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We study the problem of interacting theories with partially-massless and conformal higher spin fields
without matter in three dimensions. A new class of theories that have partially-massless fields is found,
which significantly extends the well-known class of purely massless theories. More generally, it is proved
that the complete theory has to have a form of the flatness condition for a connection of a Lie algebra,
which, provided there is a nondegenerate invariant bilinear form, can be derived from the Chern-Simons
action. We also point out the existence of higher spin theories without the dynamical graviton in the
spectrum. As an application of a more general statement that the framelike formulation can be
systematically constructed starting from the metric one by employing a combination of the local BRST
cohomology technique and the parent formulation approach, we also obtain an explicit uplift of any given
metriclike vertex to its framelike counterpart. This procedure is valid for general gauge theories while in the
case of higher spin fields in d-dimensional Minkowski space one can even use as a starting point metriclike
vertices in the transverse-traceless gauge. In particular, this gives the fully off-shell lift for transverse-
traceless vertices.
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I. INTRODUCTION AND MAIN RESULTS

Massless higher spin fields, as well as the graviton, do
not have any propagating degrees of freedom in three
dimensions. Therefore, the problem of constructing inter-
actions of higher spin fields is subtle to formulate in 3D.
For example, within the light-cone approach [1–3], which
operates with local physical degrees of freedom, the
problem is clearly empty. Nevertheless, as in the case of
gravity, it makes sense to pick an off-shell gauge-invariant
formulation of free fields inherited from higher dimensions
and look for its nonlinear completion. Once the light-cone
approach is out, there are two other common off-shell
formulations: metriclike and framelike.
The metriclike formulation operates with a higher spin

generalization of the metric tensor, Φa1…asðxÞ. The frame-
like formulation in 3D requires one-form connections
Aa1…as−1
m dxm. The problem of interactions boils down to

constructing gauge invariant actions in terms of one or the

other set of variables. Even though these two approaches
are directed to solve the same problem—constructing an
action for higher-spin gravity, they have developed inde-
pendently from each other and their relation remains little
explored beyond free theory, see however [4–8].
In the metriclike formulation the problem of interactions,

so-called Fronsdal program, has advanced significantly
during the last decades. There are a lot of results on the
general structure of perturbative interaction vertices avail-
able in the literature [9–15] ranging from the complete
classification of cubic vertices in flat space [16] (see also
[17–21]) to its extension to ðAÞdS space [22,23] (see also
[24–26]) that incorporates partially-massless fields. Cubic
interactions of conformal fields were also studied [27].
Quite independently of the hereabove results, there is also
a handful of papers devoted to the framelike approach
[28–34].
More specifically, in three dimensions, the classification

of interaction vertices of massless higher spin fields has
been worked out recently in [35–38] in the metriclike
approach. At the same time there is a large number of
concrete examples of theories with massless higher spin
fields [39–42] and of theories with conformal higher spin
fields [43–45], both classes having been constructed
within the framelike approach as Chern-Simons theories.
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The question of whether all theories are of Chern-Simons
type and whether there are theories with partially-massless
fields has remained open.
It is known that framelike actions can be rewritten in

terms of the metriclike fields, but the opposite is more
complicated. In principle, the framelike form of a given
metriclike vertex can be obtained by employing the
Lagrangian parent formulation approach [4,5] which,
among other applications, allows to systematically refor-
mulate a Lagrangian gauge theory in the framelike form.
However, this does not directly give a concise and handful
procedure to obtain framelike vertices. One of the goals of
the present work is to propose such a procedure and
explicitly demonstrate how it works in the case of higher
spin theories in 3D.
The general framework to address problems of this sort

in the context of local gauge field theories is known by now
and is based on the combination of Batalin-Vilkovisky
formalism [46,47] with the geometric theory of PDE
(partial differential equations) [48–53]. This gives a power-
ful approach of local BRST cohomology [54–58] and
allows to reformulate the problem of gauge theories
deformations and analysis of vertices as a standard defor-
mation theory where the relevant cohomology is a local
BRST cohomology [59]. Furthermore, in this approach one
can introduce a general notion of equivalence of local
gauge field theories [60] that covers theories related by
elimination of auxiliary fields as well as by elimination of
Stueckelberg fields. This notion extends [61], see also
[5,62], to systems defined at the level of equations of
motion in which case it also extends to a more general
geometrical setting [63].
For instance, starting from the BRST complex of

the metriclike theory one can construct its equivalent
form, often called minimal model,1 obtained by elimi-
nation of the maximal amount of contractible pairs of the
total differential. Such minimal formulations are known
to be very useful in studying local BRST cohomology
[64–67]. Moreover, it was shown that the minimal model
of a BRST complex actually encodes the framelike
formulation of the theory through the so-called parent
formulation construction [61,62] (see also [4,5] for a
Lagrangian version). At the level of equations of motion
the latter can be explicitly read off from the minimal
model as a generalized AKSZ-type sigma model. As we
demonstrate in this work, this allows one to explicitly
construct framelike vertices starting from a representative
of the respective cohomology class in the minimal model
of the BRST complex and hence gives a systematic
way to construct the framelike counterpart of a given

metriclike vertex.2 More precisely, the procedure amounts
to first constructing a completion of the vertex to a
cocycle (understood as a d-form on the jet-space) of the
total BRST differential es ¼ Dh þ s, involving the total de
Rham differential Dh. Then one reduces the cocycle to
the minimal model, which can be understood as a surface
in the original jet-space. Finally, one constructs the vertex
by evaluating the cocycle on a field configuration.
The advantage of the framelike formulation becomes

overwhelming in three dimensions. While one can write
down a lot of expressions that are nonlinear in Φa1…asðxÞ
and have derivatives contracted in various ways, there is a
unique nonlinear functional of type A ∧ A ∧ A that is a
three-form. Remarkably, in the framelike language the weak
field expansion stops at cubic terms, but it is an infinite series
in terms of metriclike fields. Given the equivalence between
the two approaches, we can stick to the framelike one as the
simpler one to solve the problem of constructing higher spin
theories without matter in three dimensions.
We aim to construct and describe all higher spin gravities

in three dimensions whose off-shell field content consists
of massless, partially-massless or conformal fields that
have no on-shell propagating degrees of freedom.3 Not
surprisingly, all these theories turn out to have the Chern-
Simons/flat connection form for an appropriate choice of
the gauge algebra. In this context, the algebras are called
higher spin algebras even though all of them emerge from
the endomorphism algebras, EndðVÞ, for an appropriate V.
We construct a large class of such algebras, which, in
particular, leads to new theories.
Higher spin gravities in three dimensions have been

extensively studied in view of their holographic applica-
tions [39–42]. The Einstein-Hilbert action can be rewritten
as the Chern-Simons action for sl2 ⊕ sl2 [68,69]. The
starting point for the higher spin generalization was to
replace sl2 with any bigger algebra g ⊃ sl2 and write down
the Chern-Simons action for g ⊕ g. An implicit, but
important ingredient here is an embedding of sl2 into g
and the fact that g is an sl2-module. The decomposition of g
into sl2-modules lists out the spectrum of massless fields,
the rule being that a spin-s field corresponds to two
connections that take values in the dimension (2s − 1)
irreducible sl2-module Vs−1:

Ωαð2s−2Þ; Ω _αð2s−2Þ: ð1:1Þ

1Note that in the literature on local BRST cohomology the
term “minimal model”was not used extensively. The relevance of
these formulations was realized by F. Brandt who called it
formulation in terms of generalized curvatures and connections.

2Note that this can also be inferred from the Lagrangian parent
formulation. For instance applying the procedure [4,5] to the
metriclike Lagrangian (for e.g., Fronsdal fields) perturbed by a
cubic vertex one in principle arrives at the framelike Lagrangian
perturbed by the framelike version of the vertex. However, this is
not very efficient in this context as it requires extra variables.

3Note that for s ¼ 1 and also for the maximal depth partially-
massless fields one can choose between two on-shell descrip-
tions, one with a propagating degree of freedom and another with
none. We always consider the second option. Matter fields are
also excluded.
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Here we used the language of spin-tensors, α; _α;… ¼ 1, 2,
and we also made it clear that one connection is a module
of the first sl2 and the other is a module of the second sl2.
This construction yields a large class of theories with
massless higher spin fields and the graviton. However, it
has not been clear if all possible theories are covered by
such a construction.
Another interesting problem is to construct higher spin

theories with partially-massless fields. Indeed, partially-
massless higher spin fields, like the massless ones, have
no local degrees of freedom in three dimensions, c.f.
Footnote 3. The framelike formulation has been worked
out in [70] and studied in three dimensions in [71]. While
[70] operates with many framelike fields of the Lorentz
algebra (but a single connection of the anti–de Sitter
algebra), it turns out that they correspond to just two
representations of sl2 ⊕ sl2 [72]:

Ωαð2s−t−1Þ; _αðt−1Þ; Ωαðt−1Þ; _αð2s−t−1Þ; ð1:2Þ
where t is the depth of partially-masslessness, e.g., t ¼ 1
corresponds to massless fields. The massless case is some-
what degenerate and does not allow one to see that the
connection is charged, in general, with respect to both sl2
subalgebras. This observation solves the puzzle and allows
us to construct a new class of theories with partially-massless
fields. It would be very interesting to study their holographic
applications along the lines of [41,42,73].
The case of 3D conformal higher spin fields can be treated

analogously, the only difference being is that we should be
looking for a higher spin extension of the conformal algebra
soð3; 2Þ or soð4; 1Þ rather than of sl2 ⊕ sl2.
To summarize, our results are as follows:
(i) we construct a new class of theories with partially-

massless fields;
(ii) we give an explicit construction for the framelike

vertex in terms of a metriclike one. It is also shown
that the transverse-traceless gauge condition, which
is usually used in the metriclike language, can
always be lifted. The latter two statements are true
for any spacetime dimension;

(iii) we prove that all diffeomorphism invariant higher
spin gravities without propagating matter and involv-
ing massless, partially-massless and conformal higher
spin fields have to have the form of the flatness
condition for a certain higher spin algebra;

(iv) provided the algebra admits a nondegenerate invari-
ant bilinear form, the equations can be obtained
from the Chern-Simons action. This completes the
Noether procedure in 3D for the matter-free higher
spin theories4;

(v) as a by-product, we classify vertices for partially-
massless fields;

(vi) we point out the existence of higher spin theories
whose spectrum does not contain the graviton, i.e.,
they are formulated on a fixed gravitational back-
ground, and are not diffeomorphism invariant. This
phenomenon has also some analogs in higher
dimensions [80–83] for the Type-B,C theories.

We begin in Sec. II with a short description of the
metriclike and framelike formulations for free fields. A
large class of theories, including the new class with
partially-massless fields, can be found in Sec. III. The
detailed discussion of the relation between framelike and
metriclike languages is in Sec. IV, where we also complete
the Noether procedure and prove the theories in question to
have the Chern-Simons form as was anticipated in [38] for
massless higher spin fields.

II. FREE FIELDS: METRICLIKE VS FRAMELIKE

We briefly describe three classes of (higher spin) fields for
which we would like to construct interacting theories. There
are two standard choices of field variables: metriclike fields
and framelike fields. While the former is the most canonical
choice, it is the latter that can be efficiently pushed to the
interacting level for three-dimensional theories without
propagating degrees of freedom in the bulk.
Massless fields. It is customary to begin with the

Fronsdal approach [84], where a spin-s field is a symmetric
rank-s tensor ΦaðsÞ ≡Φa1…asðxÞ that is subject to the
following gauge symmetry5:

δΦaðsÞ ¼ ∇aξaðs−1Þ ≡∇a1ξa2…as þ permutations: ð2:1Þ

The field is double-traceless, Φaðs−4Þbc
bc ¼ 0, and the

gauge parameter ξaðs−1Þ is traceless, ξaðs−3Þbb ¼ 0. The
gauge-invariant equations of motion read

□ΦaðsÞ −∇a∇mΦmaðs−1Þ þ 1

2
∇a∇aΦaðs−2Þm

m −m2ΦaðsÞ

þ 2ΛgaaΦaðs−2Þm
m ¼ 0; ð2:2Þ

where the mass is m2 ¼ −Λsðs − 3Þ and Λ is the cosmo-
logical constant that we usually set to 1. The free action is

4The result extends the already known 3D massless [39–42]
and conformal theories [43–45]. Other complete solutions of the
Noether procedure include 4D conformal [74–76] and 4D Chiral
[77–79] higher spin theories.

5Indices a; b; c;… ¼ 0;…; d − 1 are indices of the local
Lorentz algebra, so (d − 1, 1). They can be converted to world
indices with the help of the dreibein haμ. Everything takes place in
3D anti–de Sitter space with dreibein haμ and spin-connection
ϖa;b

μ . The fiber indices are raised, lowered and contracted with
the flat metric ηab and we never have to use the anti–de Sitter
metric explicitly. Our shorthand notation implies that aðsÞ
denotes a group of symmetric indices a1…as. Nevertheless,
most of the discussion below is valid in the Minkowski space as
well. The indices to be symmetrized are all denoted by the same
letter, i.e., ∇aξaðs−1Þ unfolds to s terms.
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also known [84,85]. The Fronsdal approach is regarded as a
higher spin generalization of the metric approach to gravity.
The second approach is to generalize vielbein and spin-

connection to higher spin fields [86–88]. Additional sim-
plifications occur in three dimensions [39]. The higher spin
cousins of dreibein and spin-connection are one-forms
eaðs−1Þ ≡ ea1…as−1

μ dxμ and ωaðs−1Þ ≡ ωa1…as−1
μ dxμ that are

symmetric and traceless in a1…as−1. That the spin-
connection ω looks identical to the dreibein e is a genuine
3D effect that is well-known already in the case of gravity,
where ωa ¼ ϵabcω

b;c. The Fronsdal equations put into the
first order form read

∇eaðs−1Þ þ ϵabchb ∧ ωaðs−2Þc ¼ 0;

∇ωaðs−1Þ þ ϵabchb ∧ eaðs−2Þc ¼ 0: ð2:3Þ

The Fronsdal field is embedded as the totally symmetric
part of the dreibein

Φa1…as ¼ ea1…as−1
m hmas þ symmetrization: ð2:4Þ

At this point it is convenient to switch to the spinorial
language. A traceless rank-s soð2; 1Þ-tensor Ta1…as corre-
sponds to a rank-2s sl2ðRÞ-tensor Tα1…α2s. Here,
α; β;… ¼ 1, 2 are the indices of sl2 or spinor indices of
soð2; 1Þ. The map between the sl2-base and the soð2; 1Þ-
base is via Pauli matrices, σαβm . After translation to the
spinorial language is done we find6

∇eαð2s−2Þ þ hαβ ∧ ωβαð2s−3Þ ¼ 0;

∇ωαð2s−2Þ þ hαβ ∧ eβαð2s−3Þ ¼ 0: ð2:5Þ

One more simplification can be achieved by making the
gauge algebra of pure gravity, sl2 ⊕ sl2, manifest. The
AdS3 symmetry algebra is sl2 ⊕ sl2 and the torsion and
curvature constraints for the background AdS3 dreibein hαβ

and spin-connection ϖαβ

dhαβ þϖα
γ ∧ hβγ ¼ 0;

dϖαβ þϖα
γ ∧ ϖβγ þ hαγ ∧ hβγ ¼ 0; ð2:6Þ

can be rewritten simply as (AL ¼ ϖ þ e, AR ¼ ϖ − e)

dAαβ
L þ AL

α
γ ∧ Aβγ

L ¼ 0; dA _α _β
R þ AR

_α
_γ ∧ A

_β _γ
R ¼ 0;

ð2:7Þ

where from now on it will be useful to distinguish between
the two sl2 subalgebras. In particular, we reserve indices
α; β;… for the first sl2 and indices _α; _β;… for the second

one. As a result, instead of coupled equations (2.5), in the
diagonal base we find two decoupled covariant constancy
conditions

DLΩ
αð2s−2Þ
L ¼ 0; DRΩ

_αð2s−2Þ
R ¼ 0; ð2:8Þ

where DL and DR are the usual covariant derivatives with
respect to AL and AR. We note that ðDLÞ2 ¼ ðDRÞ2 ¼ 0 and
the gauge transformations are δΩL;R ¼ DL;RξL;R.
Summarizing the dictionary, a massless spin-s field can

be described either by the Fronsdal field or by two
connections:

δΦaðsÞ ¼ ∇aξaðs−1Þ ⇔ δΩαð2s−2Þ ¼ DLξ
αð2s−2Þ;

δΩ _αð2s−2Þ ¼ DRξ
_αð2s−2Þ: ð2:9Þ

Partially-massless fields. Partially-massless fields
[89–91] require nonzero cosmological constant and
extend the class of massless fields. For a rank-s symmetric
tensor field there are s partially-massless options
parametrized by the number of derivatives in gauge
transformations:

δΦaðsÞ ¼ ∇a…∇a
zfflfflfflffl}|fflfflfflffl{t

ξaðs−tÞ − traces t ¼ 1;…; s: ð2:10Þ

Here we assumed that the transverse-traceless gauge is
imposed. The gauge-fixed equations of motion are still
second-order as for massless fields,

ð□ −m2ÞΦaðsÞ ¼ 0;

m2 ¼ −Λððs − tþ 1Þðs − t − 1Þ − sÞ: ð2:11Þ

The free action is quite cumbersome due to the need for
many auxiliary fields [92].
Partially-massless fields admit a framelike description

[70] and the set of framelike fields simplifies a lot in three
dimensions to give [71]

eaðs−tÞ; eaðs−tþ1Þ … eaðs−1Þ; ωaðs−tÞ;

ωaðs−tþ1Þ … ωaðs−1Þ: ð2:12Þ

The free action or equations of motion are also cumbersome
since they couple the neighboring fields together and can be
found in [70,71]. A key observation is that the set of
connections needed to describe a partially-massless field
forms just two irreducible representations7 of sl2 ⊕ sl2

6Our convention is that spinorial indices are raised and lowered
with ϵαβ ¼ −ϵβα, ϵ12 ¼ 1 as follows: Tα ¼ ϵαβTβ, Tα ¼ Tβϵβα.

7Let us stress that the set in (2.12) consists of the Lorentz
tensors, i.e., they are representations of the diagonal sl2. The
second sl2 mixes them together. In the sl2 ⊕ sl2 base we find
instead just two representations as in (2.13).
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δΦaðsÞ ¼ ∇a…∇a
zfflfflfflffl}|fflfflfflffl{t

ξaðs−tÞ

⇔

�
δΩαð2s−t−1Þ; _αðt−1Þ ¼ Dξαð2s−t−1Þ; _αðt−1Þ;

δΩαðt−1Þ; _αð2s−t−1Þ ¼ Dξαðt−1Þ; _αð2s−t−1Þ:

ð2:13Þ
In terms of the new variables the equations take a very
simple form

DΩαð2s−t−1Þ; _αðt−1Þ ¼ 0; DΩαðt−1Þ; _αð2s−t−1Þ ¼ 0; ð2:14Þ

where D is the sl2 ⊕ sl2 covariant derivative in this
module:

DΩαð2j1Þ; _αð2j2Þ ≡ dΩαð2j1Þ; _αð2j2Þ þ AL
α
β ∧ Ωαð2j1−1Þβ; _αð2j2Þ

þ AR
_α
_β ∧ Ωαð2j1Þ; _αð2j2−1Þ _β: ð2:15Þ

From the general point of view the massless case is a
degenerate one since each of the two connections carries a
nontrivial irreducible representation of one of the two sl2
subalgebras. The degeneracy is lifted for t > 1. Without
further ado, it is clear that the actions in [70,71] can be
rewritten as

S2 ¼
Z

Ωαð2s−t−1Þ; _αðt−1Þ ∧ DΩαð2s−t−1Þ; _αðt−1Þ

−Ωαðt−1Þ; _αð2s−t−1Þ ∧ DΩαðt−1Þ; _αð2s−t−1Þ; ð2:16Þ

which also covers the massless case. Note that, as different
from the massless case, we do not have any simple e� ω
change of variable for the partially-massless case that maps
the framelike action in terms of (2.12) to (2.16).
Conformal fields. The last class of fields wewould like to

consider are conformal or Fradkin-Tseytlin fields [93–98].
Conformal fields can naturally be considered both in
Minkowski and anti–de Sitter backgrounds. Free conformal
fields are specified by spin s and depth t, which is similar to
the partially-massless case. Free gauge transformations
read

δΦa1…as ¼ ∇a1…∇atξatþ1…as − traces; ð2:17Þ

and both the field and the gauge parameter are assumed to
be traceless. The equations of motion have ð2s − 2tþ 1Þ
derivatives, see [43,98–104].
The framelike description is very similar to the partially-

massless case [70]. The general rule is that the framelike
field is a one-form connection that takes values in a
representation of the spacetime symmetry algebra associ-
ated with the global reducibility parameters, see e.g., [105].
The latter are the gauge parameters that leave the gauge
field intact. For (2.17) they are given by conformal Killing
tensors. Therefore, one needs to take a one-form that, as a

fiber tensor, carries an irreducible representation of the
conformal algebra soð3; 2Þ corresponding to the Young
diagram with rows of length s − 1 and s − t:

ð2:18Þ

where A; B;… ¼ 0;…; 4 are the indices of soð3; 2Þ.
Splitting A ¼ a;þ;− one can decompose Ω into a number
of framelike fields that are tensors of the Lorentz algebra
soð2; 1Þ. The higher spin dreibein is a particular component
in this decomposition:

Φa1…as ¼ Ωa1…as−1;þðs−tÞ
m hmas þ symmetrization − traces;

ð2:19Þ

which establishes a dictionary with the Fradkin-Tseytlin
fields. The equations of motion are equivalent to

DΩAðs−1Þ;Bðs−tÞ ¼ 0; ð2:20Þ

where D ¼ dþ A, D2 ¼ 0 is the background covariant
derivative with A≡ AA;B

m dxm being a flat connection of
soð3; 2Þ. We recall that the 3D conformal gravity can also
be formulated as Chern-Simons theory for A, [106,107].
Note that both AdS3 andMinkowski spaces correspond to a
certain A such that Aa;þ

m ¼ ham is a nondegenerate dreibein.
Summarizing, the dictionary between the metriclike and

framelike formulations in the case of conformal higher spin
fields reads

δΦa1…as ¼ ∇a1…∇atξatþ1…as þ � � � ⇔ δΩAðs−1Þ;Bðs−tÞ

¼ DξAðs−1Þ;Bðs−tÞ: ð2:21Þ

In the subsequent sections we will study interacting
theories for massless, partially-massless and conformal
higher spin fields.

III. HIGHER SPIN GRAVITIES IN THREE
DIMENSIONS

The main claim of the paper is that all background
independent higher spin theories in three dimension with
partially-massless or conformal higher spin fields without
local degrees of freedom and matter fields have the form of
the flatness condition, and, provided there is a nondegen-
erate invariant bilinear form, the equations can be obtained
from the Chern-Simons action

S½Ω� ¼
Z

Tr

�
Ω ∧ dΩþ 2

3
Ω ∧ Ω ∧ Ω

�
; ð3:1Þ

for an appropriate higher spin extension of the anti–de
Sitter g ¼ sl2 ⊕ sl2 or conformal g ¼ soð3; 2Þ algebras.
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By a higher spin extension of some semisimple g we mean
any Lie algebra hs such that g ⊂ hs and the decomposition
of hs into g-modules contains representations bigger than g
itself (seen as the adjoint one). Given such an algebra we
can take hs-valued connection Ω and write down the
flatness condition. The dictionary presented in Sec. II
allows us to identify each g-submodule of hs with a
particular partially-massless or conformal higher spin field.
If hs has a nondegenerate bilinear form the equations can
be obtained from the Chern-Simons action, otherwise we
have equations of motion only.
This statement is highly nontrivial from the metriclike

point of view. Once the equivalence between the framelike
and metriclike formulations is established it is almost a
folklore that the Chern-Simons action is the unique solution
of the problem. We leave the proof to Sec. IV and consider
below a large class of theories. The main new result here is
a new class of higher spin theories with partially-massless
fields.

A. Higher spin algebras

Higher spin algebras seem to always originate from
associative algebras.8 There is a large class of associative
algebras that contain a given Lie algebra g as a Lie
subalgebra. The class is parametrized by various irreducible
modules of g. Given a g-module V we can simply take
EndðVÞ ¼ V ⊗ V� as an associative algebra. The same
algebra can be understood as a quotient of the universal
enveloping algebra of g modulo the two-sided ideal
AnnðVÞ that annihilates V (the annihilator):

associative∶ hsðVÞ ¼ EndðVÞ ¼ V ⊗ V�

¼ UðgÞ=AnnðVÞ: ð3:2Þ

If V is infinite-dimensional, some care is needed in working
with the, otherwise equivalent, definitions above.
We would like to highlight several features of hsðVÞ.

Firstly, the construction gives hsðVÞ as an associative
algebra. Since we are interested in the algebras relevant
for the Chern-Simons formulation, only its induced Lie
algebra structure, which is obtained via commutators, will
be needed. As a Lie algebra we have

Lie∶ hsðVÞ ¼ glðVÞ ¼ slðVÞ ⊕ uð1Þ: ð3:3Þ

The uð1Þ-factors lead to Abelian Chern-Simons fields
that decouple. Secondly, the above class of higher spin
algebras admits a simple generalization where the uð1Þ
field turns into a non-Abelian one [108]. More precisely,
one can tensor hsðVÞ with (usually semisimple and
usually finite-dimensional) associative algebras, i.e., matrix

algebras. Then, one can truncate the resulting Lie algebra
with the help of some (anti)automorphisms and impose
certain reality conditions, see e.g., [109]. This way, for
example, one can get soðVÞ and spðVÞ truncations of
hsðVÞ. By construction hsðVÞ is equipped with a non-
degenerate invariant bilinear form.
An interesting feature of the higher spin theories with

matrix extensions is that the spin-two sector that corre-
sponds to gravity admits new ðAÞdS solutions with differ-
ent cosmological constants. Around these solutions, the
spectrum of the theory restructures itself [72,108] combin-
ing massless fields into partially-massless ones.
Annihilator AnnðVÞ is also an interesting algebra, which

is usually thrown away. It is an associative algebra by
construction, which can be decomposed into irreducible
finite-dimensional g-modules. Therefore, AnnðVÞ gives a
class of higher spin algebras that do not contain g as a
subalgebra.9 However, AnnðVÞ is quite big and is not
multiplicity free. Indeed, for any irreducible V annihilator
AnnðVÞ contains generators of the form IiðλiÞ ¼ ðCi − λiÞ
where i runs over all independent Casimir operators Ci and
λi are values thereof on V. To reduce the multiplicity we can
define a family of algebras

Afλg ¼ UðgÞ=Ifλg; ð3:4Þ

where Ifλg is a two-sided ideal generated by all IiðλiÞ.
At special values of λi that correspond to, say, finite-
dimensional module V, Afλg develops a two-sided ideal JV
such that the quotient Afλg=JV coincides with earlier
defined hsðVÞ. The ideal JV is an analog of AnnðVÞ but
with the multiplicity considerably reduced. Sometimes, see
below, JV is multiplicity free.10

If nontrivial, algebra JV leads to a class of theories that
contain higher spin fields, but do not have the graviton
since JV does not contain g. In our cases g can be sl2 ⊕ sl2
or soð3; 2Þ. Another interesting feature is that we have
interacting higher spin theories that are background de-
pendent since we cannot absorb the AdS background into a
dynamical spin-two field. The equations read

DΩþ 1

2
½Ω;Ω� ¼ 0; D2 ¼ 0; D ¼ dþ Ω0; ð3:5Þ

where Ω0 is the background flat connection of g (we still
have that JV is not only an algebra, but it is also a g
module). Nevertheless, we can extend JV with g into a new
Lie algebra f ¼ g ⋊ JV . This allows us to add the graviton
into the theory, but there is no backreaction from higher
spin fields to the gravitational stress-tensor. Therefore, the
newly added spin-two field does not behave like a graviton.

8We are not aware of any example of a higher spin algebra that
does not come from an associative algebra via the construction
given below.

9Except for the trivial case when V is one-dimensional.
10For any λi we can think of the generalized Verma module V

that makes Casimir operators Ci equal λi.
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In case we have a nondegenerate invariant bilinear form,
the action is still of the Chern-Simons type

S½Ω; D� ¼
Z

Tr

�
Ω ∧ DΩþ 2

3
Ω ∧ Ω ∧ Ω

�
; ð3:6Þ

but with d replaced with the background covariant deriva-
tive D ¼ dþ Ω0. We cannot absorb Ω0 into Ω since g acts
on Ω, but it is not a subalgebra. There is a similar
phenomenon in d > 3 for Type-B,C theories [80–83].
After the general comments about higher spin algebras,

let us briefly discuss the two known cases: purely massless
and conformal higher spin theories.
Massless higher spin algebras.There aremany non-semi-

simple (higher spin) algebras, but a rich enough class of
theories isobtainedby takinganyof the classicalLie algebras
suN , soN and spN that can be understood as Lie subalgebras
of hsðVÞ ¼ EndðVÞ, [39–42], whereV is an irreducible sl2-
module of dimension N and the sl2 subalgebra corresponds
to the principal embedding into suN , soN or spN. Then, the
action is the difference of two Chern-Simons actions for hs,
i.e., is a particular version of hs ⊕ hs Chern-Simons
theory.11 The spectrum of massless (higher spin) fields
can be read off from the decomposition of hs into sl2
modules Vj, dimVj ¼ 2jþ 1, according to (2.9):

Vj ⇔ spin ¼ ðj − 1Þ: ð3:7Þ
There is also a one-parameter family of associative algebras
hsðλÞ.12 Using the conventions introduced above, hsðλÞ is
defined as a quotient

hsðλÞ ¼ Uðsl2Þ=Iλ; Iλ ¼ Uðsl2Þ½C2 þ ðλ2 − 1Þ�: ð3:8Þ
For generic λ the algebra is infinite-dimensional and decom-
poses intoV0 ⊕ V1 ⊕ V2 ⊕ …. The singletV0 corresponds

to uð1Þ, cf. (3.3), and can be removed after passing to the Lie
algebra. An interesting property of hsðλÞ is that for λ ∈ Z it
develops a two-sided ideal Jλ such that the quotient is gljλj.
Note that gljλj decomposes as

glλ ¼ V0 ⊕ V1 ⊕ … ⊕ Vλ−1 ð3:9Þ
with respect to the principal sl2 embedding. Therefore, the
ideal Jλ decomposes as

Jλ ¼ Vλ ⊕ Vλþ1 ⊕ …: ð3:10Þ
This gives an example of a higher spin algebra that does not
contain the gravitational subalgebra, sl2 in this case.
Therefore, the resulting higher spin theory is background
dependent, i.e., of the form (3.5). It is unclear if a non-
degenerate invariant bilinear form exists (in principle, it can
be obtained by dropping the leading zero in [112]).
Conformal higher spin algebras. The construction above

can be applied to the conformal algebra g ¼ soð3; 2Þ, as
was done in [45]. Without going into too many details, a
large class of finite-dimensional conformal higher spin
algebras can be constructed by taking V to be any finite-
dimensional irreducible representation of soð3; 2Þ [or
soð4; 1Þ, the signature being irrelevant here]. For example,
taking V to be the spinorial representation •1=2 we get

ð3:11Þ

which was studied in [43]. For the vector representation we
find

ð3:12Þ

and for the rank-two symmetric representation:

ð3:13Þ

where • corresponds to uð1Þ that can be decoupled. The
spectrum of conformal fields can be read off with the help

of dictionary (2.21). These algebras have also an inter-
pretation as partially-massless higher spin algebras in
ðAÞdS4 [113].

B. New partially-massless higher spin gravities

Wewould like to construct a class of higher spin theories
that contain partially-massless fields. The crucial step is
just to look at the dictionary (2.13)

δΦaðsÞ ¼ ∇a…∇a
zfflfflfflffl}|fflfflfflffl{t

ξaðs−tÞ ⇔ Ωαð2s−t−1Þ; _αðt−1Þ;

Ωαðt−1Þ; _αð2s−t−1Þ: ð3:14Þ

11Let us note, see also [69] for the gravity case, that any
nondegenerate linear combination k1SCSðALÞ þ k2SCSðARÞ of
two Chern-Simons actions for hs is equivalent at the level of
equations of motion to the difference, i.e., to the case k1 ¼ −k2.
However, it is only the difference that can be mapped to the
Einstein-Hilbert action and, for free higher spin fields, to the
Fronsdal action. The difference is also singled out as the unique
parity-even action. While the classical equations are equivalent/
identical for all k1k2 ≠ 0, the central charges and other character-
istics can differ.

12It was first defined in [110] and dubbed glλ because it
interpolates between all gln, n ¼ 1; 2; 3;…, see also [111].
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In general, the two connections are charged with respect to
both sl2, which is elusive for the purely massless case,
t ¼ 1. Since g ¼ sl2 ⊕ sl2, irreducible representations V of
g are parametrized by two irreducible representations of
sl2. If the modules are finite-dimensional we have V ¼
Vj1 ⊗ Vj2 and the general construction of hsðVÞ still
works:

hsðVÞ ¼ ðVj1 ⊗ Vj1Þ ⊗ ðVj2 ⊗ Vj2Þ
¼ ⨁

k1¼0;1;…;2j1

⨁
k2¼0;1;…;2j2

Vk1 ⊗ Vk2 : ð3:15Þ

The very first component in the sum k1 ¼ k2 ¼ 0 corre-
sponds to the uð1Þ-factor that decouples. Two terms with
ðk1; k2Þ equal (1,0) and (0,1), respectively, give an embed-
ding of sl2 ⊕ sl2 into hs. The rest corresponds to massless
fields, which occur for k1k2 ¼ 0, and to partially-massless
fields for k1k2 ≠ 0.
The massless case fits into this more general picture and

corresponds either to j1 ¼ 0 or to j2 ¼ 0. For example, for
j1 ¼ j and j2 ¼ 0 we find exactly (3.9)

hsðVÞ ¼ ðVj ⊗ VjÞ ⊗ ðV0 ⊗ V0Þ
¼ ⨁

k¼0;1;…;2j
Vk ⊗ V0 ¼ gl2jþ1 ⊗ gl1: ð3:16Þ

The second factor is trivial and we get hsðVÞ ¼ gln,
n ¼ 2jþ 1. Upon excluding the trivial uð1Þ we find sln
with the principal embedding of sl2.
It is worth noting at this point that partially-massless

fields are described by conjugate pairs of sl2 ⊕ sl2 mod-
ules, (3.14). Since spinning fields naturally split into chiral
and antichiral parts, it makes sense to consider chiral
theories where some of the fields are represented by an
(anti)chiral half. For instance, the Chern-Simons theory of
hsðVÞ from (3.15) for j1 ≠ j2 will give such examples. For
j1 ¼ j2 algebra hsðVÞ is self-conjugate, i.e., contains
conjugate pairs of modules, and the Chern-Simons action
gives a nonchiral theory. In both cases the spin-two sector is
represented by a sum of two sl2 Chern-Simons actions,
rather than by a difference. The same is true for the free
actions of higher spin fields for the nonchiral case j1 ¼ j2,
c.f. Footnote 11. Therefore, such a construction does give
examples of partially-massless theories at the level of
equations of motion. Note that at the linearized level the
proposed action is not equivalent to the sum of standard
actions for partially-massless fields [70,71,92], c.f. (2.16).
However, due to the topological nature of partially-
massless fields in 3D the question of which action is
preferable cannot be directly determined from the first
principles, which is in contrast to propagating fields.
Another option is to take a difference of two Chern-

Simons actions for hsðVÞ and hsðVTÞ, where VT ¼
Vj2 ⊗ Vj1 . In this case, each of the two actions has its
own spin-two subsector. At the free level one can choose

them to be the same and given by an AdS3 flat connection,
which results in the desired difference as in (2.16).
Therefore, this class of theories satisfies all the usual
assumptions of the Noether procedure and can be inter-
preted as interacting theories with partially-massless fields
over the AdS3 background. It would be interesting to see if
other examples of finite-dimensional partially-massless
higher spin algebras can be found.
Lastly, it is instructive to see how the hereabove con-

struction of the partially-massless higher spin algebras can
be related to that in generic dimensions [96,113–115]. In
d > 3 there is a one-parameter family of such algebras
defined as a quotient of Uðsoðd; 2ÞÞ by a certain two-sided
ideal. In d ¼ 3, however, due to the degeneracy caused by
isomorphism soð2; 2Þ ∼ sl2 ⊕ sl2, there is a two-parameter
family of algebras hsðλ1Þ ⊗ hsðλ2Þ. Then, (3.15) corre-
sponds to λ1;2 being the values of the Casimir operators
on Vj1;2 .

C. Comments on the metriclike formulation

Going from the Chern-Simons formulation to the metric-
like one is not impossible, but is very difficult in practice,
see e.g., [7]. Several seemingly nontrivial features of the
metriclike formulation get a very simple interpretation in
the Chern-Simons one. For example, consider massless
fields in AdS3, where the equations look schematically as
follows:

∇eþ h ∧ ω ¼ −ω ∧ e; ∇ωþ ω ∧ ωþ e ∧ e ¼ 0;

ð3:17Þ

where e is a (higher spin) dreibein,ω is a (higher spin) spin-
connection, h is an AdS3 dreibein. Both e and ω contain a
number of higher spin fields, in accordance with a given
higher spin algebra. The first equation is a constraint to be
solved for ω order by order. The second equation is the
dynamical equation for the Fronsdal fields.
One starts with a free field e1 (first order) that is

equivalent to a collection of Fronsdal fields Φ1. We solve
for ω1 in terms of ∇Φ1. At the next order e2 is expressed in
terms of Φ2 and ω2 is solved as ∇Φ2 þΦ1∇Φ1 and so on.
The nonlinearities grow, but the spin-connection is always
expressed in terms of the first order derivatives of the
Fronsdal fields.
It is convenient to use sl2 spin j instead of the spin s (the

rank of the Fronsdal tensor), the two being related by
j ¼ ðs − 1Þ. As is clear from (3.17) and from the Chern-
Simons action, the vertices are constrained by the sl2 tensor
product rules: we cannot possibly form a singlet unless
there exists a triangle with edges of lengths j1;2;3. The same
rules apply when solving for ω at higher orders: ω ∧ e can
contribute Φ∇Φ to ω only if a triangle can be formed. As a
result, the simple cubic Chern-Simons interaction generates
an infinite tower of interaction vertices in the Fronsdal

GRIGORIEV, MKRTCHYAN, and SKVORTSOV PHYS. REV. D 102, 066003 (2020)

066003-8



formulation subject to certain selection rules. At any given
order n, only those Fronsdal fields can form a vertex for
which Vj1 ⊗ … ⊗ Vjn contains the singlet V0. This gives
exactly the polygonal constraints discovered in [37].
The latter considerations imply the following constraints

for the CFT correlation functions of higher spin currents
Ji1…is that are dual to Fronsdal fields Φa1…as . Only those
correlation functions of Js may not vanish for which Vj1 ⊗
… ⊗ Vjn contains the singlet representation V0 [37]. Note
that if some of the spins are equal and represent the same
fields/operators then we find more constraints as some of
the tensor products need to be projected onto the (anti)
symmetric parts thereof.
There is one more important consequence of the fact that

all matter-free higher spin gravities are of the Chern-
Simons type: we have only two independent types of
cubic vertices. Indeed, any massless or partially-massless
theory is based on hs ⊕ hs for some hs ⊃ sl2. Rewriting
the action in terms of dreibein e and spin-connection ω
instead of ΩL and ΩR we see, schematically, the following
two cubic vertices13

Vo;e ¼
Z

ω ∧ ω ∧ ωþ e ∧ e ∧ ω;

Ve;o ¼
Z

e ∧ ω ∧ ωþ e ∧ e ∧ e: ð3:18Þ

In the pure gravity case the second one corresponds to the
Einstein-Hilbert action with the cosmological constant and
is even. The first one is odd (if we define parity by the
behavior under ω → −ω). As is discussed above, in the
Fronsdal formulation both types of vertices generate an
infinite number of metriclike vertices, cubic, quartic and so
on. It is also clear that Vo;e leads to vertices with three
derivatives followed by a one-derivative term, while Ve;o

leads to vertices with two derivatives followed by a zero-
derivative term. This is in accordance with the classification
of [35,36] provided the definition of parity is related to the
number of ϵ-tensors in the metriclike formulation.
Therefore, we obtain a highly nontrivial result from the

metriclike point of view: (1) there are only two independent
cubic vertices for any given three spins j1;2;3 that can form a
triangle; (2) there are no independent higher order vertices,
while the cubic ones entail higher order vertices such that
one can draw a polygon with edges of length ji [37].
The same statements are true for partially-massless

fields with the obvious replacement of j ¼ s − 1 with
jL ¼ s − ðtþ 1Þ=2, jR ¼ ðt − 1Þ=2. There are two inde-
pendent cubic vertices for any given three spins s1;2;3 and
depths t1;2;3 if the tensor products VjL

1
⊗ VjL

2
⊗ VjL

3
VjR

1
⊗

VjR
2
⊗ VjR

3
contain the singlet. There are no independent

higher order vertices. This gives a classification of vertices
involving partially-massless fields.
Analogously, the only independent vertices of conformal

higher spin fields are cubic ones and they are in one-to-one
with the singlets in the tensor product of soð3; 2Þ-modules
described in (2.18). Note that the tensor product of two
soð3; 2Þ-modules is not multiplicity free in general.
Therefore, as different from the partially-massless case,
there can be several independent cubic vertices of three
given conformal fields.

IV. BOOTSTRAPPING 3D HIGHER
SPIN THEORIES

Using Fronsdal fields as an example we now discuss in
some details the relation between metriclike and framelike
formulation within the BV-BRST approach. In particular,
we spell out explicitly the relation between cubic vertices in
these formulations in generic dimension. In the case of a
theory without local degrees of freedom and without
nontrivial reducibility relations among gauge transforma-
tions the structure of the theory can be explicitly described
at the level of equations of motion. In 3D and under usual
assumptions (which hold for partially-massless and con-
formal fields) the system takes the form of a Chern-Simons
theory.

A. BV-BRST formulation of Fronsdal fields

The conventional approach to constructing BV-BRST
formulation of Fronsdal fields on Minkowski space is to
start with Fronsdal Lagrangian or equations of motion and
build the BV-BRST formulation following the standard
prescription. However an equivalent and concise BV-BRST
description can be constructed starting with the partially
gauge-fixed formulation, where

□Φ ¼ ð∂x · ∂pÞΦ ¼ ð∂p · ∂pÞΦ ¼ 0; δΦ ¼ ðp · ∂xÞΞ:
ð4:1Þ

Here we use generating functions ΦðxjpÞ and ΞðxjpÞ for
fields and gauge parameters (Taylor coefficients in pa

encode Fronsdal fields). Gauge parameters Ξ are also
subject to the same equations as Φ. This gauge is known
as the (on-shell) transverse-traceless gauge. Nevertheless,
one can show that starting from (4.1) one can, in fact,
reconstruct a fully gauge invariant formulation using the
parent formalism [5,61,62] so that there is no loss of
generality.
Replacing xa with formal variables ya (i.e., generating

functions are formal power series in y) and treating
component fields of Ξ as ghost fields, Eqs. (4.1) determine
the BRST jet-space for the system. Note that strictly
speaking this is not a jet-bundle but rather its sub-bundle
because coefficients of Φ and Ξ are subject to differential
(in ya) constraints similar to (4.1).13See [116,117] for an earlier discussion of interactions in 3D.
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The jet-space is coordinatized by components ofΦ and Ξ
as well as by spacetime coordinates xa and their differ-
entials θa ¼ dxa which we treat as Grassmann-odd coor-
dinate of ghost degree 1. There are two differentials (odd
nilpotent vector fields of ghost degree 1) defined on the jet-
space functions. The first is the BRST differential encoding
gauge transformations and the second one is the horizontal
differential encoding the equations of motion. The BRST
differential is given by:

γΦ ¼ ðp · ∂yÞΞ; γΞ ¼ 0: ð4:2Þ
For instance for the spin-two field Φab contained in Φ one
gets

γΦab;c1…ck ¼ ξa;bc1…ck þ ξb;ac1…ck ; ð4:3Þ
where the convention is to put spin indices first and those
associate to y-variables (i.e., derivatives) after the separator.
The horizontal differential has the form Dh ¼ θaDa where
the action of the total derivative operatorDa on coordinates
on the jet-space is defined via:

DaΦ ¼ ∂
∂ya Φ; DaΞ ¼ ∂

∂ya Ξ; Daxb ¼ δba: ð4:4Þ

Functions on the above jet-space form a particularly useful
version of the BRST complex for Fronsdal fields (of
course, it is not unique and is defined up to equivalence).
It is convenient to introduce total differential Q0 ¼ Dh þ γ
which carries one unit of ghost degree. The ghost degree is
determined by prescribing ghðΞÞ ¼ 1 and ghðθaÞ ¼ 1.
The jet-space equipped with the ghost degree and total

differential Q0 encodes all the information about the gauge
theory. In particular, equations of motion and gauge
symmetries can be read off [62] from Q0. More precisely,
if ΨAk collectively denotes all the ghost degree k coor-
dinates on the jet-space save for spacetime coordinates xa

and their differentials θa, then one promotes each ΨAk to a
field ΦAkðx; θÞ of homogeneity degree k in θ, i.e., it can be
seen as a spacetime k-form with k ¼ ghðΨAkÞ. We also
assume that ΦAk ¼ 0 for k < 0. Note though that for the
higher spin system under consideration negative degree Ψ
are not present anyway. Then one subjects ΦAk to the
following equations [62,63]:

dXðΦAkðx; θÞÞ ¼ ðQ0ΨAkÞjΨBl¼ΦBl ðx;θÞ: ð4:5Þ
Here dX is the exterior differential. Note that for k ¼ −1 the
LHS is trivial while for k < −1 both LHS and RHS vanish
identically. In a similar way one defines gauge trans-
formations. The above system can be seen as a far-going
generalization of the AKSZ-type sigma model [118] and in
fact can be inferred from AKSZ equations of motion if one
starts with the parametrized system to begin with, see [5]
for more details.
In contrast to the conventional BV-BRST approach to

local gauge theories, which operates in terms of

jet-bundles, in the present context we employ more general
underlying spaces (roughly speaking those with differential
constraints on fields and ghosts) and a more flexible notion
of equivalence which does not respect the decomposition of
Q0 into space-time part and field-space parts. This allows
for a very concise formulation of the theory. Remarkably,
one can always reconstruct a usual field theoretical for-
mulation of the system through e.g., (4.5) just in terms
of the total differential and in terms of fields valued in
the underlying (possibly constrained) jet-space. This
approach to general gauge theories was originally devel-
oped [4,5,61,62] under the name of parent formulation. Its
more invariant and geometrical version was proposed
recently in [63], where it was also explicitly related to
the invariant approach to PDEs [48] (for a review see e.g.,
[49,119]). In particular, the BRST complex with total
differential Q0 can be seen as a BRST extension of the
infinitely prolonged PDE. It is also worth mentioning close
relation to the unfolded formalism [120–122] developed in
the context of higher spin theory.
Equations (4.5) have a simple geometrical interpretation

[63]: fields are components of a section σ∶T½1�X → “jet-
space” (jet-space is naturally a bundle over T½1�X, i.e., the
spacetime X extended by θa), i.e., ΦAkðx; θÞ ¼ σ�ðΨAkÞ,
where σ� is a pullback map induced by σ, while the
equations of motion (4.5) say that σ is a Q-map (i.e.,
dX ∘ σ� ¼ σ� ∘Q0, or in other words σ� is a map of the
respective homological complexes). Gauge transformations
correspond to trivial deformations of σ, i.e., those of the
form δϵσ

� ¼ dX ∘ ϵ� þ ϵ� ∘Q0 for some map ϵ� of degree
−1, which encodes gauge parameters.
In the case at hand the above procedure amounts to

promoting Φ to a spacetime field Φðxjy; pÞ and Ξ to a one-
form field Ξðx; θÞ ¼ θbΞbðxjy; pÞ. In these terms the
equations of motion take the form [61]:�
dX − θa

∂
∂ya

�
Φ ¼ p · ∂yΞ;

�
dX − θa

∂
∂ya

�
Ξ ¼ 0:

ð4:6Þ
Note that it goes without saying that the y-space version of
(4.1) is imposed on Φ, Ξ. Further details can be found e.g.,
in Sec. V of [5] and references therein.

B. Minimal model

When studying local BRST cohomology it can be very
convenient to work with the “minimal” version of the
BRST complex. Practically, this can be obtained by
eliminating the maximal amount of contractible pairs14

for the total BRST differential Q0. This approach was

14By contractible pairs we mean pairs of independent coor-
dinates ui, wi such that ui ¼ Q0wi. It can be shown that under
certain assumptions their elimination, i.e., setting ui ¼ wi ¼ 0
produces an equivalent BRST complex.

GRIGORIEV, MKRTCHYAN, and SKVORTSOV PHYS. REV. D 102, 066003 (2020)

066003-10



extensively used in [64–67], though the idea of using the
total differential and somewhat implicit version of the
minimal model for usual gauge theories was already in
[123,124].
If by elimination of contractible pairs the underlying jet-

space remains the bundle over the spacetime manifold
extended by basis differentials θa then such elimination is
an equivalence not only of homological complexes but also
of local gauge field theories.15 In particular, one can
reconstruct an equivalent formulation of the theory in
terms of the reduced complex. This gives a powerful tool
to construct new equivalent formulations of a given gauge
system.
In the case at hand the minimal formulation is con-

structed by eliminating the maximal amount of contractible
pairs for Q0. Contractible pairs are easily identified as
originating from those for the BRST differential γ. Since γ
is determined by the operator p · ∂

∂y, coordinates that are not
contractible pairs are associated to the kernel and cokernel
of this operator. These coordinates are encoded in the gen-
erating functions satisfying p · ∂

∂yΞ ¼ 0 and y · ∂
∂pΦ ¼ 0,

so that the component fields are precisely the familiar
tensors [29] associated to the two-row Young tableaux.
Denoting by Ξ̄ and Φ̄ generating functions for the

remaining fields in ghost degree 1 and 0, respectively,
the reduced differential is given by [61]

Q̄0xa ¼ θa; Q̄0Φ̄ ¼ Π
�
θ ·

∂
∂y

�
Φ̄;

Q̄0Ξ̄ ¼
�
θ ·

∂
∂y

�
Ξ̄þ μðΦ̄Þ; ð4:7Þ

where Π denotes the projector onto the kernel of y · ∂
∂p and

the last term is linear in Φ̄ and quadratic in θa. Note that in
the minimal formulation Q̄0 does not respect the form
degree and, hence, it cannot be represented as a sum of the
spacetime and of the field parts. In particular, interaction as
well as other physical objects are described by Q0-
cohomology.
The equations of motion (4.5) determined by the above

Q̄0 are nothing but the equations of the unfolded formu-
lation of Fronsdal fields, which were originally arrived at
from different perspective long before, see [120–122] and
references therein. Note that although we started with the
metriclike formulation of the Fronsdal system what we
have arrived at by resorting to the BRST description
followed by a reduction to its minimal model is the
unfolded formulation, which is (an extension of) the
framelike one. As we are going to see the same happens

at the level of interaction vertices. The interactions in terms
of the minimal BRST formulation naturally reproduce
framelike vertices. More precisely, framelike vertices cor-
respond to Q̄0-cohomology of degree d. Given a Q̄0-
cocycle V the explicit form of the vertex can be written
as

R
T½1�X σ

�ðVÞ. In this work we refrain from discussing
explicit realization of framelike vertices in d > 3 and
postpone the discussion of 3D framelike vertices for
Sec. IV F.
The above discussion applies to Fronsdal fields in any

spacetime dimension d. In 3D Φ̄ vanish for spin grater
than one. In what follows we assume that spin-0 is not
present while we set Φ̄ ¼ 0 by hands for spin-one. This of
course amounts to considering the topological spin-one
field rather than Maxwell spin-one field.
Under these assumptions the minimal model for the

BRST complex takes a rather concise form:

Q̄0xa ¼ θa; Q̄0θ
a ¼ 0; Q̄0Ξ̄ ¼ θ ·

∂
∂y Ξ̄: ð4:8Þ

Let us recall that generating function Ξ̄ðy; pÞ is subject to
p · ∂

∂y Ξ̄ ¼ 0 along with ∂
∂p ·

∂
∂p Ξ̄ ¼ 0, giving the irreduc-

ibility conditions on the coefficients. Note that the equa-
tions of motion (4.5) withQ0 replaced with the above Q̄0 is
precisely the framelike (2.3) or (2.5) equations in flat space
if we identify 1-form fields entering Ξ̄ as e and ω.16

In terms of the minimal model it is easy to switch from
flat space to the constant curvature space (for definiteness
AdS space). The only difference is that ∂

∂ya in θ · ∂
∂y gets

modified into a certain linear operator ωa acting on the
linear spaceA associated to Ξ̄ (in the case at hand this is the
space of polynomials in ya, pa annihilated by p · ∂

∂y and
∂
∂p ·

∂
∂p; of course the same space is more conveniently

described in terms of sl2 tensors). In these terms coef-
ficients AI of Ξ̄ can be seen as coordinates on A½1�, i.e., a
supermanifold associated to A and whose coordinates are
odd and of ghost degree 1. Then

Q̄0xa ¼ θa; Q̄0θ
a ¼ 0; Q̄0AI ¼ θmωm

I
JAJ:

ð4:9Þ

Of course, ωm
I
J have a meaning of the coefficients of a

flat connection of AdS algebra (in the representation A). A
systematic derivation of the BRST description of Fronsdal
fields in AdS space can be found in [125].
Furthermore, the minimal BRST complex for partially-

massless or conformal fields in 3D is also of the form (4.9).
The only difference is that the moduleA has to be replaced

15In terms of the field theory determined by Q0 through (4.5)
elimination of such contractible pairs corresponds to fixing
Stueckelberg gauge (for gauge) symmetries and elimination of
auxiliary fields, see [62,63] for more details.

16In (4.8) we do not take an advantage of dualizing the spin-
connection ωa1…as−1;b into ωa1…as−1 as in (2.3). See also below for
the sl2 realization of the same modules.
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with the respective module of the global symmetry algebra
and ωm

I
J with the coefficients of a flat connection of the

symmetry algebra describing the background geometry.
Both A and ωm

I
J can be read off from the framelike

description reviewed in Sec. II. That the resulting minimal
BRST complex in this case is equivalent to the conven-
tional BRST complex in terms of metriclike fields can
be immediately checked by e.g., obtaining the minimal
form of BRST complexes for partially-massless and con-
formal fields that can be taken from e.g., [96,126,127],
respectively.
As we reviewed in Sec. II, in the case of fields on AdS3,

it is more useful to describeA in terms of sl2 tensors. More
precisely, a spin-s field gives rise to A, which runs over a
direct sum of two sl2-modules Vs−1, i.e., Aαð2s−2Þ, A _αð2s−2Þ.
In general, for partially-massless fields we haveA given by
V2s−t−1 ⊗ Vt−1 ⊕ Vt−1 ⊗ V2s−t−1 of sl2 ⊕ sl2.

17 At this
point we do not have to make any assumptions about the
spectrum of fields that I runs over, i.e., aboutA. Also, even
though we are primarily concerned with the partially-
massless fields, conformal fields are also covered by taking
I to run over soð3; 2Þ-modules described in Sec. II. In the
latter case ω is an soð3; 2Þ flat connection.
More generally, the structure of the linear BRST com-

plex (4.9) is unchanged even if we consider a general linear
gauge system in generic dimension without local degrees of
freedom (so that the only degree-zero coordinates are xa)
and no nontrivial reducibility identities between gauge
generators (so that there are no coordinates of degree 2 and
higher). It follows, the discussion of possible nonlinear
completions given in the following sections fully applies to
generic theories of this kind. The only difference is that A
and the flat connection describing the background are
different.

C. Deformation theory and interactions

Suppose there is an interacting theory that has total
differentialQ0 as a linearization. ExpandingQ in powers of
fields one gets ½Q0; Q1� ¼ 0. At the same time, trivial
deformations correspond toQ1 ¼ ½Q0; T1� ¼ 0 for some T1

with ghðT1Þ ¼ 0, i.e., interactions are controlled by coho-
mology of Q0 in vector fields of ghost degree 1. This is a
non-Lagrangian version [61] of the standard BV-BRST
approach to consistent deformations of Lagrangian gauge
theories [59].
If the theory in question admits Lagrangian formulation

(the one we are talking about does) the interactions are
parametrized by the Q-cohomology in the space of local
functions of ghost degree d (spacetime dimension) [59].
It is important to stress that Q-cohomology is invariant

under elimination of contractible pairs. That is why one can

use any (e.g. minimal) formulation, not necessarily
Lagrangian to compute the cohomology.
It turns out that in the case at hand (conformal or

partially-massless fields in 3D or generic theory without
local degrees of freedom and nontrivial reducibility iden-
tities) the problem of cubic vertices is substantially sim-
plified because in the minimal formulation the only
coordinates of vanishing ghost degree are spacetime
coordinates xa. More precisely, the BRST complex is
given by the algebra of functions in degree 1 coordinates
AI , θa and degree 0 coordinates xa.
If one in addition insists on the translation invariance,

cocycles cannot depend on xa so that it is enough to analyze
the cohomology of the total differentialQ0 in theGrassmann
algebra generated by AI, θa. In particular, those of degree 3
(and hence cubic in the coordinates) correspond to nontrivial
vertices. Despite the fact that quartic vertices cannot appear
there is a consistencycondition at thenext order ensuring that
the deformed gauge transformations form an algebra.

D. Structure of the gauge invariant EOMs
in the general case

It turns out that in the case at hand there is no need to
construct interactions perturbatively because it is not
difficult to describe explicitly the structure of the most
general BRST differential. To begin with, we restrict our
analysis to the level of equations of motion. Let A be a
linear space such that AI are coordinates on A½1� (i.e., A
with the degree of coordinates shifted by 1). In practice, I
runs over a direct sum of either sl2 ⊕ sl2 or soð3; 2Þ
modules or just generic linear space. Consider a general
gauge theory whose minimal BRST formulation involves
some AI of ghost degree 1, spacetime coordinates xa and
their differentials θa.
It follows from the general considerations [62] (see also

[63] for a more geometrical explanation) that BRST
differential can be assumed to have the following structure:

Q ¼ θa
� ∂
∂xa þ ΩJ

aIðxÞAI ∂
∂AJ

�
þ fKIJðxÞAIAJ ∂

∂AK :

ð4:10Þ
The term linear in θa defines a linear gauge system. In fact
this is a general form of a degree 1 differential that projects
to dX. Explicitly, this condition reads as, Qxa ¼ θa

and Qθa ¼ 0.
The nilpotency of Q implies that (1) ΩJ

aI are coefficients
of a flat glðAÞ connection; (2) fKIJðxÞ are covariantly
constant� ∂
∂xa f

K
IJðxÞ þΩM

aIðxÞfKMJðxÞ þ ΩM
aJðxÞfKIMðxÞ

−ΩK
aMðxÞfMIJðxÞ

�
AIAJ ¼ 0; ð4:11Þ

17Here we adopt different notations compared to [72]. Here,
the massless case corresponds to t ¼ 1, while there it was t ¼ 0.
The finite-dimensional modules Vt here correspond to Rtþ1

2
there.
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with respect to Ω; (3) fKIJðxÞ determine a Lie algebra
structure on A for any x.
Suppose that A is an g-module and Ω originates from a

g-connection [this is the case for all known topological
higher spin theories in 3D, g being sl2 ⊕ sl2 or soð3; 2Þ].
Then it follows that the linearized theory determined by
Q0 ¼ θað ∂

∂xa þ ΩJ
aIA

I ∂
∂AJÞ is manifestly g-invariant. Indeed,

let ϵIJðxÞ be an g-valued covariantly constant section. Then
the action of g on the BRST complex can be defined by the
following Q0-invariant vector field of degree 0:

Z ¼ ϵIJA
J ∂
∂A I: ð4:12Þ

Its Q0-invariance amounts to covariant constancy of ϵ.
Vector field Z represents the action of a global symmetry.
Recall that at the level of equations of motion global
symmetries are represented by ghost degree zero Q-
invariant vector fields, while trivial symmetries correspond
to Q-exact vector fields. The latter are the symmetries that
are proportional to gauge symmetries.
Having in mind the Noether procedure, which is a

perturbative approach of constructing consistent inter-
actions starting from a free theory in a given spacetime
with a symmetry algebra g, we have by default that the full
interacting theory is g-invariant. If now we insist that the
global g-symmetry is also a symmetry of the entire Q we
conclude that fKIJ is an invariant tensor. Then its covariant
constancy implies that it is x-independent.
Let us summarize what we have learned so far: given a

collection of conformal or partially-massless higher spin
fields on AdS or Minkowski space (without matter and with
the spin-one and maximal depth partially-massless fields
taken to be topological), the most general interacting theory
(at the level of equations of motion) that is invariant with
respect to an isometry algebra g is determined by a g-
invariant Lie algebra structures onA. The associated BRST
differential has the form (4.10).
A natural question is whether Q arises as an expansion

about some vacuum solution of a background independent
theory. If this is the case the background independent
theory we are talking about is the one determined by

Q0 ¼ dX þ fKIJA
IAJ ∂

∂AK : ð4:13Þ

It is clear that for (4.10) to be an expansion of the above Q0
about a vacuum solution it is necessary thatA contains g as
a subalgebra and that the g-module structure of A arises
from the adjoint action of g on A.
Such strong algebraic conditions are not always satisfied

so that there can be, in principle, higher spin theories that
are not of Chern-Simons-type, at least at the level of
equations of motion. In particular, one such example of a
background-dependent theory is given in Sec. III A.

E. Diffeomorphism invariance condition

Another condition that immediately forces the theory to
be of Chern-Simons-type is the requirement that the full
interacting theory is diffeomorphism invariant. The BRST
formulation of diffeomorphism invariant theories is such
that x, θ-dependence factorizes. In other words, performing
a local change of variables one can bringQ to the following
form:

Q ¼ dX þ Q̄; ð4:14Þ

where Q̄ does not explicitly involve xa, θa.
Suppose that the interacting higher spin theory we are

looking for is diffeomorphism invariant. It is then deter-
mined by some Q̄ which is independent of xa, θa. The
general form of such ghost degree 1 vector field is

Q̄ ¼ AIAJUK
IJ

∂
∂AK : ð4:15Þ

Let us recall that the underlying linear space A (AI are
coordinates on A½1�) is, in our case, a direct sum of a
number of sl2 ⊕ sl2 or soð3; 2Þ modules, associated to the
fields present in the model. Tensor U (now it has to be
x-independent) determines a bilinear map A ∧ A → A,
while Q2 ¼ 0 ensures that this map is a Lie algebra
structure on A.
To summarize, what we have arrived at is precisely the

BRST differential of the Chern-Simons theory. Requiring it
to be Lagrangian implies that A is equipped with an
invariant inner product which allows us to write down
(BV master)action if the spacetime dimension is 3.

F. Metric like vs framelike vertices

The proper set up for cubic vertices in the metric like
approach deals with BV-BRST formulation of the linear
theory. The underlying space is the jet-bundle of the theory
extended by ghosts and antifields. We keep denoting
generating functions for fields, ghosts and their space-
time derivatives Φ, Ξ, but now we only subject them to
ð∂p · ∂pÞΞ ¼ 0 and ð∂p · ∂pÞ2Φ ¼ 0, i.e., the transverse-
traceless gauge is not assumed from the onset.
This space is equipped with the horizontal differential

Dh ¼ θaDa, gauge differential γ and Koszul-Tate differ-
ential δ so that the total differential is

s̃ ¼ Dh þ γ þ δ: ð4:16Þ

If Φ�ðy; pÞ, Ξ�ðy; pÞ denote generating functions for anti-
fields conjugate to Φ and Ξ, respectively, then δΦ� ¼ FΦ
and δΞ� ¼ Πð∂p · ∂yÞΦ�, where F defines Fronsdal action
through hΦ;FΦijy¼0 and Π is a projector to the kernel of
∂p · ∂p. Differential γ acts trivially on antifields and Ξ,
while its action on fields is determined by γΦ ¼ ðp · ∂yÞΞ

MATTER-FREE HIGHER SPIN GRAVITIES IN 3D: … PHYS. REV. D 102, 066003 (2020)

066003-13



so that it indeed coincides with γ introduced in (4.2) when
reduced to the surface where ð∂p · ∂yÞΦ ¼ ð∂y · ∂yÞΦ ¼
ð∂p · ∂pÞΦ ¼ 0, ð∂p · ∂yÞΞ ¼ ð∂y · ∂yÞΞ ¼ 0, and anti-
fields are set to zero.
The cubic vertices are described by s̃ cohomology in

ghost degree d (spacetime dimension, in our case d ¼ 3).
Under the usual assumptions that we are working locally in
both the spacetime and in the field space the cohomology of
Dh is known to be nontrivial only in degree d in θa. This
implies that s̃ cohomology is isomorphic to s ¼ δþ γ
cohomology in the space of local functionals, i.e., local
d-forms considered modulo Dh-exact ones. More precisely,
decomposing a general cocycle V, s̃V ¼ 0 with respect to
form degree

V ¼ Vd þ Vd−1 þ � � � þ V0; ð4:17Þ
one finds that Vd satisfies

ðγ þ δÞVd ¼ −DhVd−1; ð4:18Þ
which implies that antifield-independent piece Vdj0 of Vd is
gauge invariantmoduloequationsofmotion (δ-contribution)
and total derivative (Dh-contribution).
Other way around, given an antifield-independent Vdj0

that is on-shell gauge-invariant modulo a total derivative
one can recursively reconstruct a s̃-cocycle V using
acyclicity of Dh in form degree < d and acyclicity of δ
in nonvanishing antifield degree. In other words, inequi-
valent cubic vertices are in one-to-one with s̃-cohomology
in ghost degree d and restricted to elements cubic in fields.
This conventional BV-BRST complex can be equiva-

lently reduced to a smaller complex presented in Sec. IVA.
Before explaining details of the reduction let us recall a
useful geometrical interpretation [61] of the equivalent
reduction of BRST complexes of the above type, which
also applies to generic Q-manifolds. Namely, the reduction
can be understood as a restriction to the submanifold of the
jet space which is locally determined by the equations
wa ¼ 0, s̃wa ¼ 0, where variables wa are chosen in such a
way that s̃wa are independent functions. Such variables are
known as contractible pairs, while the reduction is a natural
equivalence of Q-manifolds. It is clear that s̃ is tangent to
the submanifold and hence makes an algebra of local
functions on the submanifold into a homological complex.
Under certain regularity conditions this equivalence is a

quasi-isomorphism of the corresponding BRST complexes
(here we also disregard global geometry issues as we are
focused on linear systems). The map that induces isomor-
phism in cohomology is simply the restriction to the
submanifold. Upon the elimination of contractible pairs
cocycle V gives rise to a Q0-cocycle V 00 ¼ Vjwa¼s̃wa¼0

representing the same cohomology class. It is often referred
to as a homotopy transfer of V.
Let us spell out the reduction leading to the BRST

complex of Sec. IVA in some more details. It is convenient

to split it into two steps. At the first step one eliminates
contractible pairs wi, swi, where wi are all the antifields and
their spacetime derivatives (i.e., coefficients ofΦ�, Ξ�). It is
easy to check that equations wi ¼ 0, s̃wi ¼ 0 also impose
the equations of motion and all their derivatives, so that the
reduced complex is that of functions on the stationary
surface extended by ghost variables and their derivatives
and the differential being γ̃ ¼ ðγ þ DhÞjwi¼s̃wi¼0 (some-
times it is called on-shell BRST complex). Upon the
elimination of wi, s̃wi cocycle V gives rise to a γ̃-cocycle
V 0 ¼ Vjwi¼s̃wi¼0 representing the same cohomology class.
At the next step one eliminates wβ and γ̃wβ with wβ being

all the traces and divergences of the fields. It is easy to
check that wβ ¼ 0, γ̃wβ ¼ 0 also sets to zero ð∂y · ∂yÞΞ and
ð∂y · ∂pÞΞ, so that we indeed arrive at the BV-BRST
formulation given in Sec. IVA. It is then not difficult to
obtain a homotopy transfer V00 of V. According to the
general prescription it is obtained by restricting V 0 to the
surface determined by wβ ¼ γ̃wβ ¼ 0.
In fact it is also easy to obtain V 00 directly from V.

Indeed, V 00 coincides with V where one sets to zero all
the antifields as well as the components of Φ, Ξ enter-
ing ð∂y · ∂yÞΦ, ð∂y · ∂pÞΦ, ð∂p · ∂pÞΦ and ð∂y · ∂yÞΞ,
ð∂y · ∂pÞΞ, ð∂p · ∂pÞΞ. In other words V 00 is a restriction
of V to the surface

ð∂y · ∂yÞΦ ¼ ð∂y · ∂pÞΦ ¼ ð∂p · ∂pÞΦ ¼ 0;

ð∂y · ∂yÞΞ ¼ ð∂y · ∂pÞΞ ¼ ð∂p · ∂pÞΞ ¼ 0: ð4:19Þ

Note that γ restricted to this surface is given by (4.2) so that
by construction V 00 satisfies Q0V 00 ¼ ðDh þ γÞV00 ¼ 0.
The following remark is in order. Decomposing a Q0

cocycle V 00 with respect to form degree as V 00
d þ V 00

d−1 þ
� � � þ V 00

0 one gets

γV 00
d ¼ −DhV 00

d−1; γV 00
d−1 ¼ −DhV 00

d−2; …; γV 00
0:

ð4:20Þ

If we lift V 00 off the surface (4.19) the first equation can be
written as

γV 00
d ¼ −DhV 00

d−1 þ AIEI; ð4:21Þ

where EI denotes equations determining the surface (4.19)
and AI are some local functions. In other words V 00

d is
precisely what is called a cubic vertex in the transverse-
traceless gauge.
Given such a V 00

d one can always reconstruct the complete
V 00 as well as an equivalent off-shell vertex V. Indeed,
applying γ to both sides of the equation (4.20) one gets
DhγV 00

d−1 ¼ 0. Taking into account that V 00
d−1 is a (d − 1)-

form linear in ghosts and employing the slight generaliza-
tion of the known statement (see e.g., Theorem 6.3 and
Corollary 6.1 of [57]) that Dh cohomology is trivial for
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ghost-dependent forms of form-degree < d one finds that
γV 00

d−1 ¼ −DhV 00
d−2 for some V 00

d−2. Continuing in this way
one arrives at V 00 satisfying ðγ þ DhÞV 00 ¼ 0 and, hence,
recover the complete vertex. In the Appendix Awe present
a generalization of the statement from [57] to the present
case and as a by-product demonstrate that V 00 can be lifted
to the cubic vertex in the usual Fronsdal formulation (i.e.,
without the transverse-traceless gauge imposed).
Let us now find a representative of V in the minimal

BRST complex. To arrive at this complex one eliminates
further contractible pairs with wa being all the components
of Φ (in the d > 3 case one only eliminates those in the
image of p · ∂

∂y). One can check that this also eliminates all
the components of Ξ save for those which are in the kernel
of p · ∂

∂y. The resulting complex is that given in (4.8). All in
all, the minimal model representative V 000 of V 00 (and hence
of the initial V) is obtained by setting to zero all the
components of Φ as well as all the components of Ξ which
are in the image of y · ∂

∂p.
The crucial observation is that only the form degree 0

term V 00
0 may contribute to V 000. Indeed, because V 00 is by

assumption cubic in fields and ghosts and has ghost degree
3, all V 00

i with i ≠ 0 are at least linear inΦ and hence vanish
after the reduction to the minimal model. Therefore, one
can assume that V 000 ¼ AIAJAKUIJKðxÞ.
To see that what we are dealing with is indeed a

framelike vertex one can repeat the analysis of [4,5] in
order to systematically reproduce the framelike formulation
using the Lagrangian parent formalism. However in the
case at hand there is a concise short-cut that does not resort
to Lagrangian version of the parent formalism.
Indeed, as we discussed above given a BRST complex

that has the structure of a bundle over T½1�X and such that
the total differential projects to dX one can recover an
explicit form of the equations of motion and gauge sym-
metries as dX ∘ σ� ¼ σ� ∘Q0 where σ� defines a section of
the bundle, i.e., in the case at hand σ�ðAIÞ ¼ AIðx; θÞ ¼
AI
aðxÞθa. Similarly, gauge transformations are given by

δAIðx; θÞ ¼ dXϵIðxÞ þ ðQ0AIÞjAJ¼ϵJðxÞ: ð4:22Þ

Of course, this is nothing but a framelike formulation of the
system.
The cocycle V 000 gives an on-shell gauge-invariant vertex

VðσÞ ¼
Z
T½1�X

σ�V 000: ð4:23Þ

In terms of components this is simply

VðAÞ ¼
Z
T½1�X

V 000jAI¼AIðx;θÞ ¼
Z
X
V 000ðx; dx; Aðx; dxÞÞ;

ð4:24Þ

where the last expression is given in the language of forms.
One can check that it is indeed gauge invariant modulo total
derivatives and linearized equations of motion. Note that
the above formula is a slight generalization of the natural
map, known [128] (see also [122]) in the context of AKSZ
sigma models, that sends representatives of the target space
cohomology classes to the field theoretical BRST coho-
mology of the model in the space of local functionals. This
map is locally a quasi-isomorphism [128] (see also [129]).
Let us summarize the results of this section. Starting

from the fully off-shell free higher spin theory in 3D (i.e., a
set of free partially-massless or conformal higher spin fields
or any other fields that have a similar structure of the
minimal model), it is possible to show that

(i) The study of interactions is equivalent to a
problem of studying BRST cohomology of the
minimal model, which is especially simple in three
dimensions;

(ii) It is easy to describe the BRST operator of the most
general fully interacting model (4.10). The latter, if
there is a global symmetry algebra g, implies that the
structure functions fKIJ are x-independent and are
structure constants of a Lie algebra f. Provided g
is a subalgebra of f, the theory is background-
independent, (4.13);

(iii) The equations have the form of the flatness con-
dition. If, in addition, there exists a f-invariant
nondegenerate bilinear form, the equations admit
an action, which is just the Chern-Simons action;

(iv) Formula (4.24) gives a constructive way to rewrite
every metriclike interaction vertex in the framelike
language;

(v) A number of important consequences of the most
general formulation being of Chern-Simons-type
have already been discussed in Sec. III.

The main conclusion of this part is that all matter-free
higher spin theories with partially-massless and conformal
fields are of Chern-Simons type. Since the metriclike
approach is equivalent to the framelike one, this completes
the Noether procedure in 3D.
Even though in this work we are mainly interested in 3D

higher spin theories, a considerable part of the proof is
general enough as to make the following remarks about any
dimension d > 2.

(i) One of the general questions has always been about
the equivalence between framelike and metriclike
languages. Going one way is easy: on fixing the
Stueckelberg symmetries in the framelike formu-
lation one can solve for all framelike fields in terms
of the Fronsdal fields. Therefore, given a framelike
interaction vertex, it is always possible to rewrite it
in terms of Fronsdal fields. Indeed, all the steps of
the proof are applicable in general d so that one can
indeed find a representative V 000 of a given metric
like vertex in the minimal BRST complex. But in
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general d it also depends on degree zero variables
(what remain of Φ upon elimination of the image of
p · ∂

∂r). Formula (4.23) gives then an explicit form of
the framelike vertex.

(ii) The above arguments as well as the proof given in
this section extends to flat space mixed-symmetry
fields and to partially-massless (mixed-symmetry)
fields in AdSd [130–132], in which case a good
starting point is the ambient space BRST complex
[125–127,133]. Note however, that in the case of
mixed symmetry fields on AdS a proper Lagrangian
formulation is not known in the general case so
that cubic vertices can only be understood as local
functions which are gauge invariant modulo total
derivative on the solutions to the equations of
motion.

(iii) The advantage of the framelike language is that it
features much less structures once it comes to
writing an ansatz for an interaction. Nevertheless,
nothing is lost. Note that Φ̄ in (4.7) does not vanish
in d > 3 and can also contribute to interaction
vertices;

(iv) Another debatable question has been whether the
transverse-traceless gauge is a restriction,18 i.e.,
whether every gauge-fixed vertex can be uplifted
to a local gauge invariant vertex in the fully off-shell
Fronsdal theory. We give a general proof of this fact
in Appendix A, which can straightforwardly be
extended to more general cases.

G. Implementation

Wewould like to illustrate (4.24) on the actual metriclike
vertices in three dimensions. In practice, one begins with a
cubic metriclike vertex V3 ¼ V3ðΦ;Φ;ΦÞ, where Φ is a
generating function of Fronsdal fields and derivatives
thereof in the transverse-traceless gauge. The fact that it
is gauge-invariant on-shell modulo a total derivative and
equations of motion (and gauge-conditions, which can be
understood as a part of the equations of motion) tells that it
is possible to find Vμ

2 such that

δξV3 þ ∂μV
μ
2ðΞ;Φ;ΦÞ ≈ 0; ð4:25Þ

where Ξ denotes generating function for gauge parameters
ξa1…as−1 and their independent derivatives, ≈ means equal-
ity modulo equations of motion/gauge conditions, and
moreover all the generating functions Φ, Ξ are extended
off-shell. Note that the gauge parameters here, i.e., com-
ponents of Ξ, are understood as anticommuting variables
(as different from the usual implementation of the Noether
procedure in the non-BV-BRST language). At the second

step of the descent procedure (4.18) we take the variation
with respect to Ξ, which effectively yields a commutator of
two gauge transformations:

δξV
μ
2ðΞ;Φ;ΦÞ þ ∂νV

νμ
1 ðΞ;Ξ;ΦÞ ¼ 0: ð4:26Þ

The existence of Vνμ
1 follows the discussion in Sec. IV F. At

the last step we find the Jacobi identity

δξV
νμ
1 ðΞ;Ξ;ΦÞ þ ∂ρV

ρνμ
0 ðΞ;Ξ;ΞÞ ¼ 0: ð4:27Þ

Now, we have Vρνμ
0 ðΞ;Ξ;ΞÞ ¼ ϵρνμV0ðΞ;Ξ;ΞÞ. Note, that

V3;2;1 involve some derivatives that originate from those
hidden in the generating function Φ of Fronsdal fields and
derivatives thereof in V3.
Now, we transfer V ¼ V3 þ V2 þ V1 þ V0 to the min-

imal model to get a certain V 000. Let us consider massless
higher spin fields in 3D Minkowski for definiteness, where
only V0 contributes to the transfer (the others necessarily
depend on ϕ, which are not present in the minimal model).
In 3D the transfer amounts to dropping all higher deriv-
atives of ξa1…as−1 that are hidden in the generating function
Ξ, i.e., ∂kξ ¼ 0, k ≥ 2. The first derivative ∂ξ should be
replaced in accordance with (4.8), cf. (2.3), (2.5), i.e.19

∂mξa1…as−1 ¼ ξa1…as−1;m

⇔ ∂mξa1…as−1 ¼ ϵmða1
bξ̄

a2…as−1Þb: ð4:28Þ

As a Lorentz tensor, the first derivative ∂ξ contains three
irreducible components: symmetric and traceless tensors of
ranks s, s − 1 and s − 2. This equation implies that those
corresponding to s, s − 2 are set to zero, while the (s − 1)-
component should be solved for

ϵða1mn∂mξna2…as−1Þ ¼ ξ̄a1…as−1 : ð4:29Þ

In spinorial language we have ∂ðα1
βξ

α2…α2s−2Þβ ¼ ξ̄α1…α2s−2 .
As a result, V 000

0 becomes a function of the coordinates Ξ̄ of
the minimal model. These coordinates are in one-to-one
with the framelike fields. The last step is to replace Ξ̄ with
Aμdxμ to get a framelike vertex.
Now, let us illustrate this procedure with a number of

examples. A somewhat tautological example is to begin
with the Chern-Simons vertex understood as a metriclike
vertex [57]:

V3 ¼
2

3
fIJKAI

μAJ
νAK

λ ; ϵ
μνλ δAI

μ ¼ ∂μξ
I: ð4:30Þ

18Let us note that in [16], see also [18–20,23,134], the
existence of the off-shell uplift has been explicitly demonstrated
for the case of Fronsdal fields.

19This should not be confused with the framelike equations,
where certain combinations of derivatives are not constrained by
the equations. In the minimal model the corresponding coor-
dinates are not present. To distinguish between ξa1…as−1 and the
dual of ξa1…as−1;m that has the same index structure we denote the
latter ξ̄a2…as−1.
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The descent equations give us in succession

Vμ
2 ¼ −2fIJKξIAJ

νAK
λ ϵ

μνλ; Vνμ
1 ¼ 2fIJKξIξJAK

λ ϵ
μνλ;

Vλνμ
0 ¼ −

2

3
fIJKξIξJξKϵμνλ:

This clearly gives back 2
3
fIJKAI ∧ AJ ∧ AK .

A more interesting example is the two-derivative spin-
two vertex. It is convenient to write it in the language
of generating functions, see in Appendix B for detail. We
begin with V3 that has two derivatives and three spin-two
fields Φab. At each step of the descent one derivative is
added via the gauge transformations δΦab ¼ ∂aξb þ ∂bξa
and one derivative is removed in each of (4.25)–(4.27).
Therefore, we get V0 that is trilinear in ξa and has two
derivatives. Going to the minimal model, we set ∂a∂bξ

c ¼
0, ∂aξb þ ∂bξa ¼ 0 and ∂aξb − ∂bξa ¼ ξab. As a result, we
end up with a unique expression

V 000
0 ¼ ξaξbmξ

cmϵabc ð4:31Þ
that is then mapped to the framelike Einstein-Hilbert
vertex ea ∧ ωb;

m ∧ ωc;mϵabc.
It is easy to consider the most general case of odd/even

interaction vertex. The crucial advantage of 3D is that there
is a unique such vertex and, moreover, there is a unique
expression20 that can serve as V 000

0 . This is due to the fact
that the Chern-Simons vertex is unique, while usually
vertices are classes of equivalence modulo field redefini-
tions. As a result, in Minkowski space the vertex with two
derivatives gives

eauðkÞvðnÞ ∧ ωb
uðkÞwðmÞ ∧ ωcwðmÞ

vðnÞϵabc ð4:32Þ
and the vertex with three derivatives

ωauðkÞvðnÞ ∧ ωb
uðkÞwðmÞ ∧ ωcwðmÞ

vðnÞϵabc; ð4:33Þ
where s1 ¼ kþ nþ 2, s2 ¼ mþ kþ 2, s3 ¼ mþ nþ 2.
The details on how to do it are given in Appendix B. We
checked it on several examples.
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APPENDIX A: FROM TT-GAUGE TO
OFF-SHELL VERTICES

In this Appendix, we set up a general framework to uplift
the TT vertices to fully off-shell ones. Although here
we concentrate on Fronsdal fields in d-dimensional
Minkowski space the approach should extend to much
more general class of fields in a straightforward way by
using the unified BRST description of [127,133]. Note that
the off-shell completions in the case of Fronsdal fields were
constructed explicitly in [16] (see also [18,19,23,134])
within a different approach.
In the setting of Sec. IV. F let us restrict ourselves to

Fronsdal fields in Minkowski space but keep the spacetime
dimension d generic (d > 2). Suppose that V 00

d is a vertex
in the transverse-traceless gauge, i.e., is a d-form cubic
in Φ defined on the surface ð∂y · ∂yÞΦ ¼ ð∂y · ∂pÞΦ ¼
ð∂p · ∂pÞΦ ¼ 0 (but we lift it to a function defined off the
surface) and satisfying γV 00

d þ DhV 00
d−1 ¼ 0 modulo terms

vanishing on the surface.
A technical trick to show that V 00

d can be lifted to an off-
shell vertex in the Fronsdal formulation and to a complete
on-shell cocycle of Dh þ γ is to employ a resolution of the
surface using a suitable differential which can be thought of
as an extension of the usual Koszul-Tate differential. To this
end we introduce generating function Ψðy; p; b; c0; c; cTÞ
for fields, antifields and derivatives thereof, where c0, cþ,
cT are fermionic ghost variables of degree 1 and b of
degree −1. The ghost degree and Grassmann parity of the
components are set by requiring ghðΨÞ ¼ jΨj ¼ 0. In
particular, generating functions Φðy; pÞ and Ξðy; pÞ are
identified with the ghost-independent component and the
linear in b component of Ψ, respectively. Note that in
addition to Φ there are further components of degree 0
which enter Ψ as terms linear in b and c-ghosts.
Now Koszul-Tate-like differential is defined by

δKΨ ¼ Ω−1Ψ;

Ω−1 ¼ c0ð∂y · ∂yÞ þ cð∂p · ∂yÞ þ cTð∂p · ∂pÞ; ðA1Þ

where δK is a vector field acting on components, while Ω−1
acts on auxiliary variables y, p, c0, c, cT . Operator Ω − 1
was employed in studying BRST complex for Fronsdal
fields in [61], where it was shown to have cohomology only
in vanishing degree in c0, c, cT . In terms of δK this implies
that cohomology of δK is concentrated in the vanishing
resolution degree and is precisely given by functions of
Φðy; pÞ and Ξðy; pÞ restricted to the surface (4.19). The
resolution degree is induced by the homogeneity in c0, c,
cT , e.g., rdegðΦÞ ¼ rdegðΞÞ ¼ 0 and rdegðδKÞ ¼ −1. To
see that cohomology indeed coincides with the functions of
Φðy; pÞ and Ξðy; pÞ restricted to the surface (4.19) one
observes that δK-exact functions in degree 0 are necessarily
proportional to the RHS ∂y · ∂yΦ, ∂y · ∂pΦ, ∂p · ∂pΦ of the
equations, [61], or to analogous constraints with Ξ.

20In d > 3 there is also a unique interaction vertex in constant-
curvature space-times with given spins and a number of deriv-
atives (or none at all). However, there is no unique expression for
V 000
0 . Therefore, a computation needs to be done to get the

framelike vertex explicitly.
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Let us now show that given V 00
d satisfying γV 00

d þ
DhV 00

d−1 þ δKV 00
dj1 ¼ 0 with some Vdj1 of resolution degree

1 (this is just a reformulation of the on-shell gauge invari-
ance condition in terms of δK) one can construct W,
ghðWÞ ¼ d depending also on antifields and ghosts such
that ðδK þ γ þ DhÞW ¼ 0 and such that its form degree d
and antifield degree 0 component Wd;0 coincides with V 00

d.
Such W can be constructed recursively using as an auxi-
liary degree ðd − form degreeþ resolution degreeÞ satisfy-
ing adegðγ ¼ 0Þ, adegðDh þ γÞ ¼ −1 so that adegðV 00

dÞ ¼ 0

and adegðV 00
d−1Þ ¼ 1 adegðV 00

dj1Þ ¼ 1. Indeed, if cohomol-
ogy of Dh þ γ is trivial in auxiliary degree > 0 the full W
can be reconstructed. This can be equivalently phrased as
triviality of the cohomology HðδKjDhÞ (δK modulo Dh)
in auxiliary degree > 0. This statement was proved in
[57] for elements at least linear in ghosts and in the case
where δK is a conventional Koszul-Tate differential.
However, only the triviality of δK cohomology in nonzero
resolution degree is crucial in the proof so it extends to
the δK above.
Let us now discuss an interpretation of the Dh þ γ þ δK-

cocycle W in the extended system. Introducing differential
s ¼ γ þ δK it is easy to see that in terms of generating
function Ψ it is determined by

sΨ ¼ ΩΨ;

Ω ¼ ðp · ∂yÞ
∂
∂bþ c0ð∂y · ∂yÞ þ cð∂p · ∂yÞ

þ cTð∂p · ∂pÞ þ…; ðA2Þ
where … denotes the ghost term encoding the constraint
algebra. This is precisely the BRSToperator of the so-called
triplet system, where the trace constraint is incorporated in
the BRST operator (see [61] for detailed discussion).
In this way we proved that any cubic vertex in the

transverse-traceless gauge can be lifted to that in the
extended triplet formulation. Although this formulation
is not manifestly Lagrangian it can be equivalently reduced
[61] (by eliminating contractible pairs for the term in Ω
proportional to cT) to the Lagrangian formulation. The
reduced formulation BV master action is given

SBV ¼
Z

ddxhΨ;Ω0Ψi;

Ω0 ¼ ðp · ∂yÞ
∂
∂bþ c0ð∂y · ∂yÞ þ cð∂p · ∂yÞ − c

∂
∂b

∂
∂c0 ;
ðA3Þ

and whereΨ is subject to ∂
∂cT Ψ ¼ 0 ¼ ð∂p · ∂p − 2 ∂

∂b
∂
∂cÞΨ.

This is a usual triplet form of the free higher spin
theory [135–137]. In its turn this formulation gives the
conventional Fronsdal description by eliminating the aux-
iliary field C which enters Ψ as a coefficient of c0b. The
d-form component of the vertex W (with C eliminated) is

clearly a usual off-shell cubic vertex of the Fronsdal
system.

APPENDIX B: CUBIC VERTICES

We would like to present more technical details on how
to map concrete cubic metriclike vertices to the framelike
once in 3D. Some of the notation is borrowed from [35,36],
which we also refer to for the classification of the metriclike
vertices. In three dimensions, vertices for arbitrary spins
have a relatively simple form. One subtle point is that
one needs to take care of Schouten identities. In order to
set up notations, we introduce the fields ΦðsiÞðxi; aiÞ ¼
ΦðsiÞ

μ1…μsi
ðxiÞaμ1i …a

μsi
i , i ¼ 1, 2, 3, and write the vertex in the

form:

Vs1;s2;s3 ¼ VðP;AÞΦðx1; a1ÞΦðx2; a2ÞΦðx3; a3Þjai¼0;xi¼x;

ðB1Þ
where the vertex operator depends on Pμ

i ¼ ∂μ
xi , A

μ
i ¼ ∂μ

ai .
We also introduce the notion of total derivative: Pμ ¼
Pμ
1 þ Pμ

2 þ Pμ
3. The vertex operator depends on the twenty-

one elementary scalar contractions Pi · Pj, Pi · Aj and
Ai · Aj, among which nine are trivial on-shell:

P2
i ¼ 0; Pi · Ai ¼ 0; A2

i ¼ 0; ði ¼ 1; 2; 3Þ;
ðB2Þ

and six:

P · Pi; P · Ai; ði ¼ 1; 2; 3Þ ðB3Þ
form total derivatives. The remaining six variables can be
given by:

yi ¼ Ai · Piþ1; zi ¼ Aiþ1 · Ai−1; ðB4Þ
which form elementary building blocks of the traceless-
transverse (TT) part of parity-preserving cubic vertices:

Vs1;s2;s3 ¼ Vðyi; ziÞΦðx1; a1ÞΦðx2; a2ÞΦðx3; a3Þjai¼0;xi¼x:

ðB5Þ
For simplicity, we will start from parity-even vertices. In the
framelike language they will require parity-odd structures.
We therefore also introduce parity-odd structures in three
dimensions [36]:

u ¼ ϵμνρA
μ
1A

ν
2A

ρ
3; vij ¼ ϵμνρA

μ
iþ1A

ν
i−1P

ρ
j ;

wi ¼ ϵμνρA
μ
i P

ν
iþ1P

ρ
i−1; ðB6Þ

as well as parity-odd total-derivative structures:

ṽi ¼ ϵμνρA
μ
iþ1A

ν
i−1P

ρ ¼
X3
j¼1

vij;

w̃ij ¼ ϵμνρA
μ
i P

ν
jP

ρ; x ¼ ϵμνρPμPν
i P

ρ
iþ1ð∀ iÞ; ðB7Þ
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where
P

3
j¼1 wij ¼ 0. Since the vij, ṽi are redundant, we

choose vij with j ≠ i as independent variables and express
the vertices in terms of them as in [36]. One can also make
use of generating functions of higher-spin fields, i.e.,
assume that Φ contains all spins, which helps to write
generating functions for cubic vertices involving all triplets
s1, s2, s3. We first write the general form of the gauge
transformations for the fields in the language of generating
functions

δð0ÞΦða; xÞ ¼ a · ∂xΞða; xÞ; ðB8Þ

which contains all spins. It is worth noting that, while the
gauge parameter has one lower rank compared to the gauge
field for each given spin, in the generating function form
involving infinite number of fields, it is “in the same class
of functions as the field itself”.
The cubic vertices are gauge invariant up to total

derivatives. In deriving these vertices we discard boundary

terms. Here, we will need exactly these boundary terms.
Note the useful (on-shell) relation:

Piþ1 · Pi−1 ¼
1

2
ðP · Piþ1 þ P · Pi−1 − P · PiÞ

¼ 1

2
P2 − P · Pi: ðB9Þ

We discard all of the on-shell trivial terms in the cubic
action and its variations, but keep total derivatives, there-
fore, work with functions of variables yi, zi, P · Pi, P · Ai,
vi, wij. We note here, that we are interested in at most three
total derivatives. In each step of the descent, after taking the
gauge variation of the vertex functions, we can reduce it to a
total derivative ∂μVk

μ, cf. (4.25), (4.26), (4.27). In order to
keep track of the anticommuting nature of the gauge
variations we contract the free index of Vk

μ with a

Grassmann vector variable ζμ (δð0Þi is the lowest-order
gauge variation of the i-th field):

δð0Þ1 δð0Þ2 δð0Þ3 V3ðy; zÞ ¼ V0ðζ · Pi; ζ · Ai; yi; zi; u; vij; wi; v̄i; w̄ij; x̄iÞ; ðB10Þ

Vð0Þðy; z; u; vÞ ¼ 1

6
ϵμνρ

∂
∂ζμ

∂
∂ζν

∂
∂ζρ V

0ðζ · Pi; ζ · Ai; yi; zi; u; vij; wi; v̄i; w̄ij; x̄iÞ; ðB11Þ

where polyvector

∂
∂ζμ ¼ Aμ

i
∂

∂ðζ · AiÞ
þ Pμ

i
∂

∂ðζ · PiÞ
þ ϵμνρAν

iþ1A
ρ
i−1

∂
∂v̄i þ ϵμνρAν

i P
ρ
j

∂
∂w̄ij

þ ϵμνρPν
iþ1P

ρ
i−1

∂
∂x̄i ;

v̄i ¼ ϵμνρA
μ
iþ1A

ν
i−1ζ

ρ; w̄ij ¼ ϵμνρA
μ
i P

ν
jζ

ρ; x̄i ¼ ϵμνρζ
μPν

iþ1P
ρ
i−1;

and we do sum over i, j indices in all the terms above. The
expression Vð0Þ defines the framelike vertex and we will
see later that it will not depend on the parity-odd
structures wi.
Note, that we work with the vertex operators symboli-

cally, assuming the antisymmetry of the underlying gauge
parameters (ghosts) they act on. Otherwise, the expression
(B11) would be trivial.
In order to proceed to gauge transformations of the

vertex, we remind that in the process of passing from a
metriclike vertex to the framelike one, we will need to keep
the total derivatives, therefore, we are dealing with vertex
operators Vn that contain the Grassmann vectors ζ replac-
ing the total derivative operator Pμ in (3 − n) structures
ζ · Pi, ζ · Ai. Also, at the very end of the procedure we strip
off all the three operators ζμ and multiply the resulting third
rank tensor with the fully antisymmetric tensor ϵμνρ,
therefore any expression with symmetrized indices can
be assumed to vanish: ζðμζνÞ ¼ 0, thus we can take the ζ’s
to be Grassmannian to automatically satisfy this condition.
In particular,

ζ2 ¼ 0; ðζ · PiÞ2 ¼ 0 ¼ ðζ · AiÞ2; ζ · P ¼ 0:

ðB12Þ

The last equation drops total derivatives in the final
framelike vertex seed (B11). It is also straightforward to
show using (B12), that,

ζ · Piζ · Pj ¼ 0: ðB13Þ

The latter equation implies that the framelike vertex does
not depend on wi, as mentioned above. Parity-odd
structures vij with j ≠ i are curl operators contracted
with an index from another field via ϵ-tensor, thus have a
simple interpretation in the framelike language. The
operator u is a contraction of one index from each of
the three fields with an ϵ-tensor and is naturally translated
to frame language.
The gauge transformation acts on the vertex operator in

the following form:
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Di ¼ ζ · Pi
∂

∂ðζ · AiÞ
þ ðζ · Aiþ1 − yiþ1Þ

∂
∂zi−1 − ζ · Pi−1

∂
∂yi þ yi−1

∂
∂ziþ1

þ x̄i
∂
∂wi

þ ðw̃i−1i − wi−1Þ
∂

∂viþ1i−1
− ðw̃iþ1i þ wiþ1Þ

∂
∂vi−1iþ1

þ ðv̄i − viiþ1 − vii−1Þ
∂
∂u : ðB14Þ

To conclude, with the help of (B11), (B14) one can perform the descent of any given cubic metriclike vertex in 3D.
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