani-Takayanagi (HRT) surface [7].
HRT surface can be identified via Wall’s maximin
prescription [41].
Definition 3.—Given a boundary subregion A, the HRT

surface XðAÞ of a boundary causal domainDðAÞ is defined
as the minimal area surface on the maximal Cauchy slice,4

XðAÞ ≔ sup
NA

argmin
σ⊂NA
σ∈½A�

AðσÞ; ð3Þ

where the Cauchy slice NA is anchored on DðAÞ, σ is
anchored on ∂A and homologous to A.5 (½A� denotes the
homology class of A.) The von Neumann entropy SvNðAÞ
of the region DðAÞ is then measured by

SvNðAÞ ¼
AðXðAÞÞ
4GNℏ

: ð4Þ

In words, the HRT surface is located by first finding
the minimal surface on a Cauchy slice and then maxi-
mizing over all Cauchy slices homologous to the boundary
interval A. The existence conditions of the maximin have
been given by Wall in [41] and extended in [42], so we can
replace sup by max when considering horizonless space-
times and black hole spacetimes with Kasner-like singu-
larities following [41]. Here we keep it general because the
equivalence that we seek to establish does not need the
existence assumption.
In words, the outer entropy is measured by the area of the

maximal HRT surface one can put into the inner wedge.
When considering the outer entropy, we are taking a whole
connected boundary component DðAÞ ¼ B as our causal
domain. Hence, ∂A ¼ ∅ and the maximin surface is not
anchored on the boundary, and NA is just any Cauchy slice
so we shall remove the subscript. Let the outer wedge
OWðΣÞ be fixed, which is equivalent to fixing some partial
Cauchy data ðΩ̄; h0; K0Þ, we have the following bulk
definition for the outer entropy:
Definition 4.—The outer entropy of Σ ¼ ∂Ω̄ associated

with the outer wedge data ðΩ̄; h0; K0Þ is

SðΣÞ ≔ sup
ðΩ;h;KÞ

AðXðBÞÞ
4GNℏ

¼ sup
ðΩ;h;KÞ

max
N⊂DðΩ∪ΣΩ̄Þ

min
σ⊂N
σ∈½B�

AðσÞ
4GNℏ

;

ð5Þ

3In [12], normal surfaces only refer to untrapped surfaces.
Here, we extend the definition of normal to include the limiting
cases.

4If there are multiple minimal area surfaces, anyone can be the
HRT surface. Here we only consider the maximizer XðAÞ that is
stable. See [41] for more details.

5σ is not necessarily homologous to A via NA as NA could be
anchored elsewhere in DðAÞ. There is, however, a definition of
restricted maximin surface that requires NA to be anchored at A,
which turns out to be equivalent as the original unrestricted
version when maximin surface lies in a smooth region of
spacetime [42].

OUTER ENTROPY EQUALS BARTNIK-BRAY INNER MASS AND … PHYS. REV. D 102, 066009 (2020)

066009-3



where ðΩ; h; KÞ is the fill-in data that joins the fixed
ðΩ̄; h0; K0Þ at Σ satisfying DEC and the following
constraints:

γjΣin
¼ γjΣout

; θ�jΣin
¼ θ�jΣout

; χjΣin
¼ χjΣout

; ð6Þ

where χ ≔ Kð·;l−Þ is the twist or anholonomicity 1-form
and l− is the ingoing null vector normal to Σ.
Remark 1.—Here we only require DEC for the fill-in

data without specifying anything about the matter sector as
in EW [2]. It would be interesting to fine-grain it depending
on the relevant physical settings (cf. Discussion in
BNR [12]).
Remark 2.—EW imposes (6) such that outer wedge and

the inner wedge (fill-in) can be “glued” together properly
[2]. This is to ensure that the initial data on the entire
Cauchy slice satisfies DEC in a distribution sense.
Remark 3.—EW shows that for Σ being the apparent

horizon,6 the maximizer always exists and one can replace
the sup with max in Definition 4 [1]. Otherwise, for generic
surfaces, we do not know if the maximizer exists.
The outer entropy is not quasilocal because it could

depend on OWðΣÞ. In all the previous works [1,2,11,12],
however, Σ is demanded to be outer-minimizing
(cf. Definition 1). This means any exterior surfaces on
the initial data slice enclosing Σ have area larger than AðΣÞ.
This condition, for example, is included in the minimar
condition as required by EW [2] (cf. footnote 6). Then one
can show that the HRT surface always lies within the inner
wedge, X ⊂ IWðΣÞ (cf. Lemma 1). More importantly, an
algorithm for evaluating the outer entropy is proposed by
BNR for such surfaces. To our knowledge, the algorithm
does not work for more general surfaces.
We shall say a few words about the BNR algorithm that

computes the outer entropy. It uses the characteristic initial
value formalism [43–49] to specify data on a null hyper-
surface Nþ fired toward the interior from Σ. The data are
chosen to have vanishing stress tensor and shear. EW
proves [1,2] that a locally extremal surface exists on Nþ
and it has the same area as the apparent horizon Σ, which is
the optimal case one can hope for. Nomura-Remmen (NR)
[11] then generalizes the EW method to spherically
symmetric outer-minimizing mean-convex surfaces. As a
follow-up [12], BNR tries to lift the spherical symmetry
assumption and then the locally extremal surface can be
located subject to certain conditions. However, in this case,
the optimality of the chosen data is not proven but only
argued. Hence, we do not know if the output of the
algorithm with a generic input is the extremal surface with
maximal area nor if the optimizer exists.

Now we can work directly with this classical bulk
definition of the outer entropy, and we do not need the
full holographic duality apparatus. We henceforth denote
the HRT surface XðBÞ simply as X.

III. THE BARTNIK-BRAY QUASILOCAL MASS

We first define the notion of spacetime extension [38].
Definition 5.—The permissible spacetime extension PΣ

of Σ is the class of the asymptotically flat (hyperbolic) data
ðΩ̄; h; KÞ extending a given compact spacetime domain
ðΩ; h0; K0Þ with boundary Σ ¼ ∂Ω̄ ¼ ∂Ω, such that the
complete manifold Ω ∪Σ Ω̄ forms an initial data set that
satisfies the dominant energy condition and Σ is outer-
minimizing.
Remark 4.—It is difficult to determine if the Bartnik data

admit an extension without constraining the data, and we
do not know generally what are the necessary constraints
on h, K to make sure PΣ is nonempty [38]. Here, we have a
spacetime to start with and consider only Bartnik data
induced on the chosen Σ, so PΣ is nonempty by definition.
Bartnik argued [15] that in order for the Hamiltonian and

momentum constraints to be distributionally well-defined
across Σ, one should match

hj∂Ω̄ ¼ γ ≔ h0j∂Ω;
H∂Ω̄ ¼ H ≔ H∂Ω;

tr∂Ω̄K ¼ k ≔ tr∂ΩK0;

ω⊥
∂Ω̄ ≔ Kð·; νÞ ¼ ω ≔ ω⊥∂Ω; ð7Þ

where hj∂Ω̄ is a Riemannian metric on Σ, H∂Ω̄ is the mean
curvature of Σ in Ω̄ with respect to the unit normal ν, tr∂Ω̄K
is the mean curvature of Ω̄ as embedded in the spacetime
with respect to the unit normal n, ω⊥

∂Ω̄ is the connection
one form, and similarly on the interior side induced by
ðΩ; h0; K0Þ. This condition can also be obtained [15] via
demanding the boundary variation of the Regge-Teitelboim
Hamiltonian [50] to vanish.
We define the tuple ðΣ; γ; H; k;ω⊥Þ as a Bartnik data set.

Given a domain ðΩ; h0; K0Þ, one can think of the Bartnik
data being induced from it. However, in general, the
Bartnik data can be independently prescribed as a quasi-
local data on Σ. The Bartnik mass can be defined for either
asymptotically flat extensions [14–17] or asymptotically
hyperbolic extensions [51].
Definition 6.—Given a Bartnik data set ðΣ; γ; H; k;ω⊥Þ,

the Bartnik-Bray outer mass is defined as

MouterðΣ; γ; H; k;ω⊥Þ ≔ inf
ðΩ̄;h;KÞ∈PΣ

MðΩ̄; h; KÞ: ð8Þ

Remark 5.—The Bartnik data and the outer mass
also have a Riemannian version which is defined for the

6EW generalizes the result on the apparent horizon [1] to
minimar surfaces [2], which satisfy 1. Σ is an outer-minimizing
marginally trapped surface. 2. ∂þθ− < 0. Both conditions ensure
the extremal surface can be constructed via the method proposed
by EW.
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time-symmetric case (K ¼ 0). Then the Bartnik data
reduces to ðΣ; γ; HÞ.
This definition is due to Bray [16]. Bartnik originally

proposed the definition for AF extensions, called the
Bartnik mass MB, that demands the extension to contain
no horizons instead of imposing the outer-minimizing
condition [14,15]. This slight variation in PΣ is the only
difference between the outer mass Mouter and the Bartnik
mass MB. Both of the original no-horizon condition
imposed by Bartnik and the outer-minimizing condition
by Bray serve to rule out those “bag of gold” initial data
sets. Otherwise, one can always hide Σ behind some
horizon such that the extension can have the ADM mass
as small as possible [14,17,38].
The Bartnik-Bray outer mass satisfies many desirable

properties of quasilocal mass, such as positivity, rigidity,
and monotonicity, but it is very difficult to evaluate [18]
(cf. [38] for a survey of known results.). Also, the
spacetime Bartnik mass is much more tricky to analyze
than its Riemannian counterpart. Based upon physical
arguments, Bartnik conjectured that the minimizer always
exists and is given by a stationary extension [15], but little
is known about this conjecture [38].7 When we restrict to
horizons, the problem simplifies a bit. In the Riemannian
setting, Mantoulidis and Schoen [53] proved that the
Bartnik mass MB (or Mouter) of a horizon is given by
the irreducible mass (9). Their result is generalized to
hyperbolic case (10) by Pacheco et al. [51]. Mouter is
technically easier to work with thanMB. In the Riemannian
setting, one can show that it is lower bounded by the
Hawking mass [54], recovers the Schwarzschild mass for
domains in the Schwarzschild spacetime containing the
horizon, and its small sphere limit can be evaluated [55]
(cf. Anderson [38]). Finally, we shall point out that as
compared toMouter, the AdS version is much less studied in
the literature. It was not studied only until recently been
first proposed in [51].
We now switch to the Bartnik-Bray inner massMinner. As

we outlined above, the outer mass is essentially a problem
concerning extensions, whereas the inner mass can be
treated as a fill-in problem. To facilitate the definition of
Minner, we first need to define the fill-in of a Bartnik data set
(see [21] for the Riemannian version).
Definition 7.—A fill-in of Bartnik data ðΣ; γ; H; k;ω⊥Þ

is a compact, connected Riemannian codimension-one
manifold ðΩ; h; KÞ with boundary such that there exists
isometric embedding {∶ðΣ; γ; H; k;ω⊥Þ ↪ ðΩ; h; KÞ with
the {ðΣÞ being some connected component8 of ∂Ω such

that the induced ðhj∂Ω; H∂Ω; tr∂ΩK;ω⊥∂ΩÞ matches with the
Bartnik data. We denote the set of admissible fill-ins as ΓΣ.
Remark 6.—It is known that the mean curvature cannot

be too large for ΓΣ to be nonempty [21]. This is consistent
with the fact that the BNR algorithm does not output a fill-
in if −θþθ−, which is the norm of the mean curvature
vector, is too large. Here, we have a spacetime to start with
and consider only Bartnik data induced on the chosen Σ,
so ΓΣ is nonempty by definition.
A fill-in is thus an initial data set that can be legitimately

inserted into the interior of Σ, whose domain of dependence
is the inner wedge IWðΣÞ. It is commonplace to impose extra
conditions on the Bartnik data set for the fill-in problem. For
example, in the Riemannian case (cf. Remark 5), the Bartnik
data are given by a triple ðΣ; γ; HÞ, and one usually demands
H to be a positive function [38]. Here we keep it general
for the definition. Later we will impose mean-convexity
(cf. Definition 2) to show the equivalence with the outer
entropy.
Finally, we need to define the irreducible mass of a given

area in asymptotically flat spacetime [56,57],

MirrðAÞ ≔
1

2

�
A

Ωn−2

�n−3
n−2
: ð9Þ

It sets a limit on the amount of energy that can be extracted
from the black hole via the Penrose process. It can also
be interpreted as the mass of a Schwarzschild black hole
of the horizon area A. When n ¼ 4, we have the familiar

expression MirrðAÞ ¼
ffiffiffiffiffiffi
A
16π

q
. For the AdS case, we have a

slightly different expression [17,58,59],

MirrðAÞ ≔
1

2

�
A

Ωn−2

�n−3
n−2 þ 1

2

�
A

Ωn−2

�n−1
n−2
; ð10Þ

where we have set the AdS radius to 1.
The Penrose inequality lower bounds the ADM mass M

of an initial data set by the irreducible mass. In arbitrary
dimensions [57], it can be written as

MðN; h; KÞ ≥ MirrðAðΣ0ÞÞ ð11Þ

for the apparent horizon (the outermost MOTS) Σ0 on
ðN; h; KÞ, which is AF and satisfies DEC. The Penrose
inequality also contains a rigidity statement: the equality
holds if and only if ðN; h; KÞ is the initial value for the
Schwarzschild spacetime.
Similarly, in the AdS setting, we have hyperbolic

Penrose inequality constraining an AH data if we replace
the rhs on 11 by 10. The lhs then denotes the total mass of
an AH data [60,61]. Also, the equality holds if and only if
ðN; h; KÞ is the initial value for the AdS-Schwarzschild
spacetime.

7On the other hand, there are many results concerning the static
extension conjecture, which is the Riemannian counterpart. It is
recently proven to be false by Anderson and Jauregui [52].

8Note that a fill-in ðΩ; h; KÞ could have multiple ends, and we
do need such fill-ins for nontrivial inner mass (see Remark 7).
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Though largely believed to be true, the general Penrose
inequality is not proved yet. The RPI has been proved in
dimensions less than eight [16,54,57]. For the hyperbolic
Penrose inequality, however, there is a holographic argu-
ment [24], which uses the outer entropy and a Euclidean
path integral argument claiming the bulk dual to a maxi-
mum entropy state in a microcanonical ensemble is the
static AdS black hole [62]. A mathematical proof of the
hyperbolic Penrose inequality, even in the time-symmetric
case, is still lacking. For more results and discussions on the
Penrose inequality, see [58] for a comprehensive review.
The original definition of the inner mass is only given for

four-dimensional AF spacetime [16,17]. Here we propose
its natural n-dimensional version motivated by the formu-
lation of the Penrose inequality in arbitrary dimensions
[57], which also matches the proposal by BNR [12].
Definition 8.—Given a Bartnik data set ðΣ; γ; H; k;ω⊥Þ,

the Bartnik-Bray inner mass in an asymptotically flat
spacetime is defined as

MinnerðΣÞ ≔ sup
ðΩ;g;KÞ∈ΓΣ

min
σ⊂Ω;
σ∈½Σ�

MirrðAðσÞÞ; ð12Þ

where the supremum is taken over all fill-ins ðΩ; g; KÞ such
that it satisfies the dominant energy condition and the
minimum is taken over the homology class [Σ].
Remark 7.—Unlike the outer entropy 4, Minner is a

quasilocal quantity as it only depends on the Bartnik data.
Given some Bartnik data, there could be no valid fill-ins or
only compact fill-ins without boundary, and then we set
Minner ¼ 0. Hence, a nondegenerate inner mass is given by
a fill-in that connects B to other ends, which we refer to as a
nontrivial fill-in. The Riemannian case has been analyzed
by Jauregui in [21], where it is proven that there is a
threshold mean curvature value that determines if a non-
trivial fill-in exists.
Remark 8.—Given a nontrivial fill-in (cf. Remark 7) of Σ

with inward-pointing mean curvature vector, the minimum
in (8) can always be attained at some smooth minimal
surface due to the results of Federer and Fleming [63,64]
(cf. Theorem 19 in [21]). Regarding the supremum, we do
not know the existence criteria on the Bartnik data [15,38].
If the maximizer exists, then the minimal surface on it is
locally extremal.
The two versions of inner mass only differ in the

definitions of irreducible mass, both of which are positive
monotonically increasing functions of the area. Hence, they
are essentially the same variational problem, which is to
maximize the area. Apparently, the definition looks very
similar to the maximin Definition 3 for the HRT surface
of the whole boundary B, up to the different homology
classes. However, here the supremum is over all fill-ins,
whereas for the HRT surface the Cauchy slices are con-
strained to evolve to the same spacetime ðM; gÞ. Hence, the
same existence proof for the HRT surface does not work for

Minner. Nevertheless, we will prove that it is equivalent to
the outer entropy for an outer-minimizing mean-convex Σ.

IV. EQUIVALENCE

It is perhaps clear by now that the outer entropy and the
inner mass look very similar to each other: they both search
for the locally extremal surface with the maximal area, up
to the different dimensions of the final quantities of interest.
We call this area the supremum area. In this section, we
shall prove that the supremum areas for both optimization
problems are identical, establishing the equivalence
between the outer entropy and the inner mass,

MinnerðΣÞ ¼ Mirrð4ℏGNSðΣÞÞ: ð13Þ

Let us first comment on the junction conditions required
by EW (6). It is no surprise that these requirements are
indeed given by the Bartnik data ðΣ;h;H;k;ω⊥Þ as well (7).
Note that under the null basis of the normal bundle
flþ;l−g, the null expansions ðθþ; θ−Þ is the mean curva-
ture vector and the twist is defined as χa ≔ Kð·;l−Þ.
Hence, the only difference is that (6) gives the continuity
conditions specifically in terms of null frame variables,
whereas the Bartnik data are given in a general form. They
are the same up to a basis transformation. One can think of
ðΣ; γjΣout

; θ�jΣout
; χajΣout

Þ induced from the outer wedge as a
Bartnik data set given in the null frame.
Let us motivate why we demand Σ to be both outer-

minimizing and mean-convex in order to establish their
equivalence. We first need to quasilocalize the outer
entropy. This equivalence argument is valid only because
of the following lemma proved in [11], which we alluded to
earlier.
Lemma 1.—For an outer-minimizing surface Σ, the HRT

surface for the outer entropy, if it exists, always lies inside
the inner wedge, X ⊂ IWðΣÞ.
The outer-minimization thus quasilocalizes the outer

entropy. Without the outer-minimizing condition, we might
have the HRT surface being inside the outer wedge, then
the two optimizers cannot coincide.
Lemma 2.—For an outer-minimizing surface Σ, the

optimizer Xinner for the Bartnik-Bray inner mass and the
HRT surface X for the outer entropy, if they exist,
satisfy AðXinnerÞ ≤ AðXÞ.
The above lemma follows from the fact that the outer

entropy is more restrictive than the inner mass when Σ is
outer-minimizing. The Xinner on the optimal fill-in Ω is a
locally extremal surface, so it is also a valid HRT candidate
on Ω ∪Σ Ω̄ while X might not actually lie on Ω. Since
ðΩ; XinnerÞ is a feasible choice for the optimization of the
outer entropy, the maximization can only go higher for the
outer entropy.
What about mean-convexity? EW and NR also proved

the following lemma [1,2,11]:
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Lemma 3.—For a mean-convex surface Σ, the HRT
surface X for the outer entropy, if it exists, has area
AðXÞ ≤ AðΣÞ.
The above two lemmas 2 and 3 imply AðXinnerÞ ≤

AðXÞ ≤ AðΣÞ. Note that the optimizer of the inner mass
has area less than AðΣÞ for any surface Σ by definition.
Had one only required outer-minimizing but not mean-
convexity, then one could construct a situation where Σ
separates the two optimizers in terms of the area,
AðXinnerÞ ≤ AðΣÞ < AðXÞ. This can be done, for example,
via making Σ “zigzag” in the null direction and thus the
area AðΣÞ arbitrarily small. Then there is no way that the
two optimizers agree.
From the above lemmas, we see that both conditions

are indeed relevant. Nevertheless, it could be that weaker
conditions are sufficient for the equivalence. We can state
our main result.
Theorem 1.—For an outer-minimizing mean-convex

surface, the supremum area of the outer entropy equals
to the supremum area of the Bartnik-Bray inner mass.
Proof.—We start by considering the case when the

optimizers for both problems exist. Suppose Σ is outer-
minimizing on Ω̄ which is anchored at B, and let the
optimal fill-in for the inner mass be ðΩ; h; KÞ and Xinner is
the minimal surface on Ω with area AðXinnerÞ. Lemma 1
implies we only need to consider the HRT surface X inside
the inner wedge DðΩÞ. If X lies on Ω then X;Xinner can be
identified. Suppose the HRT surface is realized at some
other surface not on Ω. X must have larger area AðXÞ ≥
AðXinnerÞ due to Lemma 2. X is thus a minimal surface on
some Cauchy slice N that does not pass through Σ, and we
denote the intersection surface between N and the future-
directed ingoing null congruence from Σ as Y, which is
called a representative of Σ by EW in [2]. Since Σ is a
mean-convex surface θ−ðΣÞ ≤ 0, assuming the NEC, the
Raychaudhuri equation implies that θ− ≤ 0 on the whole
congruence connecting Σ and Y. This gives AðYÞ ≤ AðΣÞ
and we also have AðXÞ ≤ AðYÞ as X is an HRT surface
sitting on N. Therefore, X is also a minimal surface on the
slice X − Y − Σ,9 consistent with Lemma 3, so that
AðXÞ ≤ AðXinnerÞ, because Xinner is the optimizer for the
inner mass. Hence, AðXinnerÞ ¼ AðXÞ, and both X;Xinner
can be the optimizer of the outer entropy and the inner
mass. This argument10 is illustrated in Fig. 1.
Therefore, we can conclude that for an outer-minimizing

mean-convex surface, both optimizers of the outer entropy
and the Bartnik-Bray inner mass exist or neither exists.
Now consider the case when neither optimizer exists.

Suppose that the supremum area of S, A1, is strictly larger
than Minner, A2; A1 > A2. Consider now a sufficiently small
ϵ > 0 such that A1 − ϵ > A2. Then there exists an inner
wedge configuration for S, which has the extremal surface
area equal to A1 − ϵ (otherwise, A1 − ϵ would be the
supremum). Therefore, according to above arguments, the
supremum area of Minner should be at least A1 − ϵ, which
gives the contradiction. The other direction of starting with
A1 < A2 follows from the same arguments. ▪
The outer-minimizing condition shows up in different

contexts. On the quasilocal mass side, the outer-minimizing
condition is not necessary for the inner mass to be well
defined, unlike the outer mass. However, as pointed out by
Bray [17], it is useful to impose such a condition for the
inner mass as well. For example, we can upper bound the
inner mass with the outer mass, assuming the Penrose
inequality holds (see the next section). We see an interest-
ing parallel here: the outer-minimizing condition serves as a
necessary condition to guarantee the outer mass being
nontrivial, whereas it is meant to make sure the HRT
surface exists for the outer entropy via the construction
using BNR.
We finish this section by a side remark about mean-

convex surfaces. One might find the mean-convex surface
condition (H being inward spacelike) unnatural and unnec-
essary for the inner mass and the outer entropy. Although it
is not needed for the definition, it serves to establish the
equivalence and puts them in the same context as other
closely related quantities that do need mean-convexity.
For example, in the Riemannian setting, mean-convexity

FIG. 1. Portion of a Penrose diagram illustrating the proof of
Theorem 1. The blue slice Ω ∪Σ Ω̄ consists of an exterior slice Ω̄,
on which Σ is outer-minimizing, and an optimal fill-in Ω, on
which Xinner is the minimal surface with maximal area. The green
slice N is the maximal slice for the HRT surface X homologous to
B. It crosses the future-directed ingoing null congruence from Σ
at Y. The orange slice X − Y − Σ with the data evolved from Ω
also gives a legit fill-in.

9Note that we have used a spacelike characteristic initial data
and assumed enough regularity of it for it to be a legitimate fill-in.
See more about spacelike-characteristic Cauchy problem with
low regularity in [65].

10A similar construction is used in proving the maximin
surface [41] we have been using is the same as the original
HRT proposal [7].

OUTER ENTROPY EQUALS BARTNIK-BRAY INNER MASS AND … PHYS. REV. D 102, 066009 (2020)

066009-7



means H ≥ 0. It is needed for the Bartnik mass MB to be
nondegenerate, because for Bartnik data with negative
mean curvature then any extension ðN; hÞ has a horizon
[38]. There is actually another quasilocal mass proposal,
called the Liu-Yau mass, that specifically requires the
surface to be mean-convex [18,66,67]. It can be considered
as a refinement of the Brown-York quasilocal mass [68]
in that a positive mass theorem can be proved for the
Liu-Yau mass [66].
We have proved that the outer entropy is equivalent to the

inner mass,

Minner ¼
1

2

�
4ℏGNSðΣÞ

Ωn−2

�n−3
n−2 ð14Þ

for AF data and

Minner ¼
1

2

�
4ℏGNSðΣÞ

Ωn−2

�n−3
n−2 þ 1

2

�
4ℏGNSðΣÞ

Ωn−2

�n−1
n−2 ð15Þ

for AH data.
It is worth noting that BNR already realized that the

rhs of (14) can be used as a quasilocal mass [12] and (15)
was proposed in [24]. However, like we mentioned in the
Introduction, the rhs is generally not a quasilocal quantity.
It becomes quasilocal when one imposes the outer-
minimization condition, but then one can use a more
straightforward proposal due to Bray and Bartnik.

V. IMPLICATIONS

A. Area laws and the monotonicity
of quasilocal mass

One important result of EW is that the area laws follow
immediately from formulating the black hole entropy in a
variational way. More precisely, EW [1] shows that the
area laws associated with the holographic screens11

foliated by apparent horizons Σ0 follow from the fact
that AðΣ0Þ ¼ 4GℏSðΣ0Þ and the definition of outer
entropy 4. NR generalizes the area laws to the holographic
screens formed by a class of surfaces that are not margin-
ally (anti-)trapped, which includes the case of the event
horizon, and also the related second law of the outer
entropy [11]. The family of area laws restricted to the
spacelike or null part of the holographic screen can be
summarized as AðΣ1Þ ≤ AðΣ2Þ, if the outer wedge of Σ2 is
contained inside the outer wedge of Σ1. This is because the
constraint space reduces from Σ1 to Σ2. They are the direct

consequences of the monotonicity property built into the
definition of the outer entropy 4.
Similarly, the Bartnik-Bray quasilocal masses are also

defined with such variational formula. The area laws above
translate to the monotonicity of the quasilocal mass: given
Σ2 and Σ1 ⊂ IWðΣ2Þ, we have [14,15,17]

MinnerðΣ1Þ ≤ MinnerðΣ2Þ: ð16Þ

It holds because a valid fill-in Ω1 of Σ1 can always be
turned into a valid fill-in of Σ2 by gluing Ω1 to Σ2 through
some initial data set connecting Σ1 and Σ2. Similar argu-
ments also apply to the outer mass.
Monotonicity is actually one of the desirable features

that a good quasilocal mass proposal should have [18,71].
It is physically important as it demonstrates the positive
mass contribution in a quasilocal way. Also, monotonicity
associated with a quasilocal mass is often technically
useful. One example is the proof of the RPI by Huisken
et al. [54] which uses the monotonicity of the Hawking
mass under the inverse mean curvature flow. In short, we
see that the holographic screen area laws are mathemati-
cally equivalent as the monotonicity of the Bartnik-Bray
quasilocal masses. One can view it as a monotonicity
associated with processing the geometric data, analogous to
the data processing inequality in quantum information
theory that concerns entropic functions on the data of
quantum states.12 A canonical example is the monotonicity
of relative entropy [72,73], and we shall come back to this
in the next subsection.

B. Entropy bounds for the gravitational energy

Ever since Bekenstein conjectured that the entropy
contained in a finite region is universally upper bounded
by the energy within [74–76], there have been develop-
ments of various entropy bounds that relate energy and
entropy. One important achievement of such interplay
between high energy physics and quantum information
is the quantum null energy condition (QNEC), which is
first derived from the quantum focusing conjecture [77]
and then rigorously proved in [26,78–80]. Recently, Wall
argued a universal lower bound of the energy density in
classical and quantum field theories [25], which directly
implies the QNEC as a special case. In 1þ 1 dimensions,
consider an ant marching along the line space coordinated
by x and we assume the global energy is lower bounded.
At any point x0, the ant wonders what is the minimal
amount of the total energy given what she has observed

11This is also known as the future trapping horizon. Here
actually we need to restrict the holographic screens to be
spacelike or null in order to satisfy the minimar condition. This
restricted class is also known as the dynamical horizon [69,70].

12Data processing inequalities are usually proved using some
concavity properties of the entropic functions that are difficult to
show. However, for quantities associated with operational mean-
ing, one can always find a variational formulation in terms of
some optimization problem, from which the monotonicity is
straightforward.
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about the matter field configuration ρΩ̄ from −∞ to x0.
Mathematically, this is given by the quantity

inf
ρ∶trΩ̄ρ¼ρΩ

Z
∞

x0

hTiρΩ̄dx; ð17Þ

where ρ denotes the purification of the given ρΩ quantum
state of the matter and ρΩ̄ ≔ trΩρ is its quantum marginal
state that we optimize over; T is a schematic notation of
stress tensor operator of some component (see [25] for
details), and hTi ≔ tr Tρ. In words, one tries to minimize
the total energy over all purifications of the given interior
state ρΩ. The wall conjectured that this minimal energy is
given by the derivative of the von Neumann entropy at Σ.
When generalized to higher dimensions, Wall’s ant con-
jecture formally reads as follows:
Conjecture 1.—Given some partial Cauchy slice Ω with

boundary Σ, a quantum state ρΩ on Ω and some unit vector
field X on Σ, the stress tensor T of any quantum field theory
satisfies

inf
ρ∶trΩ̄ρ¼ρΩ

Z
Ω̄
hTiρΩ̄dx ¼ ℏ

2π
LXSρðΩÞjΣ: ð18Þ

Remark 9.—One motivation for the ant conjecture is
that the monotonicity of the minimal energy under all
completely positive maps matches with the strong sub-
additivity on the right [25]. If one choses X as variations
on a null surface, one can obtain an entropic lower bound
on TðX;XÞ (QNEC) by taking the derivative on both
sides and using the built-in monotonicity as in the last
subsection (cf. [25] and the Appendix of [81] for more
details).
This version of the ant conjecture will be useful in

Sec. VII. Let us also discuss a slightly different formulation
of the ant conjecture studied in [26,81], which differs from
Wall’s original proposal in that it concerns the total matter
energy. Consider some cut Σ on a Killing horizon of
temperature T . Using results of Unruh effect [82,83] and
the data processing inequality of the quantum relative
entropy, one can show that MðΣÞ is lower bounded by
[25,81]

inf
ρ∶trΩ̄ρ¼ρΩ

Z
Ω∪Ω̄

hTiρdx ≥ −
ℏ
2π

LXDðρΩ̄jjσΩ̄ÞjΣ; ð19Þ

where DðρΩ̄jjσΩ̄Þ ≔ trρΩ̄ log ρΩ̄ − trρΩ̄ log σΩ̄ is the rela-
tive entropy between two marginal states ρΩ̄; σΩ̄ of the
global state ρ and the Kubo-Martin-Schwinger (KMS)
vacuum state σ of temperature T , respectively.
In this version, the ant conjecture claims the inequality

(19) is in fact an equality [26,81].
Conjecture 2.—Given a cut Σ on some Killing horizon

Ω ∪Σ Ω̄, a quantum state ρΩ onΩ and some unit null vector

field X on Σ, the stress tensor T of any quantum field theory
with the KMS vacuum σ satisfies

inf
ρ∶trΩ̄ρ¼ρΩ

Z
Ω∪Ω̄

hTiρdx ¼ −
ℏ
2π

LXDðρΩ̄jjσΩ̄ÞjΣ: ð20Þ

Remark 10.—This second version can be seen as a
special case of the original ant conjecture 1. This is because
on a Killing horizon, we can represent the energy of the
interior state via the modular Hamiltonian of the vacuum
state (cf. [81]). Its general validity in any background is
questionable: the data processing inequality of the relative
entropy [72,73] implies the lhs is positive, which imposes
some average positive energy condition on the QFT. Also,
the monotonicity of the rhs may not generally hold as
opposed to the rhs in (18).
Remark 11.—Conjecture 2 (and 1) has been proven by

Ceyhan and Faulkner [26] when X is restricted to variations
on a Rindler horizon in Minkowski spacetime. They use a
particular family of purifications of the given marginal
state. This is a one-parameter family of unitaries acting on
ρΩ̄ known as the Connes cocycle flow. In the limit of the
parameter approaching the infinity, one achieves equality
in (20).
The above-mentioned results concern the von Neumann

entropy of the matter fields and its stress tensor. It is well
known that, in the absence of matter fields, a covariant
characterization of the local gravitational energy is for-
bidden in general relativity [18,84] and the quasilocal mass
is our best alternative. As a quasilocal mass, the inner mass
is actually not as physically motivated as the outer mass,
but we could use the equivalence we just established to
look for relations between the outer mass and the outer
entropy. It is obvious that Penrose inequality plays an
important role in this.
Assuming the Penrose inequality, one can show that for

outer-minimizing Σ [17],13

MouterðΣÞ ≥ MinnerðΣÞ: ð21Þ
It simply follows from the Penrose inequality (11), which
requires that, even in the worst case, the maximal irreduc-
ible mass filled into IWðΣÞ is always upper bounded by
the minimal ADM mass associated with the extensions in
OWðΣÞ. In turn, one can then bound the outer mass with the
outer entropy S for AF data,

inf
ðΩ̄;h;KÞ∈PΣ

MðΩ̄; h; KÞ ≥ Mirrð4ℏGNSðΣÞÞ; ð22Þ

where the lhs is the infimum of the total energy while
holding a portion of spacetime fixed, and the rhs is an
entropy term which summarizes (14), (15).

13The inequality is reminiscent of the weak duality property
between the primal and the dual convex optimization programs,
which again are often used in quantum information theory.
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One could think of (22) as a gravitational version of (19),
albeit the entropy bound looks somewhat different, such as
that no derivative is taken on the outer entropy. As opposed
to the matter case, we do not yet fully understand14 the
quantum definition the outer entropy, so the definition
in (1) cannot work independently without the bulk. Also,
the quasilocal mass has never been studied beyond the
framework of general relativity. It would be insightful to
interpret (22) from the boundary field theory perspective in
the holography context.
There are also various localized Penrose inequalities that

lower bound other quasilocal masses with the irreducible
mass [85–90], and all of them can be potentially turned into
such entropy bounds. However, their physical meanings are
more obscure, so we do not consider them here.

C. The gravitational ant conjecture

In case of (21), (22) being saturated, it resembles Wall’s
ant conjecture. Here we propose a gravitational ant
conjecture: given a cut Σ on a hypersurface and the induced
Bartnik data, the infimum of the total mass over the
extensions is given by the irreducible mass of the outer
entropy.
Conjecture 3.—Given a Bartnik data set ðΣ; γ; H; k;ω⊥Þ

associated with a codimension-two surface Σ, we have

inf
ðΩ̄;h;KÞ∈PΣ

MðΩ̄; h; KÞ ¼ Mirrð4ℏGNSðΣÞÞ: ð23Þ

Remark 12.—The gravitational ant conjecture itself is a
purely geometric statement. It resembles conjectures 2
and 1 (see more discussion in Sec. VII).
Remark 13.—Although the outer entropy is computed

with replacing the original geometry by some optimal
fill-in, we only vary over the extensions while fixing the
interior in (23).
Although the entropy bounds in (23) and (18) look

apparently different, one important indication of this
conjecture is that both sides enjoy the monotonicity as
we discussed in Sec. VA. It is not yet known what are the
general conditions on the Bartnik data for the above
equalities to hold, and it is plausible that one needs to
further constrain the data ðΣ; γ; H; k;ω⊥Þ to prove it.
Nevertheless, we do know the conjecture can be realized
by the (AdS-)Schwarzschild spacetime due to the rigidity
part of the Penrose inequality conjecture. For instance, if Σ
encloses the horizon in the Schwarzschild data, then the
inner mass matches with the outer mass. In the Riemannian
AF setting, it turns out for the Bartnik data associated with a
horizon, one can construct a one-parameter family of

spacetime metrics such that the equality in (23) is achieved
in the limit of the parameter going to the infinity.
This construction is due to Bray in his proof of the RPI

[16] (cf. Fig. 2 for an illustration). Bray constructs a
conformal flow of metrics ht ≔ unt h0, where the conformal
factor unt fixes the interior part of the initial but stretches the
exterior metric. This flow satisfies the property that the area
of the horizon Σt, defined as the outermost minimal surface,
is invariant. Most importantly, the ADM mass monoton-
ically decreases under the flow and the exterior data tend
to the spatial Schwarzschild metric. Hence, the Penrose
inequality is established. Note that the original horizon Σ0,
despite no longer being the outermost at t > 0, remains
outer-minimizing in ðN; htÞ, and the Bartnik data are in fact
matched at Σ0. Therefore, a by-product of this conformal
flow method is that the Bartnik-Bray outer mass of any
Riemannian Bartnik data ðΣ; γ; HÞ is given by the irreduc-
ible mass (9).15 The rhs of (23) is trivially given by the
irreducible mass of the horizon, which one can also directly
infer from the result of EW [1] (cf. Sec. VIII). Therefore,
the Penrose inequality and (21), (22) are saturated in the
limit of t → ∞. Furthermore, the data in the limit ðN; h∞Þ

FIG. 2. Bray’s conformal flow of metrics. The grey line
represents the original data set ðN; h0Þ which contains a horizon
Σ0 in orange. The solid line depicts the new initial data. The
interior region is kept unchanged. The flow ht conformally
transforms the metric outside the horizon, resulting in an outward
flow of the horizon Σt with the area unchanged, thus depicted as
the black cylinder region. The exterior region outside the horizon
ðN; htÞ in green becomes arbitrarily close to the Schwarzschild
metric for large enough t. Σ0 remains outer-minimizing in
ðN; htÞ. The dashed blue region is a fill-in ðΩ�; h�Þ that connects
to another AF end with Σ0 being the wormhole neck, whose area
gives the outer entropy. The resulting spacetime is not the time-
symmetric initial data for the Schwarzschild spacetime.

14In the perturbation theory regime, however, EW gives a
proposal of simple entropy as the boundary dual of the outer
entropy [2].

15This argument has the advantage that it works for the
spacetime with multiple black holes. However, this construction
does not give any results on the original Bartnik mass MB. The
fact that the Bartnik mass of a horizon is the irreducible mass has
been proved by Mantoulidis and Scheon [53], who use a “collar
extension” construction that works for both the Bartnik mass and
the Bartnik-Bray outer mass.
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satisfy that the outer mass of any surface enclosing Σ0 is the
same as MouterðΣ0Þ. This implies that the exterior region
outside Σ0 contributes nothing to the ADMmass of ðN; htÞ.
It is worth noting the structural similarity between the

above conformal flow of metrics concerning the gravita-
tional energy, and the Connes cocycle flow used by Ceyhan
and Faulkner in proving Wall’s ant conjecture concerning
the matter energy (cf. 11): generally, there are no mini-
mizers of the lhs in both problems; both use a one-
parameter family of flow that acts on a part of the field
configurations, and the flow yields the equality condition as
the parameter goes to the infinity. Also, when we focus on
the far region in the conformal flow of metrics, the limit is
approached exponentially in the parameter [16],

ht ≔ utðxÞnh0; lim
x→∞

utðxÞ ¼ e−t: ð24Þ

Similarly, the limiting state that yields the ant conjecture
is also approached exponentially in the cocycle flow.
Although the flows are completely different objects in
the two contexts, it is tempting to conjecture a concrete
connection between them. One could hope to establish a
duality between them in the framework of AdS=CFT
correspondence. However, the main obstacle is that it is
not yet known if the conformal method can work in the
hyperbolic setting, so the hyperbolic Penrose inequality is
still an open problem in mathematical relativity [58].
Bousso et al. [81] also proposed a classical bulk dual to

the Connes cocycle flow on the boundary quantum field
theory. They consider a null hypersurface with a codimen-
sion-one cut. Their proposal, called the left stretch, is to
rescale the affine parameter on a null hypersurface on the
left of the cut while keeping the right intact, and then glue
them back and treat the new parameter as affine. We would
like to point out that this is equivalent to a conformal metric
flow on the left region while keeping the right region intact.
The above conformal flow equation (24) implies that in the
near-boundary region, rescaling the affine parameter by et

achieves the same effect as Bray’s flow. In holography, such
exponential behavior of the bulk metric flow in the near-
boundary region can perhaps be universally identified as
the cocycle flow in the boundary quantum state. The
resemblance could indeed be more than a coincidence.

VI. APPLICATION: THE SMALL SPHERE LIMIT

Due to the equivalence established in Theorem 1, the
BNR algorithm computes both the outer entropy and the
inner mass. We would like to apply the algorithm to
calculate their small sphere limits. The small sphere limit
serves as an important sanity check for a valid quasilocal
mass proposal [18]. From physical arguments and eviden-
ces of other quasilocal mass proposals [18,91–95], we learn
that the small sphere limit, evaluated along light-cone cuts
shrinking toward a point p along direction e0, is given by

the stress tensor Tðe0; e0Þjp in the leading order.16 The
light-cone cut construction, parametrized by the light-cone
vertex p and any future timelike unit vector e0, is a standard
way to evaluate the small sphere limits introduced by
Horowitz and Schmidt in studying the Hawking mass [91].
Let us denote the light-cone cuts as Σl and the small sphere
limit can be extracted by computing

lim
l→0

l−ðn−1ÞMinnerðΣlÞ: ð25Þ

Sufficiently small light-cone cuts are guaranteed to be
mean-convex and outer-minimizing so we can apply the
algorithm. The algorithm entails solving a polynomial
constraint equation parametrized by the Bartnik data on Σ.
Since it is only shown to be optimal for spherical untrapped
surfaces [11,12], we assume that the light-cone cut ðp; e0Þ
is approximately spherically symmetric including the
leading perturbation order due to curvature,17 which is
the leading order we care about in the small sphere limit.
We perturbatively expand the null frame variables on the

light-cone cuts in Riemann normal coordinates and input
them to the BNR algorithm, while making sure all the
prerequisite conditions are satisfied. The small sphere limit
of the outer entropy at the leading order is given by

SðΣlÞ ¼
Ωn−2ln−2

4GNℏ

�
2l2Ωn−2GNTðe0; e0Þjp

n − 1

�n−2
n−3

; ð26Þ

and 4GNℏSðΣlÞ gives the supremum area of the HRT
surface.
We see that the outer entropy at the small sphere limit is

directly characterized by the stress tensor. In turn, we also
obtain the limit of the inner mass,

lim
l→0

l−ðn−1ÞMinnerðΣlÞ ¼
Ωn−2Tðe0; e0Þjp

n − 1
; ð27Þ

which is exactly the result we expect from volume Ωn−2
n−1

times the matter energy density Tðe0; e0Þjp. It matches with
the nonvacuum small sphere limits of other quasilocal
masses in four dimensions [18] and higher dimensions [96].
Note that this result holds for both the AF case (14) and the
AH case (15), because the second term with higher power
in (15) is irrelevant at the leading order.
The review of the BNR algorithm and the detailed

calculations are provided in Appendixes A and B, respec-
tively. To our knowledge, this result is new. The small

16For vacuum spacetime where the stress tensor vanishes, we
expect the leading order to be given by the Bel-Robinson tensor.
We leave the vacuum case calculations to future works.

17Note that we did not assume the spacetime is spherically
symmetric as in [11], so we need to start with the full BNR
algorithm provided in BNR [12]. Nevertheless, we find that the
constraint equations reduce to the one in [11].
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sphere limit of the Bartnik mass is not known before except
in the Riemannian case [55]. We believe that the spherical
symmetry for the light-cone cut is not needed for this result
to hold, as in the case for other quasilocal mass proposals. It
is worth looking into how the technical difficulties can be
overcome to prove the optimality of the BNR algorithm or
otherwise refine it.

VII. THE SEMICLASSICAL CASE

So far, all we have discussed concern the classical
gravity. Now we briefly sketch some possibilities to
generalize the gravitational ant conjecture to a quantum
statement in the semiclassical setting. It is a fruitful
approach to understand semiclassical quantum gravity
via replacing the area by the generalized entropy in a
classical geometric statement and extracting its implica-
tions. In particular, we add to the area, which represents
the gravitational coarse-grained entropy, the contribution of
the fine-grained von Neumann entropy of the matter on the
exterior region Ω̄. The generalized entropy is defined as

Sgen ¼
AgenðΣÞ
4Gℏ

¼ AðΣÞ
4Gℏ

þ SρðΩ̄Þ: ð28Þ

The discovery of the QNEC marks the culmination of this
line of thought [77]. The same idea can be applied to our
gravitational ant conjecture. Several related ideas have been
proposed, such as the quantum EW coarse-graining [81]
and the quantum Penrose inequality [97,98]. We can gain
some insights from these works. Note that the original
ant conjecture concerning the matter sector is a quantum
statement, so a plausible quantum version of our conjecture
can be obtained by combining the gravitational (conjecture 3)
and matter (conjecture 1) sectors, in the spirit of (28).
Following [81], one can start by defining the generalized
outer entropy as maximizing the generalized entropy over the
interior data while holding the exterior fixed,

SgenðΣÞ ≔ sup
ðΩ;h;K;ρΩÞ

SgenðΣÞ: ð29Þ

Since the conjecture 3 essentially follows from the
Penrose inequality, one might first attempt to upgrade its
rhs by the quantum Penrose inequality (QPI) [97], where one
substitutes S with Sgen. However, the proposed QPI only
works for lightsheets attached to the apparent horizon
(quantumMOTS), which extends to the singularity. It makes
their QPI inapplicable to our case as we need a Cauchy slice
that extends to infinity to define the total mass.
Alternatively, if we only consider Σ being a quantum

MOTS, the same idea as in [81] can be used to construct the
minimal energy extension. In [81], it is argued that the
optimal state that achieves Wall’s ant conjecture (20) has all
the energy concentrated in a shock at Σ. The same should
apply to the mass minimization over the exterior in 3 when

we include the state of mass field in the data. For a quantum
marginally trapped surface, the strength of the energy shock
has the exactly right magnitude to shift the classical
expansion on Σ to zero. The proofs due to Bray [16]
and Mantoulidis-Schoen [53] in the Riemannian case
suggest that the Bartnik mass of an apparent horizon
should also be equal to its irreducible mass in the general
case, that is, AðΣÞ ¼ 4GℏSðΣÞ. Therefore, we have a
semiclassical conjecture in flat spacetime (and we do not
repeat the AdS version here),

inf
ðΩ̄;h;K;ρΩ̄Þ

MðΩ̄; h; K; ρΩ̄Þ ¼
1

2

�
AðΣÞ
Ωn−2

�n−3
n−2 þ ℏ

2π
LXSρðΩÞjΣ;

ð30Þ

where in the lhs we add in the data the quantum state of the
matter field, which is consistent with the rest geometric data
in terms of the semiclassical Einstein equation,18 and the
von Neumann entropy term on the rhs is the matter energy
contribution due to the shock. Therefore, we can think of
(30) as adding up two ant conjectures (18), (23) together.
We would like to stress again that one does not vary the
interior geometry in (30) (cf. Remark 13). One performs
the interior maximation just to compute S, but we keep the
original interior data and state ρΩ when considering the
minimization of mass over the exterior data.
The above conjecture hints at an alternative proposal for

the QPI,

MðΩ̄; h; K; ρΩ̄Þ ≥
1

2

�
AðΣÞ
Ωn−2

�n−3
n−2 þ ℏ

2π
LXSρðΩÞjΣ: ð31Þ

As opposed to the QPI proposed in [97], we still use the
original area but we add a reminder term on the rhs. In [98],
the case of using the bare area of the quantum extremal
surface is also considered, and authors argue that it is not
enough to compensate for the negative energy in the
Boulware-like state. In our case, note that this entropy
derivative term does not have a definite sign as opposed to
the relative entropy; therefore, it would be interesting to
check if this remainder term can help compensate for the
negative energy.19 We leave this to future study.
In short, it is highly suggestive that the ant conjectures,

QNEC, the quantum coarse-graining, and the quantum
Penrose inequality are all intertwined notions where one
embeds in the limit of another. Indeed, some of the relations

18In the semiclassical regime, the dominant energy contribu-
tion comes from the ADM mass, but one should also include
perturbation due to quantum state that does not backreact,
δM ¼ R

Ω∪Ω̄ Tdxn−1.
19It is plausible that Wall’s ant conjecture is incompatible with

the Boulware-like state as the total matter energy is assumed to be
positive [25].
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are discovered in earlier works. It is worth studying if the
gravitational ant conjecture fits in as well.

VIII. DISCUSSION

For an outer-minimizing mean-convex surface, we have
shown that its Bartnik-Bray inner mass is equivalent to its
outer entropy proposed by Engelhardt and Wall. Though
motivated by completely different problems, these authors
arrived at the same optimization construction which man-
ifests their monotonicity. In hindsight, their equivalence
suggests these ideas could be profoundly related to each
other. By leveraging the Penrose inequality, we conjecture
that the minimum global energy, while hold some interior
region fixed, is given by its outer entropy, parallel to the ant
conjecture due to Wall concerning the matter sector. The
conjecture itself as a geometric statement is of independent
mathematical interest. Proving the conjecture hinges on a
good understanding of the Bartnik mass, which is known to
be a difficult problem [38]. We hope progress can be made
by restricting to simple Bartnik data sets. In fact, we know
the conjecture is true in some simplified situations. There is
also qualitative evidence in support of it when considering
the proofs that establish both ant conjectures in these
special cases. In particular, the Bray’s conformal flow of
metrics, which proves the gravitational ant conjecture for
an apparent horizon in the Riemannian case, is structurally
analogous to the Ceyhan-Faulkner’s cocycle flow proof
of the any conjecture in the null case. This analogy can
perhaps be solidified in the holographic setting when we
consider the Ceyhan-Faulkner’s cocycle flow being imple-
mented on the boundary QFT. The exponential behaviors of
both flows match at the boundary provide strong evidence
for the duality. We have also pointed out several possibil-
ities to upgrade the gravitational ant conjecture into a
semiclassical quantum statement and proposed a quantum
Penrose inequality. We hope new insights can be gained
when combining the ant conjectures of both gravitational
and matter sectors. We leave these investigations to
future works.
It is a subtle issue to characterize energy in general

relativity. Globally, we have a good understanding of the
total mass of the spacetime, whereas locally there is much
more trouble. It is forbidden to finely resolve the energy
content locally, and the best one can do is to obtain a coarse
quasilocal quantity of a closed domain. This difficulty is
essentially due to the equivalence principle [18,84]. Of
course, there are other alternatives such as the gravitational
pseudotensors, which unfortunately break the general
covariance. So far, various quasilocal mass proposals
represent our best understanding of gravitational energy
in general relativity. The gravitational ant conjecture gives
us a qualitative interpretation of the quasilocal mass. If we
compare the original ant conjecture (20) to the gravitational
one (23), there are two main differences: (1) the outer
entropy is a coarse-grained entropy as opposed to the

relative entropy which is fine-grained and (2) the energy in
the matter case can be localized whereas it is not possible
for the gravitational quasilocal mass. It is plausible that the
two points are correlated; it suggests that because of the
coarse-grained nature implied from the rhs of (23) rather
than a fine-grained entropy, one cannot write the gravita-
tional energy as an integral over local energy densities like
in (20). To put the intuition on more solid grounds, a
thorough understanding of the outer entropy holographic
boundary dual is indispensable.
Classically, we would like to understand how the outer

entropy can be computed for an arbitrary Bartnik data, so
that we can compute the small sphere limit in vacuum for
example. The BNR algorithm is promising but may not be
optimal in general. The problem is perhaps easier in the
Riemannian setting. So far, we have been working in the
spacetime setting where the initial data are given by
ðN; h; KÞ. In the Riemannian setting, we set K ¼ 0 and
it corresponds to a time-symmetric slice embedded in
the spacetime. The DEC reduces to a condition on the
Ricci scalar of ðN; hÞ∶R ≥ 0 for AF data and R ≥ −ðn −
1Þðn − 2Þ for AH data. Various perspectives of the Bartnik
mass and fill-in problem are much better understood in
the Riemannian setting than in the spacetime setting [38].
For example, the RPI is proven in dimensions less eight
[16,54,57], so the upper bound of the outer entropy stated
in (22) holds as a theorem in the Riemannian setting.
Therefore, it would be fruitful to consider the static
version of the outer entropy that is measured by the area
of the Ryu-Takanayagi surface [5,6]. One interesting
problem is whether a similar construction can be found
for the outer entropy of a surface Σ on a time-symmetric
slice. Geometrically, this corresponds to the Riemannian
version of the optimal fill-in problem, where the set of
permissible fill-in is restricted to initial data with vanish-
ing second fundamental form. A trivial example is Σ being
a horizon. The maximal area cannot be larger than the
horizon area and since the horizon itself is a minimal
surface, the inner mass is just given by the irreducible
mass. This is consistent with the EW result as the apparent
horizon on a time-symmetric slice ðN; hÞ is locally
extremal and outer-minimizing in ðN; hÞ, so Σ is also
the HRT surface with respect to the boundary. Another
example is a round sphere S in a spherically symmetric
spacetime. The outer mass of such a sphere S can be
shown to match the standard Misner-Sharp mass for round
spheres using the RPI [18]. Since the minimal extension is
the Schwarzschild metric outside S, the inner mass and
outer masses coincide, and then the outer entropy can be
calculated using the Misner-Sharp mass. Also, we already
know that the Bartnik data always admit a fill-in with
minimal surfaces when the mean curvature is below some
threshold value [21]. Therefore, it is an easier task to first
understand the Riemannian problem before tackling the
general spacetime case.
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APPENDIX A: THE BNR ALGORITHM

The main idea to construct the optimal spacetime for the
interior of Σ followed by both EW [2] and BNR [11,12] is
to use the characteristic initial value formalism which
guarantees a unique spacetime evolved from the initial
data glued to Σ in the interior. To achieve the optimality,
such data are put in by hand on a null hypersurface Nþ
emanating from Σ in the direction of −lþ, and they are
constrained by the following set of equations:

∇þθþ ¼ −
1

n− 2
θþ2 − σþ2 − 8πGNRþþ;

qbaLkω
þ
b ¼ −θþωþ

a þ n− 3

n− 2
Daθ

þ −Dbσ
þb
a þ 8πGNTaþ;

∇þθ− ¼ −
1

2
R− θþθ− þωþ2 þD ·ωþ þ 8πGTþ− þΛ;

ðA1Þ

where D is the covariant derivative on Σ. They are the
Raychaudhuri equation, the Damour-Navier-Stokes equa-
tion, and the Cross-focusing equation, respectively.
Since the small light-cone cuts are mean-convex surfa-

ces, we shall follow the algorithm proposed by BNR [12].
We only sketch their proposal here and one shall refer
to [12] for more details. We set the cosmological constant
Λ ¼ 0 in order to be comparable with the small sphere
limits of other quasilocal masses in the literature. BNR first
uses the constraint equations to locate a marginally trapped
surface μ, and then the EW arguments can be used to show
that the HRT surface, if exists, has area equal to AðYÞ. By
choosing the stress tensor and shear to vanish for the sake
of optimality, the above constraint equations in dimensions
n ≥ 6

20 reduce to

ðθþθ− − ρ − ϵ1 − ϵ2 − ϵ3 − ϵ4 − ϵ5Þξn−1 þ ρξ2

þ ϵ1ξ
3 þ ϵ2ξ

4 þ ϵ3ξ
n þ ϵ4ξ

nþ1 þ ϵ5ξ
2n−2 ¼ 0; ðA2Þ

where

ρ ¼ −
1

2

n − 2

n − 3
R;

ϵ1 ¼
n − 2

n − 4
ð□ log θþ − jD log θþj2Þ;

ϵ2 ¼ 2
n − 2

n − 5
jD log θþj2;

ϵ3 ¼ −ðn − 2ÞðD · ω −□ log θþ − ðn − 2Þω ·D log θþ

þ ðn − 2ÞjD log θþj2Þ;

ϵ4 ¼ −
nðn − 2Þ

2
ðω ·D log θþ −□ log θþÞ;

ϵ5 ¼ −
n − 2

n − 1
jω −D log θþj2; ðA3Þ

where□ ¼ D ·D and all the data are evaluated on Σ so we
omit the arguments of the variables. The parameter

ξðν; xiÞ−1 ≔ θþðνÞ
θþ

¼
�
þ νðxiÞθþ

n − 2

�−1
ðA4Þ

is measuring how the outer expansion changes with respect
to value on σ along null generators flowing down Nþ
parametrized by ν. Note that the constraint equation (A2) is
gauge dependent. If we rescale the null generators while
keeping their inner product,

l� → expð�ΓÞl�; ν → expð−ΓÞν; ðA5Þ

the following quantities will change accordingly:

θ� → expð�ΓÞθ�; ω� → ω� �DΓ: ðA6Þ

We see that ξ is invariant but the zeros ξ0 of (A2) might
change. In general, ξ depends on the transverse directions
xi as well, but we would like to choose a gauge such that it
is independent of xi,

ξ0 ¼ 1þ νθþ

n − 2
ðCondition 1Þ ðA7Þ

for some ν independent of xi. Condition 1 guarantees that
we indeed obtain a marginally trapped surface Σ0 at νðξ0Þ.
If in addition, we have

∂−θ
þðY0Þ < 0 ðCondition 2Þ; ðA8Þ

then we know Σ0 is a minimar surface, so we can follow
EW to construct the HRT surface. We do not need to
explicitly construct the HRT surface, as all we want is the
outer entropy measured by the HRT surface,

S ¼ AðXÞ
4GNℏ

¼ AðΣ0Þ
4GNℏ

¼ 1

4GNℏ

Z
σ
ξn−20 dσ; ðA9Þ

20Note that the above equations hold for dimensions n ≥ 6, and
similar equations are stated in [12] for n ¼ 3, 4, 5 separately. For
simplicity, we only discuss n ≥ 6 here and results in the other
dimensions are basically the same.
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where the second equality is due to the fact that X is
obtained from Σ0 through a flow on a stationary null
hypersurface as constructed by EW. Since ξ0 > 1, we
see that

SðσÞ < 1

4GNℏ

Z
σ
dσ ¼ AðσÞ

4GNℏ
ðA10Þ

as claimed. Practically, to execute the algorithm, one can
start by choosing some appropriate gauge for the null
variables and compute ξ0. If condition 1 is not satisfied, one
needs to tune the gauge accordingly such that condition 1
can be satisfied. Then one also needs to check condition 2
so that we know an HRT surface exists following EW.
Otherwise, the BNR algorithm does not apply to the surface
σ chosen.
Note that if we assume the validity of the HRRT

prescription, we no longer need the holographic duality
in order to define and evaluate the outer entropy, and we
can work in a spacetime that is asymptotically flat. It would
be interesting to ask what the outer entropy tends to as σ
approaches the spatial infinity in an asymptotically flat
manifold and if it has any relation with the ADM mass.

APPENDIX B: THE OUTER ENTROPY
AND THE BULK STRESS TENSOR

The light-cone cuts fSlgl parametrized by ðp; e0Þ are
defined as the following [91]. Let Lp denote the future-
directed light cone generated by null generators lþ para-
metrized by affine parameter l. We pick a future-directed
timelike unit vector e0 and normalized lþ at p by

he0;lþi ¼ −1: ðB1Þ

The light-cone cut is the family of codimension-two
surfaces Sl define as the level sets of l on Lp. The ingoing
null generators on Lp are denoted as l− and they are
normalized by

hl−;lþi ¼ −1: ðB2Þ

The small sphere limit along light-cone cuts are given
taking l to zero. This is a canonical way to evaluate the
small sphere limits of quasilocal mass.
We shall evaluate some intrinsic and extrinsic geometric

quantities that are needed as the input to the BNR
algorithm. We do this in the Riemann normal coordinates
set up around the light-cone vertex p. We compute the
expansions up to the leading curvature correction and the
higher order terms are irrelevant for the small sphere limit
in nonvacuum. First, we need to fix a gauge for the null
generators l�.
We choose the leading contribution l̃�

μ to the outer and
inner null generators as

l̃þμ ≔ ð1; niÞ; l̃−μ ≔
1

2
ð1;−niÞ; ðB3Þ

and the RNC expansions of l�
μ restricted on Sl are then

given by

lþμ ¼ ð1; niÞ ¼ l̃þμ; lþ
μ ¼ ð−1; niÞ ¼ l̃þ

μ ;

l−μ ¼ l̃−μ þ l2

6
Rþ−þ−lþμ þ l2

3
Rþ−þμ þOðl3Þ;

l−
μ ¼ l̃−

μ þ l2

6
Rþ−þ−lþ

μ þOðl3Þ; ðB4Þ

where ni is a normalized spacelike vector indicating the
spatial direction, l�

μ ¼ gμνl�ν; l̃�
μ ¼ ημνl̃

�ν, and we use
abbreviations such as Rþ−þ− ¼ Rðl̃þ; l̃−; l̃þ; l̃−Þ, etc.
We can then compute the following expansions direc-

tions from the definitions:
(1) The expansions on Sl are

θþðlÞ¼ n−2

l
−
l
3
Rþ−þOðl3Þ;

θ−ðlÞ¼−
n−2

2l
−
�
2

3
Rþ−þ

1

6
Rþþ−

nþ2

6
Rþ−þ−

�
l

þOðl3Þ: ðB5Þ
(2) The twists on Sl are

ωþ
μ ðlÞ ¼

l
3
Rμþ−þ þOðl3Þ;

ω−
μ ðlÞ ¼ −ωþ

μ : ðB6Þ
(3) The Ricci scalar on Sl is

RðlÞ ¼ ðn − 2Þðn − 3Þ
l2

þ Rþ 4n
3
Rþ−

−
nðn − 1Þ

3
Rþ−þ− þOðl2Þ: ðB7Þ

To apply the algorithm on the light-cone cuts, we choose σ
to be our light-cone cuts Sl and we are interested in the limit
l → 0. We only discuss in detail the case for n ≥ 6 and
leave out the detailed calculations for n ¼ 3, 4, 5 which are
very similar to the general case. We only do the nonvacuum
case here and leave the vacuum case to future works.
In general, it is complicated to exactly solve this

polynomial equation and we are not guaranteed to have
a closed-form solution. Since we only work in the pertur-
bative regime, a solution in expansion form suffices. Even
though a solution ξ0 with the leading curvature perturbation
is enough for the nonvacuum limit, it is still tricky to
compute the integral with ξ2−n0 , as we will see that ξ2−n0

contains curvature terms raised to noninteger powers.
Furthermore, we might need to choose a particular gauge
by hand in order to satisfy the condition 1 (A7) above.
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Hence, instead of treating the general case, we choose to
only evaluate the small sphere limits for those light-cone
cuts fðp; e0Þg which enjoy the spherical symmetry approx-
imately up to the leading order of curvature correction.21 The
advantage is that we can now take a shortcut by spherically
averaging each coefficient in the constraint equation (A2)
before solving for ξ0. It turns out that according to our gauge
choice is a good one, as all the coefficients ϵi vanish up to the
leading order of curvature correction,

ϵ̄i ≔
1

Ωn−2

Z
Sn−2

ϵidΩn−2 ¼ 0þOðl2Þ; for i¼ 1;2;3;4;5:

ðB8Þ

To show these, we first compute the relevant quantities listed
in (A3) using our data [(B5)–(B7)],

D logθþ ¼ −2l
3ðn− 2Þ ðRμþ þRþþl−

μ þRþ−lþ
μ Þ þOðl2Þ;

□ logθþ ¼ −2
3ðn− 2Þ

�
R−

n− 2

2
Rþþ þ nRþ−

�
þOðl2Þ;

D ·ω¼ 1

3

�
ðn− 1ÞR−þ−þ −Rþ− −

1

2
Rþþ

�
þOðl2Þ;

ω ·D logθþ ¼Oðl2Þ: ðB9Þ

These following terms vanish at the leading order:

ϵ̄1 ¼
−2

3ðn − 4ÞΩn−2

Z
Sn−2

�
R −

n − 2

2
Rþþ þ nRþ−

�
dΩn−2

þOðl2Þ ¼ Oðl2Þ;

ϵ̄3 ¼ −
ðn − 2Þ
3Ωn−2

Z
Sn−2

ðn − 1ÞR−þ−þ − Rþ− −
1

2
RþþdΩn−2

þOðl2Þ ¼ Oðl2Þ;
ϵ̄2 ¼ Oðl2Þ; ϵ̄4 ¼ Oðl2Þ; ϵ̄5 ¼ Oðl2Þ: ðB10Þ

The nonvanishing terms are

θþθ− ¼ −
ðn − 2Þ2

2l2
−
ðn − 2Þ½ðn − 6ÞRicðe0; e0Þ − 2R�

6ðn − 1Þ
þOðl2Þ;

ρ̄ ¼ −
ðn − 2Þ2

2l2
−
ðn − 2Þ½nRicðe0; e0Þ þ R�

6ðn − 1Þ þOðl2Þ:

ðB11Þ

It yields a simple form of the constraint equation, and it
turns out this simplified constraint equation is identical as

the one for round spheres in spherical symmetric spacetime
[11]. We are left with

ðθþθ− − ρ̄Þξn−1 þ ρ̄ξ2 ¼ 0: ðB12Þ
We can easily solve (B12),

ξ3−n0 ¼ 1 −
θþθ−

ρ̄
¼ 2

n − 3

n − 2

θþθ−

R̄
þ 1 ¼ 2l2Gðe0; e0Þ

ðn − 2Þðn − 1Þ

¼ 2l2Ωn−2GNTðe0; e0Þ
n − 1

þOðl3Þ: ðB13Þ

Condition 1 (A7) is trivially satisfied because of the
spherical symmetry, so we only need to check condition 2
(A8). The cross-focusing equation (A1) applied on Y0 gives

∂−θ
þ½Y0� ¼ ∂þθ−½Y0� − 2D · ωþ½Y0�: ðB14Þ

In BNR [12], it is shown that

∂þθ−½Y0� ¼ −
1

2
ξ20Rþ ½ξ2n−20 − nξnþ1

0 þ ðn − 2Þξn0
þ 2ξ40 − ξ30�jD log θþj2
− ½2ξ2n−20 − nξnþ1

0 þ ðn − 2Þξn0�ωþ ·D log θþ

þ ðξ30 − ξn0Þ□ log θþ þ ξn0D · ωþ þ ξ2n−20 ωþ2

ðB15Þ
and

−2D · ω½Y0� ¼ 2ðξ0 − ξ20Þ½ξ20 − ðn − 2Þξn−10 �jD log θþj2
− 2ðn − 2Þðξnþ1

0 − ξn0Þωþ ·D log θþ

− 2ðξ30 − ξn0Þ□ log θþ − 2ξn0D · ωþ: ðB16Þ
In our case, we should substitute in the averaged data that
we just calculated (B10) and (B11). It is then again a matter
of power counting for n ≥ 6,

∂−θ
þ½Y0� ¼ ∂þθ−½Y0� − 2D · ωþ½Y0�

¼ −
1

2
ξ20R½Sl� þO

�
l>

2n−2
3−n

�
; ðB17Þ

where the leading term has order Oðl2n−23−n Þ and it is less
than zero for sufficiently small light-cone cuts Sl. Hence,
condition 2 is also satisfied.
According to (A9), the outer entropy is therefore

S ¼ 1

4GNℏ

Z
Sl

ξn−20 dσ ¼ AðSlÞ
4GNℏξn−20

; ðB18Þ

where the area AðSlÞ is given by

AðSlÞ ¼ Ωn−2ln−2: ðB19Þ

Hence, we have

21Note that our case is more general than the round spheres in
spherically symmetric spacetimes studied by NR, so we cannot
directly apply the simplified constraint equations developed in [11].
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S ¼ Ωn−2ln−2

4GNℏ

�
2l2Ωn−2GNTðe0; e0Þ

n − 1

�n−2
n−3
: ðB20Þ

This concludes our small sphere limit calculation. Note
that if we assume the validity of the HRRT prescription,
we no longer need the holographic duality in order to

define and evaluate the outer entropy, and we can work in
a spacetime that is asymptotically flat. It would be
interesting to calculate what the outer entropy tends to
as σ approaches the spatial infinity in an asymptotically
flat manifold and if it has any relation with the
ADM mass.
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