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We adopt a combination of analytical and numerical methods to study the renormalization group flow of
the most general field theory with quartic interaction in d ¼ 4 − ϵ with N ¼ 3 and N ¼ 4 scalars. For
N ¼ 3, we find that it admits only three nondecomposable critical points: the Wilson-Fisher with Oð3Þ
symmetry, the cubic with H3 ¼ ðZ2Þ3⋊S3 symmetry, and the biconical with Oð2Þ × Z2. For N ¼ 4, our
analysis reveals the existence of new nontrivial solutions with discrete symmetries and with up to three
distinct field anomalous dimensions.
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I. SYNOPSIS AND SUMMARY OF OUR RESULTS

Critical models are theories in which the correlation
length diverges thanks to the precise tuning of some
external parameters. Assuming the thermodynamical limit,
the criticality condition ensures that no scale has any effect
on the theory because it is infinitesimally small when
compared to the diverging correlation length. This results in
a model which has no built-in scale and thus is allowed to
exhibit fluctuations of arbitrary size with a fractal-like
behavior. Importantly, critical models can be studied as the
scale invariant fixed points of renormalization group (RG)
beta functions [1]. In this regard, quantum and statistical
field theories are the most commonly used frameworks and,
especially, scalar theories with local interactions in d ¼
4 − ϵ dimensions have been the subject of several inves-
tigations since almost half a century [2–5].
The leading and next-to-leading orders of the perturba-

tive renormalization group flow of the model

L ¼ 1

2
∂φ · ∂φþ vðφÞ; ð1:1Þ

with the most general quartic potential

vðφÞ ¼ 1

4!
λijklφiφjφkφl ð1:2Þ

in d ¼ 4 − ϵ dimensions is given by the following beta
functional (all dimensionful quantities are rescaled to be
dimensionless and an additional rescaling removes a factor
ð4πÞ2)

βv ¼ −dvþ d − 2

2
φivi þ γijφivj þ

1

2
vijvij −

1

2
vijviklvjkl

γij ¼
1

12
viklnvjkln −

1

16
viklmvjknpvlmnp; ð1:3Þ

in which φi with i ¼ 1;…; N are scalar fields, subscript
indices on vðφÞ stand for field derivatives, γij is the
anomalous dimension matrix, and repeated indices are
summed over. Scale invariant solutions v�ðφÞ of βv ¼ 0
lead to perturbative fixed points of the renormalization
group for which λ�ijkl ∼OðϵÞ, and correspond to critical
models with nontrivial behavior for d < 4. Eigenvalues of
the γ matrix are fields’ anomalous dimensions; upon
diagonalization they are related to the anomalous dimen-
sions ηi of the two point functions, 2γij ∼ δijηi (no
summation over the index i).
The flow (1.3) is known to the next-to-next-to-leading

order [6]. For finding perturbative fixed points, it is
sufficient to use the leading order of (1.3); however, we
displayed the next-to-leading term for two main reasons: on
the one hand, it is universal among massless RG schemes;
on the other hand, it is necessary for determining whether
any found solution actually corresponds to a OðϵÞ degen-
erate set of physically distinct fixed points. The latter
situation is known to occur sometimes [4,5]. Furthermore,
the compact functional form of the RG flow presented here
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is very convenient since it is able to describe easily the
scaling properties of composite operators and some oper-
ator product expansion (OPE) coefficients [7,8]. Simple
and powerful relations to the conformal field theory (CFT)
description have been derived at leading order both for
single [9–11] and multiscalar field systems [12,13]. Notice
that, strictly speaking, scale invariance does not imply
conformal invariance [14]. Here, we concentrate on sol-
utions of (1.3) and assume that, if the stronger condition of
conformal invariance is met, then some of the CFT data can
be deduced by RG analysis.
The RG flow can be written as the gradient of a function

A with a metric in couplings’ space which is trivial in the
parametrization (1.2) up to the next-to-leading order [15].
Using the couplings λijkl and their beta functions βijkl, the
function A is obtained by integrating βijklδλijkl ¼ δA,
resulting at the leading order in

A ¼ −
ϵ

2
λijklλijkl þ λijmnλmnklλklij: ð1:4Þ

At a fixed point λ�ijkl and at the leading order (LO), A can be
related to the anomalous dimensions

A�¼LO −
ϵ

6
λ�ijklλ

�
ijkl¼LO − ϵ

X
i

ηi; ð1:5Þ

which can be shown to have a bound A ≥ − N
48
ϵ3 that can be

saturated in certain cases [16]. Another quantity of interest
is the coefficient of the energy-momentum tensor two point
function CT , which can be normalized relatively to the
single free scalar theory case CT;free. At the leading order
the ratio can be written [6] as

CT

CT;free
¼ N −

5

36
λ�ijklλ

�
ijkl¼LON −

5

6

X
i

ηi: ð1:6Þ

The form of the potential vðφÞ in (1.2) is not constrained
by any symmetry group acting on the fields’ multiplet φi.
The maximal symmetry that the potential can have isOðNÞ,
which would act on the fields by rotating them φi → φ0

i ¼
ðR · φÞi ¼ Ri

jφj with R ∈ OðNÞ. Even in absence of
maximal symmetry, the action of OðNÞ on the fields
induces an action on the potential itself vðφÞ → v0ðφÞ≡
vðR · φÞ and thus on the couplings λijkl, which can
generally be decomposed using the irreducible representa-
tions (irreps) of OðNÞ. This method allows us to rewrite
the very complicate and rather redundant fixed point
equations of the couplings λijkl in terms of simpler
equations that depend on new coupling with irreducible
OðNÞ transformations. The simpler equations are then
more suitable to be studied either analytically, or numeri-
cally, or with a combination of both methods.
For N ¼ 1 there is only one critical model with Oð1Þ ≃

Z2 symmetry, the well-known ϕ4 model, which captures

the physics of the universality class of the Ising model.
Similarly, for N ¼ 2 there is only one critical model with
Oð2Þ symmetry, which captures the physics of the univer-
sality class of the Heisenberg model. In this latter case and
for the rest of this paper, we have restricted our attention to
nondecomposable models, that is, to fixed points which
cannot be written as simple sums of models with lower
values of N. The statement for N ¼ 1 is very easy to show
since it involves only one coupling, while the case for N ¼
2 can be proven by brute force specializing the RG beta
functions (1.3), or, more sophisticatedly, using the repre-
sentation theory of the group Oð2Þ as done in Ref. [6].
There are three known solutions for N ¼ 3. The two

better-known ones have anomalous dimension matrix γij
proportional to the identity; they are the Wilson-Fisher
model with maximal Oð3Þ symmetry, and the cubic model
with H3 symmetry. The lesser-known solution has two
different anomalous dimensions as diagonal entries of γij;
it is the biconical model with Oð2Þ × Z2 symmetry.
Interestingly, all these N ¼ 3 solutions admit generaliza-
tions to arbitrary values of N [16]. To the best of our
knowledge, there is no proof that the three aforementioned
solutions for N ¼ 3 are the complete set of OðϵÞ solutions
to βv ¼ 0.
In Sec. III we adopt the method of the irreps of Oð3Þ

and combine it with analytical and numerical methods to
solve βv ¼ 0. To summarize our first important result here,
we do not find any further solution for N ¼ 3, besides the
ones mentioned in the previous paragraph. Therefore, our
analysis strongly suggests that the only solutions for N ¼ 3
are the Wilson-Fisher Oð3Þ, the cubic, and the biconical
fixed points.
Much less is known for models with N ≥ 4. As pre-

viously mentioned, there are some families of critical
models which generalize the ones seen for N ¼ 3 as a
function of N. These include the OðNÞ Wilson-Fisher,
the (hyper)cubic with HN ¼ ðZ2ÞN⋊SN symmetry, the
(hyper)tetrahedral with Z2 × SNþ1, but also several others.
All these solutions are characterized by one independent
field anomalous dimension, with the exception of the
biconical solution with OðN1Þ ×OðN2Þ symmetry and
N ¼ N1 þ N2, which is characterized by two distinct field
anomalous dimensions. For a rather complete accounting of
these solutions, we refer to [16]. The numerical methods
that we have applied for N ¼ 3 can be straightforwardly
generalized to N ≥ 4, however the equations quickly
increase in size and complexity by orders of magnitude,
so we do not attempt an empirical classifications of critical
models for N ¼ 4 and beyond.
There are, however, results that we believe are interesting

on the basis of our experience with the irreps method and of
some observations. The observation is rather empirical:
roughly, the more symmetry a critical model has, the less
independent anomalous dimensions it has. Groups such
as OðNÞ and HN fully constrain the matrix γij to be
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proportional to the identity, because they have at most one
quadratic invariant. For both N ¼ 2 and N ¼ 3, it seems
that the critical models can have at most N − 1 independent
ηs (the biconical model being the first one with two
independent ηs for N ¼ 3). This leads us to the conjecture
that for a general N-components model there can be at
most N − 1 independent anomalous dimensions. We set off
numerically testing and confirming this hypothesis for
N ¼ 4 in Sec. IV. Therefore, the situation appears to be
different from what happens for scalar theories in d ¼ 6 − ϵ
dimensions, for which, in a previous work, we have shown
that N-components models exist with N independent ηs up
to N ¼ 3 [17].
We report three new solutions for N ¼ 4 with discrete

symmetries in Sec. IV. One of them has two independent
anomalous dimensions, the other two have three indepen-
dent anomalous dimensions.

II. TENSOR DECOMPOSITION

A simple and transparent way to decompose the cou-
plings in irreps of OðNÞ, which works for any number of
flavors N, is to split the symmetric tensor λijkl as follows

λijkl¼ κδðijδklÞ þρðijδklÞ þσijkl; ρll ¼ 0; σijll ¼ 0; ð2:1Þ

where ρij and σijkl are symmetric traceless tensors and
indices enclosed curved brackets are symmetrized. Taking
the trace of this relation one finds, for general N, that

κ ¼ 3

NðN þ 2Þλaabb; ρij ¼
6

Nþ 4

�
λijaa −

1

N
δijλaabb

�
;

σijkl ¼ λijkl − κδðijδklÞ − ρðijδklÞ: ð2:2Þ

The main advantage of this decomposition is that it
immediately suggests how redundant couplings can be
eliminated. We first notice that if v�ðφÞ is a solution of
βv ¼ 0, then any rotation of the solution, such as v�0ðφÞ ¼
v�ðR · φÞ for R ∈ OðNÞ, is also a solution. The solution
might be invariant under the rotation, such as the case of the
OðNÞ model, or transform nontrivially into another one,
which belongs to the same moduli space of solutions with
completely equivalent critical properties. Therefore, one
can always apply a OðNÞ rotation without changing the
physics. We argue that it is best to use such freedom to
bring the matrix ρij to diagonal form, hence reducing the
number of couplings in the model and greatly simplifying
the search in theory space.
If we further impose some additional constraints, for

example that some elements on the diagonal of ρij are the
same, we would then have extra rotational freedom left that
is not broken by the form of ρij, which can thus be used to
set to zero some components of σijkl. In the next two
sections, we discuss the applications of these methods to
the case N ¼ 3 and N ¼ 4.

III. IRREDUCIBLE RESULTS FOR N = 3

By restricting to a specific value of N, one can make an
explicit connection between the components of the irreps and
the couplings of the model. For the special case of N ¼ 3,
there are 15 independent couplings among λijkl, which we
denote as λI , I ¼ 1;…; 15. We thus rewrite (1.2) as

v ¼ 1

4!
ðλ1φ4

1 þ 4λ2φ
3
1φ2 þ 4λ3φ

3
1φ3 þ 6λ4φ

2
1φ

2
2

þ 6λ7φ
2
1φ

2
3 þ 12λ5φ

2
1φ2φ3 þ 4λ6φ1φ

3
2 þ 4λ12φ1φ

3
3

þ 12λ10φ1φ2φ
2
3 þ 12λ8φ1φ

2
2φ3 þ λ9φ

4
2 þ λ15φ

4
3

þ 4λ14φ2φ
3
3 þ 6λ13φ

2
2φ

2
3 þ 4λ11φ

3
2φ3Þ: ð3:1Þ

The λI carry a reducible representation of SOð3Þ, that is
decomposed as

15 ¼ 1 ⊕ 5 ⊕ 9 ð3:2Þ

corresponding to the κ, ρij and σijkl representations described
earlier. To find the explicit linear combinations of λI thatmake
up these irreps, one simply diagonalizes simultaneously J2 ¼
J · J (the quadratic Casimir) and J3 operators in their
representation on λI space, where Ji are the soð3Þ algebra
generators satisfying ½Ji; Jj� ¼ iϵijkJk.
Doing this, we can list the components gI of the irreps

of the right-hand side of (3.2) as linear combinations
of λI . The components of the 9 dimensional irrep are gI ,
I ¼ 1;…; 9 and are found to be

g1 ¼
ffiffiffi
2

p
ð3ðλ1 þ 2λ4 − 8λ7 þ λ9 − 8λ13Þ þ 8λ15Þ

g2 ¼ 30ðλ5 þ λ11Þ − 40λ14

g3 ¼ 40λ12 − 30ðλ3 þ λ8Þ
g4 ¼ −10ðλ1 − 6λ7 − λ9 þ 6λ13Þ
g5 ¼ −20ðλ2 þ λ6 − 6λ10Þ
g6 ¼ 70ðλ11 − 3λ5Þ
g7 ¼ 70ðλ3 − 3λ8Þ
g8 ¼ 35ðλ1 − 6λ4 þ λ9Þ
g9 ¼ 140ðλ2 − λ6Þ: ð3:3Þ

The 5 dimensional irrep in (3.2), denoted by gI for
I ¼ 10;…; 14 is

g10 ¼
ffiffiffi
2

p
ðλ1 þ 2λ4 − λ7 þ λ9 − λ13 − 2λ15Þ

g11 ¼ 6ðλ5 þ λ11 þ λ14Þ
g12 ¼ −6ðλ3 þ λ8 þ λ12Þ
g13 ¼ −3ðλ1 þ λ7 − λ9 − λ13Þ
g14 ¼ −6ðλ2 þ λ6 þ λ10Þ: ð3:4Þ
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Finally, the last linear combination gives the singlet
representation

g15 ¼ λ1 þ 2λ4 þ 2λ7 þ λ9 þ 2λ13 þ λ15: ð3:5Þ

As discussed earlier, one can remove some redun-
dant couplings by a suitable rotation and diagonalize
the tensor ρij of Sec. II. For our choice of gI basis, the
diagonalization of ρij is simply equivalent to setting
g11 ¼ g12 ¼ g14 ¼ 0. Moreover 4-dim subspaces fg1; g10;
g15; gig for i ¼ 6, 7, 8, 9 are invariant under the
RG flow.
A numerical analysis of the reduced system of beta

functions shows that there is no new fixed point beyond
what is already known in the literature, namely, the
Wilson-Fisher Oð3Þ, the cubic and the biconical fixed
points. The 3 by 3 diagonal matrix ρ vanishes completely
for the Oð3Þ and cubic fixed points, while it has two
equal diagonal nonzero elements for the biconical. For
the Oð3Þ model the only nonzero coupling is the singlet
g15 ¼ 15ϵ=11, because it has maximal symmetry. For
the cubic fixed point the nonzero couplings are g1 ¼
−14

ffiffiffi
2

p
ϵ=9, g8 ¼ −70ϵ=9 and g15 ¼ 4ϵ=3. Finally, for the

biconical fixed point, analytic expressions for the cou-
pling values are available, but too long to present here,
instead we give the numerical values g1 ¼ −2.6617ϵ,
g10 ¼ 0.05529ϵ, and g15 ¼ 1.3371ϵ.
Now for some details our search procedure: We first

use the global rotational freedom to set g11 ¼ g12 ¼
g14 ¼ 0 on all beta functions; a fixed point is thus
defined as a solution of the overcomplete set of equations
)15 equations in 12 variables). Since the system is still

beyond analytic treatment, we first scan analytically
several subsystems by setting some further gi to zero,
which allows us to find analytic expressions for the three
solutions. Then, we construct an algorithm that repeat-
edly searches for numerical zeroes of the full system
from random initial conditions. These initial conditions
are chosen first within the Rychkov-Stergiou (RS) bound
[16], which takes the form of an ellipsoid in couplings’
space, and then within a (hyper)rectangular box contain-
ing the RS bound itself.

IV. NEW NONTRIVIAL N = 4
CRITICAL THEORIES

Let us now consider the case N ¼ 4. We want to devote
the investigation of this section to the search of previously
unknown critical theories. The details of the decomposition
in irreps for N ¼ 4 are discussed in the Appendix. To
summarize the most important facts, one can define the
basis of couplings gI from the eigenstates of the (only
independent) Casimir c and of the two operators h1 and h2
of the Cartan subalgebra. As for N ¼ 3, the beta functions
of gI greatly simplify the analysis of the fixed points.
Likewise the previous section, we find useful to choose a
specific basis for which the ρij matrix of the tensor
decomposition (2.2) is diagonal, which can always be
done by applying a suitable Oð4Þ transformations.
In the following, we focus our attention on the search of

solutions that do not possess the so-called trace property
[2,18], i.e., with nonzero ρij.

1 Taking into account the
corresponding set of six conditions, one can consider also
different sets of nonzero gi couplings, which are charac-
terized by the eigenvalues of the operators c, h1 and h2.
Then one can see which of them are the solutions of the
apparently overconstrained system of equations given by
the complete set of beta functions, as explained in the
previous section.
Since we do not rely on the assumption of any

symmetry, this approach can be considered a kind of
tamed almost brute force procedure, which nevertheless is
very effective. Combining numerical and analytical algo-
rithms to solve the system of polynomial equations, we
can easily find several solutions. Clearly, we are able to
find all the well-known families of fixed points and their
symmetry properties specialized to N ¼ 4, that we
already recalled in the Introduction. These solutions have
been largely discussed in the literature, also recently
[6,16], and we do not address them here. We instead
concentrate on three new nontrivial fixed point solutions.
One of them is characterized by two distinct field
anomalous dimensions, and the other two by three
different ones. All these solutions have discrete global
symmetries.
The three new critical theories have LO potentials

v1=ϵ ¼ a1ðφ2
1 þ φ2

4Þ2 þ a2ðφ2
2 þ φ2

3Þ2 þ a3ðφ2
1 þ φ2

4Þðφ2
2 þ φ2

3Þ þ a4ðφ3φ
3
1 − 3φ1ðφ1φ2 þ φ3φ4Þφ4 þ φ2φ

3
4Þ;

v2=ϵ ¼ b1ðφ4
1 þ φ4

3Þ þ b2φ4
2 þ b3φ4

4 þ b4φ2
1φ

2
3 þ b5φ2

2φ
2
4 þ b6ðφ2

1 þ φ2
3Þφ2

2 þ b7ðφ2
1 þ φ2

3Þφ2
4 þ b8φ1φ2φ3φ4;

v3=ϵ ¼ c1φ4
1 þ c2φ4

2 þ c3φ2
1φ

2
2 þ c4ðφ2

3 þ φ2
4Þφ2

1 þ c5φ2
2ðφ2

3 þ φ2
4Þ þ c6ðφ2

3 þ φ2
4Þ2 þ c7φ1φ4ðφ2

4 − 3φ2
3Þ; ð4:1Þ

with coefficients

1This property has been intensively investigated in the past because it guarantees that criticality can be tuned by a
single parameter.
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a1 ¼ 0.00919041; a2 ¼ 0.00970702; a3 ¼ 0.0232858; a4 ¼ 0.00383258; b1 ¼ 0.00836122; b2 ¼ 0.00977968

b3 ¼ 0.0120982; b4 ¼ 0.0298269; b5 ¼ 0.018415; b6 ¼ 0.0235331; b7 ¼ 0.014846; b8 ¼ 0.0229149;

c1 ¼ 0.009894; c2 ¼ 0.0117361; c3 ¼ 0.0261495; c4 ¼ 0.0192239; c5 ¼ 0.0106247; c6 ¼ 0.0112214;

c7 ¼ −0.00450868:

We have given rounded numerical values of the critical
couplings, instead of analytic expressions, because they are
roots of polynomials with cumbersome expressions. All
three solutions are bounded from below, which can be seen
by first arranging them as v ∼

P
ab OaQabOb, for some

monomials Oa quadratic in the fields, and by then testing
the positivity of the matrices Qab.
In Table I, we present for each new critical theory the

numerical values of the anomalous dimensions ηi, which
combine to A at LO using (1.4), their apparent symmetries,
and the number of quadratic and quartic invariants, respec-
tively denoted I2 and I4. Notice that the number of
quadratic invariants I2 equals the number of independent
anomalous dimensions.
In the chosen basis, the tensorial decomposition (2.2)

gives the following matrix ρij=ϵ for the three fixed points

v1∶ 0.00619928diagð−1; 1; 1;−1Þ;
v2∶ diagð−0.006082;−0.006082; 0.01128; 0.0008868Þ;
v3∶ diagð−0.001903;−0.001903; 0.01112;−0.007316Þ;

implying that the first matrix has symmetry Oð2Þ2, while
the second and third ones Oð2Þ. These are not symmetries
of the critical models, however, because the traceless tensor
σijkl, which has several nonzero elements for all three
critical theories, breaks them down to the discrete ones
shown in Table I.
Invariants of various order can be also constructed from

κ, ρij and σijkl, which provide some degree of information
on the properties of the solutions. A useful feature of the
solutions is obtained by looking at the spectrum of the
quadratic and quartic invariants, from which we can count
the singlet scaling operators with respect the symmetry of
the specific critical theory. The invariants do not need to be
scaling operators and one can combine operators with
different anomalous dimensions and obtain invariants with

higher symmetry, up to Oð4Þ, e.g., Pi φ
2
i and ðPi φ

2
i Þ2.

For the quadratic operators, we start from the eigenvalue
equation for the scaling operators S2 ¼ Sijφiφj, given by
γ2Sij ¼ vijabSab as described in [13]. Moreover for the
quartic operators, we simply investigate the spectrum of the
stability matrix of the beta functions at criticality.
In the following we briefly summarize our findings for

the case N ¼ 4:
(i) v1: the symmetry Z3 × Z2

2 reflects the invariance
under the simultaneous exchange (φ1 ↔ φ4,
φ2 ↔ φ3), under the sign changes ðφ2;φ4Þ →
ð−φ2;−φ4Þ and Z3 transformations in the ðφ1;φ4Þ
sector. There are two singlet quadratic operators
with scaling dimension 2 − 0.488829ϵ and
2 − 0.115889ϵ, both invariant under the symmetry,
implying that I2 ¼ 2. Counting the quartic singlet
scaling operators one finds I4 ¼ 4. There are 18 IR-
attractive, 12 IR-repulsive and 5 marginal deforma-
tions at LO in the quartic sector.2

(ii) v2: it is characterized by the symmetry Z4
2, because

of the invariance under the exchange φ1 ↔ φ3, and
under the simultaneous sign change φi → −φi for
the three independent pairs (12), (13) and (24).
There are 6 quadratic scaling operators with different
eigenvalues (one dimensional eigenspaces), but
only three of them respect the symmetry, implying
that I2 ¼ 3. The quadratic singlets have critical
exponents 2 − 0.481864ϵ, 2 − 0.226530ϵ, and
2 − 0.136650ϵ. There are 8 quartic singlet scaling
operators, i.e., I4 ¼ 8. We find 16 IR-attractive, 13
IR-repulsive and 6 marginal deformations at LO in
the quartic sector.

TABLE I. Anomalous dimensions ηi, values of A at LO, apparent symmetry and number of quadratic and quartic
invariants of the novel N ¼ 4 critical theories.

ηi=ϵ2 A�=ϵ3 Symmetry I2 I4

v1 (0.0210892, 0.0210892, 0.0205446, 0.0205446) −0.0832676 Z3 × Z2
2

2 4
v2 (0.0212805, 0.0208156, 0.0205473, 0.0205473) −0.0831906 Z4

2
3 8

v3 (0.0212688, 0.020709, 0.020709, 0.0204991) −0.0831859 S3 × Z2
2

3 7

2Here and for the following two solutions, “marginal at LO”
means that the deformations do not have a OðϵÞ contribution.
They do have a Oðϵ2Þ contribution, instead, which comes from
the next-to-leading term of (1.3). In other words, they do not
parametrize a conformal manifold [19].
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(iii) v3: it appears to have the symmetry S3 × Z2
2, since

the potential is S3 invariant in the ðφ3;φ4Þ sector, but
also does not change under the transformations
ðφ1;φ4Þ → ð−φ1;−φ4Þ and φ2 → −φ2. There are
4 quadratic scaling operators with different eigen-
values (one dimensional eigenspaces) and three of
them respect the symmetry with eigenvalues
2 − 0.481257ϵ, 2 − 0.257752ϵ, 2 − 0.139196ϵ, im-
plying I2 ¼ 3. The quartic singlet scaling operators
that respect the symmetry are 7, i.e., I4 ¼ 7. There
are 15 IR-attractive, 14 IR-repulsive and 6 marginal
deformations at LO in the quartic sector.

Obviously, one can straightforwardly push the analysis of
these critical theories to higher orders in the perturbative
expansion. We also find, but not report, a fixed point
solution related to a theory with three different real and
positive field anomalous dimensions, but with three com-
plex couplings, implying that the underlying theory is
nonunitary.

V. CONCLUSIONS AND FUTURE PROSPECTS

In this short paper, we have reviewed how one can
conveniently carry on the search of general critical scalar
theories without assuming any symmetry, but instead
letting it emerge at criticality. The method takes advantage
of the decomposition of the couplings, that define the
theory space, in irreducible representations of OðNÞ. In a
previous work we have applied the same method to critical
theories with N ¼ 3 scalars in d ¼ 6 − ϵ dimensions [17],
providing the whole set of possible scaling solutions. In this
work, instead, we have concentrated our attention to critical
scalar theories in d ¼ 4 − ϵ dimensions.
For N ¼ 3, our study of all possible solutions, which is

based on a combination of analytical and numerical
techniques, gives strong evidence that no new critical
theories beyond the three ones that were already known
do exist (OðNÞWilson-Fisher, cubic and biconical models).
Even though nothing new is found for N ¼ 3, this is an
important finding because it constrains the number of
possible critical models with three scalar fields.
For N ¼ 4, we are able to find, without much numerical

effort, three previously unknown critical theories bounded
from below and characterized by nontrivial discrete sym-
metries. We regard these solutions as interesting because
their anomalous dimension matrix γij is not proportional to
the identity. As a consequence, one solution has two
different field anomalous dimensions, and the other two
have three different ones. It would be interesting, but
maybe challenging, to investigate more these new critical
theories with CFT bootstrap methods [20,21], as currently
done, for example, for the cubic model [22,23]. We cannot
exclude that further nontrivial scaling solutions exist,
because the system of equations is rather complex, even
after the application of the Oð4Þ reduction and the
decomposition in irreducible representations.

As a final comment for future applications, especially
with the interest of reaching similar results for N ≥ 5, we
stress that the method can be easily generalized to higher
values of N and thus provides an important foundation for
future searches. Some notion in this direction is given in
Appendix.
The arising zoology of critical scalar models in theory

space, together with their emergent symmetries, is an
interesting topic in its own right, but it could also be
useful to discover previously unknown condensed matter
models with nontrivial second order phase transitions. It
could also have some repercussion in the constructions of
the Higgs sector of new particle physics theories. An
application of the latter idea could be relevant for the
search of new fundamental UV complete QFT within the
asymptotic safety scenario (without gravity) along the lines
discussed in Ref. [24].
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APPENDIX: DECOMPOSITION IN IRREPS
FOR N ≥ 4

We can label λI the ðNþ3
4
Þ different couplings of the

potential v, generalizing the parametrization (3.1) to
arbitrary N, and study their transformation properties
induced by the mixing of the monomials under OðNÞ
transformations of the fields. The picture becomes simpler
moving to a coupling basis gi suggested by the decom-
position of the action of OðNÞ in irreps, or, even more
simply, of its subgroup SOðNÞ by leaving aside some
discrete reflexion. For simplicity, we first and foremost
concentrate on the case N ¼ 4, since it is the focus of
our partial analysis of Sec. IV, but also outline briefly the
N ¼ 5 case, because it incorporates the blueprint for the
generalization to arbitrary N.
A convenient starting point to study the irreps for N ¼ 4

is to choose a new field basis φ̃i, for which the Lagrangian
(1.1) takes the form

L ¼ 1

2
∂φ̃ ·M · ∂φ̃þ ṽðφ̃Þ; ðA1Þ

where

M ¼
�

0 12

12 0

�
ðA2Þ

and both fields and potential are distinguished from those in
the canonical basis of (1.2) by a tilde. One can use the
transformation matrix
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X ¼ 1ffiffiffi
2

p
�
12 −i12
12 i12

�
ðA3Þ

to move back to the canonical basis φi. Here, 12 is the
2-dimensional identity matrix. In such basis the SOð4Þ
transformations are defined through OTMO ¼ M. Also,
the solution to the equation tTM þMt ¼ 0, defining an
element t of the algebra, takes a simple form.
Take eij to be the 4 by 4 matrix with “1” on the ði; jÞ

entry and “0” everywhere else. The SOð4Þ algebra gen-
erators can be written as

h1 ¼ e11 − e33 x1 ¼ e12 − e43 y ¼ e14 − e23

h2 ¼ e22 − e44 x2 ¼ e21 − e34 z ¼ e32 − e41: ðA4Þ

In particular, elements of the Cartan subalgebra h1, h2
take a diagonal form, thanks to the choice of noncanonical
basis. Defining h� ¼ h1 � h2 the nonzero commutation
relations are

½x1; x2� ¼ h−; ½h−; x1� ¼ 2x1; ½h−; x2� ¼ −2x2; ðA5Þ

½y; z� ¼ −hþ; ½hþ; y� ¼ 2y; ½hþ; z� ¼ −2z: ðA6Þ

One can work instead with a basis for the algebra that
makes the connection SOð4Þ ¼ SOð3Þ × SOð3Þ manifest:
½Ji; Jj� ¼ iϵijkJk and ½Ki; Kj� ¼ iϵijkKk. It is easily seen,
from (A5), that one has to make the identification

Jþ ¼ x1ffiffiffi
2

p ; J− ¼ x2ffiffiffi
2

p ; J3 ¼
h−
2
; ðA7Þ

and similarly, from (A6),

Kþ ¼ iyffiffiffi
2

p ; K− ¼ izffiffiffi
2

p ; K3 ¼
hþ
2
: ðA8Þ

The sum of J2 and K2 above is equal to the Casimir
operator of SOð4Þ:

c ¼ 1

2
ðh21 þ h22 þ fx1; x2g − fy; zgÞ ¼ J2 þ K2: ðA9Þ

In terms of the eigenvalues of the highest weight vectors
under ðh1; h2Þ, which we denote by ða1; a2Þ, and the
eigenvalues of J2 and K2, denoted by j1ðj1 þ 1Þ and
j2ðj2 þ 1Þ respectively, the value of the Casimir c is

c ¼ 1

2
½a1ða1 þ 2Þ þ a22� ¼ j1ðj1 þ 1Þ þ j2ðj2 þ 1Þ;

ðA10Þ

where ðj1; j2Þ ¼ ða1þa2
2

; a1−a2
2

Þ. One finds that the space of
the 35 couplings of the general N ¼ 4 scalar model is
reduced according to the irreps labeled by ðj1; j2Þ ¼
ð0; 0Þ; ð1; 1Þ; ð2; 2Þ or ða1; a2Þ ¼ ð0; 0Þ; ð2; 0Þ; ð4; 0Þ, with
the corresponding Casimirs being c ¼ 0, 4, 12. The
states are labeled according to their eigenvalues under
c; h1; h2. The dimensions of the irreps are given by
ð2j1 þ 1Þð2j2 þ 1Þ ¼ ð1þ a1Þ2 − a22 and therefore one
has the decomposition

35 ¼ 1 ⊕ 9 ⊕ 25: ðA11Þ

In relation to the tensorial decomposition discussed in
Sec. II, one can make the identification

κ ↔ r1; ρij ↔ r9; σijkl ↔ r25; ðA12Þ

where we denoted by ri the multiplet of the i-dimensional
representation.
One of the advantages of using the basis (A1) is that the

above procedure can be extended more easily to higher N.
For SOð5Þ, we modify the previous definition by choosing

M ¼

0
B@

0 12 0

12 0 0

0 0 1

1
CA ðA13Þ

and simply add to the algebra generators of SOð4Þ four new
elements:

u1 ¼ e15 − e53 v1 ¼ e35 − e51

u2 ¼ e25 − e54 v2 ¼ e45 − e52; ðA14Þ

where here eij is a 5 by 5 matrix, while the Cartan
subalgebra remains two dimensional, consisting of h1,
h2. The additional commutation relations would be

½ui; vi� ¼ −hi; ½hi; ui� ¼ ui; ½hi; vi� ¼ −vi: ðA15Þ

A quadratic Casimir can be written as

c ¼ 1

2
ðh21 þ h22 þ fx1; x2g − fy; zg − fu1; v1g − fu2; v2gÞ:

Having discussed the two cases N ¼ 4 and N ¼ 5, the
generalization to higher N (both even and odd) is
straightforward.
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