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A holographic model is used to investigate the thermodynamics and the phase diagram of a heavy quarks
system. From such a model we obtain an equation of state and explore its applicability in astrophysical
conditions. For this objective, we work in the context of the Einstein-Maxwell-Dilaton (EMD) holographic
model for quantum chromodynamics (QCD). At first, we show the existence of a critical point where the
first-order transitions line ends; later on, we calculated an analytic expression for the equation of state.
Additionally, with the aim of investigating the global properties of compact stars, such as the total
gravitational mass and radius, the equation of state is used to solve the Tolman-Oppenheimer-Volkov
(TOV) equations for stellar structure. The numerical results show that our equation of state is able to
reproduce the expected behavior of hybrid stars. Our main conclusion is that, by using an equation of state
emerging in the framework of the EMD holographic model for QCD, it is possible to obtain quark matter
properties and that it is also possible to extend the procedure to astrophysical applications.
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I. INTRODUCTION

The investigation of the phase structure of quantum
chromodynamics (QCD) is an open problem of modern
physics, and there are several research groups around the
world facing this problem. It is widely known that QCD lies
in the confinement regime in the region of low temperature
T and density (chemical potential μ) and that it also lies in
the deconfinement regime in the region of high temperature
and density. It is believed that at the boundary between
these two phases, close to the chemical potential axis, there
is a line describing first-order phase transitions. It is also
speculated that this line terminates at the critical point,
where the theory has conformal symmetry and can be
described by a set of universal critical exponents. In turn, at
low chemical potentials, the transition becomes crossover.
Moreover, it is complicated to extract reliable information
from the region where these transitions occur because
QCD lies in the strong coupling regime where the usual
techniques used in perturbative QCD do not work. On the
other hand, it is known that lattice QCD provides reliable

results at zero chemical potential (in the strong coupling
regime); however, it does not work when finite chemical
potential effects are considered. Among other problems
arising at finite density is the sign problem. Nevertheless,
most of the relevant problems of modern physics are related
to QCD at finite density, for example, heavy-ion collisions
and investigation of compact objects in astrophysics. In the
last years, lattice QCD is overcoming the application
problems by implementing new techniques, but these do
work in the regime of small chemical potentials and no
reliable results at large densities are available so far; see
e.g., [1–3] for a review.
Another theoretical framework for investigating QCD-

like theories at finite temperature and density has been
implemented following the holographic principle [4,5]. The
anti–de Sitter/conformal field theory (AdS=CFT) corre-
spondence [6–8], which is a realization of the holographic
principle, allows us to investigate the duality between a
strongly coupled field theory living in a d-dimensional
spacetime and its dual gravitational theory (in principle
quantum gravity) living in a (dþ 1)-dimensional space-
time. The duality arising directly from superstring theory in
ten or eleven spacetime dimensions is known in the
literature as a top-down approach; see for instance
Ref. [9–13]. On the other hand, the bottom-up approach
relates quantum field theories living in four-dimensional
spacetimes with a dual classical gravitational theory living
on five-dimensional anti–de Sitter spacetime. These models
have phenomenological motivations and are built using
phenomenological results in the quantum field theory side.
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In the first stages the backreaction on the gravitational
background was neglected [14–16] (see also [17–23]); then
the backreaction is considered [24–31] (see also [32–36]);
this approach is also known as holographic QCD. In the
context of holographic QCD models it was shown
that scenarios with simple gravitational theories in five-
dimensional spacetime are able to mimic certain properties
of QCD, like the equation of state (EoS) [37,38] and the
thermodynamics of the gluon plasma [39–43]. What is
interesting is that these results were obtained with a
gravitational action coupled to a scalar field. The conformal
symmetry breaking is realized by the nontrivial profile of
the scalar field. In the same way, by adding an additional U
(1) gauge field in the gravitational action we may include
finite chemical potential in the dual field theory. Thus, the
gauge field in the five-dimensional theory is dual to the
baryon density current and it may be generated turning on
an electric field in the gravitational background. It is worth
mentioning that the resulting metric is asymptotically
Reissner-Nordtröm AdS metric.
Previous works investigated the phase structure and

critical point using holographic QCD at finite temperature
and density [44–54]. It is worth pointing out that in [44,45]
the authors found a phase diagram in agreement with
that is expected in QCD; they also found a critical point.
Interestingly, the information concerning the quarks seems
to be codified in the gauge field and a scalar function,
gauge kinetic function, which characterizes the nonminimal
coupling between the dilaton and gauge field. It is also
interesting to point out that the authors of Ref. [47]
investigated a holographic model for heavy quarks, for
which the phase diagram differs from the one obtained in
[44,45]. Phenomenological properties, like meson dissoci-
ation, were also investigated using holographic models; see
for instance Refs. [55–58].
On the other hand, the interest in investigating neutron

stars increasedpromoted by the results collected by theLIGO
and VIRGO collaborations [59]. Previous investigations of
compact objects, like neutron stars, were developed using the
Tolman [60] and Oppenheimer-Volkov [61] equations. A
pivotal point to solve these equations is the equation of state
(EoS) of matter in the interior of these objects, where it is
under extreme conditions. The results obtained applying
usual methods in perturbative QCD, for example, are not
reliable because of the high density and strong coupling. It is
also believed that the collision of neutron stars will con-
straint, even more, the EoS in such extreme conditions. At
this point, the holographic approach seems to be useful for
investigating the nuclear matter in such conditions. As
mentioned above, this theoretical framework maps the
problem into a dual classical gravitational theory, where,
in principle, we can face the problem using techniques
available in the literature. This way to face the problem will
allow us to shed new light in the understanding of compact
objects, like neutron, quark matter, or even hybrid stars.

In this paper, we work with the holographic model
proposed in Ref. [26] (see in particular Appendix G of such
Ref.), then applied it to investigate Yang-Mills theories at
finite temperature in Ref. [62]. To include finite chemical
potential effects in the dual field theory we add an Abelian
gauge field in the five-dimensional action following
Refs. [44,45]. Thus, the holographic model describes the
heavy quarks system in the dual field theory [47]. One of
the aims of this work is to apply our EoS to solve the
Tolman-Oppenheimer-Volkov (TOV) equations in order to
investigate the behavior of the mass vs radius relationship
for hybrid stars. As far as we know previous works in the
literature have investigated the internal structure of stars
using holography; see for instance Refs. [63–71]. The
advantage of working with the model of Ref. [62] is that we
get analytic solutions for some of the relevant thermody-
namic variables like temperature and entropy.
The paper is organized as follows. In Sec. II we introduce

the five-dimensional model. We also solve the Einstein-
Maxwell-Dilaton equations using a simple holographic
model and get an analytic expression for the gauge field,
temperature, and entropy density. The asymptotic analysis
of the thermodynamic variables allows us to get an analytic
EoS. In the end, we investigate the extremal solution, i.e.,
when the temperature vanishes. In Sec. III, our numerical
results are presented and discussed. Section IV is devoted to
investigating the phase structure of the holographic model.
In Sec. V we implement the matching procedure between
the nuclear EoSs and the quark matter EoS, and then we
solve the Tolman-Oppenheimer-Volkov equations to get the
mass-radius relationship. Finally, we conclude and discuss
future extensions of the present work in Sec. VI.
Complementary material is left in the Appendix.

II. THE FIVE-DIMENSIONAL
EINSTEIN-MAXWELL-DILATON MODEL

A. The five-dimensional background

The gravitational dual of the Yang-Mills theory in four-
dimensional spacetime is described by a five-dimensional
gravitational theory whose action contains the metric
coupled to a scalar field, and, in order for including finite
density effects in the dual field theory, a gauge field must
be added in the five-dimensional action, and thus the
metric is also coupled to this field. The most general
five-dimensional action is defined by [44]

S ¼ 1

2κ2

Z
dx5

ffiffiffiffiffiffi
−g

p ½Rþ L�; ð1Þ

where the Lagrangian is given by

L ¼ −
4

3
ð∂mΦÞð∂mΦÞ þ VðΦÞ − fΦðΦÞ

4
FmnFmn; ð2Þ

where Φ is the dilaton field; VðΦÞ is the dilaton potential
and contains the cosmological constant term, −6=l2, where
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l is the AdS radius; Fmn the gauge field defined by
Fmn ¼ ∂mAn − ∂nAm; and κ is the Newton constant in
five-dimensional spacetime; while fΦðΦÞ is the gauge
kinetic function, which includes the nonminimal coupling
between the dilaton and gauge field. In the present work we
restrict ourselves to the case fΦðΦÞ ¼ 1. The equations of
motion obtained from varying the action (1) are:

Gmn −
4

3
ð∂mΦÞð∂nΦÞ þ 2gmn

3
ð∂pΦÞð∂pΦÞ − gmn

2
VðΦÞ

þ 1

2

�
gmn

4
FpqFpq − gpqFnqFmp

�
¼ 0; ð3Þ

where Gmn is the Einstein tensor. In turn, the Maxwell
equations are:

∂mð
ffiffiffiffiffiffi
−g

p
gmpgnqFpqÞ ¼ 0: ð4Þ

Finally, the Klein-Gordon equation is

8

3
ffiffiffiffiffiffi−gp ∂mð

ffiffiffiffiffiffi
−g

p ∂mΦÞ þ ∂ΦVðΦÞ ¼ 0: ð5Þ

In applications of holographic QCD it is usual to consider
an ansatz on the metric tensor and gauge field of the
form [55,56]

ds2 ¼ e2AðzÞ
�
−fðzÞdt2 þ 1

fðzÞ dz
2 þ dxidxi

�
;

A0 ¼ A0ðzÞ; A1 ¼ A2 ¼ A3 ¼ A4 ¼ 0; ð6Þ

where AðzÞ is the warp factor; we also define the new
function ζ ¼ e−A to rewrite the equations of motion.
Neglecting the dilaton field, the solution of the Einstein-
Maxwell equations is the (fifth-dimensional) Reissner-
Nordström AdS black hole (RNAdS). Following the
convention of Refs. [52,56,57]) we are going to consider
the constant κ given by

1

κ2
¼ N2

ð2πÞ2l3
; ð7Þ

where N is the number of colors. Plugging the ansatz (6) in
(3) we get the following system of coupled differential
equations:

ζ00

ζ
−
4

9
ðΦ0Þ2 ¼ 0;

f00 −
3ζ0

ζ
f0 − ðζA0

0Þ2 ¼ 0;

3ζ00 − 12
ζ02

ζ
þ 3f0ζ0

f
þ 2V − ζ4ðA0

0Þ2
2fζ

¼ 0; ð8Þ

where the primes stand for total derivatives with respect to
the variable z, d=dz. As can be seen, these equations

involve the warp factor, dilaton field, and its potential,
horizon function, and the gauge field. On the other hand,
the Maxwell equation is obtained plugging (6) in (4)

�
A0
0

ζ

�0
¼ 0; ð9Þ

for which the solution is given by A0
0 ¼ c1ζðzÞ, where c1 is

the integration constant. The complete solution of the
gauge field is given by

A0ðzÞ ¼ c2 þ c1

Z
z
dxζðxÞ: ð10Þ

B. The holographic model

In the following we introduce the holographic model we
are going to work with here, which is the model originally
proposed in Ref. [26], Appendix G, and that was also used
to investigate deconfined properties of SUðNÞ Yang-Mills
theories in Ref. [62]. In such a holographic model, the warp
factor is given by

ζðzÞ ¼ z
l
eΛ

2z2 ; ð11Þ

where Λ is a free parameter. Our motivation to use the
analytic warp factor is the same as in Ref. [62]. Even
though we do not know the explicit form of the dilaton
potential, this warp factor allows us to investigate some
general properties of the dual field theory in the strong
coupling regime. It is worth mentioning that there are three
ways to solve the coupled equations (8). The first one is to
know the dilaton potential, one may get ζ, Φ, and A0

solving the differential equations. The second one is to
postulate the dilaton field, motivated by phenomenological
constraints, one may get ζ, V, and A0 solving the corre-
sponding differential equations. The third approach is to
postulate the warp factor, motivated by phenomenological
constraints, one may get Φ, V, and A0 solving the
equations.
In order to solve the field equations, we start with the

gauge field. By plugging Eq. (11) into Eq. (10) we get an
expression that, after integration, furnishes the gauge
potential in the form

A0ðzÞ ¼ c2 þ
c1
l
ðeΛ2z2 − 1Þ

2Λ2
; ð12Þ

where c1 and c2 are integration constants. We may fix them
by comparing the asymptotic form of (12), close to the
boundary z → 0, with the corresponding Reissner-
Nordström AdS (RNAdS) solution, which takes the form
A0 ¼ μ −Qz2 þ � � � [52,56,57]). Thus, we get c2 ¼ μ,
c1 ¼ −2lQ, and the gauge field is may be written as
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A0ðzÞ ¼ μþ Q
Λ2

ð1 − eΛ
2z2Þ; ð13Þ

where μ is interpreted as the chemical potential, and Q is a
parameter related to the electric charge of the black hole.
The gauge field should be regular at the horizon; i.e., it may
be imposed that A0ðzhÞ ¼ 0. This condition allows us to
find a relation between Q and μ, namely,

Q ¼ Λ2μ

eΛ
2z2h − 1

: ð14Þ

By substituting the last relation into (14), we get the final
analytic solution for the gauge field:

A0ðzÞ ¼ μ
eΛ

2z2 − eΛ
2z2h

1 − eΛ
2zh2

: ð15Þ

From the expansion of this result close to the boundary,
A0 ¼ μ − ρz2 þ � � �, and using the holographic dictionary
we read of the quark density vacuum expectation value [72]
in the dual field theory [47]

ρ ¼ −
Λ2μ

1 − eΛ
2z2h

: ð16Þ

Thus, the relation between the parameter Q and quark
density is ρ ¼ Q. The current-source coupling in the dual
field theory is of the form S ¼ R

dx4μJ0, where ρ ¼ hJ0i.
Proceeding with the process of solving the field equa-

tions, we plug Eqs. (11) and (13) into the second equation
of the system (8) to get a differential equation for the
horizon function fðzÞ, whose solution is given by

f¼c4þc3e3Λ
2z2ð3Λ2z2−1ÞþQ2e4Λ

2z2ð4Λ2z2−1Þ
16l2Λ6

: ð17Þ

We fix the integration constants c3 and c4 with the
conditions fð0Þ ¼ 1 and fðzhÞ ¼ 0, what yields

c3 ¼ −
144l2Λ6 þ 9Q2½1þ e4Λ

2z2hð4Λ2z2h − 1Þ�
144l2Λ6½1þ e3Λ

2z2hð3Λ2z2h − 1Þ� ;

c4 ¼
e3Λ

2z2hð16l2Λ6 þQ2Þð3Λ2z2h − 1Þ
16l2Λ6½1þ e3Λ

2z2hð3Λ2z2h − 1Þ�

þ Q2e4Λ
2z2hð1 − 4Λ2z2hÞ

16l2Λ6½1þ e3Λ
2z2hð3Λ2z2h − 1Þ� : ð18Þ

The relation between the parameter Q and the electric
charge q may be obtained by expanding Eq. (17) close to
the boundary where this expression reduces to the RNAdS
solution. Thus, we get

Q2 ¼ 3l2q2; ð19Þ

where q is the charge of the black hole.
It is also worth mentioning that the limit of zero Λ of

Eq. (17) is

fðzÞ ¼ 1 − ð1þ q2z6hÞ
z4

z4h
þ q2z6; ð20Þ

which is the horizon function of the RNAdS black hole
solution. On the other hand, by expanding Eq. (17) close to
the boundary, i.e., in the limit of small zh and z, we obtain

f ¼ 1þ
�
−

1

z4h
þ 2Λ2

z2h
− q2z2h þOðz3h;Λ4Þ

�
z4

þ
�
q2 −

2Λ2

z4h
þ 4Λ4

z2h
þOðz3h;Λ6Þ

�
z6 þOðz7Þ; ð21Þ

where OðΛ; zhÞ represents subleading contributions.
Interestingly, the RNAdS solution is recovered in the limit
of zero Λ. Then, we may see this equation as a deformed
RNAdS black hole solution.
The dilaton field may be obtained by plugging Eq (11)

into the first equation of the system (8) and by integrating
the resulting relation. Then, the dilaton takes the form [26]

Φ ¼ 3zΛ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 4z2Λ2

p
þ 9

4
ln

�
2zΛþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 4z2Λ2

p
ffiffiffi
6

p
�
: ð22Þ

By expanding the function ΦðzÞ given by the last equation
close to the boundary, we get

Φ ¼ ϕ1zþ ϕ3z3 þ � � � ; ð23Þ

where ϕ1 ¼ 3Λ=
ffiffiffi
6

p
is interpreted as the source, while

ϕ3 ¼ Λ3=
ffiffiffi
6

p
is interpreted as the vacuum expectation

value in the dual field theory. Considering the general
expansion of the dilaton field close to the boundary
Φ ¼ ϕ1z4−Δð1þ � � �Þ þ ϕ3zΔð1þ � � �Þ, where Δ is the
conformal dimension of the operator dual to the dilaton,
while ellipses denote higher powers in z. Comparing this
expression with (23) we may conclude that Δ ¼ 3, which
means that Φ is dual to an operator of dimension three.
In turn, the dilaton potential may be calculated directly

from the last equation of the system (11). Taking analytical
solutions of the background functions fðzÞ, ζðzÞ, and
A0ðzÞ, and expanding close to the boundary it follows

V ¼ 12

l2
þ 54Λ2z2

l2
þ � � � : ð24Þ

Writing this in terms of the dilaton field (23), the potential
becomes
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V ¼ 12

l2
−
4

3
M2

ΦΦ2 þ � � � ; ð25Þ

where M2
Φl

2 ¼ ΔðΔ − 4Þ is the mass of the dilaton field.
By setting Δ ¼ 3 we recover (24), showing the consistency
of the expansion (23).

C. Thermodynamics

The knowledge of the horizon function allows the
calculation of the Hawking temperature, which is
defined by

T ¼ −
1

4π
∂zfðzÞjz¼zh : ð26Þ

Since the present holographic model presents an analytic
expression for the warp factor, cf. Eq. (11), the expression
of the temperature may be expressed in exact form. It reads

T¼3z3he
3Λ2z2h ½48Λ6−q2ð16eΛ2z2hþe4Λ

2z2hð12Λ2z2h−7Þ−9Þ�
32πΛ2½1þe3Λ

2z2hð3Λ2z2h−1Þ� :

ð27Þ

The dependence of the temperature on the chemical
potential is obtained by plugging Eqs. (19) and (14)
into (27).
The next important thermodynamic variable to be easily

calculated is the black hole entropy, which is determined by
means of the Bekenstein-Hawking formula,

S ¼ A
4G5

¼ 2πV3

κ2ζ3ðzhÞ
; ð28Þ

where A is the transverse area and V3 is the three-dimen-
sional space volume. Substituting Eq. (11) into the last
expression, it is straightforward to show that the entropy
density ðs ¼ S=V3Þ may be written as

s ¼ 2πl3

κ2z3h
e−3Λ

2z2h : ð29Þ

So far we have calculated the temperature and entropy
density as a function of the horizon radius and the electric
charge (or chemical potential). In the way to obtain the
EoS of the system, we note that the first law of thermo-
dynamics in the presence of a chemical potential may be
rewritten as [44]

dF ¼ −sdT − ρdμ; ð30Þ

where F is the free energy density and ρ is the quark
density. The free energy may be calculated through
the relation

F ¼
Z

∞

zh

sðz̃hÞ
�
dTðz̃hÞ
dz̃h

�
dz̃h: ð31Þ

In the last expression, we implicitly imposed the condition
that the free energy in the limit of arbitrarily small black
hole, i.e., in the limit zh → ∞, the free energy of the dual
thermal gas is zero [47].
Once we have got the free energy, the pressure is also

known. It is given by

p ¼ −F : ð32Þ

Finally, the energy density is calculated through the
thermodynamic relation ϵ ¼ F þ Tsþ μρ. That completes
the task of building an EoS that, through the holographic
dictionary, will describe a dual fluid to the charged-dilaton
AdS black hole.

D. Asymptotic analysis

Let us calculate the asymptotic behavior of the thermo-
dynamic variables. In this section we work on the branch
where there are no instabilities, i.e., close to the boundary,
see Fig. 1. Then, expanding Eq. (27) close to the boundary
(which means that we are considering the big black holes
branch) and plugging the relation (19) the temperature
becomes

T ¼ 1

πzh
þ Λ2zh

π
þ Λ4z3h

4π
−
�
q2

2π
þ Λ6

20π

�
z5h þOðz7hÞ: ð33Þ

It is worth mentioning that in the limit of vanishing Λ we
recover the RNAdS expression for the temperature. One
more interesting relationship is the one relating the temper-
ature and chemical potential, which is obtained plugging
(14) and (19) in (27), then, expanding close to the boundary

0.0

0.095 GeV

5 10 4 GeV

1.0 GeV

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

zh GeV 1

T
G

eV

Min

Ma
x

FIG. 1. The figure shows the temperature in terms of the
horizon radius for different values of the chemical potential. The
other parameters of the model are fixed as κ ¼ 2π=N, with
N ¼ 3, and Λ ¼ 0.402 GeV.
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T ¼ 1

πzh
þ
�
Λ2

π
−

μ2

6l2

�
zh þ

�
Λ4

4π
−
3Λ2μ2

8πl2

�
z3h

−
�
Λ6

20π
þ 151Λ4μ2

360πl2

�
z5h þOðz7hÞ: ð34Þ

The RNAdS solution is obtained by setting Λ to zero and
replacing μ=z2h ¼ Q. Now, we may invert the asymptotic
series (34) such that the expression for zh becomes

zh ¼
1

πT
þ
�
Λ2

π3
−

μ2

6π3l2

�
1

T3
þOð1=T5Þ: ð35Þ

This result will be useful when we calculate the thermo-
dynamic variables as a function of the chemical potential
and temperature.
Let us now calculate the asymptotic expressions for the

quark density, entropy, and free energy density close to the
boundary, i.e., in the high-temperature regime. Then,
plugging (35) in (16) we get

ρ ¼ μ3

3l2
−
5Λ2μ

2
þ π2T2μþOðΛ4μ=T2Þ; ð36Þ

whereas the entropy density, Eq. (29), becomes

s ¼ 2π4l3T3

κ2
þ π2lðμ2 − 12Λ2l2ÞT

κ2

þOðΛ4=T;Λ2μ2=T; μ4=TÞ: ð37Þ

In turn, the free energy density (31) is given by

F ¼ −
π4l3T4

2κ2
þ π2l

6κ2
ð36Λ2l2 − 7μ2ÞT2

−
9l3Λ4

κ2
þ 10lΛ2μ2

3κ2
−

11μ4

36κ2l
þ � � � ; ð38Þ

while the pressure is the negative of the free energy. It is
worth pointing out that the free energy (38) splits out in a
piece depending on the temperature, another depending on
the chemical potential and the last one depending on a
mixture. Following an argument similar to the one of
Ref. [68] (see also [69]), neglecting the piece depending on
the temperature, then we may calculate an EoS which does
not depend on the temperature. Thus, the free energy we are
going to work with is given by

F ¼ −
11μ4

36κ2l
þ 10lΛ2μ2

3κ2
−
9l3Λ4

κ2
: ð39Þ

It is worth mentioning that we do not impose any condition
on μ and Λ to get this result. The free energy has the same
mathematical structure as one expression proposed in
Ref. [73], where the authors used a phenomenological
construction to investigate the quark matter stars. Hence,

the results we obtain support the heavy quarks interpreta-
tion we are considering in this work. In turn, the pressure is
given by

p ¼ 11μ4

36κ2l
−
10lΛ2μ2

3κ2
þ 9l3Λ4

κ2
: ð40Þ

Then, at large densities the energy density is obtained using
ϵ ¼ μ∂μp − p,

ϵ ¼ 11μ4

12κ2l
−
10lΛ2μ2

3κ2
−
9l3Λ4

κ2
; ð41Þ

rewriting the last expression as a function of the pressure

ϵ ¼ 3pþ 40l3=2Λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11κ2pþ l3Λ4

p
11κ2

þ 4l3Λ4

11κ2
: ð42Þ

So far, we do not impose any restrictions on the chemical
potential, i.e., if it is large or small. Expanding (42) in the
regime of high pressures,

ϵ ¼ 3pþ 40l3=2Λ2ffiffiffiffiffi
11

p
κ

ffiffiffiffi
p

p þ 4l3Λ4

11κ2
þOð1= ffiffiffiffi

p
p Þ: ð43Þ

It is worth mentioning that the leading term of Eq. (43)
represents the EoS of a conformal theory. In turn, the
subleading terms may be interpreted as the deformation of
the conformal theory.

E. Extremal solution

In the previous section we have calculated an analytic
EoS by approximating the thermodynamics variables close
to the boundary, i.e., in the high-temperature regime.
However, from a pragmatic point of view, it is more
convenient to find out an EoS in the zero temperature
case. A way for reaching this requirement in the holo-
graphic model is to consider the extremal solution. This
solution is obtained when the Hawking temperature (27)
vanishes. Hence, by solving the equation T ¼ 0 we may
express the parameter q as a function of Λ and zh in
the form

q ¼ 4
ffiffiffi
3

p
Λ3

ð−9þ 16eΛ
2z2h þ e4Λ

2z2hð12Λ2z2h − 7ÞÞ1=2 : ð44Þ

The relation between the chemical potential μ, Λ, and zh
in the extremal case is obtained by plugging relation
(44) in (19),

μ ¼ 12lΛðeΛ2z2h − 1Þ
ð−9þ 16eΛ

2z2h þ e4Λ
2z2hð12Λ2z2h − 7ÞÞ1=2 ; ð45Þ

where Eq. (14) was also employed. It is convenient to get a
relation of zh as a function of the chemical potential, for
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that reason we may expand the last equation close to the
boundary, i.e., zh ¼ 0,

μ ¼
ffiffiffi
6

p
l

zh
−
5

ffiffiffi
6

p
lΛ2zh
8

þ 149lΛ4z3h
320

ffiffiffi
6

p þOðz5hÞ: ð46Þ

Inverting the last asymptotic series we get

zh ¼
ffiffiffi
6

p
l

μ
−
15

ffiffiffi
6

p
l3Λ2

4μ3
þOð1=μ5Þ: ð47Þ

Then, plugging (47) in (29) we get the entropy. However, as
one of the aims of this paper is to get an analytic EoS we
expand the entropy in the region of large densities; this
approximation gives us the result

s ¼ πμ3

3
ffiffiffi
6

p
κ2

−
3

ffiffiffi
6

p
πl2Λ2μ

8κ2
þ 159

ffiffiffi
6

p
πl4Λ4

16κ2μ
þOð1=μ3Þ:

ð48Þ

In the regime of large densities terms depending onOð1=μÞ
may be neglected. We observe that Eq. (48) in the Λ zero
limit reduces to the RNAdS extremal result, cf. (A15) in the
Appendix. The subleading terms in Eq. (48) may be
interpreted as deformations of the RNAdS extremal sol-
ution. Implementing the same procedure for the free energy
we get

F ¼ −
μ4

12lκ2
−
75l3Λ4

32κ2
þOðlogð

ffiffiffi
6

p
l=μÞ; 1=μ2Þ: ð49Þ

The pressure is given by p ¼ −F. It is worth mentioning
that in the Λ zero limit we recover the RNAdS extremal
solution; see Eq. (A15) in the Appendix. In turn, the EoS is
given by

ϵ ¼ 3p −
75l3Λ4

8κ2
: ð50Þ

The subleading term may be interpreted as a deformation of
the conformal theory, in which the EoS is given by ϵ ¼ 3p.
To finish this section we are going to rewrite the metric

(6) close to the horizon. Then, expanding the horizon
function (17) becomes

f ≈K
�
12

z̃2

z2h
þ ð28þ 56z2hΛ2Þ z̃

3

z3h
þOðz̃4=z4hÞ

�
; ð51Þ

where z̃ ¼ z − zh, the constant K is given by

K ¼ 24Λ6z6he
4z2hΛ

2

−9þ 16ez
2
hΛ

2 þ e4z
2
hΛ

2ð12z2hΛ2 − 7Þ : ð52Þ

Then, close to the horizon the metric becomes

ds2 ¼ −12
Ke−z

2
hΛ

2

l2z̃2

z4h
dt2 þ l2e−z

2
hΛ

2

12Kz̃2
dz̃2

þ l2e−z
2
hΛ

2

z2h
dxidxi: ð53Þ

Finally, after defining the new variable z̃ ¼ r̂z2h=l
2, the last

equation reads

ds2¼−12
Ke−z

2
hΛ

2

r̂2

l2
dt2þl2e−z

2
hΛ

2

12Kr̂2
dr̂2þl2e−z

2
hΛ

2

z2h
dxidxi:

ð54Þ

The point is that in the limit of zero Λ, K ¼ 1 and the
metric (54) reduces to the AdS2 × R3 (see the Appendix).
The emergence of this geometry is related to the emer-
gence of quantum criticality in the dual field theory [74].
Hence, we may interpret the metric (54) as a deformation
of the AdS2 × R3 geometry due to the presence of the
parameter Λ.

III. THERMODYNAMICS: NUMERICAL RESULTS

We start this section by fixing the parameters of the
model. In order to do that we first search for a critical
value of the chemical potential, μc, for which the temper-
ature is a monotonic decreasing function of the horizon
radius zh. This value may be calculated by solving
the equations ∂zhTðzh; μ;ΛÞ ¼ 0 and ∂2

zhTðzh; μ;ΛÞ ¼ 0,
which are the conditions for the curve having no maximum
neither minimum points. These two equations together
with Eq. (27) form the system to be solved. Since the
model presents five unknown parameters, namely, κ, q2

(or μ), Λ, zh, T, additional conditions are needed. We set
the parameter κ, as usual, by κ ¼ 2π=N, with N ¼ 3.
Additionally, here we set T ¼ Tc ¼ 0.270 GeV, where
Tc plays the role of the critical temperature. Then we
are left with a closed system to be solved, three equations
for the three unknown quantities, namely, q2 (or μ), Λ,
and zh. In fact, with such choices it is possible to solve
numerically the system of equations mentioned above
to get μ≡ μc ¼ 0.095 GeV, Λ≡ Λc ¼ 0.402 GeV, and
zhc ¼ 2.434. It is worth pointing out that the value of Λ
fixed in this way is of the same order of magnitude as the
value found by means of the vector meson spectra in the
holographic soft wall model [75] (see also [76]).
In the remaining of this section, the parameter Λ is fixed

to its critical value corresponding to the critical temperature
Tc ¼ 0.270 GeV, i.e., Λ ¼ 0.402 GeV, and the parameter
κ ¼ 2π=3 also is kept fixed. With the two parameters being
fixed, and taking different values of the chemical potential,
wemay analyze the behavior of the temperature, cf. Eq. (27),
as a function of the horizon radius zh. Some plots of the
resulting functions are displayed in Fig. 1, where it is seen
also the strong dependence of T ¼ TðzhÞ on the value of the

PHASE DIAGRAM AND COMPACT STARS IN A HOLOGRAPHIC … PHYS. REV. D 102, 066006 (2020)

066006-7



chemical potential. In particular, the figure displays the
behavior of the temperature for the critical value μc, see the
red line in Fig. 1, and for three other selected values of
the chemical potential, as indicated.
Still concerning Fig. 1, it is verified that for any arbitrary

value of the chemical potential μ in the interval 0 < μ < μc,
the graph for the temperature presents a local minimum at
zhMin

, say, and a local maximum at zhMax
; see the case for

μ ¼ 5 × 10−4 GeV (brown line) shown in the figure. A
system (a black hole) with configuration such that
zh < zhMin

, the big black hole branch, is stable from the
thermodynamic point of view. In turn, the branch belonging
to the region zhMin

≤ zh ≤ zhMax
represents an unstable phase

where the specific heat becomes negative, as we shall see
below. Finally, a black hole whose configuration is in the
region zh > zhMax

is also thermodynamically stable. For
additional discussions on this subject see, for instance,
Ref. [47] (see also the recent paper [54]).
Figure 2 shows a plot of s=T3 as a function of the

temperature for three different values of the chemical
potential, μ ¼ μc ¼ 0.095 Gev (dashed red line), μ ¼ 5 ×
10−4 GeV (solid blue line), and μ ¼ 0.15 GeV (dotted
black line). The asymptotic behavior of the function s=T3 is
the same in the three cases, approaching the conformal
limit s=T3 ¼ π2l2N2=2 at high temperatures. As seen in
the inset of that figure, the main difference is found
close to the critical temperature T¼Tc¼0.270GeV. The
function s=T3 starts to grow just above Tc, at T ¼ Tc,
and just below Tc, respectively, for μ ¼ μc ¼ 0.095 Gev,
μ ¼ 5 × 10−4 GeV, and μ ¼ 0.15 GeV.
Another important thermodynamic function, the free

energy density F (or grand potential in the grand canonical
ensemble) is displayed in the top panel of Fig. 3. As can be
seen, for 0 < μ < μc (see the solid blue line), F is a

multivalued function of the temperature. This behavior is a
characteristic feature of a first-order phase transition, and it
may be interpreted as representing a transition between the
big black hole to the small black hole phases. In turn, in the
case, μ ¼ μc (dashed red line), the free energy is a smooth
decreasing function of the temperature, except at the point
ðTc;F cÞ, where the derivative is not defined. This is the
critical point. Meanwhile, for μ > μc (dotted black line),
the free energy is a smooth decreasing function of the
temperature. In the next section, we present the phase
diagram and investigate a few more details on this subject.
In turn, the specific heat is defined as

CV ¼ T

�∂s
∂T

�
μ

: ð55Þ

The numerical results for the specific heat as a function of
the temperature are displayed in the bottom panel of Fig. 3
for different values of the chemical potential. We can see
that, when μ < μc the specific heat has a negative branch
and is multivalued, representing the unstable phase arising
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FIG. 2. The figure shows s=T3 as a function of the temperature
for different values of the chemical potential. We observe that the
values asymptotically approach the conformal value, the hori-
zontal black dashed line, for which s=T3 ¼ π2l2N2=2. We have
set N ¼ 3 and Λ ¼ 0.402 GeV. The vertical dashed line is drawn
for T ¼ Tc ¼ 0.270 GeV.
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FIG. 3. Top: The free energy F as a function of the temperature
for different values of the chemical potential: μ < μc (solid blue
line), μ ¼ μc (dashed red line), and μc < μ (dotted black line).
Bottom: The specific heat CV=T3 as a function of the temperature
for different values of the chemical potential: μ < μc (solid blue
line), μ ¼ μc (dashed red line), and μc < μ (dotted black line). In
both figures, the vertical line represents Tc ¼ 0.270 GeV.
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between zMin < zh < zMax in Fig. 1. In turn, for μ ≥ μc the
specific heat is always positive, representing the stable
black hole phase.
The speed of sound may be calculated from the relation

c2s ¼
∂ lnT
∂ ln s : ð56Þ

The top panel of Fig. 4 shows the dependence of c2s on the
temperature for three different values of the chemical
potential. Notice that, for μ < μc (solid blue line), c2s
becomes negative in a given interval of temperature, that
is the region where thermodynamic instabilities arise. This
is related to the fact that the specific heat is multivalued and
may have negative values. In fact, one has the relation

c2s ¼
s
CV

: ð57Þ

For μ ¼ μc (dashed red line), the square of the speed of
sound touches the horizontal axis (c2s ¼ 0) at T ¼ Tc.
This fact is also related to the specific heat, which blows up
at the critical temperature. Moreover, for T < Tc (dotted
black line), c2s increases rapidly. In turn, for μ > μc, it has a
nonzero minimum at T < Tc. Finally, it is worth mention-
ing that in the high-temperature regime c2s approaches
asymptotically to the conformal value, c2s ¼ 1=3, in all the
cases investigated here.
In the same way, we may calculate the susceptibility,

which is defined by

χ ¼
�∂ρ
∂μ

�
T
: ð58Þ

The numerical results concerning this thermodynamic func-
tion are displayed in the bottom panel of Fig. 4 wherewe plot
the quark density as a function of the chemical potential,
ρ ¼ ρðμÞ, for three different values of the temperature. It is
seen that, for T < Tc (solid blue line), ρðμÞ is a smooth
monotonically increasing function of the chemical potential.
In turn, for T ¼ Tc (dashed red line) the quark density is as
increasing function of the chemical potential, but the slope of
the curve for ρðμ) blows up at μ ≃ 0.067 GeV (see the
vertical dashed black in the figure), which means that the
susceptibility function has a singularity at T ¼ Tc.
Meanwhile, for T > Tc (dotted black line), ρðμÞ is a multi-
valued function, and χ presents two singularities in the region
μ ≠ μc; i.e., the quark density is such that ∂μρ blows up for
two specific values of the chemical potential.
Finally, as we have all the thermodynamic variables on

hand we may calculate the trace anomaly, ϵ − 3p. Our
numerical results of the trace anomaly are displayed in
Fig. 5, where we plot it as a function of the temperature; as
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FIG. 4. Top: The figure shows the square of the speed of sound
as a function of the temperature for different values of the
chemical potential: μ < μc (solid blue line), μ ¼ μc (dashed red
line), and μc < μ (dotted black line). Vertical dashed line
represents Tc ¼ 0.270 GeV, while the horizontal dashed line
c2s ¼ 1=3. Bottom: The figure shows the quark density as a
function of the chemical potential for different values of the
temperature: T < Tc (blue line), T ¼ Tc (red line), and Tc < T
(black line). Vertical dashed line represents Tc ¼ 0.270 GeV.
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can be seen, there is a peak near to Tc, then it decreases
monotonically with the temperature, whereas the maximum
depends on the value of the chemical potential. As pointed
out in Ref. [62], the behavior of the trace anomaly goes like
∼1=T2 for T > Tc; we also notice this behavior in the
region of T > Tc, for small values of the chemical
potential.

IV. PHASE DIAGRAM

Having described the thermodynamics and, after choos-
ing an appropriate value for Λ, identified the critical point
ðμc; TcÞ, now we may draw the phase diagram. This is
obtained by plotting the temperature as a function of the
chemical potential. The phase diagram brings us informa-
tion about the phase structure of the holographic model and
shows the region in the parameter spacewhere there are first-
order, as well as crossover transitions in the model we are
working with. This diagram also shows the location of the
critical point, which lies at the end of the first-order
transition line. The results of the numerical analysis are
displayed in Fig. 6, wherewe plot the temperature versus the
chemical potential for Λ ¼ 0.402 GeV and κ ¼ 2π=3. The
solid line starts at μ ¼ 0 and finishes at the critical point
ðμc; TcÞ, represented by the dark point in the figure. This line
represents the region of first-order phase transitions. Above
the critical point, the transition becomes crossover, which is
represented in the figure by the dashed line. These results are
in agreement with a holographicmodel describing the heavy
quarks system, as discussed in Ref. [47].
So far we have studied the thermodynamic functions by

fixing the parameterΛ to its critical value,Λ ¼ 0.402 GeV,
that corresponds to Tcðzh; μ;ΛÞ ¼ 0.270 GeV and μc ¼
0.095 GeV. To complete the investigation it is worth
verifying also the dependence of the critical temperature
and of the critical potential on Λ. For that we may solve the
equations ∂zhTðzh; μ;ΛÞ ¼ 0 and ∂2

zhTðzh; μ;ΛÞ ¼ 0 by

choosing different values of Λ time at a time. Thus,
solving for zh the two equations and comparing the results
we find a linear relation between the critical value of the
chemical potential and Λ, i.e., μc ¼ a1Λþ b1 with a1 and
b1 being adjusting parameters. The relation between the
critical temperature and Λ is also approximately linear,
Tc ¼ a2Λþ b2, with a2 and b2 being adjusting parameters.

V. HOLOGRAPHIC COMPACT STARS

A. The heavy quarks zero temperature equation of state

Here we analyze further the properties of the EoS for the
matter at the core of hybrid stars, where the energy density
is high enough to justify the use of a matter model based on
the holographic approach. In this section, we relax the
condition imposed on Λ so that this parameter may be
viewed as a free parameter of themodel. Thiswill allowus to
investigate the dependence of the equation of state onΛ, and
also to compare the results against other models available in
the literature, especially those of Refs. [63,68,69]. The EoS
we are working with here is given by Eq. (42), which is
obtained fromEqs. (40) and (41). In the sequence, we follow
the procedure implemented in Ref. [68], which was also
followed in Ref. [63]. On the other hand, we fix the
parameter Λ to get zero pressure at μ ¼ 308.55 MeV. In
the present model, the zero pressure condition provides a
relation between Λ and μ. In fact, from Eq. (40) we get

Λ ¼ μ

l
ffiffiffi
6

p ; ð59Þ

from what follows Λ ¼ 125.965 MeV.
A plot of the pressure as a function of the chemical

potential is displayed in Fig. 7 in comparison to the results
of the holographic model of Ref. [68], and also to the
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FIG. 6. The phase diagram of the holographic model. The solid
line represents the first-order phase transition region, the black
dot point is the critical point, and the dashed line represents the
crossover region.
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FIG. 7. The pressure as a function of the chemical potential for
the holographic model (blue solid line) in comparison to the result
of Ref. [68] (cyan solid line). In drawing this figure we have
chosen Λ ¼ 125.965 MeV (blue). The other lines represent the
soft (dashed green), intermediate (solid orange), and stiff (dashed
red) nuclear data of Ref. [77].
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nuclear matter EoSs of Ref. [77]. In this figure, the heavy
quark holographic EoS of the present work is plotted with a
solid blue line, the nuclear matter EoSs results are plotted,
respectively, with a dashed green line (soft nuclear EoS), a
solid orange line (intermediate nuclear EoS), and by a dashed
red line (stiff nuclear EoS), while the holographic EoS of
Ref. [68] is represented by a solid cyan line. Note that the
solid blue and solid cyan lines are very close to each other. A
matching procedure is implemented at the intersection points
between the curve for the present holographic matter EoS,
cf. Eq. (42), and the curves for the nuclear matter EoSs.
In this figure, the intersections are represented by black
points, which are, respectively: ðμ; pÞ ¼ ð440.272 MeV;
103.679 MeV=fm3Þ for the stiff case, ðμ; pÞ ¼
ð497.252 MeV; 233.466 MeV=fm3Þ for the intermediate
case, and ðμ;pÞ¼ð597.255MeV;662.592MeV=fm3Þ for the
soft EoS case.
As seen in Fig. 7, the stiff matter EoS is dominant in the

low densities region, then, a phase transition to the quark
matter occurs at μ ¼ 440.272 MeV (at the intersection with
the solid blue line). This means that the star has an outer
structure dominated by the stiff nuclear matter, while its
central region is dominated by the quark matter EoS. As
pointed out in Ref. [68], it is expected a first-order phase
transition from nuclear to quark matter. The same is valid
for the transition from intermediate and soft nuclear matter
EoSs to quark matter EoS. Compared to the top-down
holographic model of Ref. [68] (solid cyan line), the
transitions occur at lower densities in the cases of stiff
and intermediate EoSs. On the other hand, in the case of the
soft EoS, the transition occurs at higher densities when
compared to the results of Ref. [68].
We also explored the behavior of phase transitions for a

fixed stiff hadronic EoS. For this objective we have
considered different values of the parameter Λ, such that
the transition from the hadronic to the quark matter phases

occurs at higher densities. The results are displayed in
Fig. 8, where the EoS of the holographic model is potted for
three different values of the parameter Λ, namely,
125.965 MeV (solid blue line), 133.372 MeV (solid black
line), and 162.475 MeV (solid brown line). The stiff
nuclear EoS from Ref. [77] is also drawn in such a figure
(dashed red line). The intersections are represented by
black points and have, respectively, the coordinates
ðμ; pÞ ¼ ð440.272 MeV; 103.679 MeV=fm3Þ for the case
with Λ ¼ 125.965 MeV (solid blue line), ðμ; pÞ ¼
ð469.714 MeV; 137.653 MeV=fm3Þ for the case with
Λ ¼ 133.373 MeV (solid black line), and ðμ; pÞ ¼
ð560.390 MeV; 260.259 MeV=fm3Þ for the case with Λ ¼
162.475 MeV (solid brown line). It can be seen that an
increase in the parameter Λ produces an increase in the
transition pressure.

B. Stellar structure of heavy quark compact stars

This section is devoted to investigating the stellar
structure of compact stars employing the equations of
state discussed previously. In the sequence we choose
geometrical units such that G ¼ 1 ¼ c. We consider the
star as being composed of a perfect fluid whose energy-
momentum tensor can be written in the form

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð60Þ

with ϵ, p, and uμ being, respectively, the energy density, the
pressure, and the four-velocity of the fluid. In addition, for
the generic background space-time of a static spherical star,
we use the following line element:

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð61Þ

with ðt; rθ;φÞ being Schwarzschild-like coordinates, and
νðrÞ and λðrÞ are functions of the indicated coordinate
alone. The Einstein equations in such a spacetime lead to
the well know Tolman-Oppenheimer-Volkov equations for
stellar structure,

dp
dr

¼ −
ϵm
r2

�
1þ p

ϵ

��
1þ 4πpr3

m

��
1 −

2m
r

�
−1
; ð62Þ

dν
dr

¼ −
2

ϵ

dp
dr

�
1þ p

ϵ

�
−1
; ð63Þ

dm
dr

¼ 4πr2ϵ; ð64Þ

where m, p, ϵ, and ν are function of the radius r only. The
integration of these equations requires initial conditions. As
usual, we take Pðr ¼ 0Þ ¼ pc as the given central pressure,
mðr ¼ 0Þ ¼ 0 and νðr ¼ 0Þ ¼ νc as the given values for
the mass and the metric field at the center of the star. During
integration, we also use the EoS to obtain the energy
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FIG. 8. The pressure as a function of the chemical potential of
the holographic model for three different values of the parameter
Λ. The dashed red line is the plot of the stiff nuclear EoS from
Ref. [77].
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density ϵ at each radius r inside the star. In the cases of one
phase hadronic stars, a unique equation of state is used and
the integration is performed from the center toward the
surface. The integration process is finished when the
pressure reaches the zero value. At this point we identify
the coordinate r ¼ R as the star radius and M ¼ mðRÞ as
the star mass. In the cases of two-phases stars (hybrid stars)
we use two equations of state and two separated numerical
integration processes inside the star. The first one is the
integration from the center to the interface (i.e., the place
where the pressure reaches its transition value), and the
second one is the integration from the interface to the
surface of the star.
We first investigate the structure for compact

objects considering the holographic EoS for fixed
Λ ¼ 125.965 Mev=fm3, taking the input data for the
central pressure from the situation of Fig. 7. For the hybrid
stars, the TOVequation is solved by taking the combination
of two different equations of state, always considering the
holographic EoS as a member used to describe the central
region of the star. The initial condition for each integration
is the value of the central pressure, which depends on the
specific parameters of the phase transition. In the case of the
pair holographic/stiff EoSs, the central pressure values (in
Mev=fm3) are in the interval [2.14949, 16547.0], with the
transition atpc ¼ 107.013, and the central energy density in
the interval [139.014, 53884.0], also in MeV=fm3. For
central pressure values below pc ¼ 107.013, the hadronic
(stiff) EoS is employed alone and the results are pure
baryonic stars modeled by the stiff EoS. In the cases of
the pair holographic/intermediate EoSs, the central pressure

values are in the interval [2.60088, 16547.0], with the
transition at pc ¼ 229.391, and the central energy density
in the interval [177.027, 53884.0], also in MeV=fm3. For
central pressure values below pc ¼ 229.391, the results are
pure baryonic stars modeled by the intermediate EoS. In the
case of the pair holographic/soft EoSs, the central pressure
values (in Mev=fm3) are in the interval [2.60088, 16547.0],
with the transition at pc ¼ 594.982, and the central energy
density in the interval [190.215, 53884.0], also inMeV=fm3.
For central pressure values below pc ¼ 594.982, the results
are pure baryonic stars modeled by the soft EoS.
The numerical results for the mass of the compact objects

as a function of the respective radius are displayed in Fig. 9.
We come up with three different stellar models composed of
hadronic matter and quark matter, the so called hybrid stars,
which correspond to the black solid lines in that figure. For
pressure phase transition pure hadronic stars are obtained
and they correspond to red dashed, orange, and green dashed
lines; those stars were built, respectively, by using the stiff,
intermediate, and soft EoS. As we can observe, this scenario
supports stars with masses of 2.44 M⊙, 2.29 M⊙, and
2.00 M⊙, respectively. The corresponding radii are
14.3 km, 12.2 km, and 9.57 km, respectively. It can be
seen that these solutions are unstable under the static
criterion of stability [78] (see also [79]). It is also confirmed
that more compact objects are the hybrid stars obtained with
the combination of the holographic and the soft EoSs.
In order to see some details of the internal structure

of the objects modeled with the equations of state consid-
ered in the present study, we analyze a particular hybrid
compact object. Figure 10 shows the evolution of the
normalized energy density (in terms of the central density
ϵc) and of the normalized pressure (in terms of the central
pressure pc) described by the quark matter (solid line)
and nuclear stiff (dotted line) EoSs across the chosen
hybrid star. The central pressure and central density
for this case are, respectively, pc ¼ 400.000 MeV=fm3

and ϵc ¼ 1862.48 MeV=fm3. As it can be seen, the energy
density is discontinuous at the interface between the two
matter phases. The pressure is continuous but its derivative
is not defined at the interface, which is located at the radial
coordinate r ¼ 5.49295 km, and the transition pressure
is p ¼ 1.04241 × 102 MeV=fm3.
Finally, we solve the TOV equations for considering the

holographic EoS for different values of Λ matched to the
stiff EoS model for the nuclear matter as displayed in Fig. 8.
The results for the mass-radius relation of hybrid stars are
displayed in Fig. 11. We observe that the maximum mass
depends on the transition point, the larger the chemical
potential (and pressure) the larger the mass of the star.
Thus, the maximum masses are: 2.42 M⊙, 2.61 M⊙, and
2.87 M⊙ for Λ ¼ 125.965 MeV, Λ ¼ 133.372 MeV and
Λ ¼ 162.475 MeV, respectively. It is worth pointing out
that these results are qualitatively equivalent to the results
presented in Ref. [63].
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Hybrid branch
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FIG. 9. The figure shows the mass-radius relation of hybrid
stars obtained by solving the TOVequations. The red dashed line
represents the hadronic star branch corresponding to the stiff EoS,
while the orange solid line to the intermediate EoS, the green
dashed line to the soft EoS, and solid black lines represent hybrid
stars build from the hadronic and the quark matter EoS (i.e., stars
with phase transitions in its interior). These results were obtained
for Λ ¼ 125.965 MeV and correspond to the results displayed in
Fig 7.
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VI. CONCLUSION AND OUTLOOK

The thermodynamics and the phase structure of heavy
quarks systems were studied in this work by using the
holographic description. The interpretation of our results is
motivated by a previous holographic model investigated in
[47], where the phase diagram is in agreement with a
system composed by heavy quarks when contrasted with
lattice QCD results. The holographic model used in this
work was implemented in the context of Einstein-Maxwell-
Dilaton theories. Its dual quantum field theory is at finite
temperature and density. We show that the thermodynamic
properties are sensitive to the value of chemical potential.

We also found a first-order phase transition for μ < μc
and also showed that the critical point lies at μ ¼ μc, where
the phase transition becomes second-order. In turn, for μ >
μc the transitions become crossover. The phase diagram
summarizes these findings.
In order to investigate the inner structure of compact

objects, we built the EoS for the heavy quark system. We
realized that the free energy naturally decouples, allowing
us to get an expression which is independent of the
temperature, which is what makes it possible to calculate
the EoS. These findings allowed us to investigate the inner
structure of stars composed by heavy quarks central core
matched to an outer nuclear matter crust. Analogously to
what was done in Ref. [68] (see also [69]), we explored the
transition between the nuclear matter EoSs to quark matter
EoS. It is worth mentioning that the EoS we got is
qualitatively equivalent to the one obtained in the holo-
graphic top-down approach investigated in [68,69]. Indeed,
the results of the pressure as a function of the chemical
potential are quantitatively equivalent, showing the con-
sistency of the top-down and bottom-up approaches for
describing QCD-like theories. We conclude that in all cases
the quark matter stars we found are unstable.
Finally, we stress that the present study of a bottom-up

holographic model is the first step and we plan to expand it
to try to find more realistic equations of state, what could be
useful in order to describe the inner structure of compact
objects, resulting in important applications in Astrophysics.
We are also planning to address further studies, turning on
the kinetic function, which allows us to get a phase diagram
in agreement with the one expected in QCD with light
quarks [48]. Other directions of investigation also include
the use of the holographic dictionary to include magnetic
field [80] and nucleons in the theory to model the matter
inside compact objects.
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Note added.—After the first version of this draft was
announced in the arXiv, we saw the paper of Ref. [54],
where the authors investigate the thermodynamics of heavy
quarks within a model in the context of holographic
Einstein-Maxwell-Dilaton (EMD) models for QCD.
Their approach is quite different from ours. In particular,
they use the dilaton field as input, while we use the warped
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FIG. 10. The figure shows the evolution of the normalized
energy density (blue) and normalized pressure (black) as a
function of the radius in the interior of a single star. The
quark matter EoS is represented by solid lines, while the stiff
nuclear EoS by dashed lines. The central pressure is pc ¼
400.000 MeV=fm3 and Λ ¼ 125.965 MeV.
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FIG. 11. The figure shows the mass-radius relation of hybrid
stars obtained by solving the TOVequations. The red dashed line
represents the hadronic branch corresponding to the stiff EoS,
while solid lines represent the hybrid branch built from the
hadronic and quark matter EoS. These results were obtained for
different values of Λ and correspond to the results displayed in
Fig. 8.
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factor instead. In both models, the thermodynamic analysis
shows qualitatively equivalent results as well as the phase
diagram.

APPENDIX: EQUATION OF STATE IN ADS
EINSTEIN-MAXWELL SOLUTION

In this section, we investigate the extremal solution of the
Einstein-Maxwell equations. In this case, the solution of the
gauge field is given by

A0ðzÞ ¼ μ −Qz2: ðA1Þ

The condition at the horizon gives us Q ¼ μ=z2h. It is worth
mentioning that the relation (14) reduces to this result when
Λ goes to zero. While the horizon function solution is given
by Eq. (20). Then, the black hole temperature is

T ¼ 1

zhπ

�
1 −

q2z6h
2

�
: ðA2Þ

We also may calculate the entropy density using the
relation (29)

s ¼ 2πl3

κ2z3h
: ðA3Þ

In the same way the free energy through (31)

F ¼ −
l2

2κ2z4h
−

5lμ2

6κ2z2h
: ðA4Þ

Analogously, the pressure is p ¼ −F

p ¼ l2

2κ2z4h
þ 5lμ2

6κ2z2h
: ðA5Þ

Let us consider the relationship between the charge and the
chemical potential, which is obtained plugging evaluating
Eq. (A1) at the horizon, then plugging Q ¼ μ=z2h in
Eq. (19) we get

q2 ¼ μ2

3z4hl
2
: ðA6Þ

Then, we may write the temperature (A2) as a function of
the chemical potential

T ¼ 1

πzh

�
1 −

z2hμ
2

6l2

�
: ðA7Þ

The last equation is a quadratic equation on zh. Solving this
equation we get a relation of zh as a function of the
temperature and chemical potential

zh ¼
−3πTl2 þ lð9π2T2l2 þ 6μ2Þ1=2

μ2
: ðA8Þ

Expanding the square root in the high temperature regime,
keeping up to the first subleading term we get

zh ¼
1

πT
−

μ2

6π3l2T3
þOð1=T5Þ: ðA9Þ

Plugging (A9) and κ from (A2) in (A3), then we expand in
the high temperature regime, the asymptotic expression for
the entropy becomes

s ¼ 2π4l3T3

κ2
þ π2lμ2T

κ2
þOðμ4=T; μ6=T3Þ; ðA10Þ

we observe that the entropy scales correctly with the
temperature. In turn, plugging (A8) in (A4) the free energy
is given by

F ¼ −
π4l3T4

2κ2
−
7π2lμ2T2

6κ2
−

11μ4

36lκ2
þOðμ6=T2Þ; ðA11Þ

where Oðμ6=T2Þ contains higher-order contributions.
Observing Eq. (A11) the expression decouples into one
piece depending only on the temperature, chemical poten-
tial, and a mixture of the form Oðμ6=T2Þ. The pressure is
given by p ¼ −F ; therefore, the pressure also decouples.
Considering the piece depending only on the chemical
potential, because we want to describe a cold phase in the
dual field theory, we get

p ¼ 11μ4

36lκ2
; ðA12Þ

whereas the energy density is given by

ϵ ¼ 11μ4

12lκ2
: ðA13Þ

Hence, the EoS is ϵ ¼ 3p, which is the EoS of a system
preserving conformal symmetry.
On the other hand, let us investigate the extremal

solution of the Reissner-Nordström AdS solution, which
is given when the temperature (A2) vanishes, it happens
when q ¼ ffiffiffi

2
p

=z3h. It is worth mentioning that the location
zh can be chosen close to the boundary; this means that the
value of the black hole charge should be large. Plugging
Q ¼ μ=z2h and q ¼ ffiffiffi

2
p

=z3h in (19) we get a relation between
μ and zh

zh ¼
ffiffiffi
6

p
l

μ
: ðA14Þ

Then, plugging q and zh in (A3), (A3), and (A5) we get
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s ¼ πμ3

3
ffiffiffi
6

p
κ2

; F ¼ −
μ4

12κ2l
; p ¼ μ4

12κ2l
: ðA15Þ

Now, we may calculate the energy density using the
relation ϵ ¼ μ∂μp − p, which gives us

ϵ ¼ μ4

4κ2l
: ðA16Þ

Finally, the EoS of the extremal solution is

ϵ ¼ 3p; ðA17Þ

which is the EoS of a system preserving conformal
symmetry. It is worth mentioning that in the extremal
solution we did not do any approximation.
Finally, let us write the metric in the extremal case and

expand it close to the horizon. Plugging q ¼ ffiffiffi
2

p
=z3h in (20)

fðzÞ ¼ ðz2 − z2hÞ2
ð2z2 þ z2hÞ

zh6
; ðA18Þ

then,

fðz̃Þ ≈ 12
z̃2

z2h
þ 28

z̃3

z3h
þOðz̃4=z4hÞ; ðA19Þ

where we have defined z̃ ¼ z − zh. Plugging this result in
(6) and replacing A ¼ − ln ðz=lÞ

ds2 ¼ −12
l2z̃2

z4h
dt2 þ l2

12z̃2
dz̃2 þ l2

z2h
dxidxi: ðA20Þ

Defining the variable z̃ ¼ r̂z2h=l
2, thus, the metric becomes

ds2 ¼ −12
r̂2

l2
dt2 þ l2

12r̂2
dr̂2 þ l2

z2h
dxidxi: ðA21Þ

This is the AdS2 ×R3 metric, with boundary at r̂ → ∞ and
radius l̃ ¼ l=

ffiffiffiffiffi
12

p
. The emergence of this geometry in the

IR is related to the emergence of quantum criticality arising
naturally in the holographic model; for details see Ref. [74].
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