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There exists a certain argument that in even dimensions, scale invariant quantum field theories are
conformal invariant. We may try to extend the argument in 2nþ ϵ dimensions, but the naive extension has a
small loophole, which indeed shows an obstruction in nonlinear sigma models in 2þ ϵ dimensions. Even
though it could have failed due to the loophole,we show that scale invariance does imply conformal invariance
of nonlinear sigma models in 2þ ϵ dimension from the seminal work by Perelman on the Ricci flow.

DOI: 10.1103/PhysRevD.102.065018

I. INTRODUCTION

The advent of conformal bootstrap approaches to critical
phenomena (e.g., [1] for a review) raises a renewed interest
in understanding about under which conditions the con-
formal symmetry emerges. Empirically, it is typically the
case that scale invariance, Poincaré invariance (Euclidean
invariance), and unitarity (reflection positivity) give rise to
the enhanced conformal symmetry. Some arguments sup-
porting this empirical fact exist in even space-time dimen-
sions, in particular two [2] and four dimensions [3–6], but
we do not have general arguments in odd dimensions, say,
in three dimensions.1

In the perturbative regime, the (non)existence of scale
invariant but not conformal field theory is closely related to
the gradient nature of the renormalization group flow and
the absence of the limit cycle [8–16]. Again, we do have
supporting evidence for the gradient nature of the renorm-
alization group flow in two and four dimensions. A crucial
fact here is that the potential function for the gradient flow
is given by Weyl anomaly coefficients at the conformal
fixed point. They do exist in even dimensions but they do
not exist in odd dimensions.
Without a general argument, it may be a natural idea to

explore conformal invariance in odd dimensions by using the
extrapolation ofd ¼ 2nþ ϵ dimensions. Such approaches in
various field theories are attempted in [2,17–19]. In this
paper, we offer general discussions on how to obtain a

gradient flow of the renormalization group beta function in
d ¼ 2nþ ϵ dimensions once we know that it is a gradient
flow ind ¼ 2n dimensions. This typically implies conformal
invariance in (perturbative) scale invariant fixed point in d ¼
2nþ ϵ dimensions if any.
We, however, find a small loophole in this argument,

which indeed shows an obstruction in nonlinear sigma
models in d ¼ 2þ ϵ dimensions. The loophole is related to
the question if the potential function for the gradient flow is
bounded under the presence of the ambiguities in the beta
functions. Even though the simple idea could have failed
due to the loophole, we can still show that scale invariance
does imply conformal invariance of nonlinear sigma
models in d ¼ 2þ ϵ dimension from the work by
Perelman on the Ricci flow [20]. This, on the other hand,
suggests that a general argument without a loophole would
be quite nontrivial: at least it should directly imply
Perelman’s theorem on the Ricci flow.

II. A SIMPLE ARGUMENT AND
POSSIBLE LOOPHOLES

We study a renormalization group flow of a local
quantum field theory with Poincaré invariance. The proper-
ties of the renormalization group flow are characterized by
the beta functions that appear in the trace of the energy-
momentum tensor.
Consider a general structure of the trace of the energy-

momentum tensor (in flat space-time):

Tμ
μ ¼ βIOI þ sa∂μJa þ τi□Φi: ð1Þ

By using identities in a given field theory such as the
nonconservation of the vector operator ∂μJ

μ
a ¼ fIaOI, it is

more convenient to rewrite the right-hand side as

Tμ
μ ¼ BIOI: ð2Þ
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1Indeed, we do have an example of scale invariant but not
conformal invariant field theories such as a free Uð1Þ gauge
theory in three dimensions [7], so making the condition more
precise is imperative.
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We will use this scheme to evolve the coupling constant

under the renormalization group flow: dgI

dt ¼ BIðgÞ. Scale
invariance demands βI ¼ 0 while conformal invariance
demands BI ¼ 0. If sa∂μJ

μ
a is nonzero, it is sometimes

called the Virial current. In most situations, one may
remove τi by adding local counterterms to the action,
but sometimes it gives a nontrivial consequence by adding
further ambiguities in the definition of the beta functions.
In even dimensions d ¼ 2n, there is a general argument

that at the scale invariant fixed point all BI (rather than βI)
vanish, and the conformal invariance follows. One such
argument is based on the gradient property of the beta
functions. It claims that the beta functions are generated by
a gradient flow:

dgI

dt
¼ BI ¼ χIJ

∂a
∂gJ ; ð3Þ

with respect to a certain potential function aðgÞ, where we
assume χIJðgÞ is positive definite. If this is the case, we can
show

da
dt

¼ BI ∂a
∂gI ¼ BIχIJBJ ≥ 0; ð4Þ

where χIJ is an inverse of χIJ. In other words, aðgðtÞÞ is
monotonically decreasing along the renormalization
group flow.2

In d ¼ 2n dimensions, aðgÞ at the conformal fixed point
is the Weyl anomaly coefficient which is positive definite.
Therefore, if the theory under consideration can be
deformed to be gapped, aðgÞ cannot decrease forever. In
the perturbative regime, we can argue that scale invariance
demands da

dt is (at the worst) constant, but the constant must
be zero since aðgÞ is bounded. Then the positivity of χIJ
demands BI are all zero, implying that the scale invariant
fixed points are actually conformal invariant.
In the literature, there have been substantial works on

how to implement the above scenario in a concrete manner.
We also realize that there are various subtle issues (e.g., if
χIJ can remain positive definite beyond the perturbation
theories). We are not going to review such issues, but we
refer [21] for a review.
In this paper, we simply assume the gradient flow nature

of the beta functions in d ¼ 2n dimensions, and we would
like to see if we can extend the above analysis in d ¼
2nþ ϵ dimensions. When we use the dimensional regu-
larization with minimal subtraction, the beta functions B̃I in
d ¼ 2nþ ϵ dimension and that of d ¼ 2n dimensions BI

are related by

B̃I ¼ ϵkI þ BI; ð5Þ

where kI may depend on the operator under consideration.3

We also note that this simple relation only holds in a
particular renormalization scheme, and we will commit
ourselves to such a scheme in the following.
Let us further assume we are working in the perturbative

regime so that we may regard the field space metric as a
unit matrix χIJ ¼ δIJ. Then, if BI is a gradient flow, B̃I is a
gradient flow as well:

B̃I ¼ χIJ
∂ã
∂gJ ; ð6Þ

where ãðgÞ ¼ ϵ
2
kIgIgI þ aðgÞ. Note that the gradient exten-

sion might fail beyond the perturbation theory in which χIJ
can be regarded as a constant.4

Now we can repeat the analysis in d ¼ 2n dimensions. If
ãðgÞwere bounded, then we could argue B̃I ¼ 0 at the scale
invariant fixed point and then we would conclude that the
fixed point is conformal invariant. Here is, however, a small
loophole. In d ¼ 2n dimensions, aðgÞ has a clear physical
meaning such as the Weyl anomaly coefficient and it has a
manifest positivity at the conformal fixed point. In d ¼
2nþ ϵ dimension, the precise physical meaning of ãðgÞ is
unclear at this point and it could be unbounded.
Let us take a look at an example. In d ¼ 4 dimensions,

the ϕ4 theory with the coupling constant λabcdϕaϕbϕcϕd

has the beta function

Babcd ¼
1

16π2
ðλabefλefcd þ λacefλefbd þ λadefλefbcÞ; ð7Þ

so that in d ¼ 4þ ϵ dimensions (being careful about the
sign convention of ϵ), we have

B̃abcd¼þϵλabcd

þ 1

16π2
ðλabefλefcdþλacefλefbdþλadefλefbcÞ: ð8Þ

This is a gradient flow with respect to the potential

ã ¼ þ ϵ

2
λabcdλabcd þ

1

16π2
λabcdλcdefλefab: ð9Þ

We see that ã is monotonically decreasing along the
(physical) renormalization group flow. We also see that
at the scale invariant fixed point, we have B̃a ¼ 0 with the
enhanced conformal invariance. This is a favorable

2Our convention is t ¼ logΛ with cut-off Λ, and large t
corresponds to ultraviolet. Throughout the paper, we use the
conventional term “monotonically decreasing” along the renorm-
alization group flow, but it actually means monotonically
increasing with respect to t.

3For example, if we consider Yukawa-ϕ4 theory in d ¼ 4 − ϵ
dimensions, the Yukawa coupling has k ¼ 1=2 while the scalar
quartic coupling has k ¼ 1.

4By perturbation theory, we mean that we are close to a
(conformal) fixed point. It does not necessarily mean that we are
close to the Gaussian fixed point.
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situation in which the monotonicity of ã gives proof of
conformal invariance.

III. NONLINEAR SIGMA MODEL
IN d = 2 + ϵ DIMENSIONS

It is widely believed that the infrared renormalization
group fixed point of the scalar ϕ4 theory in d ¼ 4þ ϵ
dimensions (with negative ϵ) and the ultraviolet renorm-
alization group fixed point of nonlinear sigma models in
d ¼ 2þ ϵ dimensions are in the same universality class if
we extrapolate them to three dimensions. Since we have
seen that the fixed points of ϕ4 theories are conformal
invariant in the d ¼ 4þ ϵ dimensions, we expect that the
fixed points of the nonlinear sigma models in d ¼ 2þ ϵ
dimensions are also conformal invariant.

A. A direct approach

Let us consider the nonlinear sigma mode defined by the
classical action

S ¼
Z

ddxGMN∂μXM∂μXN; ð10Þ

whose target space M is a D-dimensional compact mani-
fold with the metric GMNðXÞ. In two dimensions, it is well
known that the one-loop beta function is given by the Ricci
tensor RMNðXÞ constructed out of GMNðXÞ

BMN ¼ dGMN

dt
¼ RMN; ð11Þ

up to the ambiguity of the beta functions that can be added
to the right-hand side [i.e., DM∂NΦðXÞ þDN∂MΦðXÞ]
[22,23]. This ambiguity is associated with the dilaton
coupling Rð2ÞðxÞΦðXÞ or improvement of the energy-
momentum tensor. Here Rð2ÞðxÞ is the curvature of the
d dimensional “world-sheet”.5

In 2þ ϵ dimensions, the one-loop beta function becomes
(again up to ambiguities)

B̃MN ¼ −ϵGMN þ RMN; ð12Þ
and the condition for scale invariance is

ϵGMN ¼ RMN þDMVN þDNVM ð13Þ
for a particular vector field VNðXÞ onM with the covariant
derivative DM. Note that the term DMVN þDNVM is the
diffeomorphism induced by the vector field VM (i.e., Lie
derivative of the metric), so the target space is “physically
the same” with or without it.6

If VM is a gradient vector: VM ¼ ∂MFðXÞ for a certain
scalar function FðXÞ on M, then the scale invariant fixed
point is conformal invariant because one can always
remove it from the above ambiguity of the beta function.
In [2], it was directly shown that F ¼ 0 when ϵ ¼ 0 (even
without using the ambiguity just mentioned). We would
like to show a similar result when ϵ ≠ 0.
Acting DMDN on (13) and using the Bianchi identity as

well as (13) again, we obtain

DMDMRþ VMDMR ¼ −2RMNRMN þ 2ϵR: ð14Þ

Here R ¼ GMNRMN is the Ricci scalar. Let us pick a point p
such that R takes the minimum value on M. Since
DMDMR ≥ 0 and DMR ¼ 0 at p, the left-hand side of
(14) is non-negative. On the other hand, the right-hand side
can be rewritten as

−2RMNRMN þ2ϵR¼−2
�
RMN −

R
D
gMN

��
RMN −

R
D
gMN

�

−2R

�
R
D
− ϵ

�
: ð15Þ

Here RMN − R
D gMN is the traceless Ricci tensor.7 We will

show that the right-hand side is nonpositive when ϵ ≤ 0.
Indeed, the trace of (13) says that

R
dDx

ffiffiffiffi
G

p
R
D ¼

ϵ
R
dDx

ffiffiffiffi
G

p
, so ϵ is given by the mean curvature (divided

by D). However, the minimum of the curvature is smaller
than its mean, so RðpÞ

D ≤ ϵ ≤ 0. Thus the right-hand side of
(15) is a sum of two nonpositive terms, and they both must
vanish. It means that R ¼ Dϵ is a global constant, and
RMN ¼ R

D gMN ¼ ϵgMN , showing VM ¼ 0. As we have
promised F ¼ 0, and the scale invariant fixed point is
conformal invariant. The target space is what is called the
Einstein manifold.
This nice argument does not apply when ϵ > 0 and we

cannot assign a definite sign on the right-hand side of (14).
If this were literally true, we could conclude VM ¼ 0 even
without considering the possibility that it could be a
gradient VM ¼ ∂MF. On the contrary, it is known that
when ϵ > 0 there does exist a solution of (13) with
nontrivial VM ¼ ∂MF,

8 and this approach must fail. We
had to invent a more elaborate argument to show that scale
invariance implies conformal invariance when ϵ > 0.

B. A gradient approach 1

Given success of Zamolodchikov’s c-theorem in two
dimensions [27], it is somewhat surprising that the explicit
form of the monotonically decreasing c-function with the

5We would like to avoid confusion with the target space Ricci
scalar constructed out of GIJ .6An interesting application of this vector field can be found
in [24].

7The idea that the traceless Ricci tensor is useful here is
inspired by the work by Hamilton [25].

8The first compact one was discovered by Koiso [26]. We will
also see a noncompact example later.
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gradient beta functions for the nonlinear sigma model was
only available after the seminal work by Perelman [20] (see
also related works [28–32]).
We consider the following D-dimensional target space

action

S½G;ϕ� ¼
Z

dDX
ffiffiffiffi
G

p
e−2ϕðRþ 4∂Mϕ∂MϕÞ; ð16Þ

and the c-function is defined by the minimum of C½G� ¼
−infϕS½G;ϕ� by varying ϕ that satisfies the normalization
condition

Z
dDX

ffiffiffiffi
G

p
e−2ϕ ¼ 1: ð17Þ

The target space action (16) is closely related to the
effective action of the string theory. There ϕ is identified
with a string dilaton and unconstrained, but here it is
important to impose the normalization condition (17). To
make it distinguished, it is sometimes called Perelman’s
dilaton or minimizer ϕm.
This action can be used to derive the monotonic gradient

flow of the beta function

GIMGJN
e2ϕmffiffiffiffi
G

p δC½G�
δGIJ

¼RMNþDM∂NϕmþDN∂Mϕm; ð18Þ

where Perelman’s dilaton ϕm is not arbitrary but is fixed
from GMN by minimizing S½G;ϕ�. Remarkably this is
identified with the beta function BMN of the metric, and
in the particular scheme the renormalization group flow is
generated by a gradient flow.
Let us now argue that scale invariance implies conformal

invariance. In two dimensions, we see that at the scale
invariant fixed point (18) must vanish to guarantee
dC½G�
dt ¼ 0, and it directly implies the conformal invariance.

Actually, repeating the argument in the previous subsec-
tion, we can further prove ϕm ¼ const.
In d ¼ 2þ ϵ dimensions, the beta function in the

minimal subtraction scheme is given by

BMN ¼ −ϵgMN þ RMN þDM∂NΦþDM∂NΦ: ð19Þ

Here ΦðXÞ is an arbitrary scalar function on M.
Now, as we discussed in Sec. II we may introduce the

c-function in d ¼ 2þ ϵ dimensions by

C̃½G� ¼ −2ϵ
Z

dDxe−2ϕm
ffiffiffiffi
G

p
þ C½G�: ð20Þ

Here, in the first line, we do not vary ϕ, which is already
fixed in computing C½G�. This clearly gives a monotoni-
cally decreasing gradient flow in 2þ ϵ dimensions:

GIMGJN
e2ϕmffiffiffiffi
G

p δC̃½G�
δGIJ

¼ −ϵGMN þ RMN þDM∂Nϕm

þDN∂Mϕm; ð21Þ

in a particular scheme where the ambiguity Φ in the beta
function is fixed by Perelman’s dilaton.
One may ask if this gives the proof that scale invariance

implies conformal invariance in 2þ ϵ dimensions. The
problem is that C̃½G� is monotonically decreasing only for a
particular ϕm. We also do not know if C̃½G� must be a
constant at the scale invariant fixed point.
To see the difficulty in an example, let us consider the

case with GMN ¼ δMN . It is somewhat surprising but
crucial to notice here that BMN is zero only if we supple-
ment nontrivial Φ ¼ ϵ

4
δMNXMXN .9 On the other hand,

when we consider the flow from (21), the Perelman’s
dilaton ϕm is essentially derived in two dimensions so the
obvious solution here is ϕ ¼ const. This means that even if
we have a scale invariant field theory, the c-function C̃½G� is
monotonically decreasing forever.10 This is nothing but the
loophole we have mentioned in Sec. II.

C. A gradient approach 2

In the seminal paper [20], Perelman introduced the other
monotonically decreasing functional, which he called the
entropy. The direct renormalization group interpretation of
Perelman’s entropy in nonlinear sigma models in two
dimension was not obvious, but we find that it has a direct
connection with conformal invariance of nonlinear sigma
models in d ¼ 2þ ϵ dimensions. We will map the problem
of finding a scale but not conformal fixed point in the
nonlinear sigma model in d ¼ 2þ ϵ dimension to the
renormalization group flow in two-dimensions. Then we
see that the stationarity of Perelman’s entropy implies
conformal invariance in d ¼ 2þ ϵ dimensions for ϵ > 0.
Let us first map a scale invariant fixed point in d ¼ 2þ ϵ

dimensions to a nontrivial renormalization group flow in
two dimensions. We will assume ϵ > 0. In d ¼ 2þ ϵ
dimensions, scale invariance implies that the metric
satisfies

ϵGMN ¼ RMN þDMVN þDNVM ð22Þ

for a certain vector field VN . Let us now define the time-
dependent metric GMNðtÞ for t > 0 by performing time-
dependent rescaling and time-dependent diffeomorphism
on the time-independent metric GMN that satisfies (22):
GMNðtÞ ¼ ϵtϕ�

VðGMNðxÞÞ, where the pullback ϕ�
V is

induced by the diffeomorphism x̃M ¼ xM − ϵ−1 logðtÞVM.

9In mathematics literature, it is known as the Gaussian Ricci
soliton.

10Indeed it is given by −e−Dϵt
2 V0 and the would-be fixed point is

a singular metric of GMN ¼ 0.
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Since the Ricci tensor is invariant under the rescaling of
the metric [i.e., RIJðGÞ ¼ RIJðαGÞ], near t ¼ 1 the time-
dependent metric GMNðtÞ satisfies the Ricci-flow equation

dGMNðtÞ
dt

¼ RMNðtÞ; ð23Þ

where RMNðtÞ is the Ricci tensor for GMNðtÞ. This
time evolution is nothing but the renormalization group
equation in two dimensions. In this way, we have mapped
a scale invariant renormalization group fixed point in
nonlinear sigma models d ¼ 2þ ϵ dimensional to a par-
ticular renormalization group flow in two dimensions.11

We may now want to study the renormalization group
flowofGMNðtÞ in the sense of the auxiliary two-dimensional
nonlinear sigma model. We expect that it shows the
monotonic behavior under the conventional c-function (or
its generalization discussed in the previous section), but it is
less useful in our setup because the metric typically blows
up. At this point, Perelman introduced the other monoton-
ically decreasing quantity, which he called the entropy.
Consider the functional which explicitly depends on t:

S½t;GMNðtÞ;ϕðtÞ�

¼ −
Z

dDX
ffiffiffiffiffiffiffiffiffi
GðtÞ

p
ðtð4∂MϕðtÞ∂MϕðtÞ þ RðtÞÞ

þ 2ϕðtÞ −DÞð4πtÞ−D
2e−2ϕðtÞ: ð24Þ

The claim is that this functional is monotonically
decreasing along the renormalization group flow. Note
that Zamolodchikov’s c-function does not depend on t
explicitly so it cannot be identified with the conventional
c-function.
We study the time dependence of this functional under

the generalized Ricci flow12

dGMNðtÞ
dt

¼ RMNðtÞ
dϕðtÞ
dt

¼ 1

2
□ϕ − ∂Mϕ∂Mϕþ R

4
−
D
4t
: ð25Þ

The direct computation gives

dS½t;GMNðtÞ;ϕðtÞ�
dt

¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
GðtÞ

p
t

�
RMNðtÞþ 2DMDNϕðtÞ−

1

t
GMNðtÞ

�
2

× ð4πtÞ−D
2e−2ϕ: ð26Þ

Thus for t > 0, S½t;GMNðtÞ;ϕðtÞ� is monotonically
decreasing along the renormalization group flow (i.e.,
monotonically increasing with respect to t). In particular,
if S½t;GMNðtÞ;ϕðtÞ� is stationary, it satisfies

RMNðtÞ þ 2DMDNϕðtÞ −
1

t
GMNðtÞ ¼ 0 ð27Þ

for any ϕðtÞ that satisfies (25).13
We emphasize here that the fixed point of

S½t;GMNðtÞ;ϕðtÞ� does not correspond to the renormaliza-
tion group fixed point of two-dimensional nonlinear sigma
models. Rather, it is related to a conformal invariant fixed
point of nonlinear sigma models in d ¼ 2þ ϵ dimensions
as we will explain. Our strategy is that given the associated
Ricci flow (23), we are going to find the specific ϕðtÞ so
that the entropy functional is stationary.
Let us now argue that scale invariant fixed point in 2þ ϵ

dimension is conformal invariant from the monotonic
properties of the entropy functional. For the purpose of
finding a suitable ϕðtÞ that makes our Ricci flow, which is
induced from the scale invariant fixed point, stationary, we
maximize S½t; GMNðtÞ;ϕðtÞ� over ϕðtÞ under the conditionffiffiffiffi
G

p ð4πtÞ−D
2e−2ϕ is fixed. The resulting S̄½t; GMNðtÞ� ¼

supϕS½t; GMNðtÞ;ϕðtÞ� is also monotonically decreasing
along the renormalization group flow. Now we note that
S̄½t; GMNðtÞ� is invariant under simultaneous scale change
of GMNðtÞ and t [i.e., ðGMN; tÞ → αðGMN; tÞ]. We also note
that S̄½t; GMNðtÞ� is invariant under the diffeomorphism on
GMNðtÞ thanks to the maximization over ϕðtÞ.
Due to these two properties of S̄½t; GMNðtÞ�, for the

Ricci-flow solution induced from the scale invariant fixed
point in d ¼ 2þ ϵ dimensions, we find that S̄½t; GMNðtÞ� is
a constant near t ¼ 1 since the time evolution of
GMNðtÞ is generated by the scale transformation and the
diffeomorphism.
On the other hand, for generic Ricci flow, we know that

the time dependence is given by (26). Therefore, when
S̄½t; GMNðtÞ� is stationary, it means

RMNðtÞ þ 2DMDNϕ̄ðtÞ −
1

t
GMNðtÞ ¼ 0; ð28Þ

11The discussion that follows does not explicitly use the fact
that ϵ is small, but since we are neglecting the higher terms in the
renormalization group beta functions, we effectively assume that
ϵ is small.

12The time dependence is motivated as follows: we start with
the gradient flow dGMN

dt ¼ RMN þDM∂NϕþDN∂Mϕ under the
fixed measure

ffiffiffiffi
G

p ð4πtÞ−D
2e−2ϕ. The time dependence of dϕðtÞ

dt ¼
1
2
□ϕþ R

4
− D

4t is induced from the time independence of the
measure. Then we supplement the diffeomorphism of VM ¼
DMϕ to make them the Ricci flow as in (25).

13In order to assure the positivity, we have to assume that the
target space has the Euclidean signature. This is related to
unitarity; if the target space had the Lorentzian signature,
unitarity of the nonlinear sigma model would be lost and we
could not deduce (27).

CONFORMAL INVARIANCE FROM SCALE INVARIANCE IN … PHYS. REV. D 102, 065018 (2020)

065018-5



for a particular ϕ̄ðtÞ that maximizes the entropy functional.
However, at t ¼ 1 the condition can be rewritten in terms of
the original metric GMN as

ϵGMN ¼ RMN þ 2DMDNF: ð29Þ

This implies that the vector field VM ¼ ∂MF is a gradient
and the scale invariant fixed point in dþ ϵ dimension is
conformal invariant.
As we have alluded above, unlike the case with ϵ < 0,

we cannot conclude that F is constant. Indeed, the manifold
that satisfies the condition (29) is known as a gradient
shrinking Ricci soliton (for positive ϵ) and some nontrivial
examples are available in the literature (see e.g., [26]). On
the other hand, for negative ϵ, it is known as a gradient
expanding Ricci soliton, but we have already seen that they
must be Einstein manifold and trivial (i.e., F ¼ 0).

IV. DISCUSSION

We have shown that scale invariance implies conformal
invariance in nonlinear sigma models in d ¼ 2þ ϵ dimen-
sions by using the mathematical result on the Ricci flow by
Perelman. The monotonicity of Perelman’s entropy along
the renormalization group flow plays a crucial role, but it is
not directly related to the renormalization group c-function
in two dimensions because it explicitly depends on time. It
is not the renormalization group c-function in d ¼ 2þ ϵ
dimensions either because it is only defined for scale
invariant theories. It, however, indicates whether the fixed
point in d ¼ 2þ ϵ dimensions is conformal invariant or
merely scale invariant.
It would be interesting to see if a similar function exists

in other field theories than nonlinear sigma models at one-
loop. In particular, Perelman’s idea to map the scale
invariant fixed point in d ¼ 2þ ϵ dimension to the

nontrivial renormalization group flow in two-dimension
is not conventional in physics but may be of potential
significance.
For the success of the mapping, it was crucial that the

Ricci tensor is invariant under the rescaling of the metric.
The similar thing may happen in one-loop gauge theories in
d ¼ 4þ ϵ dimensions. Suppose they are at the renormal-
ization group fixed point

0 ¼ −ϵg−2 þ β0; ð30Þ

where β0 is a constant. We may now define the associated
beta function in four dimensions from g−2ðtÞ ¼ ϵtg−2� . It
satisfies the d ¼ 4 dimensional renormalization group
equation

dg−2ðtÞ
dt

¼ β0 ð31Þ

at one-loop. Note that it was crucial that β0 is a constant and
does not depend on g.
Of course, at this point, we do not know if the analog of

Perelman’s entropy exists. Also, we admit that the mapping
may not work at the higher loop order. Both in nonlinear
sigma models and gauge theories, the two-loop term (e.g.,
RMIJKRIJK

N ) is not invariant under the rescaling of the
coupling constant, so the naive mapping does not work. It is
therefore an interesting question to show conformal invari-
ance of nonlinear sigma models in d ¼ 2þ ϵ dimensions
beyond the one-loop approximation.
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