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It is widely expected that at sufficiently high temperatures order is always lost, e.g., magnets lose their
ferromagnetic properties. We pose the question of whether this is always the case in the context of quantum
field theory in d space dimensions. More concretely, one can ask whether there exist critical points (CFTs)
which break some global symmetry at arbitrary finite temperature. The most familiar CFTs do not exhibit
symmetry breaking at finite temperature, and moreover, in the context of the AdS=CFT correspondence,
critical points at finite temperature are described by an uncharged black brane which obeys a no-hair
theorem. Yet, we show that there exist CFTs which have some of their internal symmetries broken at
arbitrary finite temperature. Our main example is a vector model which we study both in the epsilon
expansion and arbitrary rank as well as the large rank limit (and arbitrary dimension). The large rank limit
of the vector model displays a conformal manifold, a moduli space of vacua, and a deformed moduli space
of vacua at finite temperature. The appropriate Nambu-Goldstone bosons including the dilatonlike particle
are identified. Using these tools we establish symmetry breaking at finite temperature for finite small ϵ. We
also prove that a large class of other fixed points, which describe some of the most common quantum
magnets, indeed behave as expected and do not break any global symmetry at finite temperature. We
discuss some of the consequences of finite temperature symmetry breaking for the spectrum of local
operators. Finally, we propose a class of fixed points which appear to be possible candidates for finite
temperature symmetry breaking in d ¼ 2.
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I. GENERAL REMARKS

The phenomenon of spontaneous symmetry breaking is
commonplace in nature. The progress in theoretical under-
standing of this subject was followed by searching for
systems in which the symmetry was restored. The mecha-
nism for that can be intrinsic to the system, i.e., dynamical,
or it can be brought about by subjecting the system to
external conditions such as varying degrees of freedom,
temperature, density or large overall quantum numbers. In
this work we plan to discuss only the effects of temperature.
A more concise analysis of the main content of this work
will be provided in [1].
We start by reviewing some aspects of spontaneous

symmetry breaking. For a sample of standard references on
the subject, see for instance [2–5].

A. A Review of what symmetry breaking is

Let us consider a general quantum system in d space
dimensions with a Z2 global symmetry. We study the
theory with the d space dimensions being compact,
denoting the space as Md. Let O be a local operator
which is odd under the Z2 symmetry and we consider the
expectation value ofO in the thermal ensemble with inverse
temperature βth,

hOiMd
βth

≡ 1

Z
TrHMd

Oe−βthH: ð1:1Þ

Here Z is the partition function and HMd
denotes the

Hilbert space. We trace over the Hilbert space to obtain the
expectation value of O in the thermal ensemble.
In quantumsystems in finitevolumewecan always choose

the energy eigenstates to be eigenstates of Z2, and for each
such eigenstate jΨn;qi it holds that hΨn;qjOjΨn;qi ¼ 0. (Here
q ∈ f0; 1g depending on whether the state is even or odd
under Z2.)
Therefore for every compact space Md we have

hOiMd
βth

¼ 0: ð1:2Þ
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This is the familiar statement that in compact space
symmetries cannot break (whether the temperature is zero
or not).1

From now on, when we write hOiβth we mean hOiRd

βth
, i.e.,

the usual infinite volume limit. While in any compact space
(1.2) is correct, there could be a difficulty in taking the
infinite volume limit while maintaining hOiβth ¼ 0. When
we are unable to maintain hOiβth ¼ 0 in the infinite volume
limit we say that spontaneous symmetry breaking occurs.
This typically depends on βth, in the sense that for some
values of βth we may be able to maintain hOiβth ¼ 0 and for
some other values we may not.
One familiar reason that the infinite volume may be

singular is the following: As we increase the volume of
Md, the Hilbert space HMd

may develop different “sec-
tors” of states which have exponentially vanishing matrix
elements with states in other sectors. Then, the infinite
volume limit is taken by discarding some states in the
Hilbert space and it may happen that as a result we cannot
diagonalize Z2 in the infinite volume limit.
In the standard situation of symmetry breaking at low

temperatures the way these sectors in the Hilbert space arise
is as follows. We have two nearly degenerate eigenstates in
finite volume, jþi and j−i, such that they are respectively
even and odd underZ2 and the energy difference is given by

ΔE ∼ e−TwVolðMdÞ; ð1:3Þ

where Tw is a dimensionful constant known as the domain
wall tension. The energy splitting is interpreted for some
range of parameters as an instanton effect in quantum
mechanics and therefore it is natural to define the two
“minima”

jVAC1i ¼ jþi þ j−i; jVAC2i ¼ jþi − j−i:

These states can be thought of as being separated by a
barrier that scales with the volume of space, and hence the
instanton (1.3). Since the barrier scales with the volume of
space, the low lying states fall into two distinct sectors
which do not communicate in infinite space. We can choose
to be in either of jVAC1i or jVAC2i as we take the infinite
volume limit. Since jVAC1i and jVAC2i are not Z2

eigenstates, the Z2 symmetry is broken spontaneously.
At zero temperature as well as at sufficiently low temper-
atures we therefore have hOiβth ≠ 0.

States which are obtained from jVAC1i with the action
of only finitely many operators are nearly orthogonal to
states which are obtained from jVAC2i by acting with
finitely many operators, hence the notion of superselection
sectors. But note that for states where the energy scales with
the volume and is sufficiently high, the distinction between
jVAC1i and jVAC2i essentially disappears. For this
reason, we often think that at high enough temperatures,
where the typical state is a state with a larger energy density
than the energy scale involved in the spontaneous sym-
metry breaking, the Z2 symmetry must be restored.
Another viewpoint takes into account that at finite

temperature we do not minimize the energy but instead
we minimize

F ¼ E −
S
βth

(where S is the entropy), and hence at high temperature the
high entropy states dominate. Since high entropy states are
disordered we again expect that for high enough temper-
atures the symmetry will be restored.
In this note we would like to examine the question of

whether it is really the case that at high enough temperature
all symmetries are restored.2 There are many examples in
the literature of systems that break some symmetries at
intermediate temperatures; we will review some of those
beautiful constructions. But our focus is on the true high
temperature limit.
Using the relationship between finite temperature and a

theory on a circle, we can conclude that in d ¼ 2 only
discrete symmetries can break spontaneously at finite
temperature [16] and in d ¼ 1 no symmetries whatsoever
can break at finite temperature.

B. Arguments from the AdS=CFT correspondence

The AdS=CFT correspondence links the question of
symmetry restoration at high temperatures with the no-hair

1This is true as long as the number of degrees of freedom, N, is
finite (in particle physics or condensed matter systems the number
of degrees of freedom is always finite in this sense). For the case
of N ¼ ∞ there can be a phase transition even in compact space.
Two examples where this happens are the one plaquette model
[6,7] and the four-dimensional N ¼ 4 SUðNÞ super Yang-Mills
theory on a finite sphere [8–11]. Special features of the infinite N
limit will be important in part of this work.

2In this note we only discuss ordinary, zero-form symmetries.
The deconfinement transition of course famously behaves in the
opposite fashion but we do not discuss higher symmetries here.
Yet it is worth pointing out that, in d ¼ 2 space dimensions, the
two questions are linked. If we have a theory T with Z2 global
symmetry we could gauge it and obtain a new theory T 0 with a
one-form Z2 symmetry instead. Then, if at finite temperature the
original Z2 was broken in the theory T , then in the new theory T 0
the one-form Z2 symmetry is unbroken. Therefore in d ¼ 2 space
dimensions an example with broken ordinary symmetry at finite
temperature is essentially equivalent to an example which
confines at finite temperature. This relationship between ordinary
symmetries and higher symmetries was explained in [12,13]. In
the context of the AdS=CFT correspondence, the black-hole
picture of course leads one to expect finite temperature deconfine-
ment. For some references on this subject see the original work
[8] as well as some more recent developments [14,15] and
references therein. More details about this relationship between
the behavior of theory T and theory T 0 are in Appendix A.
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“theorem.” According to the AdS=CFT correspondence
[17–19], a conformal theory in Rd;1 is dual to the Poincaré
patch of AdSdþ2. Putting the field theory at finite temper-
ature is then interpreted as a black brane in AdSdþ2 [8]. The
statement that there is symmetry breaking in the CFT is
translated to hair on the black brane [20–22]. Black branes
which are charged are known to exhibit instabilities and
they can develop hair through the condensation of scalar
fields. But to our knowledge no such hair has been
exhibited for uncharged black branes. (Equivalently, when
the temperature of the black brane is much larger than the
chemical potential the hair disappears.) This statement also
extends to the possible condensation of scalars with
deformed boundary conditions [23,24].3 The CFT con-
structions we present here are not at odds with the no-hair
theorem for such black branes in AdS. The reason is that
our models are vector models and as such do not have
standard AdS duals (rather, the dual description is via
Vasiliev’s equations [30]).

C. Lattice systems and the continuum limit

The notion of arbitrarily high temperature has to be
clarified. Let us first examine local lattice systems with
finitely many degrees of freedom per site (spin systems) and
where the Z2 symmetry is realized on site. In such systems,
strictly infinite temperature corresponds to the unit density
matrix, i.e., as βth → 0,

e−βthH → I:

The state Imakes sense in such latticemodels. Let us now take
some order parameter localized to a site. Since in the state I all
sites decouple and the Hilbert space is a direct product
H ¼⊗sites Hi, the expectation values of such local operators
vanish since for such local operators as βth → 0, hOiβth →
TrsiteO ¼ 0. Hence, for such lattice systems the symmetries
must be restored at sufficiently high temperature [31].
Let us now consider the regime of quantum field theory

(QFT). If the lattice model is described by QFT at distances
much larger than the lattice spacing, then we can also
consider a temperature which is much larger than the
inverse correlation length but much smaller than the inverse
lattice spacing distance a:

a ≪ βth ≪ ξ:

This is a less trivial limit. In fact, in QFT the state I does not
necessarily make sense and the high temperature limit in the
continuumQFT sense contains potentially nontrivial physics

as we will see. This is the sense in which we will find
nontrivial behavior even at arbitrarily high temperature.
In fact, a QFT does not necessarily require a lattice to be

defined. It can be ultraviolet complete by itself. The short
distance limit is then described by a conformal field theory
(CFT). The question about the behavior of the theory at
very high temperatures can be then translated into a
question about conformal field theory at nonzero temper-
ature. Since there is no inherent scale in a CFT, any nonzero
temperature is equivalent to any other nonzero temperature.
Hence, if there is symmetry breaking in a CFT at some
nonzero temperature there is symmetry breaking at all
nonzero temperatures.

D. The central question

Are there unitary, local, nontrivial CFTs which break a
global symmetry at finite temperature?
Unitarity appears to be important for the following

reason: Instead of the thermal ensemble e−βthH one could
ask the same question about the high temperature behavior
in the ensemble with a chemical potential e−βthH−μQ.
Actually, in some situations with ’t Hooft anomalies it is
already known that one can guarantee symmetry breaking
for any radius of the thermal circle, i.e., any βth [32–36] for
some appropriate imaginary values of μ. A similar thing
sometimes happens with random chemical potentials [37].
On the other hand, for the ensemble e−βthH no such example
exists to our knowledge. The question is also interesting in
systems with no translational invariance. A nice setup
where one could study it is in [38] and see also [39].
The main point in this note is the construction of

conformal models in d ¼ 3 − ϵ dimensions which break
a symmetry at finite temperature. We will also provide a
conjecture for a model in d ¼ 2, but since it is only
conjectural at the moment, all the examples where we
can rigorously establish symmetry breaking at finite tem-
perature are in fractional dimensions and hence are not fully
unitary models [40] (and see references therein—however,
in the infinite rank limit these models may become unitary).

E. Our construction

What wewill do here is to present a construction of CFTs
which have a unique gapless ground state at zero temper-
ature and in the infinite N limit some of them have flat
directions in field space. At nonzero temperature, however,
we will find examples that exhibit spontaneous symmetry
breaking.
Our examples are in a class of conformal vector models.

We first prove a no-go theorem: such symmetry breaking at
finite temperature cannot occur in models with a single
quadratic Casimir. This explains a posteriori why many
familiar quantum magnets restore their symmetries at
high temperature. But in the biconical class of fixed points
[41–44], which have two quadratic Casimirs, we find

3See however [25–28]. While the hairy black holes in [25–28]
did not dominate the ensemble at high temperatures, their mere
existence is a possible step towards a violation of the no-hair
theorem for black branes. See also [29] for a recent construction.
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examples which display symmetry breaking at any finite
temperatures.
We treat the biconical models both in the limit of small

epsilon and in the limit of finite epsilon and large rank. We
find that the two approaches essentially overlap and agree.
These biconical CFTs have symmetry group OðmÞ ×
OðN −mÞ and the smaller group of the two breaks at
finite temperature. For instance (and without loss of
generality), if m < N=2 the unbroken symmetry group is
Oðm − 1Þ ×OðN −mÞ. Therefore there is no thermal gap
and instead we have Nambu-Goldstone bosons living on
Sm−1. In the equal rank case 2m ¼ N no symmetry
breaking occurs at finite temperature.
We find some special features when studying the

large rank limit of the biconical models. We find a one-
dimensional conformal manifold and a moduli space of
vacua though these models have no supersymmetry. In
addition, the moduli space of vacua does not disappear at
finite temperature, but instead, it is deformed. Moreover,
the ground state energies of the thermal effective potential
depend neither on temperature nor on the expectation
value of the field leading to spontaneous symmetry break-
ing [45–47].4 One finds a certain hyperbola in the space of
fields, where all the vacua on this hyperbola are degenerate.
The curvature of the hyperbola is set by the temperature.
This allows us to establish that indeed symmetry breaking
takes place in these models in d < 3 − ϵ dimensions for
finite small enough ϵ. For the case of equal rank 2m ¼ N
the hyperbola is not deformed at finite temperature and
indeed symmetry breaking at finite temperature does not
occur. In d ¼ 3 these models are free and hence trivial and
at d ¼ 2 the Nambu-Goldstone bosons on Sm−1 are lifted
by nonperturbative effects and hence, strictly speaking,
no symmetry breakdown occurs. This is of course in
line with the general expectation that no continuous
symmetry breaking can occur at finite temperature in
2þ 1 dimensions.5

It is still interesting though that the thermal gap is
exponentially small for large m because these nonpertur-
bative effects occur at an exponentially small scale. This is
a huge hierarchy between the thermal scale and the actual
correlation length.
Avery interesting special case is the class of models with

symmetry Oð1Þ ×OðN − 1Þ. For them we cannot straight-
forwardly apply the large rank methods since one of the
ranks is just 1. But we can still carry out the ϵ expansion
and we find that the symmetry is broken at finite temper-
ature to OðN − 1Þ, hence, there are 2 vacua. These models
therefore are possible candidates for a full fledged unitary

CFT in 2þ 1 dimensions with symmetry breaking at finite
temperature. We cannot prove, though, that this indeed
occurs in 2þ 1 dimensions and our evidence is based
solely on the ϵ expansion. It is conceivable that this
problem can be settled in the future.
In summary, we report here on a construction of critical

points in d ¼ 3 − ϵ space dimensions which break some
global symmetries at finite temperature. These models also
display some other interesting features, such as moduli
spaces of vacua at zero and nonzero temperature. We
emphasize a special case in the above class of critical points
that may break a Z2 symmetry at finite temperature strictly
in d ¼ 2 space dimensions.

F. Consequences for the spectrum of operators
and the phase diagrams

As we reviewed above, there is an intuitive picture of
what low temperature symmetry breaking means in terms
of which states survive the infinite volume limit. But
imagine a CFT that at finite temperature breaks a Z2

symmetry. What does that mean for the spectrum of
dimensions of local operators of the theory?
It is useful to address this question in radial quantization,

where the spectrum of the theory on Sd is isomorphic to the
space of local operators and the energies are identified with
the scaling dimensions. We study the partition function on
Sd × S1βth which is hence given by

ZSd×S1βth
¼

X
Δ
e−βthΔ=R; ð1:4Þ

where R is the radius of Sd. Evidently, the partition function
is only a function of βth=R due to conformal invariance. The
limit of large volume is obtained by taking R → ∞ with
fixed βth. In this limit we can use effective field theory since
there is an approximately local theory on Sd at distances
much bigger than βth. If we assume a thermal gap and no
symmetry breaking, then this effective theory on Sd is
obtained from a formal series expansion of local func-
tionals of the metric in the d-dimensional theory,

ffiffiffi
g

p
L ¼ Aβ−dth

ffiffiffi
g

p þ Bβ−dþ2
th R

ffiffiffi
g

p þ � � � ; ð1:5Þ

where A;B;… are dimensionless, model-dependent con-
stants. This leads to the usual expansion of the partition
function at large R (or, alternatively, small β):

βth → 0;

logZSd×S1βth
∼
2Aπd=2þ1=2

Γðd
2
þ 1

2
Þ β−dth R

d

þ 2Bdðd − 1Þπd=2þ1=2

Γðd
2
þ 1

2
Þ β−dþ2

th Rd−2 þ � � � :

ð1:6Þ

4This statement excludes trivial temperature dependence that is
scheme dependent.

5There are known exceptions to this expected behavior.
We refer the reader to [48] for a brief review on such exceptions.
See [49] as well for a discussion on this topic.

NOAM CHAI et al. PHYS. REV. D 102, 065014 (2020)

065014-4



We can then infer the density of operators at high Δ:

log ρ ¼ 2
1

dþ1A
1

dþ1ðdþ 1Þπ1
2

d
d

dþ1Γðd
2
þ 1

2
Þ 1
dþ1

Δ d
dþ1 þ � � � :

(The density should be interpreted in a Tauberian sense
[50–52].) This is how standard CFTs, satisfying the
assumptions above (i.e., a thermal gap and a unique
vacuum at nonzero temperature), behave.
In the event that there is a gap but the Z2 symmetry is

broken, there is a mild but important violation of (1.5). The
expansion (1.5) still holds in each of the two vacua but the
action (1.5) is missing a nonlocal piece due to the fact that
there are two vacua. It is nonlocal in the sense that it cannot
be described by a local functional of the metric.
Hence to leading order we have now

log ρðΔÞ ¼ 2
1

dþ1A
1

dþ1ðdþ 1Þπ1
2

d
d

dþ1Γðd
2
þ 1

2
Þ 1
dþ1

Δ d
dþ1 þ � � � þ log 2þ � � � :

ð1:7Þ

Say for d ¼ 3, the additive contribution to the density of
states log 2 cannot be obtained from any local term in the
action (1.5).6

The log 2 contribution suggests a mechanism for why the
infinite volume limit fails to preserve hOiβth ¼ 0. The factor
of log 2 suggests that the spectrum of high dimension
operators comes in two sectors, each of which furnishes
what would seem like a local theory in the thermodynamic
limit. Each of these sectors consists of operators which are
not Z2 eigenstates. In the event that the symmetry that is
spontaneously broken at finite temperature is a continuous
symmetry, log 2 is replaced by a constant times logR=βth.
Therefore, as we take the infinite volume limit we will find
again that the space of states breaks up into sectors. But
unlike in the standard, familiar, situation where this
happens for the low lying states, here these are the states
with fixed energy density that break up into such distinct
sectors (while the low lying states do not). It would be nice
to understand better this situation.
The general framework for CFTs at finite temperature

has been recently studied in [53–55]. Ultimately, symmetry
breaking at finite temperature in CFTs should be under-
stood in this language.

Quantum critical points with such unfamiliar behavior at
finite temperature would lead to rather unfamiliar phase
diagrams. Symmetry breaking in the CFT at finite
temperature implies that, had we started in the ordered
zero-temperature phase, the order could persist for any
temperature. This is the opposite situation than what is
encountered in most of the quantum critical points.
Schematically, if we had just one relevant operator, one
could find a phase diagram such as in Fig. 1. By contrast, in
the more familiar situations, the finite temperature phase
transition line bends in the other direction.

G. The outline

The outline of this paper is as follows. In Sec. II we
discuss some general facts about thermal field theory. We
emphasize the infrared problem, review some familiar
examples, and also present the construction of intermedi-
ate-temperature symmetry breaking. We also make some
general remarks about weakly coupled conformal gauge
theories in 3þ 1 dimensions. In Sec. III we discuss our
results about vector models. We prove a general theorem
about single Casimir models, discuss the small epsilon and
large rank limit of the biconical models and construct
controlled examples of symmetry breaking in CFTs. We
then discuss a possible candidate for finite temperature
symmetry breaking in d ¼ 2. Finally, the details leading to
footnote 2 are given in Appendix A, and some properties of
the large rank limit are discussed in Appendix B.

II. ASPECTS OF THERMAL FIELD THEORY

A. The ϕ4 model

To introduce some of the ideas that will be crucial below,
it is useful to start with the ϕ4 model. Let us take the
potential to be

V ¼ 1

2
m2ϕ2 þ 1

4!
λϕ4: ð2:1Þ

Ordered Disordered 

Relevant op

T

CFT

FIG. 1. A possible phase diagram in a theory where the critical
point breaks a symmetry at finite temperature. In familiar
systems, the black line always turns the other way.

6For even d a constant piece can be obtained from a local term
in (1.5). But the factor of log 2 we are talking about has a truly
nonlocal origin due to the two vacua and it would exist even on a
torus where no term in (1.5) would give such a contribution.
Another important thing to realize is that in even d there could be
a dimensionless gravitational counterterm in these two vacua.
The number of such counterterms depends on the number of
space-time dimensions. In the particular case of d ¼ 3 there are
no such counterterms and hence the log 2 contribution on S3 × S1
is scheme independent.
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We will first consider this model in 3þ 1 dimensions and
then discuss what happens in other space-time dimensions.
Of course, the model (2.1) is not a UV complete QFT. But
that would not be important for us yet, as we will only try to
understand its behavior at intermediate temperatures, much
below the Landau pole scale. We first set m2 ¼ 0. Then the
model at zero temperature is at a second order phase
transition described at very long distance by a free field
theory. But due to the coupling λ ≪ 1 (which is irrelevant
from the point of view of the infrared), at finite temperature
one obtains an effective mass. The best way to think about
this effective mass is to rotate to Euclidean signature,
compactify the model on a circle of radius βth

2π and study the
physics at distances x ≫ βth in the remaining R3. The
physics at long distances on R3 is guaranteed to be a local
QFT in three (Euclidean) dimensions. Expanding in modes
on the circle we find fields ϕn labeled by integer n such that
ϕn ¼ ϕ�

−n. The Lagrangian in R3 takes the form (after
canonically normalizing the fields)

L ¼
Z

d3x

�
1

2
ð∂ϕ0Þ2 þ

λβ−1th
4!

ϕ4
0 þ

X∞
n¼1

∂ϕnδϕ̄n

þ
X∞
n¼1

4π2n2

β2th
jϕnj2 þ

λβ−1th
2

ϕ2
0

X∞
n¼1

jϕnj2
�
: ð2:2Þ

(We have not included the self-interactions of the Kaluza-
Klein modes for reasons that will soon become clear.) The
modes ϕn with n ≥ 1 are massive with massmn ¼ 2πn=βth.
However the mode ϕ0 is massless and one should worry
about it. Unlike the ϕ4 interaction which is infrared free in
four space-time dimensions, the ϕ4 interaction in three
space-time dimensions leads to strong coupling below the
energy scale λβ−1th and hence unless the mode ϕ0 decouples
beforehand we will run into strong coupling. The strong
coupling dynamics of such zero modes is a source of
infrared problems in thermal field theory. Of course, there
are no actual infrared problems; it is up to us whether we
can or cannot solve the dynamics of the zero mode.
Due to the last term in (2.2) one may be saved from

strong coupling physics since the radiative corrections from
the massive particles running in the loop may induce a
sufficiently large mass for ϕ0. The induced mass to leading
order in λ is [56,57]

m2
th ¼ λβ−1th

X
n

Z
d3k
ð2πÞ3

1

k2þð2πnÞ2
β2th

¼−
λ

2
β−2th

X
n>0

n¼ λ

24
β−2th :

ð2:3Þ

The integrals in (2.3) are clearly divergent but we have
nevertheless evaluated them using dimensional regulariza-
tion. This requires some clarification. If this was purely a
3d QFT, then the mass would have been incalculable as

one could add a counterterm. But since we are studying a
four-dimensional theory on a circle, the counterterms must
descend from local functionals in four dimensions. Four-
dimensional counterterms can never lead to a dependence
such as β−2th on the circle radius. So to make the discussion
(2.3) completely rigorous we could have taken a βth
derivative of the integrals, rendering them convergent.
The induced thermal mass squared is positive and it is of

the order of λβ−2th . If the thermal mass is above the strong
coupling scale then we are saved from strong coupling
dynamics and the analysis is self-consistent. Indeed, the
strong coupling scale is λβ−1th , which should be compared to
the thermal mass, λ1=2β−1th . Therefore, as long as λ ≪ 1 we
see that the thermal mass is far above the strong coupling
scale and our results are self-consistent. In this regime the
mode ϕ0 is weakly coupled and higher-order contributions
to the thermal mass are negligible. If we started at zero
temperature in the ferromagnetic phase with m2 < 0, our
analysis shows that at temperatures of order m=

ffiffiffi
λ

p
the Z2

symmetry would be restored. Of course, our model is not
ultraviolet complete so we cannot quite discuss extremely
large temperatures. But the restoration of the symmetry at
temperatures higher than m=

ffiffiffi
λ

p
takes place in an entirely

controlled fashion. The Landau pole scale is indeed
exponentially far away.7

The restoration of the symmetry (i.e., the exit from the
ferromagnetic phase) here takes place due to the fact that
the thermal mass (2.3) is positive. This drives the system at
high temperatures to the unbroken (paramagnetic) phase. If
the sign of the thermal mass was reversed the physics
would have been completely different. The question of
symmetry restoration at high temperatures is thus inti-
mately related to the sign of the thermal mass squared for
the order parameter.
The fact that we can avoid the strong coupling dynamics

in the infrared is not to be taken for granted. For instance, if
we consider the model (2.1) in 2þ 1 dimensions, most of
the formulas go through except that now the thermal mass
squared is m2

th ∼ λβ−1th [compare with (2.3)] and the strong
coupling scale squared is likewise at λβ−1th and hence (apart
from possible logarithmic effects) there is no parametric
separation between the thermal mass and the strong
coupling scale.

B. More general scalar models in 3 + 1 dimensions

There is no general principle that says that the one-loop
thermal mass squared should be positive. In this subsection
we review a construction by Weinberg [56] for a model of

7Note that near the restoration temperature, the thermal mass
essentially cancels against the zero temperature mass, which
means that the model is strongly coupled in that region. But we
can study the model reliably away from that region.
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scalar fields in four dimensions with quartic interactions
and a negative thermal mass squared.
The degrees of freedom consist of two scalar fields ϕ1,

ϕ2 transforming under an OðNÞ ×OðNÞ symmetry in the
representations ðN; 1Þ and ð1; NÞ, respectively. The most
general quartic interactions preserving the global symmetry
are given by

V ¼ λ11ðϕ2
1Þ2 þ 2λ12ðϕ2

1Þðϕ2
2Þ þ λ22ðϕ2

2Þ2: ð2:4Þ

To avoid a runaway we need to impose that λ11, λ22 ≥ 0

and if λ12 < 0 we also need to impose λ212 ≤ λ11λ22.
There is classically a flat direction if the latter inequality
is saturated.
The one-loop thermal mass for ϕ1 and ϕ2 is evaluated

very similarly to our previous example:

m2
th;1 ¼

1

3
ððN þ 2Þλ11 þ Nλ12Þβ−2th ;

m2
th;2 ¼

1

3
ððN þ 2Þλ22 þ Nλ12Þβ−2th : ð2:5Þ

We see that the presence of the OðNÞ ×OðNÞ symmetry
group allows a regime in parameter space where the
thermal corrections destabilize the origin of field space.
For instance, take negative λ12 such that jλ12j ≫ λ11 but
λ22 ≫ jλ12j and also λ22 ≫ λ212=λ11. This can be achieved
while having λ11; λ22; jλ12j ≪ 1, i.e., we are entirely in the
perturbative regime with a stable vacuum.
Therefore if the original theory at zero temperature were

in the symmetric (disordered) phase with m2
1; m

2
2 ≥ 0, there

would be a finite domain in theory space [parametrized by
ðλ11; λ12; λ22Þ] where the system develops spontaneous
symmetry breaking at high enough temperatures. The
system is therefore in a broken phase at high temperatures
but in a symmetric phase at low temperature. This is
perplexing and goes against one’s usual intuition about
entropy effects at high temperature. One may find con-
solation in that the model (2.4) is not ultraviolet complete;
at really high temperatures the couplings λ grow strong and
the description breaks down.
This OðNÞ ×OðNÞ model of symmetry nonrestoration

led to many interesting ideas in the physics of early
Universe by recasting various important problems (such
as CP violation and domain-wall formations) in the light of
possible symmetry nonrestoration in the Standard Model
[58–63]. This OðNÞ ×OðNÞ model was scrutinized in
various other approaches, the majority of which supported
the existence of symmetry breaking at high temperatures
[64–70] albeit with some lingering debate [71–74]. The
phenomenon of symmetry breaking at finite temperatures
with a symmetric zero temperature phase is also found in
nature: the Rochelle’s salt [75] which is a sodium potas-
sium tartrate (KNaC4H4O6 · 4H2O) has three crystal
phases. The two transition temperatures are at −18 °C

and 24 °C where the intermediate phase develops an
orthorhombic crystal while the other two phases are
monoclinic. As the orthorhombic phase is more ordered
than the monoclinic crystal, the phase transition at −18 °C
can be regarded as a phenomenon of symmetry nonresto-
ration. (The salt finally restores all the spontaneously
broken crystal symmetries once it becomes a liquid at
55 °C.) Since our QFT model (2.4) is not ultraviolet
complete, one should regard this construction as some
intermediate symmetry nonrestoration, while the fate of
the system at asymptotically high temperatures remains
unknown (or rather, not well defined within the QFT).
The behavior of the model (2.4) is perplexing but we

consoled ourselves in that it does not imply symmetry
nonrestoration at asymptotically high temperatures.
Surprisingly, later in this paper we construct theories that
are well defined at arbitrarily short distance scales and they
exhibit symmetry breaking at arbitrarily high temperature.
(Though, as emphasized in the Introduction, all the models
where we can establish symmetry nonrestoration rigor-
ously, live in noninteger dimensions.)
In the following subsection we discuss some basics of

theories which include gauge fields. We discuss the infrared
“problem” and quote the results we have found for the
simplest weakly coupled conformal gauge theories.

C. Thermal field theory with gauge fields

In this subsection we make some remarks about the
thermal properties of 3þ 1 dimensional gauge theories.
This section can be skipped if one is only interested in the
main results of this paper, which are in the next section
about vector models. Essentially the content of this sub-
section is that we will cover some of the simplest weakly
coupled conformal gauge theories and argue that they do
not provide examples of conformal field theories that break
an ordinary global symmetry at finite temperature.
Let us start from the free Uð1Þ gauge field in 3þ 1

dimensions at finite temperature. Reducing on a circle, Aμ

breaks up into A0 which is a compact scalar in three
dimensions and a massless three-dimensional gauge field
Ai. The latter is also equivalent to a compact scalar through
Poincaré’s duality F ¼ dφ. So we have two massless
compact scalars in three dimensions at any value of the
temperature. While these look like superfluid modes, they
do not correspond to ordinary symmetry breaking, rather
they are related to the electric and magnetic one-form
symmetries of the original massless gauge theory in 3þ 1
dimensions.
If we were to add some dynamical electric particles, then

the compact scalar A0 would obtain a mass while φ would
remain massless. This is the familiar fact that in QED the
electric fields are screened in the thermal plasma while the
magnetic fields are not.
The situation becomes conceptually more complicated in

non-Abelian gauge theories with (or without) matter [76].
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While the treatment of A0 (which becomes an adjoint scalar
field) is quite similar, it obtains a mass of order

mel ∼ gY Mβ
−1
th ð2:6Þ

(where gY M is the four-dimensional gauge coupling). The
Ai components furnish a non-Abelian gauge theory in three
dimensions. Such gauge theories are never infrared free,
regardless of how much matter is put in, since the effective
three-dimensional gauge coupling is

g23d ∼ g2Y Mβ
−1
th ; ð2:7Þ

which is always a relevant perturbation in the UV since it has
mass dimension 1. For instance, this three-dimensional
sector may confine and develop a mass gap at the scale (2.7).
This is reminiscent of the discussion in the ϕ4 model,

where the three-dimensional theory which is obtained at
distances much larger than the circle size could be strongly
coupled even if the original model is infrared free. However
here the problem is a littlemore complicated.While in theϕ4

model the thermal fluctuations essentially drove the zero
mode away from strong coupling (and thewhole theory was
weakly coupled at sufficiently high temperatures),8 here this
will not be the case. There will be a leftover strongly
interacting sector which we will have to treat carefully. A
related point is the hierarchy between the scales (2.6) and
(2.7). More generally, there are three important scales in the
problem,Oðβ−1th Þ; OðgY Mβ

−1
th Þ; Oðg2Y Mβ

−1
th Þwhich are called

“hard,” “soft” and “ultrasoft,” respectively. The hard scale
corresponds to the energy scale of the nonzero Matsubara
modes, while the soft and ultrasoft scales correspond to the
energy scales of the Matsubara zero mode of the ordinary
matter fields (including A0) and the transverse gluon field,
respectively. Symmetry breaking could take place from
effects of order gY Mβ

−1
th , namely from the soft scale, and

then strong coupling dynamics at the ultrasoft scale would
be negligible.
Now let us provide a more concrete discussion that

applies to large N weakly coupled conformal gauge
theories in 3þ 1 dimensions. These weakly coupled
conformal field theories are made up of non-Abelian gauge
fields and some matter fields. Various coupling constants
are tuned to a fixed point. Those couplings can be made
arbitrarily small by adjusting the matter content carefully.
The study of these weakly coupled fixed points has been

an important source of insights into quantum field theory.
The simplest model in this class consists of SUðNcÞ gauge
fields minimally coupled to Nf Dirac fermions in the
fundamental representations. The presence of the nontrivial

fixed point was suggested by Caswell [77] and Banks and
Zaks [78]. The two-loop beta function for the gauge
coupling constant is as follows [α≡ g2=ð4πÞ2]:

βðαÞ2−loopQCD ¼ b0α2þb1α3þOðα4Þ

b0¼−
11

3
C2ðGÞþ

4

3
TðRÞ;

b1¼−
34

3
C2
2ðGÞþ

20

3
C2ðGÞTðRÞþ4C2ðRÞTðRÞ:

ð2:8Þ
We used the quadratic Casimir C2ðGÞ ¼ Nc; C2ðRÞ ¼
ðN2

c − 1Þ=2Nc and Dynkin index TðRÞ ¼ Nf

2
. The positivity

of b0 when the number of flavors satisfies
Nf ≤ 11

2
Nc indicates asymptotic freedom and the possibil-

ity of a UV completion by the free fixed point g ¼ 0. An
important observation is that b1 is positive as long as
34N3

c=ð13N2
c − 3Þ < Nf < 11Nc=2 and hence one could

naively expect a nontrivial unitary fixed point with cou-
pling α ¼ b0=b1. Such a conclusion is not necessarily
correct since the truncation (2.8) is not a priori justified.
Banks and Zaks discovered that a systematic expansion is
possible when one takes a limit of large Nc and Nf with
appropriately chosen ratio xf ¼ Nf=Nc. Even though Nf

and Nc are integers, in the limit of large Nc and Nf, xf can
be adjusted to achieve the limit xf ¼ 11

2
− ϵ with arbitrarily

small ϵ. This makes the coupling constant at the fixed point
α ¼ b0=b1 ∼Oðϵ=NcÞ arbitrarily small. This should be
thought of as the planar expansion with small ‘t Hooft
coupling λ ¼ N2

cg ≪ 1. (More precisely, this is the
Veneziano limit [79] since we have fixed xf ¼ Nf=Nc.)
The construction of similar weakly coupled fixed points

with scalar fields is richer due to the additional classically
marginal interactions: scalar quartic couplings and Yukawa
couplings. The simplest model is given by SUðNÞ gauge
theory with Nf Dirac fermions ψ and Ns scalars ϕ in
the fundamental representation. There are two types of
scalar quartic interactions which preserve the UðNsÞ
global symmetry acting on the scalars: a single trace
interaction hNT̃rðϕ†ϕϕ†ϕÞ and a double trace interaction
fTrðϕ†ϕÞTrðϕ†ϕÞ. (Here we think of the scalars as
N × Ns matrices and ϕ† denotes the ordinary Hermitian
conjugation.)
Let us make some general comments on the ’t Hooft/

Veneziano limit. If we have an action which is given by
S ∼ NTrð·Þ, i.e., a single trace action proportional to N,
then the connected correlation function of n single trace
operators scales like N2−n. The connected correlation
function of m double trace operators and n single trace
operators scales like N2−n for any m. Therefore, if we like
to add single trace deformations and double trace defor-
mations to the action while preserving a smooth large N
limit we need to add the single trace operators with

8This improved perturbation theory where the thermal fluctu-
ations are included is identical to the resummation of the
so-called “daisy diagram” at each order of the perturbation
theory as described in [57].
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coefficients that scale like N and the double trace
operators with coefficients that scale like Oð1Þ. This is
why the couplings must scale like hNT̃rðϕ†ϕϕ†ϕÞ
and fTrðϕ†ϕÞTrðϕ†ϕÞ.
Imagine we start from a large N CFT and there are such

single trace and double trace marginal deformations. In
conformal field theory (or in conformal perturbation
theory) one has to be more careful with counting the
factors of N since one-point functions vanish. As a result,
correlation functions of two double trace operators scale
like N0, correlation functions of one double trace operator
and two single trace operators scale like N−2 (since the
single trace operators are assumed to be marginal, the
correlation function cannot factorize in any channel),
correlation functions of two double trace operators and
one single trace operator scale like N−1, and finally,
correlation functions of three double trace operators scale
like N0.
Denoting collectively the single trace couplings by hN

and the double trace couplings by f (such that h, f are fixed
in the large N limit), the beta functions can now be
extracted from the three-point functions of these operators
as usual in conformal perturbation theory. To leading order
in h, f the beta functions take the general form to leading
order in N:

βðhÞ ¼ Ah2; βðfÞ ¼ Bf2 þ Chf þDh2: ð2:9Þ

The coefficients A, B, C, D are Oð1Þ in the large N limit
and should be computed on a case-by-case basis. In short,
the double trace operators do not backreact on the single
trace couplings but the single trace couplings do affect the
double trace couplings.
The structure (2.9) is very general. Let us now go back to

the model withNs fundamental scalars andNf fundamental
fermions, which has a smooth ‘t Hooft limit if we keep h, f
(as well as g2Nc) fixed in the large Nc limit. The existence
of a nontrivial weakly coupled fixed point depends now on
xf ¼ Nf=Nc (from which we can also infer xs ≡ Ns=Nc

since the total beta function at one loop has to be nearly
vanishing). Interestingly, one finds an upper bound xs <
0.84 [80], which if violated, no controlled weakly coupled
fixed point exists. In particular, the model with only scalars
and non-Abelian gauge fields (i.e., xf ¼ 0) does not have a
controlled weakly coupled fixed point (we will soon
discuss some possible consequences of that).
Let us now fix some 0 ≤ xs < 0.84 and study the

properties of the conformal gauge theory at finite temper-
ature. After reducing on a circle, one need not worry about
the fermions since they all obtain a mass of order β−1th as
they have no zero modes on the circle. Below this scale we
have a three-dimensional SUðNcÞ gauge theory with an
adjoint scalar (the holonomy) and Ns fundamental scalars
with some quartic interactions. Both the adjoint scalar and
the fundamental scalars obtain mass of order gY Mβ

−1
th .

Because 0 ≤ xs < 0.84 it does not even matter whether
the thermal mass squared of the fundamental scalars is
positive or negative. Either way, there is no spontaneous
symmetry breaking (due to “color-flavor locking”) [81].
Amusingly, for other gauge groups there are similar bounds
on xs which prevent the existence of a symmetry breaking
phase due to the condensation of scalar fields. See also [82]
for a lattice gauge theory point of view.
At the risk of deviating from the main theme of this

paper, let us close this subsection with a brief discussion of
the bound 0 ≤ xs < 0.84 on the existence of weakly
coupled Banks-Zaks fixed points. It is useful to consider
first the case of Nf ¼ 0, i.e., the purely bosonic theory.
Near xs ¼ 22 the one-loop beta function vanishes but as we
remarked above there is no weakly coupled fixed point. For
xs > 22 the theory is infrared free, but that does not mean
that it flows in the infrared to the free fixed point. Indeed, as
in the Coleman-Weinberg mechanism [83], there could be a
first-order transition instead. The absence of a weakly
coupled fixed point for xs ≤ 22 suggests that the same first
order transition persists. The transition is between a trivial
phase for m2

s > 0 and a phase with Nambu-Goldstone
bosons (NGBs) for m2

s < 0. Since the NGBs live on the

group manifold UðNsÞ
UðNs−NcÞ×SUðNcÞ, for xs < 1 there is no first-

order transition anymore. In summary, in the model with
Nf ¼ 0 it seems natural to conjecture no zero temperature
phase transition for xs < 1 and a zero-temperature first
order phase transition for xs ≥ 1. This is in line with the
general expectations for small xs laid out in [84,85] and see
also [86] for some recent observations on the subject for
larger values of xs. For related observations about the
nature of the phase diagram of the scalar model see [87].
We earnestly hope that the question of symmetry break-

ing in finite temperature conformal gauge theories will be
clarified in the future.

III. VECTOR MODELS

We consider models with N real scalar fields ϕi, i ¼
1;…; N and potential

V ¼ 1

4!
λBijklϕiϕjϕkϕl ð3:1Þ

in 4 − ϵ space-time dimensions where the superscript “B”
denotes bare coupling. This class of models always admits
a Z2 symmetry that flips the signs of all the fields ϕ → −ϕ.
These models are interacting systems for finite positive ϵ.
There are two limits in which we can carry out a
perturbative study. One is when ϵ ≪ 1 and the other is
when the number of fields N is very large (in the latter case
we should typically impose some additional symmetries).
These two limits also have an overlapping regime where
both ϵ is small and the rank is large. We will study both
limits, allowing us to establish a rather coherent picture for
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the thermal properties of such models. We will start from
the limit where ϵ ≪ 1 is the smallest parameter in the
problem.

A. Thermal physics in the ϵ expansion

We are interested in fixed points in the ϵ expansion [88].
Since in this subsection we take ϵ to be the smallest
parameter in the problem we will content ourselves with a
one-loop analysis of the fixed points: The leading order
beta function for the renormalized quartic coupling λijkl is

βðλijklÞ ¼ −ϵλijkl þ
1

16π2
ðλijmnλmnkl þ 2 permutationsÞ:

ð3:2Þ

It is convenient to rescale out the factors of ϵ and 1
16π2

by defining λ̃ ¼ λ
16π2ϵ

in terms of which the fixed point
equations become

λ̃ijkl ¼ λ̃ijmnλ̃mnkl þ 2 permutations: ð3:3Þ

These are rather complicated equations and the solutions
are not classified. However, there are many known families
of solutions and we will mention some of them below. The
equations can be further simplified by imposing that the
model (3.1) obeys a symmetry. An important observation is
that as long as the fixed point equations (3.3) are satisfied
the potential is bounded from below [44]. This follows
from the fixed point equation since λ̃ijklϕiϕjϕkϕl ∼
Trðλ̃ijmnϕiϕjÞ2, where the square means the square of a
matrix with the indices mn. The matrix λ̃ijmnϕiϕj could
have zero eigenvalues, so there could be flat directions, as
we will see. But the potential is certainly bounded from
below by V ¼ 0. Many of the solutions to (3.3) correspond
to fixed points which are theoretically and experimentally
interesting. (An extrapolation is required to make contact
with ¼ 1 which is the case we are ultimately interested in.)
We next turn to the study of the thermal properties of

these fixed points. The thermal mass is of order ϵ and the
corrections to the quartic potential due to thermal effects are
of order ϵ2. The zero temperature quartic potential is of
order ϵ and hence we need not consider the thermal effects
for the quartic interactions unless there are flat directions at
zero temperature.
Therefore we focus our attention on the thermal mass. To

compute it, we follow the same procedure of integrating out
the nonzero Matsubara modes as in (2.3). We find that to
leading order in ϵ the thermal mass squared matrix is
given by

M2
ij ¼

β−2th
24

λijkk ¼
2

3
π2ϵβ−2th λ̃ijkk: ð3:4Þ

We can use the fixed point equation (3.3) to write the
thermal mass (up to a proportionality factor) as

M2
ij ∼ λ̃ijmnλ̃mnkk þ 2λ̃ikmnλ̃mnjk: ð3:5Þ

The last term is obviously positive definite. The first term is
not necessarily positive definite. We should therefore
embark on a search of CFTs which break some of their
symmetries at finite temperature. This may not sound very
promising. The Wilson-Fisher fixed points correspond
(upon extrapolating to ϵ ¼ 1) to critical points of various
quantum magnets and it would be quite surprising to find
that some of these magnets do not lose their magnetism
upon heating them up. Nevertheless, we will indeed find
fixed points which break their symmetries at arbitrary finite
temperature.
We start with the first class of models, where the

scalar potential (3.1) is invariant under some symmetry
group G ≤ OðNÞ, such that G has only a single quadratic
invariant. In other words, the only possible quadratic
invariant is

P
i ϕiϕi, or, equivalently, the thermal mass

must be proportional to δij. [This is equivalent to requiring
that the OðNÞ fundamental representation is irreducible
under the symmetry group G of the fixed point.]
For such models, there must be a constant z such that

λijkk ¼ zδij and hence from (3.5) we have

zδij ¼ z2δij þ 2λ̃ikmnλ̃jmnk:

Now, there must be some constant C > 0 such that
λ̃ikmnλ̃jmnk ¼ Cδij, as follows from the assumption of a
single quadratic invariant. Its positivity follows from the
positivity of λ̃ikmnλ̃jmnk. Therefore we have

zδij ¼ z2δij þ 2Cδij:

This implies that z > 0. Therefore, the thermal mass matrix
is positive definite and there is no symmetry breaking at
finite temperature.
The class of models with a single quadratic invariant

covers several families: the OðNÞ models, the cubic,
tetrahedral, bifundamental, MN, tetragonal, the Michel
fixed points etc. These classes include some of the most
familiar quantum magnets upon extrapolating to three
space-time dimensions. One can view these arguments as
a retroactive explanation for why some of the simplest
critical points are disordered at finite temperature.
One interesting class of models not covered by the above

analysis is the class of biconical models which have
OðmÞ ×OðN −mÞ symmetry. These models have two
quadratic invariants. We now turn to a detailed analysis
of these fixed points. We have three quartic invariants,
ðϕ2

1Þ2; ðϕ2
2Þ2;ϕ2

1ϕ
2
2 where ϕ1 is a vector of length m and ϕ2

is a vector of length N −m. We have therefore correspond-
ingly three coefficients that need to be fixed to their fixed
point values, α0; β0; γ0:
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V ¼ α0

8
ðϕ2

1Þ2 þ
β0

8
ðϕ2

2Þ2 þ
γ0

4
ϕ2
1ϕ

2
2:

The ϕ1 indices are labeled with uppercase letters and the
ϕ2 indices are labeled with lowercase letters. We have
therefore

λABCD ¼ α0½δABδCD þ δACδBD þ δADδBC�;

λabcd ¼ β0½δabδcd þ δacδbd þ δadδbc�;

λABcd ¼ γ0δABδcd;

and λAcBd, λAcdB etc. are fixed by the total symmetry of the
tensor.
We are now ready to write the one-loop equations for α,

β, γ (which differ from α0; β0; γ0 by 16π2ϵ, as above):

α ¼ α2ðmþ 8Þ þ γ2ðN −mÞ; ð3:6Þ

β ¼ β2ðN −mþ 8Þ þmγ2; ð3:7Þ

γ ¼ αγðmþ 2Þ þ βγðN −mþ 2Þ þ 4γ2: ð3:8Þ

Since we are only interested in fixed points with γ ≠ 0
(otherwise the theory reduces to two copies of a theory for
which we proved a no-go theorem above) the last equation
can be simplified to

1 ¼ αðmþ 2Þ þ βðN −mþ 2Þ þ 4γ: ð3:9Þ

A quick consistency check of the above equations is that
α ¼ β ¼ γ ¼ 1

Nþ8
is the OðNÞ fixed point. We will not be

interested in this solution since the no-go theorem applies
to it.
Now there are two quadratic invariants and the thermal

mass matrix is proportional to

M2 ∼
�
αðmþ 2ÞδAB þ γðN −mÞδAB 0

0 βðN −mþ 2Þδab þ γmδab

�
:

Unfortunately we are not able to solve analytically
Eqs. (3.6), (3.7), and (3.9). But we will attack them instead
in several steps which will be sufficient to demonstrate the
main point. First we consider the simplified case of equal
rank, 2m ¼ N. It follows by subtracting the equations (3.6)
and (3.7) that α ¼ β and9

α ¼ α2ðmþ 8Þ þmγ2;

1 ¼ 2αðmþ 2Þ þ 4γ:

There are two solutions. One solution is α ¼ γ ¼ 1
2ðmþ4Þ

which has enhanced OðNÞ symmetry and therefore we
discard it. The more interesting solution is

α ¼ m
2ðm2 þ 8Þ ; ð3:10Þ

γ ¼ 4 −m
2ðm2 þ 8Þ : ð3:11Þ

This solution exists for all positive m, and it always has
α > 0. For m > 4 we have a negative γ but the potential is
still increasing in all directions because γ2 < α2. Finally,
the thermal masses squared are both proportional to
αðmþ 2Þ þ γm. It is easy to verify that the thermal masses
are positive (for any positive m). In conclusion, the equal
rank biconical critical model has no symmetry breaking at
finite temperature.
This biconical critical model can be contrasted with

Weinberg’s equal rank model that we have discussed in the
previous section. We see that once we study the critical
version of it slightly below three space dimensions, it no
longer leads to symmetry breaking at finite temperature.
We now turn our attention to nonequal rank models. We

cannot solve the equations analytically so instead we will
resort to an approximate solution which will be however
sufficient to establish the main conclusion. We will be
staying in the regime where ϵ is the smallest parameter but
we will now take large N. This will turn out to be a useful

9Let us prove that α ¼ β is necessary. We subtract the beta
functions for α and β and we find (assuming that α and β are
different)

1 ¼ ðαþ βÞðmþ 8Þ
and hence αþ β ¼ 1

mþ8
. Plugging this into the beta function for γ

we find

3

2ðmþ 8Þ ¼ γ:

Now we plug γ into the equation for α and find

0 ¼ −αþ α2ðmþ 8Þ þ 9m
4ðmþ 8Þ2 :

The discriminant is

Δ ¼ 1 −
9m

mþ 8

and this is negative for all m > 1. Hence the only allowed fixed
points have α ¼ β.
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way to simplify the equations and attack the nonequal rank
biconical models. In addition, this study will allow to make
later on comparisons with the large N results (those large N
results are valid also at finite ϵ).
To warm up, let us go back to the equal rank case and

consider the large N limit. We consider the large N
expansion of the solutions (3.10) and (3.11). We find that
(dropping terms of order 1=N2)

α ¼ 1

N
; γ ¼ −1

N
: ð3:12Þ

In particular to this order in the 1=N expansion the zero
temperature theory has a flat direction as the potential can
be written as V ∼ ðϕ2

1 − ϕ2
2Þ2 (hence there is a flat direction

for ϕ2
1 ¼ ϕ2

2). At the origin of the flat direction there is a
CFT and elsewhere the low-energy theory consists of a
dilaton and Nambu-Goldstone bosons. We know that when
the finite rank corrections are taken into account, the flat
direction disappears and the origin is the only true mini-
mum. We can also ask what happens to this flat direction in
the large rank limit but at finite temperature. Recall the
thermal masses, which in the leading large rank limit take
the form

m2
thermal ∼ ðαþ γÞN=2: ð3:13Þ

We see that for the fixed point (3.12) the thermal mass
cancels out to this order in the 1=N expansion. This
strongly suggests that the flat direction remains at finite
temperature, which is indeed true to this order in the
expansion. In fact, in addition to this flat direction in field
space, there is also a flat direction in coupling constant
space (i.e., an exactly marginal operator) to this order in the
1=N expansion.
To see this, observe that the couplings α, β, γ all scale

like 1=N. To study systematically the large rank limit
(keeping in mind that the smallest parameter is still ϵ) we
rescale the couplings accordingly. We find the set of fixed
point equations for general rank (with α̃ ¼ Nα; β̃ ¼ Nβ;
γ̃ ¼ Nγ) and to leading order in 1=N:

α̃ ¼ xα̃2 þ ð1 − xÞγ̃2; ð3:14Þ

β̃ ¼ ð1 − xÞβ̃2 þ xγ̃2; ð3:15Þ

1 ¼ xα̃þ ð1 − xÞβ̃; ð3:16Þ

where we have denoted x ¼ m=N. The thermal mass matrix
likewise simplifies in the large rank limit to

M2 ∼
�
xα̃δAB þ ð1 − xÞγ̃δAB 0

0 ð1 − xÞβ̃δab þ xγ̃δab

�
:

ð3:17Þ

The three beta function equations [(3.14), (3.15), (3.16)]
are in fact degenerate. There is therefore a codimension 2
set (a line) of fixed points in this large rank limit. Actually,
there are two such sets of fixed points. The two lines of
fixed points are parametrized as follows:

α̃� ¼ 1

2x

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞγ̃2

q �
; ð3:18Þ

β̃� ¼ 1

2ð1 − xÞ
�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞγ̃2

q �
; ð3:19Þ

where γ̃ belongs to the interval

γ̃ ∈
�
−

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ;

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp �

: ð3:20Þ

The two branches of solutions (3.18) and (3.19) are
connected at the end points γ̃ ¼ � 1

2
ffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p . So the two

branches together form a closed codimension 2 curve
(i.e., topologically a circle—interestingly, a similar circle
of fixed points appeared in [89]). Some particularly
simple points on the circle are the OðNÞ invariant point
corresponding to γ̃ ¼ β̃ ¼ α̃ ¼ 1 (which is on the branch
α̃−; β̃−), α̃ ¼ γ̃ ¼ 0, β̃ ¼ 1

1−x (which is on the branch α̃
−; β̃−

and corresponds tom free bosons coupled to N −m critical
ones) and β̃ ¼ γ̃ ¼ 0, α̃ ¼ 1

x (which is on the branch α̃
þ; β̃þ

and corresponds to N −m free bosons coupled tom critical
ones). These particular points certainly survive the finite
rank corrections. One may expect that generic points on this
conformal manifold, which is topologically a circle, do not
survive finite rank corrections. See Fig. 2.

FIG. 2. A circle of fixed points in the large rank limit. The blue
dots and red star surely survive the finite rank corrections, but
there is another fixed point with γ < 0 that likewise survives the
finite rank corrections.
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For x ¼ 1=2 these two branches are one and the same
(since we can interchange them by a change of variables)
and the circle collapses to an interval. α̃ ¼ β̃ ¼ γ̃ ¼ 1
corresponds to the OðNÞ fixed point (where the thermal
masses do not vanish also in the large rank limit) and α̃ ¼
β̃ ¼ −γ̃ ¼ 1 corresponds to the fixed point (3.12), where
the thermal masses vanish in the large rank limit. The rest of
the fixed points with γ̃ ∈ ð−1; 1Þ are large N artifacts (save
the one with γ̃ ¼ 0 and either of α̃ ¼ 0 or β̃ ¼ 0, which are
related to each other by a change of variables and were
discussed above).
It is easy to check that α̃�β̃� ¼ γ̃2 for all γ̃. Therefore there

is always a flat direction in field space at zero temperature, as
long as γ̃ < 0. Thus, the large rank limit leads to a line of fixed
points, and those with γ̃ < 0 have a flat direction in field
space at zero temperature. The flat direction persists even at
finite temperature. Indeed, the two thermal masses are
proportional to xα̃þ ð1 − xÞγ̃ and ð1 − xÞβ̃ þ xγ̃. The zero

temperature flat direction is given by ϕ2
1 ¼

ffiffĩ
β
α̃

q
ϕ2
2. The

thermal mass term in the potential is proportional to
ðxα̃þ ð1 − xÞγ̃Þϕ2

1 þ ðð1 − xÞβ̃ þ xγ̃Þϕ2
2. We find that it

vanishes for as long as γ̃ < 0 when we plug in the flat

direction: ðxα̃ þ ð1 − xÞγ̃Þ
ffiffiffĩ
β

p
þ ðð1 − xÞβ̃ þ xγ̃Þ ffiffiffĩ

α
p ¼

ð−xγ̃ ffiffiffĩ
α

p þð1 − xÞ
ffiffiffĩ
β

p
γ̃Þ þ ð−ð1 − xÞγ̃

ffiffiffĩ
β

p
þx

ffiffiffĩ
α

p
γ̃Þ ¼ 0.

Therefore, themoduli space of finite temperature vacua is the
hyperbola

ffiffiffi
α

p
ϕ2
1 −

ffiffiffi
β

p
ϕ2
2 þ

xαþ ð1 − xÞγ
12

ffiffiffi
α

p Nβ−2th ¼ 0: ð3:21Þ

This hyperbola degenerates and touches the origin for
xαþ ð1 − xÞγ ¼ 0, which is one particular point on the
circle in Fig. 2. For general x, this may not be the physical
fixed point that survives the finite rank corrections.
For equal rank, x ¼ 1=2, it is precisely this fixed point,
where the hyperbola degenerate, which survives finite rank
corrections.
Suppose we knew that the theory that survives finite rank

corrections has a nondegenerate hyperbola moduli space of
vacua at finite temperature. That would be sufficient to
imply symmetry breaking at finite temperature and finite
rank. This follows from the fact that the origin is not on the
hyperbola and hence, regardless of the form of the small
corrections due to finite rank, the vacuum would be away
from the origin. Aside from our interest in thermal physics,
it is quite curious to see a model which has no supersym-
metry but yet has, in the large rank approximation, a
conformal manifold, a moduli space of vacua, allowing a
spontaneous breaking of conformal symmetry, and even
more mysteriously, a deformed moduli space of vacua upon
including finite temperature corrections. This deformation
of the moduli space may remind one of the deformed
moduli space in some supersymmetric theories [90].

In the equal rank case we have found which fixed points
survive the 1=N expansion: The interesting fixed point has
γ̃ ¼ −1 and the thermal mass matrix vanishes in the large
rank limit. The hyperbola degenerates and one cannot
conclude whether the symmetry is broken at finite temper-
ature without doing more work. (Upon computing sub-
leading 1=N corrections the origin remains as the only true
vacuum.)
It is interesting to understand which values of γ̃ corre-

spond to fixed points that survive the expansion in 1=N for
nonequal rank. In light of (3.21) this is a crucial question. If
only the fixed point that survives the large rank expansion
is not the one where the hyperbola degenerates, then the
symmetry breaking would surely persist to the finite rank
fixed point. In order to determine which of the fixed points
survive to finite rank we can either attempt to solve the
beta functions numerically, or we can include subleading
corrections in the beta functions. Let us begin with the
latter strategy and then we will check that it agrees with
numerical solutions.
Continuing to use the rescaled couplings, the beta

functions including the leading 1=N corrections are

α̃ ¼ α̃2ðxþ 8=NÞ þ γ̃2ð1 − xÞ;

β̃ ¼ β̃2ð1 − xþ 8=NÞ þ xγ̃2;

1 ¼ α̃ðxþ 2=NÞ þ β̃ð1 − xþ 2=NÞ þ 4γ̃=N:

Let t be a parameter in the range

t ∈
�
−

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ;

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp �

: ð3:22Þ

We found the leading order solution

α̃�0 ¼ 1

2x

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞt2

q �
; ð3:23Þ

β̃�0 ¼ 1

2ð1 − xÞ
�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞt2

q �
; ð3:24Þ

γ̃0 ¼ t: ð3:25Þ

Now we suppose a more general form for the solution,
incorporating the subleading 1=N corrections

α̃ ¼ α̃0 þ
1

N
δα̃; β̃ ¼ β̃0 þ

1

N
δβ̃; γ̃ ¼ tþ 1

N
δγ̃:

Plugging all of this back into the fixed point equations, we
find

δα̃ ¼ 8α̃20 þ 2xα̃0δα̃þ 2ð1 − xÞtδγ̃;
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δβ̃ ¼ 8β̃20 þ 2ð1 − xÞβ̃0δβ̃ þ 2xtδγ̃;

0 ¼ 2α̃0 þ xδα̃þ 2β̃0 þ ð1 − xÞδβ̃ þ 4t:

We are trying to solve the system0
B@

−1þ 2xα̃0 0 2ð1 − xÞt
0 −1þ 2ð1 − xÞβ̃0 2xt

x 1 − x 0

1
CA
0
B@

δα̃

δβ̃

δγ̃

1
CA

¼

0
B@

−8α̃20
−8β̃20

−2α̃0 − 2β̃0 − 4t

1
CA: ð3:26Þ

Since the matrix on the left-hand side is degenerate (this
follows as the leading order solution has a zero mode) only
discrete values of t yield a solution. This is the mechanism
by which the line of fixed points disappears at finite rank
and only discrete values of t yield fixed points that exist at
finite rank. We must impose that the vector on the right-
hand side lies in the codimension 1 image of the linear
transformation. The image of the linear transformation is

Vim¼Span

8><
>:
0
B@
xα̃0−ð1−xÞβ̃0

0

x

1
CA;

0
B@

0

−xα̃0þð1−xÞβ̃0
1−x

1
CA
9>=
>;:

A vector that is orthogonal to this subspace is0
B@

−x
ð1 − xÞ

xα̃0 − ð1 − xÞβ̃0

1
CA:

We must require that the right-hand side of (3.26) is
orthogonal to this vector (which is the same as requiring
that the right-hand side lies in the two-dimensional

subspace Vim). This leads to an algebraic equation for t
which determines which of the fixed points on our lines of
fixed points survive to finite rank:

ð1−2xÞt2−2tðxα̃0− ð1−xÞβ̃0Þþ3xα̃20−3ð1−xÞβ̃20 ¼ 0:

More explicitly

2ð2x − 1Þt2 þ 3

2

1 − 2x
xð1 − xÞ

þ
�

3

2xð1 − xÞ − 2t

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞt2

q
¼ 0: ð3:27Þ

Equation (3.27) only describes one of the two branches
of (3.23) and (3.24). This is sufficient because x → 1 − x
interchanges the two branches. The radical equation (3.27)
can be simplified as follows:

ðt − 1Þð4xð1 − xÞt3 − 20xð1 − xÞt2 þ 3tþ 9Þ ¼ 0: ð3:28Þ

This equation has two real solutions t ¼ 1; γ̃�ðxÞ and two
complex solutions for x ∈ ð0; 1=2Þ ∪ ð1=2; 1Þ. At x ¼ 1=2
the two complex solutions become a degenerate real
solution with t ¼ 3. This additional real solution at x ¼
1=2 is not physical since it makes α, β complex after
plugging back into our choice of branch in (3.23). The
solution t ¼ 1 is the OðNÞ invariant fixed point.
As usual, there are extraneous solutions which need to be

excluded when we transform the radical equation to the
polynomial one. One can check from the discriminant
analysis that two real solutions of (3.28) t ¼ 1; γ̃�ðxÞ are a
genuine solution of (3.27) for 1=2 ≤ x < 1. We note that
γ̃�ðxÞ ¼ γ̃�ð1 − xÞ in accord with the expectation following
from Z2 symmetry among two branches.
When the dust settles, we obtain two physical fixed

points for 0 < x < 1 with the following leading large N
values of the couplings (excluding the theories with γ̃ ¼ 0):

FPbiconþ ∶ ðα̃; β̃; γ̃Þ ¼ ð1; 1; 1Þ;

FPbicon− ∶ ðα̃; β̃; γ̃Þ ¼
�
1þ sgnðx − 1

2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞγ̃�ðxÞ2

p
2x

;
1 − sgnðx − 1

2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4xð1 − xÞγ�ðxÞ2

p
2ð1 − xÞ ; γ̃�ðxÞ

�
: ð3:29Þ

The first fixed point FPbiconþ is nothing but the OðNÞ
symmetric fixed point. The second fixed point FPbicon− ismore
interesting since it turns out that one of the two thermal
masses is negative for x ≠ 1=2. This means that the moduli
space of vacua in the large rank limit is a nondegenerate
hyperbola (3.21). A simple analytic way to show that the
hyperbola does not degenerate on this point of the conformal
manifold is to first observe that the cubic polynomial factor in
the equation (3.28) has a positive (negative) value for t ¼ −1
(t ¼ −3) in the given range of x. This directly leads to

−3 < γ̃�ðxÞ < −1 for x ∈ ð0; 1=2Þ ∪ ð1=2; 1Þ and hence the
sum over the thermal masses,

m2
1 ∝ ð1−xÞγ̃�þ

1

2

�
1þsgn

�
x−

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4xð1−xÞγ̃�ðxÞ2

q �
;

m2
2 ∝ xγ̃�þ

1

2

�
1−sgn

�
x−

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4xð1−xÞγ̃�ðxÞ2

q �
;

ð3:30Þ
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becomes negative m2
1 þm2

2 ∝ 1þ γ̃�ðxÞ < 0. This means
that the hyperbola does not degenerate and one necessarily
has finite temperature symmetry breaking even at finite
rank, as long as the ranks of the two symmetry groups are
not equal.
Upon taking finite rank corrections only one point on the

hyperbola remains as the true vacuum. It is important to
find which one it is since the symmetry breaking pattern is
not the same everywhere on the hyperbola.
Without loss of generality, we consider the 1=2 < x < 1

case where m2
1 > 0; m2

2 < 0. Extremization of the potential
gives two possible candidates for the vacua10:

ðϕ2
1;ϕ

2
2Þ ¼

�
Nðm2

2γ̃ −m2
1β̃Þ

8π2ðα̃ β̃−γ̃2Þϵ ;
Nðm2

1γ̃ −m2
2α̃Þ

8π2ðα̃ β̃−γ̃2Þϵ

�
or

�
0;−

Nm2
2

8π2β̃ϵ

�
: ð3:31Þ

Using the leading-order values for the couplings leads to a
singularity due to the flat direction (i.e., the hyperbola). One
must use the corrected couplings in order to find the true
vacuum. So we must compute ðδα̃; δβ̃; δγ̃Þ. Rather than
using second-order perturbation theory to determine the
ðδα̃; δβ̃; δγ̃Þ, there is a simpleway to exclude the first solution
of the equation (3.31). If we substitute the leading ϵ thermal
masses into the numerator of ϕ2

1 (we can equally take ϕ2
2 as

well), it becomes −Nxðα̃ β̃−γ̃2Þ − 2β̃ðα̃ − γ̃Þ þOð1=NÞ.
Since both α̃ β̃−γ̃2 and α̃ − γ̃ are positive quantities [the
former isOð1=NÞ because of the flat direction atN ¼ ∞ and
is positive because of the stability of the potential], we
conclude that there is no solution with real ϕi in this case.
In summary, the second expression in (3.31), which

represents the vertices of the hyperbola, survives as the true
vacuum of the biconical model in the finite nonequal rank
case. The vacua can be expressed in terms of γ̃� which
solves (3.27) as

VACbicon∶ ðΦ2
1;Φ2

2Þ ¼

8>>><
>>>:

�
γ̃2�ð2x−2x2Þþγ̃�ð−2x2þ5x−3Þ−3x
12ð2γ̃2�ðx−1Þð2x−1Þþ2γ̃�ðx−1Þþ3Þ β

−2
th ; 0

�
0 < x < 1=2�

0; γ̃
2�ð2x−2x2Þþγ̃�ð−2x2þ5x−3Þ−3x

12γ̃�ð3−4xð1−xÞγ̃�Þ β−2th

�
1=2 < x < 1

ð0; 0Þ x ¼ 1=2:

ð3:32Þ

We conclude that for the finite nonequal rank case, we found a critical point with symmetry breaking at arbitrary nonzero
temperature and the following symmetry breaking pattern:

Gglobal∶ Oðm1Þ ×Oðm2Þ ⟶
FPbicon−

β−1th >0

8<
:

Oðm1 − 1Þ ×Oðm2Þ m1 < m2

Oðm1Þ ×Oðm2 − 1Þ m1 > m2

no breaking m1 ¼ m2:

ð3:33Þ

We proved that this is all correct within the leading
order ϵ expansion. More precisely, this was proven for
large finite m1, m2. We will explore the case of m1 ¼ 1
later.
Our arguments here were somewhat formal, but since the

equations are entirely algebraic [(3.6), (3.7), (3.8)] one can
easily verify the claims numerically. We take N ¼ 104 and
x ¼ 0.6, and to leading order in ϵ find the fixed point (we
provide so many digits with the hope of convincing the
reader that the fixed point indeed exists),

ðα̃; β̃; γ̃Þ ¼ ð0.9176394600760599; 1.1235347774762552;
− 1.0145547091210763Þ:

Furthermore, this fixed point has the thermal masses

ðm2
1; m

2
2Þ ¼

2

3
π2ϵβ−2th ð0.1449453202892206;

− 0.15909420752664844896Þ:

This can be plugged back into the second expression
of (3.31) and one finds the vacuum ðϕ2

1;ϕ
2
2Þ∼

ð0; 0.0118 × 104Þ.
One subject we will not discuss in much detail here is the

RG flow diagram between the various fixed points pre-
servingOðm1Þ ×Oðm2Þ symmetry. Let us only say that our
fixed point (at finite rank) FPbicon− has three relevant
operators—two masses and one relevant quartic operator.
Turning on the relevant quartic operator, one can flow to the
decoupled critical bosons with Oðm1Þ ×Oðm2Þ symmetry.
Our fixed point is therefore multicritical.

B. Large-N analysis

In this subsection we explore the large N limit of the
biconical model with OðmÞ ×OðN −mÞ symmetry and

10The origin ðϕ1;ϕ2Þ ¼ ð0; 0Þ cannot be a minimum since one
of the thermal masses squared is negative.

THERMAL ORDER IN CONFORMAL THEORIES PHYS. REV. D 102, 065014 (2020)

065014-15



fixedm=N in d spatial dimension. This limit corresponds to
an opposite hierarchy with 1=N rather than ϵ ¼ 3 − d being
the smallest parameter. While small ϵ makes the model
perturbatively tractable, the large N techniques allow
resummation of the perturbation series, and therefore some
nonperturbative aspects of the model are elucidated in this
limit. Therefore, this study allows to extend some of the
results of the previous section to finite ϵ.
For large N and fixed m=N the symmetry breaking

(3.33) always leads to Nambu-Goldstone bosons and at
finite temperature in 2þ 1 dimensions they are lifted by
small nonperturbative infrared effects [16]. Therefore,
while many of the claims here about the large rank limit
hold true also for finite small ϵ, they certainly do not hold
for ϵ ¼ 1. In fact, we will see that some of the results may
break down even before one reaches ϵ ¼ 1. This requires a
further analysis which we leave for the future. Our aim for
now is only to show that the results about symmetry
breaking at finite temperature hold for small finite ϵ.
To begin, let us recall that vector models, in particular the

biconical one, tend to be free in the large N limit. Hence,
the ground state approaches a Gaussian state as N → ∞
[91,92], i.e., up to a normalization constant it takes the
following form in the space of fields:

Ψðϕ1;ϕ2Þ ∝ exp

�
−
1

2

X2
i¼1

Z
ddk
ð2πÞd ωiðkÞjϕiðkÞj2

�
;

ωiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
: ð3:34Þ

This functional has a well-defined norm as long as m2
i are

non-negative. In position space it can be written as

Ψðϕ1;ϕ2Þ ∝ exp

�
−
1

4

X2
i¼1

Z
ddx

Z
ddyðϕiðxÞ − σiÞ

×D−1
i ðx − yÞðϕiðyÞ − σiÞ

�
; ð3:35Þ

where D−1
i ðx − yÞ is the Fourier transform of 2ωiðkÞ, and

two arbitrary constants σi parametrize the location of the
Gaussian state in the space of fields. While m2

i are singlets
of the OðmÞ ×OðN −mÞ group, σ1 and σ2 transform as
vectors under OðmÞ and OðN −mÞ respectively. They are
associated with the order parameters in what follows.
To determine the values of m2

i and σi for the biconical
model at the fixed point, we resort to the variational
principle11

W ¼ hΨjHjΨi ≥ h0jHj0i; ð3:36Þ

H ¼ 1

2
πiπi þ

1

2
∇ϕi∇ϕi þ

gBij
4N

ϕ2
iϕ

2
j ; 0 ≤ i; j ≤ 2;

where W is the variational functional, j0i is the vacuum
state of the model governed by the Hamiltonian density12

H, and jΨi represents a family of normalized trial states
(3.35). As usual, the idea is to minimize the lhs with
respect to the variational parameters m2

i and σi to find an
approximation to the ground state energy. For an extremal
state the inequality in (3.36) is saturated as N → ∞.
If the Hamiltonian is unbounded from below, then W is

necessarily unbounded from below too and vice versa. If the
Hamiltonian is unbounded, there are states with arbitrarily
negative energies, and by appropriate choice ofm2

i ≥ 0 and
σi we can force W to approach any negative value.
Evaluating W boils down to Gaussian integration. For

instance,

hΨjϕ2
j jΨi ¼

Z Y2
i¼1

Dϕi ϕ
2
j jΨðϕ1;ϕ2Þj2

¼ σ2j þ NxjDj; ð3:37Þ

where for brevity we introduced x1 ¼ x and x2 ¼ 1 − x,
whereas Dj represents an ordinary loop integral13

Dj ¼
Z

ddk
ð2πÞd

1

2ωjðkÞ
¼ Γð1−d

2
Þ

ð4πÞdþ1
2

ðm2
jÞd−12 : ð3:38Þ

Similarly

hΨjπ2j jΨi ¼
Z Y2

i¼1

DϕiΨ�ðϕ1;ϕ2Þ
�

δ

iδϕj

�
2

Ψðϕ1;ϕ2Þ

¼ Nxj
4

D−1
j ð0Þ: ð3:39Þ

It is convenient to introduce a separate notation for the
kinetic energy density of each field,

Kj ¼
1

2N
hΨjðπ2j þ ð∇ϕjÞ2ÞjΨi

¼ xj
4

Z
ddk
ð2πÞd

�
ωjðkÞ þ

k2

ωjðkÞ
�
: ð3:40Þ

Up to a mass independent constant, we have

11Note that the variational principle approach is identical to the
approach using the Hubbard-Stratnovich transformation [93]
where the counterpart of the parameter m2

i in the former is the
vacuum expectation value (VEV) of the corresponding auxiliary
field in the latter.

12We use a symmetric matrix convention for the couplings
ðgB11; gB22; gB12Þ ¼ 8π2ϵμ3−dðα̃; β̃; γ̃Þ, where μ is an arbitrary scale.

13The positive nature of hΨjϕ2
j jΨi is not guaranteed in

dimensional regularization, but physical results are regularization
independent.
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Kj ¼ −
xj
2

Z
m2

j

0

dm2m2
∂Dj

∂m2
¼ Γð3−d

2
Þ

ðdþ 1Þð4πÞdþ1
2

xjðm2
jÞ

dþ1
2 :

ð3:41Þ

As a result, W takes the form

W
N

¼
X
i

Ki þ
X
i;j

gBij
4
ðσ2i þ xiDiÞðσ2j þ xjDjÞ; ð3:42Þ

where we rescaled σi’s and employed the large N approxi-
mation hðϕ2

i Þ2i ¼ hϕ2
i i2 to account for the contribution of

the quartic potential.
We are now in a position to be able to study the phase

structure of the model starting from zero temperature. The
symmetries at stake are scale invariance and the global
symmetries.
Notice that W is given by a sum of non-negative kinetic

and potential terms, because gBij is positive semidefinite,
whereas Ki ≥ 0. Hence, the Hamiltonian of the model is
bounded from below. In the large N limit, the renormalized
couplings gij lie on a curve defined by

detðgijÞ ¼ 0; x1g11 þ x2g22 ¼ 8π2ϵ: ð3:43Þ

For each set of these couplings the minimum of W, which
is obtained at W ¼ 0, lies along a flat direction in field
space. The flat direction is given by

m2
i ¼0;�

σ21
σ22

�
¼
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g22=g11
p

1

�
μ2−ϵ; for signðg12Þ¼∓1; ð3:44Þ

where μ is an arbitrary energy scale, and ðσ21; σ22Þ is aligned
along the eigenvector of gij with zero eigenvalue. Each field
configuration along the flat direction can serve as a ground
state of the theory.
Since σ2i ≥ 0, we conclude that for g12 ≥ 0 there is a

unique vacuum at μ ¼ 0 which respects the symmetries,
whereas for g12 < 0 there is a flat direction in field space
for ground states passing through the origin.
At the origin, scale invariance, the OðmÞ, and OðN −mÞ

symmetries are all retained. At any ground state along the
flat direction away from the origin in field space μ does not
vanish and thus scale invariance is spontaneously broken.
This breaking leads in turn, by (3.44), to the spontaneous
symmetry breaking of the OðmÞ and/or OðN −mÞ sym-
metries. Hence, away from the origin, there are massless
Nambu-Goldstone bosons and a dilaton. These massless
particles will be identified in Sec. III C.
We therefore see that for an arbitrary number of space

dimensions, in the strict large rank limit, there is a
conformal manifold and moduli spaces of vacua for
g12 < 0. This is exactly as in the ϵ expansion but now

this is valid for arbitrary ϵ. We will next see that the finite
temperature corrections at leading order in the large rank
expansion lead to a hyperbola, again extending a result
from the ϵ expansion to arbitrary ϵ.

1. Finite βth
The variational functional W at finite βth is obtained by

introducing a trial thermal state

W ¼ F 0 þ Tr½ρ0ðH −H0Þ� ≥ F ;

H0 ¼
1

2

X
i

ðπ2i þ ð∇ϕiÞ2 þm2
i ðϕi − σiÞ2Þ; ð3:45Þ

where F is the free energy density of the model, whereas
F 0 and ρ0 denote the free energy and thermal density
matrix associated withH0. In the limit βth → ∞ we recover
the previous ansatz (3.36). Furthermore, (3.41) genera-
lizes to

Kj ¼
F 0j

N
−

1

2N
m2

jTr½ρ0ðϕj − σjÞ2�

¼ −
1

2N

Z
m2

j

0

dm2m2
∂

∂m2
Tr½ρ0ϕ2

j �; ð3:46Þ

where F 0j is the free energy density of the free field of
mass m2

j , and the second equality holds up to irrelevant
constant. Substituting the thermal expectation value,14

1

N
hϕ2

jiβth ¼
1

N
Tr½ρ0ϕ2

j �

¼ σ2j þ
Γð1−d

2
Þ

ð4πÞdþ1
2

xjðm2
jÞd−12

þ 2xj
ð4πÞd2Γðd

2
Þ

Z
∞

jmjj
dω

ðω2 −m2Þd−22
eβthω − 1

; ð3:47Þ

yields

Kj ¼
Γð3−d

2
Þ

ðdþ 1Þð4πÞdþ1
2

xjðm2
jÞ

dþ1
2

þ xj
ð4πÞd2Γðd−2

2
Þ

Z
m2

j

0

dm2m2

Z
∞

jmj
dω

ðω2 −m2Þd−42
eβthω − 1

:

ð3:48Þ

As usual, the first term is associated with zero temperature
contribution, whereas the second term represents thermal
fluctuations. The integral over ω cannot be evaluated in full
generality, but it simplifies if the mass vanishes, e.g.,

14We rescaled σj →
ffiffiffiffi
N

p
σj.
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1

N
hϕ2

jiβth
			
m2

j¼0
¼ σ2j þ

Γðd−1
2
Þ

2π
dþ1
2

ζðd − 1Þxjβ1−dth ; ð3:49Þ

where ζðsÞ is the Riemann zeta function.
In the large N limit the variational functional at finite βth

takes the form

W ¼ N
X
i

Ki þ
X
i;j

gBij
4N

hϕ2
i iβthhϕ2

jiβth : ð3:50Þ

Note that all VEVs are evaluated in the Gaussian thermal
state, whereas the trial parameters, m2

i , which minimize W
represent thermal masses of the excitations. Furthermore,
for large values of m2

i (or σi) and any given inverse
temperature βth, the variational functional approaches
(3.42) evaluated at zero temperature. This follows immedi-
ately from (3.50) and Eqs. (3.48) and (3.47). In particular,
W is bounded from below. Moreover, as shown earlier in
this section, detðgijÞ vanishes in the large N limit, therefore
there is always a flat direction in the space of σi ’s
determined by the eigenvector of gij with zero eigenvalue.
This is exactly as was found in the ϵ expansion.

2. Phases at finite βth
For g12 ≥ 0 there is a unique vacuum which respects

the symmetries, and therefore we proceed to the cases
with g12 < 0 where the symmetry can be broken. By
construction W is non-negative, because gij is positive
semidefinite, whereas the kinetic free energy satisfies
Ki ≥ 0. Furthermore, W ¼ 0 at any point on the ridge

m2
1 ¼ m2

2 ¼ 0;�
σ21
σ22

�
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p
1

�
μ2−ϵ −

cðϵÞβϵ−2th

12

�
x1
x2

�
; ð3:51Þ

where we used (3.49) to align the order parameters ðσ21; σ22Þ
such that ðhϕ2

1iβth ; hϕ2
2iβthÞ is parallel to the eigenvector of

gij with zero eigenvalue, whereas μ is an arbitrary scale
emphasizing flatness of W even at finite βth. It should be
sufficiently big to ensure positive σ2i . The function cðϵÞ in
the above expression is defined below:

cðϵÞ≡ 6Γð2−ϵ
2
Þζð2 − ϵÞ
π

4−ϵ
2

: ð3:52Þ

Note that this function diverges in the ϵ → 1 limit, and
hence restricts the validity of this analysis to ϵ < 1. Such
divergences of thermal expectation values of the fields are
consistent with the impossibility of a symmetry-broken
phase in (2þ 1) dimensions at nonzero temperatures.
Since W ≥ 0 for all admissible masses and order

parameters, we conclude that each point on the ridge
(3.51) corresponds to the global minimum of the free

energy, and therefore it represents a thermodynamically
stable phase in the large N limit. In general, the line (3.51)
does not pass through the origin, and therefore OðmÞ ×
OðN −mÞ is broken at finite βth. The introduction of the
temperature βth explicitly breaks scale invariance but a
moduli space of vacua continues to exist.
We elaborate now on those cases where the line (3.51)

does reach the origin. For a given x1, x2 and βth this can
occur due to (3.51) only for that point of the curve (3.43)
which satisfies in addition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p ¼ x1=x2. In this case
the phase structure analysis follows precisely the one at
βth ¼ ∞, the introduction of a temperature does not result
in creating a horizon which prevents the field from reaching
the origin. A presence of a quantum correction to the
moduli space that results in forming a “horizon” is known
from some supersymmetric theories [90].
Note that in the small ϵ regime, the admissible vacua

(3.51) are lying on the hyperbola (3.21). Hence, the phase
structure in the large N limit (and arbitrary ϵ) matches our
results obtained within the ϵ expansion.
Now comes the more difficult question regarding which

of these fixed points survives at finite rank. In the ϵ
expansion we provided an explicit answer which shows
that indeed symmetry breaking takes place at finite, large
rank. But now that ϵ is arbitrary, to find out the answer, one
needs to do some subleading 1=N computations and
examine how the conformal manifold and the hyperbola
of vacua are lifted. We hope that this will be addressed in
the future.
In summary, we have shown that the conformal manifold

and moduli spaces of vacua exist at arbitrary d and N ¼ ∞.
The 1=N corrections needed to find out the true finite
temperature vacua at finite, large rank were only found for
3 − ϵ dimensions with small ϵ. Therefore, we can only
conclude that symmetry breaking at finite temperature in
the biconical models takes place in 3 − ϵ dimensions for
finite small ϵ. It would be interesting to complete this
analysis at finite ϵ.
As an aside, one might wonder if the model exhibits

metastable phases. While such states necessarily decay into
one of the admissible stable states, the decay rate is
exponentially suppressed in the large N limit, and therefore
a metastable phase is a long-lived steady state as N goes to
infinity. To explore such a possibility we should extremize
rather than minimizeW. Varying it with respect tom2

i leads
to the gap equation

∂W
∂m2

i
¼ 0 ⇔ m2

i ¼
X
j

gBijhϕ2
jiβth=N: ð3:53Þ

This is simply a statement that the full two-point function in
the large N limit is given by the sum of all possible cactus
diagrams with two external legs.
The free energy density in the large N limit is given by

W evaluated on the non-negative solutionm2
i ðσjÞ to the gap
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equations (3.53). In particular, the order parameters σj are
derived by minimizing Wðσj; m2

i ðσjÞÞ with respect to σj.
For any nonzero extremum σj ≠ 0, we always have
m2

j ¼ 0. Indeed

0 ¼ ∂W
∂σi þ

∂W
∂m2

j

∂m2
j

∂σi
¼ σi

X
k

gBikhϕ2
kiβth=N

−
1

2

X
j;k

∂m2
j

∂σi
∂hϕ2

jiβth
∂m2

j
½m2

j − gBjkhϕ2
kiβth=N�: ð3:54Þ

Equivalently, using the gap equations (3.53),

σim2
i ¼ 0; ∀ i: ð3:55Þ

Hence, a nonzero σi is necessarily linked tom2
i ¼ 0 even at

finite βth. In particular, all extrema of W when one of the
σi’s or both are nonzero take the form (3.51), and we
considered these cases already. They correspond to the
global minima of W in the large N limit. The only thing
remaining is to search for the possibility of a metastable
phase which respects OðmÞ ×OðN −mÞ.
IfOðmÞ ×OðN −mÞ is unbroken, then σ1 ¼ σ2 ¼ 0 and

(3.55) is trivially satisfied. In this case the gap equa-
tions (3.53) have no solution where both masses are strictly
positive. Indeed, in the large N limit gij is a 2 × 2

degenerate matrix. Hence, up to an overall multiplicative
factor it projects ðx1hϕ2

1iβth ; x2hϕ2
2iβthÞ onto the eigenvector

ð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11=g22

p
; 1Þ with a nonzero eigenvalue. As a result of

an opposite sign in the entries of this eigenvector, one of the
masses is necessarily negative. The latter excludes the
existence of a phase in which OðmÞ ×OðN −mÞ is
unbroken and scale invariance is broken.
Finally, let us consider a symmetric phase where both

OðmÞ ×OðN −mÞ and scale invariance are unbroken.
Substituting σ2i ¼ m2

i ¼ 0 into (3.53) and (3.55), we con-
clude that the gap equations are satisfied provided that

0 ¼
�
βϵ−2th

12

�X
j

gijxj: ð3:56Þ

This constraint trivially holds at βth ¼ ∞, and therefore a
symmetric phase minimizes W at zero temperature. At
finite temperature, however, it is lifted relative to the
solutions (3.51), i.e., W is strictly positive for a symmetric
configuration and the gap equations are not satisfied unless
ðx1; x2Þ is aligned along the eigenvector of gij with zero
eigenvalue. Hence, we conclude that the symmetry is
necessarily broken at βth ≠ ∞ if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p
≠ x1=x2.

Since spontaneous symmetry breaking affects the spec-
trum of particles, it is interesting to match different

excitations of the model with the symmetry breaking
patterns found above. This is the main goal of the next
subsection where we analyze excitations around the largeN
vacua of the model. We find a precise match between the
symmetry breaking pattern and the particle content. In
addition, we derive a composite excitation with scaling
dimension 2 which is inherent to the critical vector model.

C. Excitations of the biconical model in the largeN limit

The Euclidean action of the model can be written as

IE ¼
1

2

X
i

Z
ð∂ϕi∂ϕi þ siðϕ2

i − NρiÞÞ þ
N
4

X
ij

gBij

Z
ρiρj;

ð3:57Þ

where the auxiliary fields si, ρi are singlets of
OðmÞ ×OðN −mÞ. Integrating them out leads to the
standard Lagrangian of the biconical model. The integral
over si yields a delta functional δðϕ2

i − NρiÞ which
simplifies the integration over ρi. The final result for the

Lagrangian is L ¼ 1
2
∂ϕi∂ϕi þ gBij

4N ϕ
2
iϕ

2
j .

In fact, the quadratic form of IE suggests that ρi and ϕi
can be integrated out analytically leaving us with fluctuat-
ing si only. However, integration over ρi should be done
with caution, because gBij is degenerate in the large N limit,
whereas the integral over ϕi should account for the
possibility of broken OðmÞ ×OðN −mÞ. Hence, to iden-
tify the effective degrees of freedom of the theory, we
proceed in two steps.
First we change variables ρi → Mijρj and similarly for

si, where the 2 × 2 orthogonal matrix Mij diagonalizes the
renormalized gij,

MTgM ¼
�
TrðgÞ 0

0 0

�
;

M ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 þ g22

p
�− ffiffiffiffiffiffi

g11
p ffiffiffiffiffiffi

g22
p

ffiffiffiffiffiffi
g22

p ffiffiffiffiffiffi
g11

p
�
: ð3:58Þ

The integral over ρ1 is Gaussian, whereas the integral over
ρ2 simply gives the δ-functional δðs2Þ. Hence, we get

IE ¼
1

2

X
i

Z
ð∂ϕi∂ϕiþϕ2

i Mi1s1Þ−
N

2TrðgBÞ
Z

s21: ð3:59Þ

Next we account for the possibility that ϕi’s may develop
a nontrivial expectation value. For simplicity we align
hϕii’s along the first components of the vector fields
which are henceforth denoted by σi. Integrating over all
other components yields15

15We rescale σi →
ffiffiffiffi
N

p
σi.
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IE ¼
N
2

X
i

Z
ð∂σi∂σi þ σ2i Mi1s1Þ −

N
2TrðgBÞ

Z
s21

þ
X
i

xiN − 1

2
Tr logð−∂2 þMi1s1Þ: ð3:60Þ

Since IE ∝ N it follows that the large N vacuum state of the
model is determined by a constant solution σ̄i; s̄1 to the
classical equations of motion obtained by varying IE with
respect to s1 and σi. In fact, after identifying m2

i ¼ Mi1s̄1
these equations become identical with (3.53) and (3.55). In
particular, the thermal masses, m2

i , of ðxiN − 1Þ fields ϕi
vanish, whereas σ̄i’s lie on the hyperbolic curve (3.51).
Expanding (3.60) around σ̄i; s̄1 and keeping quadratic
terms only yields16

IE ¼
N
2

X
i

Z
ð∂σi∂σi þ ð2σ̄iMi1Þσis1Þ

−
N

2TrðgBÞ
Z

s21 −
N
4

X
i

xiM2
i1Trðð∂2Þ−1s1ð∂2Þ−1s1Þ:

ð3:61Þ

Finally, we perform an orthogonal transformation to dis-
entangle the fields σi:

σ0i ¼
Rijσjffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞp ; R ¼ 2

�
σ̄1M11 σ̄2M21

−σ̄2M21 σ̄1M11

�
: ð3:62Þ

The quadratic action at T ¼ 0 eventually takes the form

IE
N

¼ 1

2

Z
ð∂σ01∂σ01 þ ∂σ02∂σ02 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p
σ01s1Þ

−
N

2TrðgBÞ
Z

s21 −
Γ2ðd−1

2
Þ

64πdþ1

X
i

xiM2
i1

ZZ
s1ðy1Þs1ðy2Þ
jy1 − y2j2ðd−1Þ

:

ð3:63Þ

At finite βth, we get essentially the same action, except that
the last term needs to be modified on a thermal cylinder.
We see that the large N critical biconical model has a

number of massless excitations around any vacuum state
(3.51). First, there are m − 1 and N −m − 1 massless
modes ϕ1 and ϕ2 respectively. They are associated with
the Nambu-Goldstone particles of the broken OðmÞ ×
OðN −mÞ symmetry.17 In addition, we have a massless
mode σ02 which represents fluctuations along the equipo-
tential valley (3.51). This excitation is a singlet of the

residual symmetry group, and we interpret it as a massless
dilaton associated with spontaneously broken scale invari-
ance. We have thus accounted for N − 1 of the particles in
the original Lagrangian. A remaining degree of freedom
whose fate we can follow is the massive “Higgs scalar
particle.” Its mass is fixed by the scale at which the
symmetries were broken. In Appendix B we derive these
properties using the diagrammatic expansion in the large
rank limit. This includes the analysis of the 4- and 2-point
functions. Finally, there is an excitation s1 built of the
original fields ϕi. The correlation function of s1 in
momentum space scales as hs1ðpÞs1ð−pÞi ∼ p3−d.
Hence, it represents a composite field with scaling dimen-
sion 2. The results are summarized in Fig. 3.

D. Towards a model in 2 + 1 dimensions

The finite temperature symmetry breaking pattern of the
biconical model is (for m1 < m2)

Oðm1Þ ×Oðm2Þ → Oðm1 − 1Þ ×Oðm2Þ: ð3:64Þ

This cannot hold true all the way up to ϵ ¼ 1, i.e., 2þ 1
dimensions, due to the Mermin-Wagner-Hohenberg-
Coleman theorem [16,94,95] (remember that we are at
finite temperature). In fact it may even break down before
we reach ϵ ¼ 1, as explained in the previous subsections.
The only exception is m1 ¼ 1, in which case one can
potentially have the symmetry breaking pattern (3.64) at
finite temperature

Z2 ×OðNÞ → OðNÞ: ð3:65Þ

This may in principle occur at finite temperature in 2þ 1
dimensions and hence the case m1 ¼ 1 warrants some
attention.
Let us now analyze whether (3.65) occurs in the ϵ

expansion. The beta functions in this case take the form

α ¼ 9α2 þ Nγ2; ð3:66Þ

β ¼ β2ðN þ 8Þ þ γ2; ð3:67Þ

1 ¼ 3αþ βðN þ 2Þ þ 4γ: ð3:68Þ

It is useful to take the large N limit. General considerations
suggest that the energy operator of the Ising model should
couple to ϕ⃗2 of the OðNÞ sector with strength 1=

ffiffiffiffi
N

p
. The

quartic coupling ðϕ⃗2Þ2 should be Oð1=NÞ as usual.
Therefore we define

γ̃ ¼
ffiffiffiffi
N

p
γ; β̃ ¼ Nβ; α̃ ¼ α;

and obtain to leading order the equations

16There are no linear terms present in the action, because σ̄i; s̄1
extremize IE. The interaction terms between the fluctuating fields
introduce 1/N corrections to the propagators that we discuss in
what follows, and therefore we suppressed them in (3.61).

17As can be seen from (3.59), m2
i ¼ Mi1s̄1 ¼ 0 is the mass of

ϕi excitations orthogonal to the ðσ1; σ2Þ plane.
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α̃ ¼ 9α̃2 þ γ̃2; ð3:69Þ

β̃ ¼ β̃2 þ γ̃2; ð3:70Þ

1 ¼ 3α̃þ β̃: ð3:71Þ

Subtracting the second equation from the first, and then
using the third equation, one finds α̃ − β̃ ¼ 3α̃ − β̃ so
clearly the only solution is α̃ ¼ γ̃ ¼ 0, and β̃ ¼ 1 which
describes the critical OðNÞ model accompanied by a
decoupled real free field. One may thus worry that a
nontrivial fixed point with symmetry Z2 ×OðNÞ may
not exist.
But it could be that the fixed point is such that the real

field charged under Z2 does not strongly backreact on the
N fields transforming in the fundamental representation of
OðNÞ. So we must try a new scaling for the couplings:

γ̃ ¼ Nγ; β̃ ¼ Nβ; α̃ ¼ Nα;

which now leads in the large N limit to the equations

α̃ ¼ γ̃2; ð3:72Þ

β̃ ¼ β̃2; ð3:73Þ

1 ¼ β̃: ð3:74Þ

Clearly then β̃ ¼ 1 and α̃ ¼ γ̃2, which again parametrizes a
one-dimensional conformal manifold, except that now it is
unbounded and looks like a parabola. In addition, for γ̃ < 0
there is a moduli space of vacua which intersects the origin.

These theories describe a free field in an OðNÞ bath—the
backreaction of the free field sector on the OðNÞ model is
very small. It is crucial to find which of the fixed points on
the conformal manifold correspond to fixed points which
exist also for finite rank. Following the same strategy as
before, one finds the following equation:

ðγ̃ − 1Þðγ̃ þ 3Þ ¼ 0:

One quick way to obtain this equation is by taking the
x → 1 limit carefully in (3.27). Of course γ̃ ¼ 1 is theOðNÞ
invariant fixed point while γ̃ ¼ −3 is the new, more
interesting, fixed point. To leading order in the large rank
expansion, the thermal masses at this new fixed point are
2π2ϵ
3β2th

ð−3; 1Þ. Therefore the scalar potential at finite temper-

ature at leading order in the large N expansion is

V ¼ 2π2ϵ

6β2th
ðμβthÞϵð−3Ψ2 þ ϕ⃗2Þ þ 2π2ϵ

N
μϵð3Ψ2 − ϕ⃗2Þ2:

This leads to a hyperbola of vacua

3Ψ2 − ϕ⃗2 ¼ N
12β2−ϵth

: ð3:75Þ

Following a similar analysis to what we have done in the
fixed x limit, one can further show that upon including finite
rank corrections the only true vacuum that remains is the one
where Ψ obtains a VEV (hΨ2i ¼ N

36β2−ϵth
) and ϕ⃗ does not.

Therefore theZ2 symmetry at finite temperature is certainly

Vacuum moduli space:  

       A straight line emanating from the 

Symmetry breaking pattern:  

         Symmetric phase at the origin 
         SSB away from the origin

Goldstone bosons: 

massless dilaton and

Scale × O(m1) × O(m2) O(m1 − 1) × O(m2 − 1)

m1 − 1 and m2 − 1 massless 1 and 2

Phases at T = 0

Same phases as at zero temperature: 
While scale symmetry is explicitly broken 
by , there is still a straight line of 
vacua passing through the origin. At the 
origin symmetries are maintained, away 
from the origin SSB occurs, and massless 
spectrum follows accordingly.

g11
g22

=
m1
m2

g12 < 0

Vacuum moduli space:  
     A

     SSB occurs.

Residual symmetries 

and

or

O(m1 − 1) × O(m2 − 1)

O(m1 − 1) × O(m2) , for
g22
g11

>
m1
m2

O(m1) × O(m2 − 1) , for
g22
g11

<
m1
m2

g11
g22

m1
m2

g12 < 0

Phases at T 0

T 0

FIG. 3. Symmetry breaking patterns in the large rank limit.
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broken at large enough finite N. We have therefore found
that (3.65) indeed takes place in the ϵ expansion.18

Since this model exhibits Z2 symmetry breaking at finite
temperature, it is possible in principle that it continues to
hold true not just for small ϵ but also for ϵ ¼ 1, namely, in
2þ 1 dimensions. From this perspective it is instructive to
explore this model in the large N limit along the guidelines
of Sec. III B. The kinetic free energy of the field Ψ is
suppressed in the largeN limit, and therefore the variational
functional simplifies,19

W ¼ −
1

2

Z
m2

ϕ

0

dm2m2
∂

∂m2
hϕ⃗2iβth þ

gB11
4N

hΨi4βth

þ gB22
4N

hϕ⃗2i2βth þ
gB12
2N

hΨi2βthhϕ⃗
2iβth ; ð3:76Þ

where hϕ⃗2iβth is given by (3.47), and hΨiβth is the thermal
expectation value determined by minimizing W. In the
large N limit this is the only remnant of Ψ.
Extremizing W with respect to hΨiβth yields

hΨiβth
�
hΨi2βth þ

gB12
gB11

hϕ⃗2iβth
�

¼ 0: ð3:77Þ

Two additional constraints are obtained by varyingW with
respect to m2

ϕ and σϕ respectively,

m2
ϕ ¼ gB22

N
hϕ⃗2iβth þ

gB12
N

hΨi2βth ; σϕm2
ϕ ¼ 0: ð3:78Þ

Now, let us study a possible phase with broken Z2

symmetry (hΨiβth ≠ 0). It satisfies

hΨi2βth þ
gB12
gB11

hϕ⃗2iβth ¼ 0: ð3:79Þ

This equation has no solution unless gB12 < 0. As was
argued in the beginning of this subsection, the latter
inequality holds at the fixed point in d ¼ 3 − ϵ. In fact,
for ϵ ≪ 1 the relation (3.79) is a hallmark of the global

minimum of the variational functional (W ¼ 0). To see it,
we notice thatW is given by the sum of positive kinetic and
potential terms. The kinetic term equals zero at m2

ϕ ¼ 0,
whereas the potential vanishes provided that the couplings
are tuned to the fixed point values (3.72)–(3.74) and (3.79)
is satisfied. Furthermore, substituting (3.72)–(3.74) into
(3.79) and using (3.49), we recover (3.75). The upshot is
that ϵ expansion and the large N approaches agree. In
particular, the Z2 symmetry is necessarily broken at finite
βth, whereas at zero temperature there is a moduli space of
vacua which intersects the origin.
It is particularly interesting to find out whether our

conclusions survive all the way to ϵ ¼ 1. We leave this
question for the future.
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APPENDIX A: MORE DETAILS ON FOOTNOTE 2

Our first comments are about 1þ 1 dimensional massive
QFT with Z2 symmetry. We will assume that the Z2 is
nonanomalous. To understand what precisely “nonanom-
alous” means see [96] for a recent discussion. Now let us
couple the theory to a background Z2 gauge field a. Since
the symmetry is nonanomalous we may gauge the Z2,
which means that we can sum over a. The theory obtained
in this way automatically has a bonusZ2 symmetry, and we
can in turn couple it to a gauge field b by adding the phase
eπiab to the action. (The ab product is just the cup product.)
Since we sum over a, this gives a functional of b.
A familiar claim is that if the original Z2 is broken then

the dual is not and vice versa. This claim is important, for
instance, in the Kramers-Wannier duality.
Let us review the general proof. We have to understand

what it means for the original Z2 symmetry to be broken.
Take a torus with sidesR, T. Take them both to be very large
compared to any mass scale of the infinite volume theory.
Then, if the symmetry is broken the partition function with

18As an example, here are the numerical, high-precision,
values of the coupling constants and thermal masses for N ¼ 104:

ðα; β; γÞ ¼ ð0.0008914755083784347;
0.00009984152941453665;

− 0.0002973905499790778Þ;

ðm2
1; m

2
2Þ ¼

2π2ϵ

3β2th
ð−2.9709336827156636;

0.9994004793411305Þ:
19See footnote 12 for the relation between gBij and the couplings

γ̃ ¼ Nγ; β̃ ¼ Nβ; α̃ ¼ Nα.
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nontrivial a background is always exponentially smaller
than the partition function without a insertions. This is clear
for instance in the interpretation that a is along the time
direction. Indeed, on the circle the two lowest states mix
with energy difference ΔE ¼ e−mR (m is the domain wall
tension) and putting a ¼ 1 along the time direction the
partition function becomes eE1T − eE2T which is exponen-
tially smaller than each of the terms due to the small energy
difference (the minus sign is due to the fact that the two
eigenstates have different Z2 charges). The same is true for
any other cycle awraps. Therefore if we sum over awithout
additional phases the result is dominated by the contribution
from the torus without any a insertions. Hence, the partition
function is essentially 1

2
ðeE1T þ eE2TÞ. But now we can

activate b in the time direction. Since it does not affect the
partition function in the sector with a ¼ 0, we see that the
partition function with b turned on in the time direction is
approximately 1

2
ðeE1T þ eE2TÞ, and in particular, it is not

exponentially smaller.
That the partition function with b in the time direction is

not exponentially smaller means that the bonus Z2 is
unbroken. The converse argument works identically.
Now we have to explain the relationship of these

observations to order at finite temperature in 2þ 1 dimen-
sions. Consider a theory T in 2þ 1 dimensions with Z2

symmetry. We take space to be a cylinder with radius β=2π.
At long distances, i.e., distances much longer than β or any
other scale in the problem, the theory is assumed to be
gapped and it should be thought of as a 1þ 1 dimensional
theory. Now consider in parallel the theory T 0 obtained by
gauging the Z2 symmetry of T . T 0 has a one-form
symmetry in 2þ 1 dimensions [12]. If we put the theory
on the same cylinder and take the long distance limit, from
the point of view of 1þ 1 dimensions, it has an ordinaryZ2

symmetry that can be interpreted precisely as the bonus
symmetry in our previous discussion. (The 1þ 1 dimen-
sional theory obtained in this way also has a one-form
symmetry which we will ignore.) This bonus Z2 symmetry
is precisely the symmetry acting on the confinement/
deconfinement order parameter of T 0 introduced by
Polyakov [97] in the context of gauge theories. Hence,
breaking the ordinary Z2 symmetry in the theory T at finite
temperature is equivalent to a finite temperature deconfined
phase of T 0.

APPENDIX B: FOUR-POINT CORRELATORS
IN THE LARGE N BICONICAL MODEL

In this Appendix, we will discuss the 4-point correlators
of the biconical model in the large N limit. In the strictly

N → ∞ limit, the dynamics of the model is essentially
Gaussian. Therefore, all the connected 4-point correlators
are suppressed by powers of 1

N. Wewill restrict our attention
to the correlators that are nonvanishing at Oð1NÞ.
This analysis will shed light on the effective interactions

between the particles in the model at different temperatures.
We will see that there are interesting differences in the
behavior of the correlators in a ground state and in a
thermal state. These differences arise essentially from an
interaction vertex which vanishes in a ground state but is
nonzero for a thermal state. We will show that the presence
of this vertex leads to new poles in certain thermal
correlators. In addition, it also leads to some thermal
correlators to be nonzero while their vacuum counterparts
vanish at Oð1NÞ.
In this analysis, we will include correlators with

insertions of the Goldstone bosons. Thus, in contrast to
the main text, we will not integrate out these modes. Rather,
we will derive an effective action which includes these
modes.

1. Effective action with an auxiliary field

We remind the reader that the Euclidean action of the
model is given by

IE ¼ 1

2

X
i

Z
ddþ1xð∂μϕ⃗i · ∂μϕ⃗i þ siðϕ⃗2

i − NρiÞÞ

þ N
4

X
ij

gBij

Z
ddþ1xρiρj: ðB1Þ

Here the fields si and ρi are auxiliary degrees of freedom
introduced to simplify the analysis.
We will consider perturbations of the fields ϕi about

the expectation values σi which are aligned along some
particular direction (with the unit vector n̂i) in the ðxiNÞ-
dimensional space. Therefore, we take

ϕ⃗i ¼ ðσi þ ηiÞn̂i þ θ⃗i; ðB2Þ

where ηi is the fluctuation along the direction n̂i, whereas θ⃗i
is the fluctuation transverse to this direction. In terms of
these degrees of freedom, the action is given by

IE ¼ 1

2

X
i

Z
ddþ1xð∂μθ⃗i∂μθ⃗i þ ∂μηi∂μηi þ siðθ⃗2i þ η2i þ 2ηiσi þ σ2i ÞÞ

−
1

2

X
i

Z
ddþ1xNρisi þ

N
4

X
ij

gBij

Z
ddþ1xρiρj: ðB3Þ
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Now, we will integrate out the fields ρ1 and ρ2. For this, let us first introduce the following variables:

ρ01 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gB11 þ gB22
p � ffiffiffiffiffiffi

gB11

q
ρ1 −

ffiffiffiffiffiffi
gB22

q
ρ2
�
; ρ02 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB11 þ gB22

p � ffiffiffiffiffiffi
gB22

q
ρ1 þ

ffiffiffiffiffiffi
gB11

q
ρ2
�
;

s01 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gB11 þ gB22
p � ffiffiffiffiffiffi

gB11

q
s1 −

ffiffiffiffiffiffi
gB22

q
s2
�
; s02 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB11 þ gB22

p � ffiffiffiffiffiffi
gB22

q
s1 þ

ffiffiffiffiffiffi
gB11

q
s2
�
: ðB4Þ

The action then takes the form

IE ¼ 1

2

X
i

Z
ddþ1xð∂μθ⃗i∂ μθ⃗i þ ∂μηi∂μηi þ siðθ⃗2i þ η2i þ 2ηiσi þ σ2i ÞÞ

−
1

2

X
i

Z
ddþ1xNρ0is

0
i þ

N
4
ðgB11 þ gB22Þ

Z
ddþ1xρ021 : ðB5Þ

Integrating out the field ρ02, we get a delta function in the
path integral which imposes the constraint

s02 ¼ 0 ⇒ s2 ¼ −

ffiffiffiffiffiffi
gB22
gB11

s
s1: ðB6Þ

Integrating out the field ρ01 contributes the following term to
the action:

−
N

4ðgB11 þ gB22Þ
Z

ddþ1x s021 ¼ −
N
4gB11

Z
ddþ1x s21: ðB7Þ

Finally, integrating out the field s2, we get the following
action which is a functional of the remaining fields:

ĨE¼
�
1

2

X
i

Z
ddþ1xð∂μθ⃗i∂μθ⃗iþ∂μηi∂μηiÞ

−
N
4gB11

Z
ddþ1xs21þ

1

2

Z
ddþ1xs1ðθ⃗21þη21þ2η1σ1þσ21Þ

−
1

2

ffiffiffiffiffiffi
gB22
gB11

s Z
ddþ1xs1ðθ⃗22þη22þ2η2σ2þσ22Þ

�
: ðB8Þ

Let us now define

s0 ≡ −i

ffiffiffiffiffiffiffiffiffi
N
2gB11

s
s1: ðB9Þ

Then the action is given by

ĨE ¼
Z

ddþ1x

�
1

2

X
i

ð∂μθ⃗i∂μθ⃗i þ ∂μηi∂μηiÞ

þ 1

2
s20 þ is0

� ffiffiffiffiffiffiffi
gB11
2N

r
σ21 −

ffiffiffiffiffiffiffi
gB22
2N

r
σ22

�

þ i

ffiffiffiffiffiffiffi
gB11
2N

r
s0ðθ⃗21 þ η21 þ 2η1σ1Þ

− i

ffiffiffiffiffiffiffi
gB22
2N

r
s0ðθ⃗22 þ η22 þ 2η2σ2Þ

�
: ðB10Þ

At a temperature T ¼ 1
βth
, the expectation values σ1 and

σ2 lie on a moduli space defined by the following equation:

ffiffiffiffiffiffiffi
gB11
2N

r
σ21 −

ffiffiffiffiffiffiffi
gB22
2N

r
σ22 ¼

ffiffiffiffiffiffiffi
2N

p
cðϵÞβ−2þϵ

th

24

� ffiffiffiffiffiffi
gB22

q
x2 −

ffiffiffiffiffiffi
gB11

q
x1
�
;

ðB11Þ

where cðϵÞ is the function defined in (3.52). Therefore, the
above action reduces to

ĨE ¼
Z

ddþ1x

�
1

2

X
i

ð∂μθ⃗i∂μθ⃗i þ ∂μηi∂μηiÞ þ
1

2
s20

þ is0

� ffiffiffiffiffiffiffiffiffi
2gB11
N

r
σ1η1 −

ffiffiffiffiffiffiffiffiffi
2gB22
N

r
σ2η2

�

− i

ffiffiffiffiffiffiffi
2N

p
cðϵÞβ−2þϵ

th

24

� ffiffiffiffiffiffi
gB11

q
x1 −

ffiffiffiffiffiffi
gB22

q
x2
�
s0

þ i

ffiffiffiffiffiffiffi
gB11
2N

r
s0ðθ⃗21 þ η21Þ − i

ffiffiffiffiffiffiffi
gB22
2N

r
s0ðθ⃗22 þ η22Þ

�
: ðB12Þ

From the above expression of the action, we can see that
only a linear combination of the fields η1 and η2 couples to
s0 at the quadratic level. This implies that this mode picks
up a mass by the Higgs mechanism. The mode orthogonal
to this combination remains massless. As discussed in the
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main text, this massless boson (the dilaton) arises due to
the spontaneous breaking of scale invariance. We provide
the forms of these modes corresponding to the massive
boson (η−) and the dilaton (ηþ) below:

η− ≡
ffiffiffiffiffiffi
gB11

p
σ1η1 −

ffiffiffiffiffiffi
gB22

p
σ2η2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gB11σ
2
1 þ gB22σ

2
2

p ;

ηþ ≡
ffiffiffiffiffiffi
gB11

p
σ1η2 þ

ffiffiffiffiffiffi
gB22

p
σ1η2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gB11σ
2
1 þ gB22σ

2
2

p : ðB13Þ

As we will soon see, the mass of the η− field is given by

σ̃ ≡
ffiffiffiffi
2

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB11σ

2
1 þ gB22σ

2
2

q
: ðB14Þ

Note that this mass depends on the expectation values σ1
and σ2. Since these expectation values are constrained to lie
on a hyperbola determined by the temperature [see (B11)],
therefore the mass is not completely independent of the
temperature. However, at any given temperature, it is not
uniquely determined as there is a moduli space of vacua and
each of these vacua gives a different value of the mass. For
instance, at zero temperature, this mass is given by

lim
βth→∞

σ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðgB11 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
gB11g

B
22

p Þ
N

s
σ1; ðB15Þ

where σ1 parametrizes the different points on the moduli
space of vacua.
In terms of the quantities introduced above, the action

takes the following form:

ĨE¼
Z

ddþ1x

�
1

2

�X
i

∂μθ⃗i∂μθ⃗iþ∂μηþ∂μηþþ∂μη−∂μη−

�

þ1

2
s20þiσ̃s0η−−i

ffiffiffiffiffiffiffi
2N

p
cðϵÞβ−2þϵ

th

24

� ffiffiffiffiffiffi
gB11

q
x1−

ffiffiffiffiffiffi
gB22

q
x2
�
s0

þi

ffiffiffiffiffiffiffi
gB11
2N

r
s0θ⃗

2
1−i

ffiffiffiffiffiffiffi
gB22
2N

r
s0θ⃗

2
2þ

i

2
ffiffiffiffi
N

p A−−s0η2−

þ iffiffiffiffi
N

p Aþ−s0η−ηþþ
i

2
ffiffiffiffi
N

p Aþþs0η2þ

�
; ðB16Þ

where

A−−¼
ffiffiffi
2

p �ðgB11Þ32σ21−ðgB22Þ
3
2σ22

ðgB11σ21þgB22σ
2
2Þ

�
;

Aþ−¼
ffiffiffi
2

p � ffiffiffiffiffiffiffiffiffiffiffiffi
gB11g

B
22

p ð ffiffiffiffiffiffi
gB11

p þ ffiffiffiffiffiffi
gB22

p Þσ1σ2
gB11σ

2
1þgB22σ

2
2

�
;

Aþþ¼−
ffiffiffi
2

p � ffiffiffiffiffiffiffiffiffiffiffiffi
gB11g

B
22

p
gB11σ

2
1þgB22σ

2
2

�� ffiffiffiffiffiffi
gB11

q
σ21−

ffiffiffiffiffiffi
gB22

q
σ22

�
: ðB17Þ

a. Essential difference between ground states
and thermal states.

Note that using Eq. (B11) and the definition of σ̃ given in
(B14), we can get

Aþþ ¼ −
� ffiffiffiffiffiffiffiffiffiffiffiffi

gB11g
B
22

p
3

ffiffiffi
2

p
σ̃2

�
cðϵÞβ−2þϵ

th

� ffiffiffiffiffiffi
gB22

q
x2 −

ffiffiffiffiffiffi
gB11

q
x1
�
:

ðB18Þ

Therefore, this coefficient vanishes as the temperature goes
to zero, i.e., when βth → ∞. The absence of this vertex at
zero temperature leads to the vanishing of certain Feynman
diagrams. We will show that as a consequence, certain
4-point correlators with insertions of the dilatons are
nonzero only in a thermal state, and vanish as the temper-
ature is taken to zero.

2. Feynman diagrammatics

From the Euclidean action given in (B16), we can derive
all the ingredients for drawing Feynman diagrams in this
theory. We enumerate all the propagators and the inter-
action vertices appearing in such Feynman diagrams below.
In a thermal state with temperature T ¼ 1

βth
, the zeroth

components of the momenta in the propagators are quan-
tized in units of 2π

βth
. From these propagators and vertices we

can compute the thermal correlators in momentum space.
To get these correlators, one would have to multiply a factor
of βthδ

P
i
p0
i ;0
ð2πÞdδdðPi p⃗iÞ to the contributions of the

Feynman diagrams. At zero temperature, this multiplicative
factor has to be replaced as follows:

βthδ
P

i
p0
i ;0
ð2πÞdδd

�X
i

p⃗i

�
→ ð2πÞdþ1δdþ1

�X
i

p⃗i

�
:

a. Propagators
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From the form of the ðη− − η−Þ propagator given above, one can easily see that σ̃ is the mass of the η− field.

b. Vertices

The 1-point vertexwith the field s0 ensures that the thermal
expectationof the field s0 is zero (up to the leadingorder in 1

N).
Its contribution to this expectation value cancels the con-
tributions of tadpole diagrams involving loops of Goldstone
bosons.Wewill not prove this explicitly here. However, note
that in the main text we have already shown that the saddle
point value of the field s1 must be zero in the strictlyN → ∞
limit. Since the field s0 is related to s1 by Eq. (B9), its
expectation value also must vanish up to leading order in 1

N.
From the expression of the 1-point vertex, we can see

that it vanishes when the temperature goes to zero, i.e.,

when βth → ∞. The tadpole diagrams, whose contributions
it canceled at nonzero temperatures, also vanish in this
limit.20 Therefore, the expectation value of the field s0
remains zero at zero temperature.

c. Correction to the s0 − s0 propagator due to
loops of Goldstone bosons

In the large N limit, the s0−s0 propagator receives
corrections from loops of the Goldstone bosons as shown
below:

ðB19Þ

The dots in the above expression represent diagrams
with iterations of the same loops that are shown
explicitly. Each of these loops comes with two
vertices contributing a factor which is Oð1NÞ. On the
other hand, since there are OðNÞ number of
Goldstone bosons, the overall contribution of these loops
is O(1).

3. Connected 4-point correlators

Let us now discuss the connected 4-point correlators of
the different modes. Some of these correlators are nonzero
in both ground states and thermal states. We will first
consider these correlators, and then turn our attention to the
ones that are nonzero only in a thermal state.

a. Correlators which are nonzero in both ground
states and thermal states

We enumerate all the 4-point correlators that are nonzero
(in both ground states and thermal states) atOð1NÞ in Table I.

20See [98] for a proof of the vanishing of such tadpole
diagrams with loops of massless propagators in the vacuum.
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We also show the kinds of Feynman diagrams that
contribute to these correlators at Oð1NÞ.

Poles at the zeros of the Mandelstam variables.—Notice
that some of the correlators in Table I have diagrams in
which a dilaton propagates as an intermediate particle.
Since the dilaton is massless, such a diagram leads to a pole
at the zero of a Mandelstam variable-s, t or u, depending on
the channel to which the diagram belongs. These correla-
tors and the corresponding diagrams are given below.

(i) 4 massive bosons: In this case the relevant diagram
is of the following form:

Notice that this diagram is nonvanishing in both ground
states and thermal states. Therefore, the corresponding
poles in this correlator are present at all temperatures
(including zero).
(ii) 2 massive bosons and 2 dilatons: In this case the

relevant diagram is of the following form:

Notice that this diagram has the vertex which couples the
auxiliary field s0 to two dilatons. As we showed earlier, this

vertex vanishes at zero temperature. Therefore, the con-
tribution of this diagram and the corresponding poles in the
correlator are present only at nonzero temperatures.
(iii) 3 massive bosons and 1 dilaton: As in the previous

case, here the relevant diagram (given below) has the
vertex which vanishes at zero temperature:

Therefore, the contribution of this diagram and the corre-
sponding poles in the correlator are also present only at
nonzero temperatures.

2. Some examples.

To illustrate the existence of thepolesmentioned above,we
provide the explicit forms of some correlators below. In what
follows, we will use a subscript “c” to indicate the connected
piece of a correlator. In the expressions of these correlators,
we will denote the contribution of the (s0 − s0) propagator
withmomentum p⃗ byGs0ðp⃗; βthÞ. TheMandelstam variables
in these expressions are defined as follows:

s≡ðp⃗1þp⃗2Þ2; t≡ðp⃗1þp⃗3Þ2; u≡ðp⃗1þp⃗4Þ2: ðB20Þ

Now that we have defined all the quantities appearing in
the correlators, let us provide the explicit forms of these
correlators:

TABLE I. Correlators which are nonzero in both ground states and thermal states.

Correlator Diagrams

4 Goldstone bosons

4 massive bosons

2 massive bosons, 2 dilatons

3 massive bosons, 1 dilaton

2 massive bosons,
2 Goldstone bosons

1 massive boson, 1 dilaton,
2 Goldstone bosons
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hη−ðp⃗1Þη−ðp⃗2Þη−ðp⃗3Þη−ðp⃗4ÞÞic ¼ βthδ
P

i
p0
i ;0
ð2πÞdδd

�X
i

p⃗i

��Y4
i¼1

1

p2
i þ σ̃2

�

×
1

N

�
A2−−



−ðGs0ðp⃗1 þ p⃗2; βthÞ þGs0ðp⃗1 þ p⃗3; βthÞ þ Gs0ðp⃗1 þ p⃗4; βthÞÞ

þ 8σ̃2
�

1

sþ σ̃2
þ 1

tþ σ̃2
þ 1

uþ σ̃2

��
þ 4A2þ−σ̃2

�
1

s
þ 1

t
þ 1

u

��
; ðB21Þ

hη−ðp⃗1Þηþðp⃗2Þη−ðp⃗3Þηþðp⃗4ÞÞic ¼ βthδ
P

i
p0
i ;0
ð2πÞdδd

�X
i

p⃗i

��
1

p2
1 þ σ̃2

1

p2
3 þ σ̃2

1

p2
2

1

p2
4

�

×
1

N

�
A2þ−



−ðGs0ðp⃗1 þ p⃗2; βthÞ þGs0ðp⃗1 þ p⃗4; βthÞÞ þ 3σ̃2

�
1

sþ σ̃2
þ 1

uþ σ̃2

��

þ A−−Aþþ



−Gs0ðp⃗1 þ p⃗3; βthÞ þ

2σ̃2

tþ σ̃2

�
þ A2þþσ̃2

�
1

s
þ 1

u

��
; ðB22Þ

hη−ðp⃗1Þηþðp⃗2Þη−ðp⃗3Þη−ðp⃗4ÞÞic ¼ βthδ
P

i
p0
i ;0
ð2πÞdδd

�X
i

p⃗i

��
1

p2
2

Y
i≠2

1

p2
i þ σ̃2

�

×
1

N

�
A−−Aþ−



−ðGs0ðp⃗1 þ p⃗2; βthÞ þGs0ðp⃗1 þ p⃗3; βthÞ þ Gs0ðp⃗1 þ p⃗4; βthÞÞ

þ 5σ̃2
�

1

sþ σ̃2
þ 1

tþ σ̃2
þ 1

uþ σ̃2

��
þ 2AþþAþ−σ̃2

�
1

s
þ 1

t
þ 1

u

��
: ðB23Þ

Note that the poles at the zeros of the Mandelstam variables
in the last two correlators have the factor Aþþ in their
coefficient. Therefore, these poles vanish as the temper-
ature goes to zero.

b. Correlators which are nonzero only
in thermal states

Now let us look at the correlators that are nonzero at
Oð1NÞ only in a thermal state. We provide the list of these
correlators and the corresponding diagrams in Table II.

Notice that in all these diagrams, there is a vertex with
the coefficient Aþþ which vanishes at zero temperature.
Hence, these correlators all vanish up to Oð1NÞ at zero
temperature.

4. Summary

We studied the forms of all the connected 4-point
correlators in the biconical model which are nonzero at
Oð1NÞ. From the corresponding Feynman diagrams, we saw
that there are some essential differences between the

TABLE II. Correlators which are nonzero only in thermal states.

Correlator Diagrams

1 massive boson, 3 dilatons

4 dilatons

2 dilatons, 2 Goldstone bosons
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correlators at zero temperature and those at nonzero
temperatures. These differences are as follows:
(1) In a thermal state, there are additional poles at the

zeros of the Mandelstam variables for the following
correlators:
(i) 2 massive bosons and 2 dilatons,
(ii) 3 massive bosons and 1 dilaton.

(2) The following correlators vanish in the ground state,
but are nonzero in a thermal state:
(i) 1 massive boson and 3 dilatons,
(ii) 4 dilatons,
(iii) 2 dilatons and 2 Goldstone bosons.

We saw that these differences arise due to the vanishing of
an interaction vertex coupling the auxiliary field s0 to two
dilatons when the temperature is taken to zero.

a. Comment on the fixed point

where

ffiffiffiffiffi
gB11
gB22

r
=

ffiffiffiffiffi
g11
g22

q
= x2

x1

As we discussed in the main text, at leading order
in the large N expansion, there is a line of fixed points of
the RG flow of the couplings. A special point on this

line is where
ffiffiffiffiffi
g11
g22

q
¼ x2

x1
. This is the point at which the

moduli space of vacua passes through the origin of the
field space even at nonzero temperatures. From (B18), we
can see that at this point, the vertex factor −iAþþ ¼ 0.
Hence, the essential differences that we mentioned
between the vacuum and thermal correlators disappear
at this point.

[1] N. Chai, S. Chaudhuri, C. Choi, Z. Komargodski, E.
Rabinovici, and M. Smolkin, companion Letter, Phys.
Rev. Lett. 125, 131603 (2020).

[2] D. Amit, Field Theory, the Renormalization Group, and
Critical Phenomena (World Scientific, Singapore, 1984).

[3] M. E. Peskin and D. V. Schroeder, An Introduction to Quan-
tum Field Theory (Addison-Wesley, Reading, MA, 1995).

[4] S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern
Applications (Cambridge University Press, Cambridge,
England, 2013).

[5] G. Parisi, Statsitical Field Theory (CRC Press, Boca Raton,
1998).

[6] D. J. Gross and E. Witten, Phys. Rev. D 21, 446 (1980).
[7] S. R. Wadia, Phys. Lett. 93B, 403 (1980).
[8] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[9] L. Susskind, arXiv:hep-th/9805115.

[10] B. Sundborg, Nucl. Phys. B573, 349 (2000).
[11] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and

M. Van Raamsdonk, Adv. Theor. Math. Phys. 8, 603 (2004).
[12] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, J. High

Energy Phys. 02 (2015) 172.
[13] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,

J. High Energy Phys. 05 (2017) 091.
[14] U. Gursoy, J. High Energy Phys. 12 (2010) 062.
[15] D. M. Hofman and N. Iqbal, SciPost Phys. 4, 005 (2018).
[16] S. R. Coleman, Commun. Math. Phys. 31, 259 (1973).
[17] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[18] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.

B 428, 105 (1998).
[19] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[20] S. S. Gubser, Phys. Rev. D 78, 065034 (2008).
[21] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev.

Lett. 101, 031601 (2008).
[22] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, J. High

Energy Phys. 12 (2008) 015.
[23] T. Faulkner, G. T. Horowitz, and M.M. Roberts, Classical

Quantum Gravity 27, 205007 (2010).

[24] T. Faulkner, G. T. Horowitz, and M.M. Roberts, J. High
Energy Phys. 04 (2011) 051.

[25] A. Buchel and C. Pagnutti, Nucl. Phys. B824, 85 (2010).
[26] A. Donos and J. P. Gauntlett, J. High Energy Phys. 06

(2011) 053.
[27] U. Grsoy, E. Kiritsis, F. Nitti, and L. Silva Pimenta, J. High

Energy Phys. 10 (2018) 173.
[28] A. Buchel, J. High Energy Phys. 01 (2019) 207.
[29] A. Buchel, arXiv:2005.07833.
[30] I. Klebanov and A. Polyakov, Phys. Lett. B 550, 213 (2002).
[31] M. Kliesch, C. Gogolin, M. Kastoryano, A. Riera, and J.

Eisert, Phys. Rev. X 4, 031019 (2014).
[32] Z. Komargodski, A. Sharon, R. Thorngren, and X. Zhou,

SciPost Phys. 6, 003 (2019).
[33] K. Aitken, A. Cherman, E. Poppitz, and L. G. Yaffe, Phys.

Rev. D 96, 096022 (2017).
[34] Y. Tanizaki, T. Misumi, and N. Sakai, J. High Energy Phys.

12 (2017) 056.
[35] G. V. Dunne, Y. Tanizaki, and M. Ünsal, J. High Energy

Phys. 08 (2018) 068.
[36] Z. Wan and J. Wang, Nucl. Phys. B957, 115016 (2020).
[37] S.-I. Hong and J. B. Kogut, Phys. Rev. D 63, 085014 (2001).
[38] X. Dong, B. Horn, E. Silverstein, and G. Torroba, Phys.

Rev. D 86, 105028 (2012).
[39] L. Alberte, M. Ammon, A. Jimnez-Alba, M. Baggioli, and

O. Pujols, Phys. Rev. Lett. 120, 171602 (2018).
[40] M. Hogervorst, S. Rychkov, and B. C. van Rees, Phys. Rev.

D 93, 125025 (2016).
[41] D. R. Nelson, J. M. Kosterlitz, and M. E. Fisher, Phys. Rev.

Lett. 33, 813 (1974).
[42] J. M. Kosterlitz, D. R. Nelson, and M. E. Fisher, Phys. Rev.

B 13, 412 (1976).
[43] P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev. B 67,

054505 (2003).
[44] S. Rychkov and A. Stergiou, SciPost Phys. 6, 008 (2019).
[45] W. A. Bardeen, M. Moshe, and M. Bander, Phys. Rev. Lett.

52, 1188 (1984).

THERMAL ORDER IN CONFORMAL THEORIES PHYS. REV. D 102, 065014 (2020)

065014-29

https://doi.org/10.1103/PhysRevLett.125.131603
https://doi.org/10.1103/PhysRevLett.125.131603
https://doi.org/10.1103/PhysRevD.21.446
https://doi.org/10.1016/0370-2693(80)90353-6
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://arXiv.org/abs/hep-th/9805115
https://doi.org/10.1016/S0550-3213(00)00044-4
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP12(2010)062
https://doi.org/10.21468/SciPostPhys.4.1.005
https://doi.org/10.1007/BF01646487
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1088/0264-9381/27/20/205007
https://doi.org/10.1088/0264-9381/27/20/205007
https://doi.org/10.1007/JHEP04(2011)051
https://doi.org/10.1007/JHEP04(2011)051
https://doi.org/10.1016/j.nuclphysb.2009.08.017
https://doi.org/10.1007/JHEP06(2011)053
https://doi.org/10.1007/JHEP06(2011)053
https://doi.org/10.1007/JHEP10(2018)173
https://doi.org/10.1007/JHEP10(2018)173
https://doi.org/10.1007/JHEP01(2019)207
https://arXiv.org/abs/2005.07833
https://doi.org/10.1016/S0370-2693(02)02980-5
https://doi.org/10.1103/PhysRevX.4.031019
https://doi.org/10.21468/SciPostPhys.6.1.003
https://doi.org/10.1103/PhysRevD.96.096022
https://doi.org/10.1103/PhysRevD.96.096022
https://doi.org/10.1007/JHEP12(2017)056
https://doi.org/10.1007/JHEP12(2017)056
https://doi.org/10.1007/JHEP08(2018)068
https://doi.org/10.1007/JHEP08(2018)068
https://doi.org/10.1016/j.nuclphysb.2020.115016
https://doi.org/10.1103/PhysRevD.63.085014
https://doi.org/10.1103/PhysRevD.86.105028
https://doi.org/10.1103/PhysRevD.86.105028
https://doi.org/10.1103/PhysRevLett.120.171602
https://doi.org/10.1103/PhysRevD.93.125025
https://doi.org/10.1103/PhysRevD.93.125025
https://doi.org/10.1103/PhysRevLett.33.813
https://doi.org/10.1103/PhysRevLett.33.813
https://doi.org/10.1103/PhysRevB.13.412
https://doi.org/10.1103/PhysRevB.13.412
https://doi.org/10.1103/PhysRevB.67.054505
https://doi.org/10.1103/PhysRevB.67.054505
https://doi.org/10.21468/SciPostPhys.6.1.008
https://doi.org/10.1103/PhysRevLett.52.1188
https://doi.org/10.1103/PhysRevLett.52.1188


[46] D. J. Amit and E. Rabinovici, Nucl. Phys. B257, 371
(1985).

[47] E. Rabinovici, B. Saering, and W. A. Bardeen, Phys. Rev. D
36, 562 (1987).

[48] B. I. Halperin, J. Stat. Phys. 175, 521 (2019).
[49] E. Witten, Nucl. Phys. B145, 110 (1978).
[50] D. Pappadopulo, S. Rychkov, J. Espin, and R. Rattazzi,

Phys. Rev. D 86, 105043 (2012).
[51] J. Qiao and S. Rychkov, J. High Energy Phys. 12 (2017)

119.
[52] B. Mukhametzhanov and A. Zhiboedov, J. High Energy

Phys. 10 (2019) 261.
[53] L. Iliesiu, M. Koloğlu, R. Mahajan, E. Perlmutter, and D.

Simmons-Duffin, J. High Energy Phys. 10 (2018) 070.
[54] A. C. Petkou and A. Stergiou, Phys. Rev. Lett. 121, 071602

(2018).
[55] A. Manenti, J. High Energy Phys. 01 (2020) 009.
[56] S. Weinberg, Phys. Rev. D 9, 3357 (1974).
[57] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[58] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 42,

1651 (1979).
[59] P. Langacker and S.-Y. Pi, Phys. Rev. Lett. 45, 1 (1980).
[60] P. Salomonson, B. S. Skagerstam, and A. Stern, Phys. Lett.

151B, 243 (1985).
[61] S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 64, 340

(1990).
[62] S. Dodelson, B. R. Greene, and L. M. Widrow, Nucl. Phys.

B372, 467 (1992).
[63] G. R. Dvali, A. Melfo, and G. Senjanovic, Phys. Rev. Lett.

75, 4559 (1995).
[64] G. Bimonte and G. Lozano, Nucl. Phys. B460, 155 (1996).
[65] G. Amelino-Camelia, Nucl. Phys. B476, 255 (1996).
[66] J. Orloff, Phys. Lett. B 403, 309 (1997).
[67] T. G. Roos, Phys. Rev. D 54, 2944 (1996).
[68] K. Jansen and M. Laine, Phys. Lett. B 435, 166 (1998).
[69] G. Bimonte, D. Iniguez, A. Tarancon, and C. L. Ullod, Nucl.

Phys. B559, 103 (1999).
[70] M. B. Pinto and R. O. Ramos, Phys. Rev. D 61, 125016

(2000).
[71] Y. Fujimoto and S. Sakakibara, Phys. Lett. 151B, 260

(1985).
[72] K. G. Klimenko, Teor. Mat. Fiz. 80, 363 (1989) [Theor.

Math. Phys. 80, 929 (1989)].

[73] M. P. Grabowski, Z. Phys. C 48, 505 (1990).
[74] M. B. Gavela, O. Pene, N. Rius, and S. Vargas-Castrillon,

Phys. Rev. D 59, 025008 (1998).
[75] K. C. Kao, Dielectric Phenomena in Solids (Elsevier,

New York, 2004).
[76] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys.

53, 43 (1981).
[77] W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974).
[78] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
[79] G. Veneziano, Nucl. Phys. B117, 519 (1976).
[80] F. Benini, C. Iossa, and M. Serone, Phys. Rev. Lett. 124,

051602 (2020).
[81] A. Armoni, T. T. Dumitrescu, G. Festuccia, and Z. Komar-

godski, J. High Energy Phys. 01 (2020) 004.
[82] C.King and L.Yaffe, Commun.Math. Phys. 108, 423 (1987).
[83] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888

(1973).
[84] E. H. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682

(1979).
[85] T. Banks and E. Rabinovici, Nucl. Phys. B160, 349

(1979).
[86] A. Cherman, S. Sen, and L. G. Yaffe, Phys. Rev. D 100,

034015 (2019).
[87] Z. Bi, E. Lake, and T. Senthil, Phys. Rev. Research 2,

023031 (2020).
[88] K. G. Wilson and J. B. Kogut, Phys. Rep. 12, 75 (1974).
[89] E. Kiritsis and V. Niarchos, Nucl. Phys. B812, 488

(2009).
[90] N. Seiberg, Phys. Rev. D 49, 6857 (1994).
[91] W. A. Bardeen and M. Moshe, Phys. Rev. D 28, 1372

(1983).
[92] M. Moshe and J. Zinn-Justin, Phys. Rep. 385, 69 (2003).
[93] S. R. Coleman, R. Jackiw, and H. Politzer, Phys. Rev. D 10,

2491 (1974).
[94] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[95] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[96] Y.-H. Lin and S.-H. Shao, Phys. Rev. D 100, 025013

(2019).
[97] A. M. Polyakov, Phys. Lett. B 72, 477 (1978).
[98] H. Kleinert and V. Schulte-Frohlinde, Critical Properties of

ϕ4-Theories (World Scientific, Singapore, 2001).

NOAM CHAI et al. PHYS. REV. D 102, 065014 (2020)

065014-30

https://doi.org/10.1016/0550-3213(85)90351-7
https://doi.org/10.1016/0550-3213(85)90351-7
https://doi.org/10.1103/PhysRevD.36.562
https://doi.org/10.1103/PhysRevD.36.562
https://doi.org/10.1007/s10955-018-2202-y
https://doi.org/10.1016/0550-3213(78)90416-9
https://doi.org/10.1103/PhysRevD.86.105043
https://doi.org/10.1007/JHEP12(2017)119
https://doi.org/10.1007/JHEP12(2017)119
https://doi.org/10.1007/JHEP10(2019)261
https://doi.org/10.1007/JHEP10(2019)261
https://doi.org/10.1007/JHEP10(2018)070
https://doi.org/10.1103/PhysRevLett.121.071602
https://doi.org/10.1103/PhysRevLett.121.071602
https://doi.org/10.1007/JHEP01(2020)009
https://doi.org/10.1103/PhysRevD.9.3357
https://doi.org/10.1103/PhysRevD.9.3320
https://doi.org/10.1103/PhysRevLett.42.1651
https://doi.org/10.1103/PhysRevLett.42.1651
https://doi.org/10.1103/PhysRevLett.45.1
https://doi.org/10.1016/0370-2693(85)90843-3
https://doi.org/10.1016/0370-2693(85)90843-3
https://doi.org/10.1103/PhysRevLett.64.340
https://doi.org/10.1103/PhysRevLett.64.340
https://doi.org/10.1016/0550-3213(92)90328-9
https://doi.org/10.1016/0550-3213(92)90328-9
https://doi.org/10.1103/PhysRevLett.75.4559
https://doi.org/10.1103/PhysRevLett.75.4559
https://doi.org/10.1016/0550-3213(95)00626-5
https://doi.org/10.1016/0550-3213(96)00374-4
https://doi.org/10.1016/S0370-2693(97)00552-2
https://doi.org/10.1103/PhysRevD.54.2944
https://doi.org/10.1016/S0370-2693(98)00775-8
https://doi.org/10.1016/S0550-3213(99)00421-6
https://doi.org/10.1016/S0550-3213(99)00421-6
https://doi.org/10.1103/PhysRevD.61.125016
https://doi.org/10.1103/PhysRevD.61.125016
https://doi.org/10.1016/0370-2693(85)90847-0
https://doi.org/10.1016/0370-2693(85)90847-0
https://doi.org/10.1007/BF01016185
https://doi.org/10.1007/BF01016185
https://doi.org/10.1007/BF01572032
https://doi.org/10.1103/PhysRevD.59.025008
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0550-3213(76)90412-0
https://doi.org/10.1103/PhysRevLett.124.051602
https://doi.org/10.1103/PhysRevLett.124.051602
https://doi.org/10.1007/JHEP01(2020)004
https://doi.org/10.1007/BF01212318
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1016/0550-3213(79)90064-6
https://doi.org/10.1016/0550-3213(79)90064-6
https://doi.org/10.1103/PhysRevD.100.034015
https://doi.org/10.1103/PhysRevD.100.034015
https://doi.org/10.1103/PhysRevResearch.2.023031
https://doi.org/10.1103/PhysRevResearch.2.023031
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/j.nuclphysb.2008.12.010
https://doi.org/10.1016/j.nuclphysb.2008.12.010
https://doi.org/10.1103/PhysRevD.49.6857
https://doi.org/10.1103/PhysRevD.28.1372
https://doi.org/10.1103/PhysRevD.28.1372
https://doi.org/10.1016/S0370-1573(03)00263-1
https://doi.org/10.1103/PhysRevD.10.2491
https://doi.org/10.1103/PhysRevD.10.2491
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevD.100.025013
https://doi.org/10.1103/PhysRevD.100.025013
https://doi.org/10.1016/0370-2693(78)90737-2

