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For the first time, a gravitational calculation was recently shown to yield the Page curve for the entropy
of Hawking radiation, consistent with unitary evolution. However, the calculation takes as essential input
Hawking’s result that the radiation entropy becomes large at late times. We call this apparent contradiction
the state paradox. We exhibit its manifestations in standard and doubly holographic settings, with and
without an external bath. We clarify which version(s) of the Ryu-Takayanagi prescription apply in each
setting. We show that the two possible homology rules in the presence of a braneworld generate a bulk dual
of the state paradox. The paradox is resolved if the gravitational path integral computes averaged quantities
in a suitable ensemble of unitary theories, a possibility supported independently by several recent
developments.

DOI: 10.1103/PhysRevD.102.066005

I. INTRODUCTION

The black hole information paradox [1] is a conflict
between quantum mechanics and general relativity. By the
principle of unitarity, quantum information should be
preserved in a scattering process that returns all energy
to a distant observer. A pure in-state should evolve to a pure
out-state. Hawking’s calculation of black hole radiation
[2,3], however, implies that only the energy is returned, but
not the information. For decades, the only concrete evi-
dence against information loss came from an indirect
argument: assuming the AdS=CFT correspondence [4],
the S-matrix can be computed in the CFT and so must be
unitary.

A. Unitarity from Ryu-Takayanagi

For the first time, a purely bulk calculation was
recently found to support unitarity [5,6]. This challenges
Hawking’s conclusion directly, rather than through an
asserted duality. The new analysis does not identify an
error in Refs. [2,3]; in fact, it uses Hawking’s calculation.
But it asks a different question, which leads to a different
conclusion.

Hawking asked about the quantum state of the black hole
radiation and found it to be a thermal state, ρHawðtÞ. Its von
Neumann entropy,

S ¼ −trρHaw log ρHaw; ð1:1Þ

rises monotonically as more radiation is produced. When
the black hole is fully evaporated, S will be of order
A0=4G, where A0 is the initial black hole area. See Fig. 1
(middle subfigure, upper graph).
By contrast, Refs. [5,6] ask only about the entropy of the

radiation, not its state. The entropy S is computed not via
Eq. (1.1), but as the analytic continuation of the nth Renyi
entropy to n ¼ 1. In the presence of gravity, this method
is compactly encoded [7] in the Ryu-Takayanagi (RT)
prescription [8–12]. In Sec. III, we will give a precise
definition of the RT prescription in the setting of
Refs. [5,6]. Schematically,

SðradiationÞ ¼ Sgen½EWðradiationÞ�; ð1:2Þ

where EW denotes a region called the entanglement wedge,
and

SgenðEWÞ ¼ Að∂EWÞ
4G

þ SðEWÞ ð1:3Þ

is the generalized entropy. Here ∂ denotes the boundary of a
region, A denotes the area, and G is Newton’s constant.
The spacetime and its matter fields are computed using

Hawking’s approach, semiclassical gravity. But by using
Eq. (1.2) instead of Eq. (1.1), one finds that SðradiationÞ
follows the “Page curve” demanded by unitary evolution.
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It rises until the Page time, tPage, when the black hole and
radiation entropies are equal. Then SðradiationÞ falls,
ultimately vanishing when the evaporation is complete.
See Fig. 1 (middle subfigure, lower graph).
Before the Page time, EW(radiation) is the radiation

itself (Fig. 1, left Penrose diagram). The RT prescription
adds nothing new; the entropy rises because it does so in
Hawking’s calculation. After the Page time (right Penrose
diagram), a minimality condition in the definition of the

entanglement wedge implies1 that EW(radiation) contains
both the radiation and a disconnected “island,” the black
hole interior:

FIG. 1. Top: Penrose diagrams for an evaporating black hole. The light green region is the entanglement wedge of the radiation that has
arrived at infinity before (left) and after (right) the Page time. Middle: state paradox. The RT prescription yields the Page curve for the
entropy of the radiation, but only if the same entropy is assumed to follow Hawking’s rising curve when determining the entanglement
wedge. Bottom: resolution of the state paradox by gravity/ensemble duality. The ensemble-averaged state is mixed, and its entropy
follows Hawking’s curve. The ensemble-averaged entropy follows the Page curve.

1When the minimality condition results in an island, it has been
called the “island rule” [13]. However, this is not a new rule nor a
modification of RT. The existence of islands after the Page time
already follows from the RT prescription in the final form given to
it by Engelhardt and Wall [12].
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EWðradiationÞ ¼ radiationþ black hole interior

ðt > tPageÞ: ð1:4Þ

In Hawking’s analysis, the interior together with the
Hawking radiation are in a pure state. Hence the von
Neumann entropy SðEWÞ vanishes, and only the area of the
boundary of the island contributes. This boundary is
approximately the black hole horizon, so

Sgen½EWðradiationÞ� ¼ AðhorizonÞ
4G

ðt > tPageÞ: ð1:5Þ

The horizon area decreases as the black hole evaporates,
yielding the falling part of the Page curve.

B. State paradox

The breakthrough of Refs. [5,6] involves an apparent
paradox: it makes use of Hawking’s result that SðradiationÞ
increases monotonically for all times, in order to reach the
final conclusion that it does not. Through Eq. (1.5), the
radiation appears on both sides of Eq. (1.2). Hawking’s
Eq. (1.1) is invoked in evaluating its entropy on the
right-hand side (RHS) of Eq. (1.2). Thus on the RHS,
SðradiationÞ (without the island) follows Hawking’s mono-
tonically increasing curve. This is a crucial ingredient,
because it triggers the inclusion of the black hole interior
in EW(radiation) after the Page time. On the LHS,
SðradiationÞ then follows the Page curve.
This is a contradiction. The S-matrix is an observable, so

the state of the Hawking radiation cannot be ambiguous.
Therefore, its von Neumann entropy cannot have two
different values.2 We will call this contradiction the state
paradox.
One possible resolution of the paradox is that the RT

prescription is an uncontrolled approximation. Our con-
fidence in the RT prescription derives from its success in
the context of AdS=CFT, where the CFT entropy can often
be independently computed and shown to agree. However,
under certain assumptions, the RT prescription follows

directly from a bulk path integral computation [7], evaluated
in the saddle point approximation. It is obtained as the
analytic continuation to n ¼ 1 of the n-th Renyi entropies of
the radiation, which can be computed from a path integral
using the replica trick. After the Page time, one finds that the
dominant saddle point has wormholes connecting the
replicas [15,16]; see Ref. [17] for a pedagogical review.
Thus the RT prescription has nothing to do with

AdS=CFT; the nonperturbative completeness of the CFT
is not used. RT can be applied even in asymptotically flat
space, for example to compute the entropy of radiation that
has arrived at the conformal boundary [18,19]. RT is an
advanced analogue of the Euclidean computation of the
thermodynamic entropy of a black hole by Gibbons and
Hawking [20]. It cleverly extracts information about the full
quantum gravity theory from a path integral approximation.
This is not a controlled approximation. It need not agree

with the full quantum gravity theory, and when it does, it
need not be self-consistent. This could explain the state
paradox: perhaps Eq. (1.2) just happens to compute the
correct statistical entropy from the incorrect state. (See
Ref. [21] for a discussion of related ideas.) And one day,
perhaps, an even more sophisticated application of the
Euclidean gravity path integral will be shown to yield the
correct state of the Hawking radiation.

C. Gravity/ensemble duality

A different, intriguing possibility is that there exists a
novel kind of duality: between an appropriately defined
version of the gravitational path integral, and an ensemble
of quantum mechanical theories without gravity. This can
resolve the state paradox [22]. According to this proposal,
SðradiationÞ takes two different values on the two sides
of Eq. (1.2) because it is not the same quantity on the
two sides.
On the left side, it is the ensemble average of the entropy,

so we should replace SðradiationÞ → hSðρÞi. See Fig. 1
(bottom subfigure, lower graph). On the right side, the
entanglement wedge is determined from the entropy of
the ensemble-averaged state of the radiation, SðhρiÞ. See
Fig. 1 (bottom subfigure, upper graph). Because the von
Neumann entropy is not a linear function of the state,
generically hSðρÞi ≠ SðhρiÞ.
We now describe this proposal in more detail. Let ν

label unitary theories, each capable of computing a pure
Hawking radiation out-state from any pure in-state. Let

hxi≡
Z

dνcðνÞxðνÞ ð1:6Þ

denote an appropriately weighted average of the quantity x
computed in the different theories. Let ρin be the initial state

before the black hole forms, and ρðνÞout be the final state of the
radiation when the black hole has fully evaporated. Since
each theory is unitary, we have

2One might be tempted to declare that S computed from
Eq. (1.1) is only a coarse-grained entropy (even though no coarse-
graining is manifest in Hawkings calculation). But the second
term on the right side of Eq. (1.3) is a fine-grained von Neumann
entropy, and it is this fine-grained entropy that determines EW
(radiation) in Eq. (1.2). The island that leads to the Page curve can
only be included if the fine-grained entropy of the radiation
continues to grow after the Page time. This is achieved by taking
Hawking’s calculation seriously at this step in the calculation, as a
fine-grained entropy. Moreover, if the Page curve was assumed
from the beginning, then the smooth horizon shown in the top
diagrams in Fig. 1 would be inconsistent [14] and so cannot enter
the analysis at all. Finally, rejecting Eq. (1.1) as a fine-grained
entropy would amount to putting in the Page curve by hand. With
the Page curve for the radiation as input, Eq. (1.2) would
reproduce the Page curve trivially as an identity, not by inclusion
of an island.
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SðρðνÞoutÞ ¼ 0 for all ν; ð1:7Þ

and hence

hSðρoutÞi ¼ 0: ð1:8Þ

But in general, the final states ρðνÞout will be different in
different theories. We now assume that their ensemble
average is the thermal state predicted by Hawking:

hρouti ¼ ρHaw: ð1:9Þ

With these assumptions, Hawking’s calculation computes
the averaged out-state hρouti; and in the same spacetime, the
RT prescription correctly computes the averaged entropy:

hS½ρout�i ¼ Sgen½EWðhρoutiÞ�: ð1:10Þ

Moreover, this holds at all times. Let ρðtÞ ¼ tr>t ρout be the
state of the radiation subsystem that has escaped to a distant
region by the time t. The ensemble version of the RT
prescription, Eq. (1.2) states that

hS½ρðtÞ�i ¼ Sgen½EWðhρðtÞiÞ�: ð1:11Þ

No contradiction arises. The ensemble average of the
entropy will follow the Page curve, while the entropy of
the ensemble average follows Hawking’s curve.
The state paradox and its resolution by gravity/ensemble

duality was first described in a slightly different setting
[22], which we will review in Sec. II. Another compelling
argument for gravity/ensemble duality comes from the fact
that the partition function on multiple copies of a boundary
need not factorize when it is computed from a bulk gravity
dual, because connected geometries can contribute [15,16].
It would be interesting to understand the detailed relation
between these arguments.
The duality between JT gravity [23,24] and a random

matrix ensemble furnishes an important concrete example
of gravity/ensemble duality [25–29]. Recently, an average
over certain two-dimensional CFTs was shown to exhibit
properties of an exotic three-dimensional gravity theory
[30,31]. Conversely, starting with three-dimensional
Einstein gravity, properties of a putative ensemble dual
have been explored [32]; see also [33,34].
An ensemble of theories satisfying Eqs. (1.7) and (1.9)

may not exist in all cases where the RT prescription can be
applied. If it does not, then the state paradox remains
unresolved. For example, type IIB supergravity on AdS5 ×
S5 is dual to a specific CFT [4], and no other boundary
theories are presently known that have the same bulk as a
coarse-grained description. If none exist, the gravitational
path integral may still be expected to compute quantities
thatwould be self-averaging if an ensemble did exist [26]. It
would determine the entropy SðρoutÞ but not the state ρout.

D. Outline

In this paper, we consider several distinct settings
in which the state paradox appears, and we discuss its
possible resolution by gauge/ensemble duality in each case.
Multiple versions of the RT prescription will apply, and we
will clarify their relation.
In Sec. II, we use the RT prescription in an AdSd bulk

spacetime to derive the Page curve in the dual CFTd−1 [22].
The setting is distinct from that of Refs. [5,6] in that there is
no external bath or auxiliary system. The radiation remains
in an AdS bulk and appears only on the right side of
Eq. (1.2). The left-hand side corresponds to the entropy of
the CFT dual, for which a Page curve is obtained. The state
paradox then arises in the CFT. The CFT entropy can also
be computed as the von Neumann entropy of a CFT state
constructed by applying the standard AdS=CFT extrapolate
dictionary to the bulk. With this method, one finds that the
CFT entropy should grow monotonically. These results are
consistent only if the CFT is actually an ensemble of CFTs.
In Sec. III, we turn to the setting of Refs. [5,6]. The

gravitating spacetime is coupled to an auxiliary system
without gravity, into which the Hawking radiation escapes.
The entropy of the auxiliary system is computed using
RT. The RT prescription must first be extended so that it
applies to auxiliary systems; this was initially viewed as a
weak link in the analysis [6]. We argue that the correct
prescription is fully determined by consistency with the
setting of Sec. II. The radiation appears on both sides of
Eq. (1.2), leading to the state paradox unless gravity/
ensemble duality is invoked.
Several works [13,35–39] have computed the Page curve

using the entanglement wedge in a “doubly holographic”
dual. The fundamental object in this case is the auxiliary
system containing the radiation: a “Boundary” conformal
field theory or BCFT (in the sense of Refs. [40,41]), with an
apparently different RT prescription [42,43]. The state
paradox is somewhat obscured in this approach. To exhibit
it, we deconstruct the RT prescription for BCFTs as a
repeated application of the original RT prescription.
For the sake of clarity, we first develop an RT prescrip-

tion for a doubly holographic setting without auxiliary
system, in Sec. IV. In this case, the fundamental object is a
regular CFTd−1 dual to an AdSd bulk. The bulk matter
sector is assumed to consist of a holographic CFTd coupled
to gravity. Then there exists a second holographic dual with
dþ 1 dimensions. The original RT prescription computes
the von Neumann entropy of a CFTd−1 region as the
generalized entropy of its entanglement wedge in the AdSd
bulk. An adaptation of the RT prescription to braneworlds
[44,45] can be used to compute generalized entropy in
the AdSd bulk using the dþ 1 dimensional bulk. We show
that these steps can be combined into a one-step “squared
RT” prescription for computing CFTd−1 entropy from a
“squared entanglement wedge,” EW2, in the dþ 1 dimen-
sional bulk.
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In Sec. V, we combine the settings of the previous two
sections. We consider a doubly holographic CFTd−1,
coupled to a (singly) holographic CFTd that plays the role
of the auxiliary system of Sec. III. In the second holo-
graphic dual, the CFTd is part of the conformal boundary of
the dþ 1 dimensional bulk. Like in Sec. IV, we show that
the RT prescriptions for each holographic layer can be
combined into a (one-step) squared RT prescription that
uses the dþ 1 bulk to compute the von Neumann entropy
of any union of subregions of the above top-level CFTd−1
and CFTd. Our squared RT prescription agrees with the
known RT prescription for BCFTs [42,43].
It follows that [42,43] can be deconstructed as two

applications of the RT prescription. This allows us to shed
light on a number of puzzling features in Refs. [13,35–39].
We find that the state paradox arises at the first step, for the
Hawking radiation that has escaped to the “auxiliary” CFTd.
At this level the paradox can be resolved by replacing (at
least) the CFTd−1 with an ensemble of such theories.
The second level of holography furnishes a bulk dual

of the original state paradox. The RT prescription for
braneworlds computes the entropy of subregions of the first
holographic dual, in terms of bulk quantities in the second
dual. Choosing the subregion to be just the radiation region,
this reproduces Hawking’s rising curve; choosing it to
include the island as well, one again obtains the Page curve.
Finally, we observe that when the entropy of a top level

CFTd region is computed directly using the squared RT
prescription [42,43], no paradox is manifest, because the
dþ 1 bulk dual does not contain the radiation.

E. Discussion

The discovery of entanglement islands [5,6] provides
evidence for unitarity, independently of AdS=CFT. It marks
a new era in which the Page curve can be derived from
gravitational physics directly. It provides independent
evidence for unitary evolution. However, it does not resolve
the critical question of how the information gets out.
If we insist that information is preserved when a

black hole evaporates, then effective field theory or general
relativity must break down substantially, at or outside of the
horizon [14], at late times but while the horizon is still
weakly curved. This formulation of the information para-
dox is called the firewall paradox.
The firewall argument suggests that Hawking’s “mis-

take” was the perfectly reasonable assumption that the
horizon of a large old black hole is smooth. The AdS=CFT
correspondence can be used to strengthen this argument
[46], but it has shed no light on the bulk dynamics that
would produce a firewall. A number of interesting propos-
als attempt to reconcile unitarity with a smooth horizon; see
Refs. [47,48] for a critical review. These proposals remain
incomplete, and they appear to necessitate an element of
nonlinearity that conflicts with the principles of quantum
mechanics no less than information loss would [49–51].

The bulk path integral derivation of the Page curve has
been interpreted as a resolution of the firewall paradox
[5,13,16,17]. This seems plausible, since the bulk geometry
involved in the calculation of the Page curve (top of Fig. 1)
has a manifestly smooth horizon. However, this picture just
trades the firewall paradox for the state paradox [22]. Then
the question becomes how the state paradox is resolved. We
see two possibilities.
Suppose that the state paradox is resolved by gravity/

ensemble duality. The firewall argument [14] does not
apply to the ensemble averaged state, since its evolution is
not unitary. Therefore it is consistent for the horizon to be
smooth. However, fundamentally it makes no sense for
Nature to be described by an ensemble of unitary theories;
we can just measure the couplings and then work with the
one correct theory. Moreover, we do expect the unique
theory describing black hole formation and evaporation—
the one that applies to an experiment conducted in a lab—to
preserve information. The ensemble will be useful only for
computing self-averaging quantities of the correct unitary
theory, since these are the same in each theory; these
evidently include the entropy, but not the final state. Hence
the true S-matrix must be computed from a single unitary
theory, not from an ensemble. In this theory, the firewall
argument still applies.
If instead there is no gravity/ensemble duality (for

example, in settings where no suitable ensemble exists,
or where the gravity path integral cannot be rigorously
defined), then the bulk path integral (or the saddlepoint
approximation to it) would have to be viewed as an
uncontrolled approximation. The path integral succeeds
at computing certain quantities of a single unitary boundary
theory (like the entropy) but not others (like the details of
the late time state). Then there is no reason to trust the
smooth geometry that appears in the input to the RT
calculation, any more than we should trust the large entropy
of the Hawking radiation that is manifest at this step. If we
believe the output of the RT calculation—the Page curve—
then the firewall paradox precludes a smooth horizon.

F. Notation and conventions

A subscript on a geometric object generally indicates not
its dimension, but the dimension of the (physical) spacetime
in which the object is naturally defined. For example, Md
will denote a d-dimensional spacetime, Rd a d − 1 dimen-
sional spatial region in Md, and γd a d − 2 dimensional
extremal surface in Md. It is often useful to conformally
rescale a manifoldMd so that a boundary can be added to it;
the result is called an unphysical manifold or Penrose
diagram, M̃d ⊃ ∂M̃d. Note that the boundary of the physical
manifold, ∂Md ⊂ ∂M̃d, need not be empty; it consists of
braneworlds or end-of-the-world (EOW) branes.
In this paper, hxi always denotes the ensemble average of

x in the sense of Eq. (1.6). Angular brackets never denote a
quantum expectation value.
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The term Boundary conformal field theory (BCFT)
refers to the fact that such a theory lives on a manifold
with Boundary, not to the fact that it lives on the conformal
boundary of some AdS spacetime. We will capitalize
“Boundary” whenever it is used in the sense of a BCFT.
For example, “boundary entropy” might refer to the von
Neumann entropy of a CFT region on the conformal
boundary Md−1 ¼ ∂M̃d, whereas “Boundary entropy“ is
a specific BCFT parameter defined by Cardy [40].
Throughout this paper we assume d > 2 for con-

venience. The case d ¼ 2 would frequently require a
special treatment; see for example Eq. (4.3). This would
clutter the presentation. However, the qualitative aspects
of our analysis apply in d ¼ 2, and hence to the many
recent works that studied entanglement islands in JT
gravity and other two-dimensional models, such as
Refs. [6,13]. Related to this choice, in examples involving
braneworlds we only consider induced gravity on the
brane (i.e., the localized graviton due to embedding of the
brane in AdS [52]). We never add an additional gravita-
tional action on the brane, because in d > 2 this is not
necessary.

II. GRAVITY/ENSEMBLE DUALITY
WITHOUT A BATH

In this section, we exhibit a version of the state paradox
in which only the standard RT prescription is needed [22].
There is no auxiliary system or bath, and there is only one
layer of holography.

A. General setup

Consider a d − 1 dimensional3 holographic conformal
field theory CFTd−1 with central charge cd−1, living on a
manifold Md−1; see Fig. 2. Its bulk dual will be an
asymptotically AdSd spacetime Md,

4 such that the unphys-
ical spacetime (or Penrose diagram) conformally related to
Md [53] is

M̃d ¼ Md ∪ Md−1; ð2:1Þ

thus Md−1 is the conformal boundary of Md. The AdSd
curvature length Ld is related to the central charge by

Ld−2
d

Gd
∼ cd−1; ð2:2Þ

where Gd ¼ ld−2
d is Newton’s constant in the d-dimen-

sional bulk.
We shall denote a standard holographic duality of this

type as follows:

FIG. 2. Examples of holographic duality. Left: the solid bulkMd is dual to a holographic CFTd−1 onMd−1 (blue boundary). Right: in
this example, Md−1 is a manifold with boundary, so the boundary theory is a BCFTd−1 and Md contains an end of the world brane
EOWd. (Despite the appearance of a BCFT this is a “singly holographic” example. In Secs. IV and V we will consider a doubly
holographic setting where the EOWd is a braneworld that localizes gravity and contains a holographic CFTd.)

3For consistency with the later sections on double holography,
we deviate here from the usual convention of using d for the
boundary spacetime dimension.

4In general this spacetime can contain additional factors, e.g.,
AdSd × Sd0 , so it need not actually be d-dimensional. In order to
keep the discussion simple, we will assume that it is; general-
izations are straightforward.
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Md−1 → Md; ð2:3Þ

where the arrow reminds us that in general, this duality is
not truly an equivalence. Rather, the lower dimensional
field theory without gravity can be viewed as the non-
perturbative completion of the bulk theory.
Note that Md−1 may itself have a boundary, as in Fig. 2.

The spacetime Md may also be a manifold with boundary
[53], commonly referred to as an “end of the world brane”
or EOW:

EOWd ≡ ∂Md: ð2:4Þ

In particular, if Md−1 is a manifold with boundary, then the
CFTd−1 is a “Boundary conformal field theory” (BCFT),5

and the bulk Md will contain an EOWd ≠ ∅ anchored on
the Boundary ∂Md−1 [42,43]. An EOW can also exist in
settings where the Lorentzian CFTd−1 has no Boundary
[54,55]. They must be included in the gravitational path
integral.

B. Ryu-Takayanagi prescription

We now formulate the holographic prescription for
computing the von Neumann entropy of a boundary region
from bulk quantities. This was first proposed by Ryu and
Takayanagi [8,9] for stationary states. It was generalized to
the time-dependent case by Hubeny, Rangamani, and
Takayanagi [10], and to the BCFT case by Takayanagi
and collaborators [42,43]. A quantum-corrected pre-
scription was first proposed by Faulkner, Lewkowycz

and Maldacena [11]. It was extended to all orders by
Engelhardt and Wall [56], whose elegant formulation
highlights the central role of generalized entropy. This
final formulation is essential for the existence of islands,6

and it is the only one we will review here. We will refer to it
as the RT prescription for short, with apologies to all others
involved in its development. We aim to make it clear
throughout this paper that islands are part and parcel of this
prescription. They do not constitute a new ingredient, but a
long-overlooked consequence. The recent recognition of
their existence [5,6] has been profoundly impactful.
Let Rd−1 ⊂ Md−1 be an achronal region (see Fig. 3).7 We

can think of Rd−1 as a subregion at some instant of time, to
which the CFTd−1 state may be restricted. The von Neumann
entropy SðRd−1Þ of the restricted CFTd−1 state is given by
the generalized entropy of its entanglement wedge,

SðRd−1Þ ¼ Sgen½EWðRd−1Þ�: ð2:5Þ

The generalized entropy SgenðXdÞ [57] of an arbitrary
achronal region Xd ⊂ Md is the sum of its gravitational
entropy and the von Neumann entropy S of the quantum
fields in the region Xd:

SgenðXdÞ ¼
Að∂XdÞ
4Gd

þ SðXdÞ: ð2:6Þ

FIG. 3. RT prescription, applied in the setting shown on the right of Fig. 2. The entropy of the boundary region Rd−1 is given by the
generalized entropy of its entanglement wedge EWðRd−1Þ. γd is the quantum extremal surface.

5See the notation section at the end of the Introduction.

6Because the empty surface always has less classical area than
the boundary of an island, area minimization cannot lead to an
island. It is vital that the generalized entropy is minimized.

7An achronal region is a submanifold of codimension 1 (in the
spacetime) which contains no two points connected by a timelike
curve.
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Here Að∂XdÞ is the area of the boundary of Xd in Md, and
Gd is Newton’s constant in Md.
The entanglement wedge EWðRd−1Þ is an achronal

region Xd
8 in Md, that satisfies the following conditions:

(1) Homology: ∂Xd ¼ γd ∪ Rd−1 ∪ Ed, where γd ⊂
Md − EOWd, and Ed ⊂ EOWd.

9 See Fig. 3.
(2) Stationarity: SgenðXdÞ is stationary under variations

of γd.
(3) Minimality: Xd is has the smallest Sgen among all

regions with the above properties.

A surface γd satisfying the homology constraint (1) and
the stationarity condition (2) is called quantum extremal10

with respect to Rd−1. If the minimality condition (3) is also
satisfied, then γd is called the RT surface of Rd−1. Note that
γd may be the empty set; for example, see Fig. 4 below.
Also, γd may contain disconnected components that end
neither on Rd−1 nor on E; for example, see Fig. 5 below.

C. Simple boundary unitarity from a semiclassical bulk

It was recently shown that the RT prescription applied to
semiclassical bulk evolution yields an entropy consistent
with boundary unitarity [5,6], for Hawking radiation
extracted into an auxiliary system. This argument requires

FIG. 4. Hawking radiation is absorbed by a distant Dyson sphere near the boundary. In Hawking’s semiclassical analysis, the Dyson
sphere entropy will grow monotonically. The quantum state on the global bulk slices shown is pure. Each global slice is the
entanglement wedge of its respective boundary slices. Thus the RT prescription implies that the entropy of the global boundary vanishes,
as required by CFT unitarity. However, at late times the extrapolate dictionary demands that SðboundaryÞ ¼ SðDysonÞ. This
contradiction is the state paradox.

8One can also define EWðRÞ to be the (d-dimensional) domain
of dependence of this region. Since all Cauchy slices of the
domain of dependence have the same generalized entropy, we
will use these definitions interchangeably.

9Strictly, this is a statement about the image of Xd in the
unphysical spacetime M̃d.

10This is conventional. “Quantum stationary” would be more
appropriate terminology, as the generalized entropy can be both
increased and decreased at second order by suitable deformations.
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an extension of the RT prescription that includes auxiliary
systems. We will show in Sec. III A that this extension is
uniquely determined by physical considerations.
However, the main result of Refs. [5,6] can be obtained

without involving an auxiliary system, using only the
standard RT prescription, Eq. (2.5). Here we summarize
this argument; further details are discussed in Ref. [22].
Consider a CFTd−1 on Md−1 ¼ Sd−2 ×R. In the vac-

uum, the gravity dualMd would be global AdSd. However,
we shall takeMd to be a black hole formed from collapse of
matter in a pure quantum state. The black hole is
surrounded by a distant detector sphere (“Dyson sphere”),
initially in some pure reference state. By the extrapolate
dictionary, the initial boundary state must be pure. As the
black hole evaporates, the Dyson sphere absorbs all of the
Hawking radiation (see Fig. 4).
Let Σd−1ðtÞ be a family of Cauchy surfaces (time slices)

of the boundary Md−1. Each such slice will be a sphere

Sd−2. Three slices are shown in Fig. 4. Wewill apply the RT
prescription to every slice, but first it will be useful to make
some further definitions. Let ΣdðtÞ be a Cauchy surface of
MdðtÞ bounded by Σd−1ðtÞ. (In M̃d, Σd−1 ¼ ∂Σd.) For
boundary slices that lie in the future of the endpoint of
the evaporation process, we define ΣdðtÞ to include a
disconnected component, a Cauchy slice of the black hole
interior (see Fig. 4, yellow slice at top). This can be chosen
far enough from the singularity so that semiclassical gravity
is applicable everywhere but in the neighborhood of the
endpoint [58].
The key observation is that the entanglement wedge is

the entire bulk:

ΣdðtÞ ¼ EW½Σd−1ðtÞ�; ð2:7Þ

for all t. To see this, note that the homology condition is
satisfied, with γd ¼ ∅. The stationarity condition is

FIG. 5. Compared to Fig. 4, the Hawking radiation is collected in a localized reservoir on the Dyson sphere. The RT prescription is
applied to a nearby boundary region Rd−1. The entanglement wedge EWðRd−1Þ is shown in light green. After the Page time, it contains a
disconnected island I, the black hole interior, because this choice minimizes the generalized entropy. This yields the Page curve for
SðRd−1Þ. However, the extrapolate dictionary would yield Hawking’s curve; this is the state paradox.
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satisfied because no variations of γd exist. The minimality
condition is satisfied because

Sgen½ΣdðtÞ� ¼ 0 ð2:8Þ

for all t, and the generalized entropy cannot be negative.
(Strictly, one could question all three of these statements

due to the breakdown of the semiclassical description at the
evaporation endpoint. We assume that this small region
does not contribute significant effects that invalidate our
treatment of the post-evaporation entanglement wedge. In
any case, the essence of our discussion requires us only to
go past the Page time, but not close to or beyond the
endpoint of evaporation.)
It is important to understand why Eq. (2.8) holds. The

area term in Eq. (2.6) vanishes since γd ¼ ∅. The von
Neumann entropy of the matter fields vanishes because the
initial bulk state is pure, and the semiclassical bulk
evolution of the global bulk state is unitary. (Information
is lost to an observer outside the black hole in this
description [2], but globally the state remains pure. The
interior Hawking partners and the exterior Hawking radi-
ation together form a pure state, the vacuum at the horizon.)
By Eq. (2.5), it follows that

S½Σd−1ðtÞ� ¼ 0 ð2:9Þ

for all t. The RT prescription “predicts” that the entropy of
the boundary theory vanishes at all times. Of course, this is
exactly what is expected from the unitarity of the boundary
CFTd−1. But it is remarkable that this result is reproduced
by performing a semiclassical analysis in the bulk—
the same calculation that led Hawking to conclude that
information is lost to bulk observers outside the black hole.
This fact was perhaps not widely appreciated prior to the
recent work [5,6] that derives the entire Page curve, even
though it has the same import and is simpler to obtain.

D. Island and Page curve

The previous subsection explained how the RT pre-
scription yields the vanishing global boundary entropy
consistent with unitarity, despite using Hawking’s semi-
classical evolution in the bulk. In this subsection, we
introduce a refined scenario, such that the RT prescription
yields the Page curve for two complementary subsystems,
the Hawking radiation and the remaining black hole. In
order to implement this without introducing an external
bath or auxiliary system, any absorbed Hawking radiation
is immediately transferred to a localized reservoir RES
taking up a small solid angle on the Dyson sphere, without
loss of quantum coherence (see Fig. 5) [22].
Gravitational backreaction in the asymptotic region can

be kept arbitrarily small, so the shape of any stationary
surface anchored to a small boundary region Rd−1 will be
similar to that in the vacuum. We take Rd−1ðtÞ ⊂ Σd−1ðtÞ to

be at the same angular position as the reservoir, and just
large enough so that EW½Rd−1ðtÞ� will barely contain the
reservoir (see Fig. 5). Before the Page time, the entangle-
ment wedge has only one connected component, and we
find

S½Rd−1ðtÞ� ¼ Sgen½EWðRd−1ðtÞÞ� ¼
A½γconnd �
4G

þ SRESðtÞ:
ð2:10Þ

The superscript refers to the fact that γd ¼ γconnd is con-
nected to Rd−1 before the Page time. By moving around
ballast on the Dyson sphere, one can arrange for the
asymptotic geometry in an open neighborhood of γconnd ,
and hence for A½γconnd � to remain fixed [22]. The entropy of
the reservoir SRESðtÞ, however, increases as more radiation
arrives. This yields the rising part of the Page curve shown
in Fig. 5.
The entropy of the Dyson sphere, and of SRES in

particular, increases monotonically even after the Page
time. Its state is always purified by the “Hawking partners”
in the black hole interior. Inclusion of the black hole
interior in the entanglement wedge will entirely wipe out
the contribution SRES to SgenðRd−1Þ at a cost of increasing
the area term by the area of the black hole. This preserves
the homology condition, since it merely adds an extra
component to γd. By its very definition, this choice
becomes favorable at the Page time, when the black hole
and radiation entropy are equal.
After the Page time, the minimality condition thus

requires that EWðRd−1Þ contains a second, disconnected
component I (see Fig. 5). This is called an island, in the
terminology of Ref. [13]. The island is the black hole
interior, bounded by a disconnected component γislandd ðtÞ
that nearly coincides with the horizon.11 The interior of
γislandd purifies the Hawking radiation, so the entropy of the
reservoir no longer contributes, and Sgen½EWðRd−1Þ� is
given just by the area of the RT surface γd ¼ γconnd ∪ γislandd :

Sgen½EWðRd−1Þ� ¼
A½γconnd �
4G

þA½γislandd ðtÞ�
4G

: ð2:11Þ

The first term remains constant. But γislandd ðtÞ shrinks with
the black hole horizon as the black hole evaporates,
yielding the decreasing part of the Page curve.
Thus, in the refined scenario, the RT prescription (i.e., a

bulk path integral that computes the entropy) yields the
Page curve for the boundary region Rd−1. It rises during the
first half of the evaporation process, then decreases. Again,

11The precise location of γislandd is determined by the statio-
narity condition. It sits about a Planck length inside the
horizon. Temporally, γislandd ðtÞ is located at t − tscr, where tscr ∼
β ln ðA½γislandd �=4GÞ and β is the inverse temperature of the black
hole [5,6].
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this is consistent with our expectations from boundary
unitarity. Entanglement wedge complementarity is manifest
in the present setting, so a Page curve is also obtained for
the complementary boundary region R̄d−1.

E. State paradox and ensemble interpretation

The large entropy of the Dyson sphere at late times leads
to the state paradox. After the evaporation is complete, all
of the (conserved) mass is in the Dyson sphere. The
standard AdS=CFT dictionary can be used to construct
the boundary state from the mixed state of the Dyson
sphere [59]. It dictates that the boundary state must have the
same entropy as the Dyson sphere. Energetic arguments
preclude purification of this state by some nonlocal CFT
excitations [22]. The entropy of the CFTd−1 should there-
fore grow monotonically throughout the evaporation proc-
ess. But this contradicts both the RT result and the expected
unitarity of the boundary theory.
We stress again that one cannot dismiss the large Dyson

sphere entropy as an artifact of the semiclassical approxi-
mation, without discarding the entire RT calculation. If the
reservoir RES did not have large entropy after the Page
time, the black hole interior could not purify it. Then there
would be no reason to include the island.
In the setting of this section, the paradox does not arise

for the state of the bulk radiation, but for the boundary state,
since we are using the RT prescription to compute the
entropy of the latter. A resolution of the state paradox can
then be obtained by assuming that the boundary CFT is an
ensemble of unitary theories, and that the boundary
quantities computed using the bulk are ensemble averages
(see Fig. 6). This proposal is consistent both with the
smallness of S½Rd−1ðtÞ� and the fact that the reservoir
contains a mixed state, for t > tPage. Since each member of
the ensemble is unitary, SðRd−1Þ must follow the Page
curve in each theory. Hence the ensemble average of
SðRd−1Þ also follows the Page curve.

But the state of Rd−1 need not be self-averaging. Each
member of the ensemble predicts a pure out-state, but this
need not be the same pure out-state in each theory. Hence
the ensemble average of the out-state is a mixed state whose
entropy can continue to grow after the Page time. Under the
ensemble interpretation, the ensemble-averaged boundary
state can be obtained by applying the standard AdS=CFT
dictionary to the semiclassical bulk state.
The most explicit calculations of entanglement islands

so far [6] were done for the case where the bulk is JT
gravity, which is indeed dual to a matrix ensemble.
However, we stress that the above argument is unrelated
to this observation. The state paradox should be viewed
as independent evidence that the gravity path integral, if
it is well defined, must be dual to an ensemble, even in
settings where no suitable ensemble dual is cur-
rently known.

III. GRAVITY/ENSEMBLE DUALITY
WITH A BATH

In this section, we turn to the settings studied by
Penington [5] and by Almheiri et al. [6]. We will argue
that the relevant RT prescription can be deduced from the
standard one by requiring consistency with the analysis
of the previous section. Finally, we will exhibit the state
paradox and discuss its resolution by gravity/ensemble
duality.
In contrast to Sec. II, the Dyson sphere in AdSd is

eliminated and replaced by an auxiliary (external) system
AUX: a “bath” that couples to the boundary CFTd−1 and
absorbs the Hawking radiation (see Fig. 7). Thus we study
the holographic duality

Md−1 ∪ AUX → Md ∪ AUX: ð3:1Þ

In Ref. [6], AUX is a 1þ 1 dimensional CFT, and the black
hole has two asymptotic regions. For definiteness, we will

FIG. 6. Here we assume the gravity/ensemble interpretation, in the examples studied in Sec. II C (left) and Sec. II D (right). This
resolves the state paradox. The RT prescription (yellow) computes the ensemble averaged entropy hSi of the full boundary (left) or of
Rd−1 (right). The extrapolate dictionary (blue) yields the average state of the ensemble, hρi, in these regions.
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follow Penington [5], who considered the more physical
setting of a black hole formed from collapse. The auxiliary
system AUX will remain unspecified in this section.
We will begin by extending the RT prescription to

include AUX, in Sec. III A. Previous efforts to extend the
prescription required additional assumptions, such as
entanglement wedge complementarity (defined below)
[6]. We present a novel argument that this extension is
fully determined by the analogy between AUX and the
reservoir RES in the previous section. EW complemen-
tarity is a consequence rather than an assumption of our
argument.
In Sec. III B we apply the RT prescription to black hole

evaporation into AUX. This is just for completeness: we
summarize Refs. [5,6] and restate the analysis in Sec. II D
in this modified setting. The paradox identified in Ref. [22]
and reviewed in Sec. II E also has an analogue in this
setting. In Sec. III C we discuss this and its resolution if the
bulk is dual to an ensemble of boundary theories.

A. Ryu-Takayanagi prescription with auxiliary systems

Consider a bipartite system consisting of a holographic
CFTd−1 in a region Rd−1 ⊂ Md−1 and an auxiliary system
AUX, in some joint state. Suppose that there exists an RT-
like prescription for computing the von Neumann entropy
of this state. We shall take “RT-like” to mean that the
prescription is of the form

SðRd−1 ∪ AUXÞ ¼ Sgen½EWðRd−1 ∪ AUXÞ�: ð3:2Þ

We now determine the detailed formulation of the pre-
scription from general considerations.
For any bipartite system consisting of a gravitating

region Xd and an auxiliary system AUX, we define the
generalized entropy as

SgenðXd ∪ AUXÞ ¼ Að∂XdÞ
4Gd

þ SðXd ∪ AUXÞ: ð3:3Þ

FIG. 7. Hawking radiation escapes into an auxiliary system without gravity. The RT prescription can be applied to the boundaryMd−1,
yielding the dark green entanglement wedge. A version of the RT prescription for AUX can be developed by requiring consistency with
the analysis in Sec. II D. One finds that EW(AUX) (light green) includes AUX itself, and after the Page time, it also the bulk region I
complementary to EWðMd−1Þ. The state paradox arises in AUX: the entropy must follow Hawking’s rising curve for the island I to be
part of EW(AUX), but with I included, RT yields the Page curve for AUX.
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Given these definitions, the nontrivial content of the
prescription we seek lies in how we define the entangle-
ment wedge EWðRd−1 ∪ AUXÞ.
Entanglement wedge nesting, the property that the

entanglement wedge cannot shrink if the boundary algebra
is enlarged [60], implies that

EWðRd−1 ∪ AUXÞ ⊃ EWðRd−1Þ: ð3:4Þ

We next recall that the relative entropy between two
boundary states, SðρjσÞ, is the same as the relative entropy
between the dual bulk states in the entanglement wedge
[61]. This implies that bulk operators in the entanglement
wedge (but not outside) can be implemented on the
boundary [61–63]. In particular, small deformations of
the boundary state do not change the entanglement wedge.
Taking Rd−1 ∪ AUX as the boundary, consider a small
deformation of the state in AUX. This can change the
boundary relative entropy (in Rd−1 ∪ AUX), but it cannot
change the bulk relative entropy in EWðRd−1 ∪ AUXÞ,
unless we require that

EWðRd−1 ∪ AUXÞ ⊃ AUX: ð3:5Þ

Therefore, AUX plays an interesting dual role: it appears
both on the bulk and on the boundary side.
This does not yet fully determine the prescription. For

example, Eqs. (3.4) and (3.5) would be consistent with the
(wrong) proposal that EWðRd−1 ∪ AUXÞ is given by
EWðRd−1Þ ∪ AUX. To see that this fails, we note that
quantum information can be freely exchanged between
AUX and Rd−1 by appropriate couplings. But consider the
setting of Sec. II D. Recall that at the Page time, EWðRd−1Þ
has a phase transition: it now includes not only the portion
connected to Rd−1, but also an island inside the black hole.
Just after the Page time, let us couple the region Rd−1 to an
AUX system that is initially in some pure reference state,
and transfer some of the quantum information of the
Hawking radiation into AUX. Then the phase transition
is reversed; EWðRd−1Þ loses the island. However, bulk
operators in the island could be implemented on Rd−1 ∪
AUX before the transfer, so this must still be true after-
wards. Therefore, EWðRd−1 ∪ AUXÞ cannot have changed.
This shows (at physics-level rigor) that an appropriate

definition of the entanglement wedge must treat the bulk
and AUX jointly, not separately, when minimizing the
generalized entropy. Hence we define

EWðRd−1 ∪ AUXÞ≡ Xd ∪ AUX; ð3:6Þ

where the spacetime region Xd ⊂ Md is chosen such that
(1) ∂Xd ¼ γd ∪ Rd−1 ∪ Ed, where γd ⊂ Md − EOWd

and Ed ⊂ EOWd.
(2) SgenðXd ∪ AUXÞ is stationary under variations of γd.

(3) Xd ∪ AUX has the smallest Sgen among all regions
Xd with the above properties.

We have included the possibility that Md has an EOW
brane for generality, though none appears in the setup
studied above. Note that the last term in Eq. (3.3) would
vanish in a case where Xd and AUX separately have large
von Neumann entropy but purify each other. Note also that
AUX in the above formulas could represent one of several
auxiliary systems, or equivalently, an arbitrary subalgebra
of an auxiliary system.
The generalized RT prescription formulated above

upholds entanglement wedge complementarity. Consider
a pure quantum state for the complete system Md−1 ∪
AUX. On the boundary, purity implies Sd−1ðRd−1 ∪
AUXÞ ¼ Sd−1ðR̄d−1Þ, where R̄d−1 is complement of Rd−1
inMd−1. Purity also implies γdðMd−1 ∪ AUXÞ ¼ ∅. Hence
EWðMd−1 ∪ AUXÞ ¼ Md ∪ AUX. The global bulk von
Neumann entropy must also vanish: SðM ∪ AUXÞ ¼ 0.
This in turn implies that any two subsystems of M ∪ AUX
must have equal von Neumann entropy. Therefore
γdðR̄d−1Þ ¼ γdðRd−1 ∪ AUXÞ, and hence

EWðR̄d−1Þ ¼ EWðRd−1 ∪ AUXÞ: ð3:7Þ

In the special case where AUX is a nongravitating
system described by quantum field theory and Rd−1¼∅,
Eq. (3.2) reduces to the “island formula” of Ref. [13],
where it was derived using doubly holographic systems.
The formula was already used implicitly by Penington [5].
We have argued here that it emerges as a direct conse-
quence of the standard RT prescription, when auxiliary
systems are involved. We saw in Sec. II D that the standard
RT prescription (without auxiliary systems) already
required disconnected islands to be part of the entangle-
ment wedge. The new aspect in the present discussion is not
the possibility of an island, but the double role of AUX.
This double role will make the state paradox particu-
larly sharp.

B. Island and Page curve

Returning to the specific setting of a black hole evapo-
rating into AUX [5], we now examine the implications of
Eq. (3.2). These follow immediately from the results of
Sec. II D, upon substituting Rd−1 → AUX and R̄d−1 →
Md−1. The entropy of each system follows a Page curve, as
we will now verify.
Recall that Σd−1ðtÞ defines a foliation of the boundary

Md−1, and ΣdðtÞ are bulk Cauchy slices whose boundary is
Σd−1ðtÞ. Before the Page time, one finds that the entangle-
ment wedge of the CFTd−1 includes the entire bulk:

EW½Σd−1ðtÞ� ¼ ΣdðtÞ: ð3:8Þ

Since γd ¼ ∅ and hence AðγdÞ ¼ 0,
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S½Σd−1ðtÞ� ¼ Sgen½ΣdðtÞÞ� ¼ S½ΣdðtÞ�: ð3:9Þ

This grows with time, because ΣdðtÞ contains the black hole
interior, which in turn contains more and more unpartnered
interior Hawking modes as the Hawking radiation escapes
into AUX.
After the Page time, the entanglement wedge of the full

boundary slices Σd−1ðtÞ ends at a quantum extremal surface
γdðtÞ near the horizon [5]:

EW½Σd−1ðtÞ� ¼ ΣdðtÞ ∩ Ext½γdðtÞ�: ð3:10Þ

Here we have chosen ΣdðtÞ to contain γdðtÞ, and Ext
denotes the spacelike exterior of γd. Since the interior
Hawking modes are no longer part of EW½Σd−1ðtÞ�, the
von Neumann entropy of the entanglement wedge vanishes
and so

S½Σd−1ðtÞ� ¼ Sgen½EWðΣd−1ðtÞÞ� ¼
A½γdðtÞ�
4Gd

; ð3:11Þ

which decreases to zero as the black hole evaporates.
By Eq. (3.7), EW½AUXðtÞ� is the complement of

EW½Σd−1ðtÞ�. Thus, the entropy of AUX will follow the
same Page curve. Before the Page time, EW(AUX) only
contains AUX, i.e., the early Hawking radiation that has
been extracted from the AdSd spacetime. Its entropy grows
as more radiation is produced:

Sgen½EWðAUXðtÞÞ� ¼ SðAUXÞ ðt < tPageÞ: ð3:12Þ

After the Page time, EW(AUX) in addition contains an
island I:

EWðAUXðtÞÞ ¼ AUXðtÞ ∪ IðtÞ; I ¼ IntðγdÞ; ð3:13Þ

where Int denotes the spatial interior of γd on Σd. I is the
black hole interior, which contains Hawking partners that
purify the radiation in AUX. Hence, the generalized
entropy is then given by the (decreasing) boundary area
of this island:

Sgen½EWðAUXðtÞÞ� ¼ A½γdðtÞ�
4Gd

ðt > tPageÞ: ð3:14Þ

After the black hole has completely evaporated and all of
the Hawking radiation is in AUX, EW(AUX) continues to
contain the black hole interior I, now a separate “island
universe” without boundary (see Fig. 7).

C. State paradox and ensemble interpretation

In the present setting, the state paradox arises in AUX.
On the one hand, the Hawking radiation in AUX is
manifestly in a mixed state, whose entropy continues to
increase even after the Page time. (In the notation of

Ref. [64], this is the “nonbold state.”) If its entropy did
not increase, then there would be no justification for
including the black hole interior island in EW(AUX) after
the Page time. On the other hand, the generalized entropy of
EW(AUX) after the Page time is given by the area of the
black hole, which decreases and eventually vanishes.
According to the RT prescription, Sgen½EWðAUXÞ� com-
putes the von Neumann entropy of AUX. Hence AUXmust
be in a different state from what we originally assumed:
one whose entropy follows the Page curve. (In the nota-
tion of Ref. [64], this is the “bold state.”) This is a
contradiction [22].
It is interesting to compare this instantiation of the state

paradox to the version that arose in Sec. II. In Sec. II, the
extrapolate dictionary is used at the last step, to translate
the mixed Dyson sphere state to a mixed boundary state, in
conflict with the pure state obtained from RT. In the present
setting, the extrapolate dictionary is used earlier, when the
bulk Hawking radiation is allowed to escape into AUX by
coupling the boundary to AUX. Strictly it is not possible to
couple radiation inside a spacetime to an auxiliary system,
since the resulting nonconservation of the stress tensor
would violate the Bianchi identity. Thus the coupling is
defined through the boundary, and the extrapolate dic-
tionary is used in interpreting this as a transparent boundary
condition for the Hawking radiation. As a result of this
coupling, the two conflicting quantum states are both in
AUX in the end.
As in the previous section, the paradox is resolved if

we assume that the bulk calculation computes both the
average state (via Hawking’s calculation), and the average
entropy (via the RT prescription), in an ensemble of unitary
boundary theories. The average entropy of Md−1 (and also
of AUX) follows the Page curve, because it does so in
each (unitary) theory. Different members of the ensemble
evolve the same initial state to different final states, so the
ensemble average of the state is mixed, and its entropy
grows monotonically even after the Page time. Both sides
of the gravity/ensemble duality exhibit a mixed state: in
the bulk because we performed Hawking’s calculation,
and on the boundary because we averaged over the final
state produced by different theories. (In the notation of
Ref. [64], the ensemble-averaged bold state equals the non-
bold state.)

IV. DOUBLE HOLOGRAPHY WITHOUT A BATH

Beginning with Ref. [13], a number of interesting papers
have explored the RT prescription for evaporating black
holes in a “doubly holographic” setting [35–39,65]. The
Hawking radiation is mainly carried by excitations of a
holographic CFTd that escape to a (holographic) auxiliary
system. The state paradox arises in this setting as well, and
we will exhibit it in Sec. V. However the analysis is
somewhat complicated by the simultaneous appearance of
an extra layer of holography and of the auxiliary system.
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In this section, we will separate these two ingredients: we
will introduce double holography without an auxiliary
system. We will derive an appropriate “RT-squared” pre-
scription for computing the von Neumann entropy of the
top level CFTd−1 from its dþ 1 dimensional doubly
holographic bulk dual. We will not analyze black hole
evaporation and the state paradox in this section; however,
our results will be useful when we do so in Sec. V.

A. General setup

As in Sec. II, we consider a holographic CFTd−1 on
a spacetime Md−1, dual to an asymptotically AdSd space-
time Md:

Md−1 → Md: ð4:1Þ

We now suppose that the matter sector of the d-dimensional
bulk Md contains a holographic CFTd coupled to gravity.
This implies that Md is a Randall-Sundrum braneworld
[52,66]. The holographic duality can then be iterated:

Md → Mdþ1: ð4:2Þ

The CFTd on Md can be traded for a bulk dual Mdþ1 (see
Fig. 8), with Newton’s constant Gdþ1 determined by

Gdþ1

Ldþ1

¼ Gd

d − 2
: ð4:3Þ

Near vacuum regions of the braneworld Md, Mdþ1 will be
locally AdSdþ1, with curvature length

Ld−1
dþ1

Gdþ1

∼ cd: ð4:4Þ

Mdþ1 will be a manifold with boundary, and we define

EOWdþ1 ¼ ∂Mdþ1: ð4:5Þ

By definition, the braneworld Md is a subset of EOWdþ1.
The complement EOWdþ1 −Md is the boundary of the
entanglement wedge of the entire AdSd brane. Therefore it
is located at the minimal-area stationary surface anchored
on the AdSd brane’s boundary. It implements boundary
conditions on the AdSdþ1 bulk that are dual the reflecting
boundary conditions at the boundary of the AdSd brane.
The central charge cd can be thought of as a number

of species. In the presence of gravity, large cd increases
the effective Planck length—the cutoff length scale at
which the semiclassical analysis breaks down on Md—

from G1=ðd−2Þ
d to ðGdcdÞ1=ðd−2Þ ∼ Ldþ1. We assume that

G1=ðd−1Þ
dþ1 ≪ Ldþ1 ≪ Ld, or equivalently,

1 ≪ cd ≪
Ld−2
d

Gd
: ð4:6Þ

This ensures that d-dimensional semiclassical gravity is a
valid description both in the AdSdþ1 bulk (the curvature
radius is much greater than the Planck scale) and on the
AdSd brane (the curvature radius is much greater than the
cutoff scale Ldþ1).
Usually in holography, there are two descriptions of the

same system. The CFTd−1 furnishes an exact description.
The bulk gives an equivalent description, perturbatively in
Gd, in the regime where semiclassical gravity (or pertur-
bative string theory) can be applied. In the setting we
consider now, there are three levels:
(1) Top level: The CFTd−1 on Md−1 is the only exact

description.
(2) Holographic bulk dual: The asymptotically AdSd

bulk Md with a CFTd coupled to gravity is an
approximate d-dimensional description. Note that

FIG. 8. Double holography without a bath. Md (purple surface) is the bulk dual of a holographic CFTd−1 (left) or BCFTd−1 (right) on
Md−1 (dark green rim). So far this is identical to (a time slice of) the setups shown in Fig. 2. But we now assume that Md contains a
holographic CFTd. This gives rise to a doubly-holographic bulk dualMdþ1 (the solid interior). From the dþ 1 bulk perspective,Md is a
Karch-Randall braneworld.
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this description is alternate to the CFTd−1, so there is
no CFTd−1 at this level.

(3) Doubly holographic bulk dual: The third descrip-
tion, also approximate, is Mdþ1. There is no CFTd
on the braneworld, at this level; however any other
matter fields and dynamical gravity will still be
present on Md.

We will refer to the relation between the top and bottom
level as double holography and denote it with a double
arrow:

Md−1 ⇒ Mdþ1: ð4:7Þ

Two examples are shown in Fig. 8.
The first example is a holographic CFTd−1 on Md−1 ¼

Sd−2 ×R. In the vacuum state, this is dual to global AdSd.
We now take the AdSd to contain a holographic CFTd with
the above parameters. Then the CFTd−1 has a doubly
holographic dual which is locally AdSdþ1:

ds2dþ1 ¼ L2
dþ1½dρ2

þ cosh2ρð−cosh2rdt2 þ dr2 þ sinh2rdΩ2
d−2Þ�;

0 ≤ ρ ≤ arc cos h
Ld

Ldþ1

: ð4:8Þ

Here dΩ2
d−2 ¼ dθ2 þ sin2 θdΩ2

d−3 is the metric on the unit
d − 2 sphere. In these coordinates, the AdSd brane Md sits
at ρ� with cosh ρ� ¼ Ld=Ldþ1; a second EOW brane resides
at ρ ¼ 0. See Fig. 8.
The second example of Fig. 8 is half of the previous

example. We start with a BCFTd−1 on Md−1 ¼ Bd−2 ×R,
where Bd−2 is a d − 2 dimensional hemisphere. For the
simplest BCFT with reflecting boundary conditions at the
equator, the vacuum state is doubly holographically dual
to Mdþ1, the restriction of Eq. (4.8) to the hemisphere
θ ≤ π=2. There is now an additional EOWdþ1 at θ ¼ π=2.
The single holographic dual Md is half of an AdSd
braneworld (still at cosh ρ ¼ Ld=Ldþ1), with an EOWd
at θ ¼ π=2.

B. One-step Ryu-Takayanagi prescription
for double holography

The von Neumann entropy Sd−1 of the CFTd−1 restricted
to an achronal region Rd−1 ⊂ Md−1 is given by Eq. (2.5),
which we repeat here for convenience:

SðRd−1Þ ¼ Sgen½EWðRd−1Þ�; ð4:9Þ

where EWðRd−1Þ ⊂ Md is the entanglement wedge. In the
doubly holographic setting of this section, Md is a
braneworld.
A Ryu-Takayanagi prescription also applies to brane-

worlds [44,45,67]. Let Rd ⊂ Md be an achronal region on
the braneworld. Then

SgenðRdÞ ¼ Sgen½EWðRdÞ�: ð4:10Þ

More generally, Rd may span both a braneworld region and
a region (with no gravity) on ∂M̃dþ1, the conformal
boundary of Mdþ1; or it may consist of disconnected
components in both types of regions. This case will be
important in Sec. V; see Fig. 11, with Rd ¼ EWðRdÞ. For
Rd ⊂ ∂M̃dþ1, the generalized entropy on the left-hand side
is defined as the ordinary von Neumann entropy, with an
unregulated UV divergence at ∂Rd. Thus Eq. (4.10)
reduces to the usual RT prescription when Rd is entirely
on the true boundary.
The entanglement wedge EWðRdÞ is defined as in

Sec. II B, with d → dþ 1: it is an achronal region
Xdþ1 ⊂ Mdþ1, such that
(1) In the unphysical spacetime, ∂Xdþ1 ¼ γdþ1 ∪ Rd ∪

Edþ1. Here γdþ1 ⊂ Mdþ1 − EOWdþ1, and Edþ1 ⊂
EOWdþ1 − Rd. Note that any portion of Rd that lies
on a braneworld is a subset of EOWdþ1.

(2) SgenðXdþ1Þ is stationary under variations of γdþ1.
(3) Xdþ1 is has the smallest Sgen among all regions with

the above properties.
Comparing to Eq. (4.9), an important modification in
Eq. (4.10) is that the prescription now computes the
generalized entropy of the region Rd, rather than purely
a CFTd von Neumann entropy.
The above rules can be combined iteratively, by choos-

ing Rd ¼ EWðRd−1Þ. This allows us to compute any
CFTd−1 (1st level) entropy using the dþ 1 bulk (the 3rd
level). Substituting Eq. (4.10) into Eq. (4.9) we find

SðRd−1Þ ¼ Sgen½EWðEWðRd−1ÞÞ�: ð4:11Þ

This is a two-step prescription: one first finds the stationary
surface γd on the AdSd brane, and then one finds the
stationary surface γdþ1 anchored on γd. However, we will
now show that this is equivalent to simply minimizing the
generalized entropy over surfaces that are allowed to be
anchored anywhere on the AdSd brane (and anywhere
on the EOW brane), subject to the homology rules
described above.
To see this, suppose that the latter procedure yielded a

surface γdþ1 whose boundary σ on the AdSd brane was not
the minimal QES, γd. Then there are two possibilities: (i) σ
does not have stationary generalized entropy with respect to
small deformations on the brane or (ii) σ is stationary but
has larger generalized entropy than γd. Case (i) together
with the RT rule for braneworlds implies that the gener-
alized entropy of γdþ1 (in the dþ 1 bulk) is not stationary
under small deformations of γdþ1 that reduce to small
deformations of σ. Case (ii) implies that the dþ 1 bulk
stationary surface anchored on γd has smaller generalized
entropy than γdþ1. Either of these implications contradicts
the definition of γdþ1.
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Thus we can formulate a one-step Ryu-Takayanagi
prescription for the von Neumann entropy of a region
Rd−1 of a doubly-holographic CFTd−1:

SðRd−1Þ ¼ Sgen½EW2ðRd−1Þ�; ð4:12Þ

where EW2ðRd−1Þ denotes the doubly holographic entan-
glement wedge of Rd−1. This is defined as an achronal
region Xdþ1 ⊂ Mdþ1 such that
(1) In the unphysical spacetime, ∂Xdþ1 ¼ Rd−1 ∪

γdþ1 ∪ Edþ1. Here γdþ1 ⊂ Mdþ1 − EOWdþ1 and
Edþ1 ⊂ EOWdþ1.

(2) SgenðXdþ1Þ is stationary under variations of γdþ1.
(3) Xdþ1 has the smallest Sgen among all regions with

the above properties.
A very simple example is shown in Fig. 9. Consider the

CFTd−1 in the vacuum state, and let R be half of the d − 1
sphere in standard global coordinates. Then the QES γd is a
d − 1 dimensional hyperbolic plane cutting a Cauchy sur-
face of the AdSd brane in half: coshρ¼ Ld=Ldþ1;θ ¼ π=2.
(In this example the quantum corrections play no role, so
this is also a classical stationary surface.) The QES γdþ1 is
similarly part of a hyperbolic plane cutting the Cauchy
surface of the AdSdþ1 bulk in half: θ ¼ π=2. Of course, it
only includes the portion between the AdSd brane and the
EOW brane: 1 < cosh ρ < Ld=Ldþ1. Figure 9 also shows
other examples.

C. Quantum vs classical RT in double holography

In the case where the generalized entropies of γd and
γdþ1 are both dominated by the area terms, consistency of
Eqs. (4.10) and (4.11) requires

AðγdÞ
4Gd

¼ Aðγdþ1Þ
4Gdþ1

; ð4:13Þ

By Eq. (4.3), this implies a very simple relation between the
areas of the QESs:

Aðγdþ1Þ ¼ AðγdÞ
2Ldþ1

d − 2
: ð4:14Þ

It is easy to check that this relation is obeyed in the above
examples. More generally, consistency requires that γdþ1

must have a phase transition if and only if γd does, as the
region R is varied. For example, if R consists of two
antipodal round disks of equal size in the CFTd−1, then γd
undergoes a well-known phase transition as the disk radius
is varied. γdþ1 must also have a phase transition at the same
critical radius. At first this behavior may seem surprising,
because one expects the QESs in the dþ 1 bulk to have a
richer structure than those on the AdSd brane. However, in
this context we are only considering dþ 1 QESs anchored
on very special surfaces on the AdSd brane—those that are
themselves QESs—so there is no contradiction.
A more interesting case arises when the CFTd is far from

its vacuum state, so that the von Neumann entropy of
braneworld regions is large. In this case Sgen on Md may
have large quantum contributions (i.e., contributions from
the von Neumann entropy term), while Sgen of the corre-
sponding entanglement wedge inMdþ1 is dominated by the
classical term (the area term). In such a case, one can
replace Sgen by Aðγdþ1Þ=4Gdþ1 in Eqs. (4.10)–(4.12), but
not by AðγdÞ=4Gd in Eq. (4.9).

V. DOUBLE HOLOGRAPHY WITH A
HOLOGRAPHIC BATH

This section can be thought of as an extension of the
above settings, in two different ways. Continuing from
the previous section, we keep the doubly holographic setup
but we add a bath. That is, we couple the CFTd−1 (or
equivalently, the AdSd brane) to an auxiliary system AUX.
We take AUX to be the same holographic CFTd that lives
on the AdSd brane, but not coupled to gravity. Thus AUX
can be thought of as a CFTd living on a true asymptotic
boundary of an asymptotically AdSdþ1 bulk dual.
From the perspective of Sec. III, we keep the bath but

make the setting doubly holographic. That is, we now

FIG. 9. Examples of the doubly holographic entanglement wedge EW2ðRd−1Þ for a ðBÞCFTd−1 region Rd−1. As before, the light
purple surfaceMd is the bulk dual of a holographic CFTd−1 (left) or BCFTd−1 (middle, right) onMd−1 (dark green rim). In each case, the
doubly holographic entanglement wedge is bounded in part by the surface γdþ1, shown in dark purple.
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specialize to the case where both the dominant matter
content in the gravitating AdSd spacetime, and also the
external bath AUX is a holographic CFTd, with an
asymptotically AdSdþ1 bulk dual.
Combining insights from the previous sections will

allow us to understand some puzzling features in the
doubly-holographic versions [13,35–39] of Refs. [5,6],
where the Page curve arises from the classical RT pre-
scription in the dþ 1 dimensional bulk. One such feature is
the appearance of two apparently different states in the bath
region, denoted bold and nonbold in Ref. [13]. We will see
that these states need not be different in the ensemble
interpretation.

A. General setup

As before, we consider a holographic CFTd−1 with
central charge cd−1 on a manifold Md−1, dual to a bulk
Md. We now choose this CFTd−1 such that the matter
content of Md includes a particular CFTd coupled to
gravity. As in Sec. III, we couple the CFTd−1 to an
auxiliary system AUX (see Fig. 10). We now insist that
AUX is specifically a CFTd on a manifold Md such
that Md−1 ¼ ∂Md, and we take this to be the same CFTd
that also appears in the bulk dual Md.
The coupled boundary system (CFTd−1 on Md−1 and

CFTd onMd) defines a BCFTd on Md. Importantly, there
is no dynamical gravity on Md. Applying the general
discussion of Sec. III to the CFTd−1 and AUX (i.e., to the
BCFTd), we find that this system is holographically dual to
a d-dimensional bulk system:

Md−1 ∪ Md → Md ∪ Md: ð5:1Þ

Here Md has dynamical gravity. AUX ¼ Md plays a dual
role as bulk and boundary system.
Next, we add the ingredient of double holography, as in

Sec. IV. Suppose that the CFTd on Md ∪ Md is holo-
graphic, with parameters as described in Sec. IVA. Let
Mdþ1 be its dþ 1 dimensional bulk dual:

Md ∪ Md → Mdþ1: ð5:2Þ

As usual, let M̃dþ1 be the associated unphysical space-
time (Penrose diagram), and let EOWdþ1 ¼ ∂Mdþ1. Then
Md ¼ ∂M̃dþ1 and Md ⊂ EOWdþ1. The above two dual-
ities combine to establish the doubly holographic duality

Md−1 ∪ Md ⇒ Mdþ1: ð5:3Þ

For example, with Md−1 ¼ Sd−2 ×R at the equator of
the hemishere Md ¼ Bd−1 ×R, one obtains the Karch-
Randall (KR) model [66]. This was first discussed in detail
as a doubly-holographic model in Ref. [68]. The first bulk
dual isMd ∪ Md, whereMd is an AdSd braneworld known
as a KR brane. It forms the boundary of the doubly
holographic dual Mdþ1, a global AdSdþ1 spacetime that
terminates on the KR brane. In the vacuum state, the
metric of Mdþ1 is given by Eq. (4.8), with the range of ρ
extended to

−∞ < ρ ≤ arccosh
Ld

Ldþ1

; ð5:4Þ

The braneworld Md is located at the upper end of this
range, and the asymptotic boundaryMd is at the lower end.
Md−1 is at ρ ¼ 0, r → ∞.
Alternatively, let Md−1 ¼ Rd−2 ×R be the boundary of

the half-space Md ¼ Bd−1 ×R. This gives the Poincaré
patch of an AdSd braneworld as the first bulk dual, Md; it
gives the Poincaré patch of AdSdþ1 as the second bulk
dual Mdþ1.
Both of these models were studied further by Takayanagi

and collaborators [42,43], who gave a one-step RT pre-
scription for the duality in Eq. (5.3). We will now derive
this prescription from a different perspective, by combining
the results of the previous sections.

B. One-step Ryu-Takayanagi prescription
for double holography

The one-step RT prescription for the doubly holographic
duality (5.3) can be derived iteratively by combining the RT
prescriptions for the single holographic dualities (5.1) and
(5.2). For the first step this was given in Eqs. (3.2)–(3.6).
Setting AUX → Rd, Eq. (3.2) becomes:

SðRd−1 ∪ RdÞ ¼ Sgen½EWðRd−1 ∪ RdÞ�; ð5:5Þ

where Rd−1 ⊂ Md−1 and Rd ⊂ Md −Md−1 are arbitrary
subregions of the boundary system. The other equations

FIG. 10. A doubly holographic CFTd−1 on Md−1 is coupled to
holographic bath: a CFTd on Md. The first holographic dual is
Md ∪ Md, whereMd contains the same CFTd coupled to gravity.
The second holographic dual is Mdþ1 (solid interior). We
consider a state which, in the first dual, corresponds to an
evaporating black hole in Md with radiation escaping to Md.
The von Neumann entropy of the radiation in the subregionRd ⊂
Md can be computed using the single or double RT prescription.
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and the definition of EWare as in Sec. III. The fact that the
auxiliary system is a field theory plays no role in this step.
The second step computes the generalized entropy

on the RHS of Eq. (5.5) holographically. Setting Rd →
EWðRd−1 ∪ RdÞ in Eq. (4.10), we obtain

SgenðEWðRd−1 ∪ RdÞÞ ¼ Sgen½EWðEWðRd−1 ∪ RdÞÞ�:
ð5:6Þ

Thus we obtain

SðRd−1 ∪ RdÞ ¼ Sgen½EWðEWðRd−1 ∪ RdÞÞ�: ð5:7Þ

By arguments exactly analogous to those following
Eq. (4.11), this iterative result can be condensed into a
one-step RT prescription:

SðRd−1 ∪ RdÞ ¼ Sgen½EW2ðRd−1 ∪ RdÞ�: ð5:8Þ

The doubly-holographic entanglement wedge EW2ðRd−1 ∪
RdÞ is defined as an achronal region Xdþ1 ⊂ Mdþ1

such that
(1) In the unphysical spacetime, ∂Xdþ1 ¼ Rd−1 ∪

Rd ∪ γdþ1 ∪ Edþ1, where γdþ1 ⊂ Mdþ1 − EOWdþ1

and Edþ1 ⊂ EOWdþ1.
(2) SgenðXdþ1Þ is stationary under variations of γdþ1.
(3) Xdþ1 is has the smallest Sgen among all regions with

the above properties.

We note that this agrees with the RT prescription for a
BCFTd given by Takayanagi [42,43], which has been
extensively used in recent analyses of entanglement islands,
such as Refs. [13,35–39]. In analyzing these results and
exhibiting the state paradox, it will be illuminating to
“deconstruct” Eq. (5.8) in to Eqs. (5.5) and (5.6).

C. Island and Page curve

We now specialize to the dynamical setting of Sec. III B:
the first holographic dual, Md ∪ Md, Md contains a black
hole whose radiation propagates to Md. First, let us
consider the top level, the BCFTd on Md−1 ∪ Md.
There are now two ways to compute the von Neumann
entropy of a subregion Rd ⊂ Md that contains the
radiation.
One option is to ignore the second holographic dual and

use RT only for the first holographic duality, Eq. (5.1).
Setting Rd−1 → ∅ in Eq. (5.5), we find

SðRdÞ ¼ Sgen½EWðRdÞ�: ð5:9Þ

Before the Page time, EWðRdÞ ¼ Rd (see Fig. 11). Since
Rd is a true boundary region, SgenðRdÞ ¼ SðRdÞ. Thus, the
above equation is a trivial identity before the Page time.
After the Page time,

EWðRdÞ ¼ Rd ∪ I ðt > tPageÞ; ð5:10Þ

FIG. 11. Entanglement wedges of the bath region Rd before (left) and after (right) the Page time, when EWðRdÞ has a disconnected
island I. Each top figure is simply the bottom figure rotated around the axis. The “squared” entanglement wedge EW2 is always
connected. It can be found iteratively as EWðEWðRdÞÞ, or in one step from Eq. (5.8) [42,43]. As in Sec. V C, γd is a quantum extremal
surface, but γdþ1 is an ordinary extremal surface.
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where the island I ⊂ Md is the black hole interior (see
Fig. 11). The Hawking radiation in Rd is purified by the
Hawking partners in I, so

Sgen½EWðRdÞ� ¼
AðγdÞ
4Gd

ðt > tPageÞ; ð5:11Þ

where γd ¼ ∂I nearly coincides with the horizon. Note that
the radiation appears on both sides of the duality, and that
we have made no reference to the second holographic bulk
dual Mdþ1.
Another option is to use the doubly holographic duality,

Eq. (5.3). By Eq. (5.8),

SðRdÞ ¼ Sgen½EW2ðRdÞ�: ð5:12Þ

With the one-step prescription following Eq. (5.8) one
finds EW2ðRdÞ as shown in Fig. 11. Unlike EWðRdÞ in
Eq. (5.10), EW2ðRdÞ is always a connected region. After
the Page time, γdþ1 ends on the quantum extremal sur-
face γd, and the island I forms part of the boundary of
EW2ðRdÞ. But neither the radiation inRd nor the Hawking
partners in the black hole interior on Md contribute to
Sgen½EW2ðRdÞ�, since they are not part of Mdþ1. Both
before and after the Page time, the generalized entropy of
the squared entanglement wedge is given just by the
classical area of γdþ1, in line with the discussion at the
end of Sec. IV C:

Sgen½EW2ðRdðtÞÞ� ¼
A½γdþ1ðtÞ�
4Gdþ1

: ð5:13Þ

D. State paradox and ensemble interpretation

Agreement between Eqs. (5.9) and (5.12) is a nontrivial
consequence of Eq. (5.6). That equation, in turn, was
obtained by applying the RT prescription for braneworlds,

(4.10), which is relevant for the duality (5.2), to the region
EWðRdÞ. But Eq. (4.10) allows us to choose any other
subregion of the first bulk dual Md ∪ Md and compute its
generalized entropy. Thus we may ask questions that have
no obvious analogue in the dualities of Eqs. (5.1) and (5.3).
For example, after the Page time, EWðRdÞ ¼ Rd ∪ I.

But we could instead use Eq. (4.10) to compute the
generalized entropy of just Rd. Because Eq. (4.10) pro-
hibits the RT surface γ0dþ1 from ending onMd (see Fig. 12),
its area continues to grow after the Page time, and we find
the entropy computed by Hawking. Thus, Eq. (4.10) will
not give the same answer for SðRdÞ as Eqs. (5.9) and
(5.12). This contradiction is the bulk dual of the state
paradox.
In Sec. III C (with AUX → Rd), the state paradox

appeared as a contradiction between SðRdÞ computed
from the semiclassical Hawking analysis on Md ∪ Md,
and SðRdÞ computed from Eq. (5.9). Either quantity can
now also be computed using the second holographic dual
Mdþ1. As noted in the previous paragraph, the results
(given by Eq. (4.10) and (5.12) respectively) disagree.
Gravity/ensemble duality can again resolve this paradox.

Suppose that the CFTd−1 on Md−1 is really an ensemble of
unitary theories as discussed in the introduction. From the
top-level viewpoint, the CFTd−1 emits radiation into the
CFTd on Md. In each theory, this process is unitary and
the radiation entropy in Rd ⊂ Md follows the Page curve.
Hence the average entropy hSðρRd

Þi follows the Page
curve. But the ensemble-averaged state of the radiation,
SðhρRd

iÞ, follows Hawking’s monotonically rising curve.
The first holographic dual of this process is the escape of

Hawking radiation from Md into Md. Assuming gravity/
ensemble duality, the semiclassical analysis of black hole
evaporation computes hρRd

i directly, and it determines
hSðρRd

Þi via the first RT prescription, Eq. (5.9). The second
layer of holography, Eq. (5.2), gives us an alternative way
of computing hSðρRd

Þi and SðhρRd
iÞ using the braneworld

FIG. 12. Bulk dual of the state paradox. Left: we regardRd as a BCFTd subregion (top level). The homology rule following Eq. (5.8)
applies: γdþ1 is allowed to end on the braneworld which here appears as an EOW brane. At late times, Aðγdþ1Þ → 0, resulting in the
Page curve for SðRdÞ. Right: we considerRd as a subregion of the CFTd onMd ∪ Md. The homology rule following Eq. (4.10) applies.
The braneworldMd is now part of the boundary; since we are computing the entropy only for the regionRd, γ0dþ1 is not allowed to end
on Md. Aðγ0dþ1Þ grows monotonically, resulting in Hawking’s curve.
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version of the RT prescription, Eq. (4.10). To compute
hSðρRd

Þi, choose Rd → EWðRdÞ ¼ Rd ∪ I in Eq. (4.10).
To compute SðhρRd

iÞ, set Rd → Rd in Eq. (4.10).
It is interesting to note that it does not matter whether

Eq. (5.2) is a gravity/ensemble duality. Suppose that it is.
Then there exists an ensemble of CFTd theories on
Md ∪ Md. On what is now the boundary side, we would
have to perform a gravity path integral involving each of
these different theories, then average. But regardless of the
details of each CFTd, the state in Rd will be thermal and
purified by the excitation in I. Therefore, unlike the state of
the Hawking radiation in Rd in the BCFTd (the top level),
the state of the semiclassically evolved CFTd theories is
self-averaging in the region Rd ∪ I, and also in the region
Rd. Of course, in a different state (for example, a setup
analogous to Sec. II in the dþ 1 dimensional bulk), a state
paradox can arise in Md ∪ Md, and we would need to
appeal to state gravity/ensemble duality for a resolution.
So far, we have discussed the first and second holo-

graphic duality separately. We can also consider the one-
step doubly holographic RT prescription of Eq. (5.8). This
evaluates the entropy of the BCFTd region Rd directly in
the Mdþ1 bulk as the area of γdþ1; see Eq. (5.13). By
“jumping” over the middle level, we have missed the
paradox. Namely, the paradox involved the apparent
discrepancy of the states in the region Rd, depending on
whether it is viewed as a state of the BCFTd or a state of the

CFTd onMd ∪ Md. The CFTd is not present in the second
holographic dual. It has now been replaced by the classical
bulk state in Mdþ1; thus we are no longer comparing two
states of the same region.
Therefore, an ensemble interpretation is not required to

make sense of the doubly holographic duality (5.3), so long
as we never consider the intermediate level. Unfortunately,
without the intermediate level Md ∪ Md, we also lose
contact with the process of black hole evaporation, which is
manifest only at this level.
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