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3Departament de Física Quàntica i Astrofísica and Institut de Cíencies del Cosmos (ICCUB),
Universitat de Barcelona, Barcelona 08007, Spain

4Universidade de Brasília, Instituto de Física 70910-900, Brasília, DF, Brasil
and International Center of Physics, C.P. 04667, Brasília, DF, Brazil

5Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487, USA

(Received 2 July 2020; accepted 27 August 2020; published 17 September 2020)

We present a procedure for quantizing complex projective spaces CPp;q, q ≥ 1, as well as construct
relevant star products on these spaces. The quantization is made unique with the demand that it preserves
the full isometry algebra of the metric. Although the isometry algebra, namely, suðpþ 1; qÞ, is preserved
by the quantization, the Killing vectors generating these isometries pick up quantum corrections. The
quantization procedure is an extension of one applied recently to Euclidean two-dimensional anti–de Sitter
space (AdS2), where it was found that all quantum corrections to the Killing vectors vanish in the
asymptotic limit, in addition to the result that the star product trivializes to pointwise product in the limit. In
other words, the space is asymptotically anti–de Sitter, making it a possible candidate for the AdS=CFT
correspondence principle. In this article, we find indications that the results for quantized Euclidean AdS2
can be extended to quantized CPp;q, i.e., noncommutativity is restricted to a limited neighborhood of some
origin, and these quantum spaces approach CPp;q in the asymptotic limit.
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I. INTRODUCTION

The AdS=CFT correspondence principle posits strong-
weak duality between the quantum gravity in the bulk of an
asymptotically anti–de Sitter (AdS) space and a conformal
field theory (CFT) on the boundary of this space [1,2]. For
obvious reasons, however, most practical applications of
the correspondence principle utilize classical gravity in the
bulk. Even though a fully consistent quantum theory of
gravity remains out of reach, there are model independent
indications that any theory of quantum gravity will require
a quantization of spacetime [3–5]. The quantization of
AdS, or more generally, asymptotically AdS, spacetimes
has been examined in two dimensions [6–10] and four
dimensions [11]. Its application to the correspondence
principle has received only some initial work in two
dimensions [12,13].

While in this article we do not directly address the
quantization of general AdS spaces of dimension larger
than 2, we do present a procedure for quantizing another
set of nontrivial noncompact geometries generalizing the
two dimensional case, namely, indefinite complex pro-
jective spaces in arbitrary dimensions CPp;q, q ≥ 1. We
also introduce relevant star products for these spaces.
CPp;q is a noncompact version of CPn. The simplest
example of an indefinite complex projective space is
CP0;1, which is equivalent to two-dimensional anti–de
Sitter space or, more precisely, Euclidean anti–de Sitter
space (EAdS2). Another example is CP1;2, which is an S2

bundle over AdS4 [11]. While the noncommutative
generalization of the compact CPn has received some
attention [14], the same cannot be said about the non-
compact case or other nontrivial noncompact spaces.
Hasebe has done a study of quantized, or “fuzzy,”
hyperboloids [15], while Steinacker and Sperling [11]
have applied such spaces, more specifically, the fuzzy
four-hyperboloid, or noncommutative AdS4, to quantum
cosmology. The quantization in [11] is made unique with
the demand that it preserves the full isometry algebra of
the metric of the four-hyperboloid. An isometry preserv-
ing quantization and star product can also be constructed
for a general CPp;q, as we demonstrate here. Although the
isometry algebra, namely, suðpþ 1; qÞ, is preserved by
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the quantization, the isometry generators, i.e., the Killing
vectors, can pick up quantum corrections.
As stated above, the simplest example of an indefinite

complex projective space is CP0;1, or EAdS2. Its isometry
preserving quantization, which we denote by ncEAdS2,
has been examined previously [6–10,12,13]. Among the
results found in this case is the fact that the star product
(when expressed in a suitable set of coordinates)
approaches the pointwise product in the asymptotic limit
(which corresponds to the boundary limit of anti–de Sitter
space) [12]. It was also argued that the quantum correc-
tions to the Killing vectors vanish in this limit. Thus,
ncEAdS2 asymptotically approaches commutative anti–de
Sitter space. In other words, the quantum features of
ncEAdS2 occur, for all practical purposes, in a limited
neighborhood of some origin. Since ncEAdS2 is an
asymptotically anti–de Sitter space, it can then be of
relevance with regard to the AdS=CFT correspondence
principle, which posits that for every asymptotically anti–
de Sitter space there is a strong-weak duality correspon-
dence between a bulk theory and a conformal field theory
living on the conformal boundary. According to the
correspondence principle, the isometries of anti–de
Sitter space are mapped to conformal symmetries of the
CFT on the AdS boundary. It is then reasonable to
speculate that it has a conformal dual, barring known
difficulties of the correspondence principle for two-
dimensional anti–de Sitter space (see, for example,
[16,17]). This was pursued in [12,13] where correlation
functions were computed on the boundary.
As we argue in this article, the quantization procedure for

EAdS2 can be extended to any CPp;q, q ≥ 1. We can ask
whether analogous conclusions can be reached regarding
their asymptotic behavior. The question therefore is
whether there is a quantized version of CPp;q that asymp-
totically becomes commutative. In other words, (1) does
the star product between two functions with support “near
the boundary” reduce the commutative one, and (2) do the
noncommutative corrections to the Killing vectors vanish
in the boundary limit? Of course, “the boundary” refers
here to the asymptotic CPp;q region, rather than a sharp
edge of the manifold. The results obtained here do indeed
support the affirmative answer to these questions. For the
examples we consider, we find that, in the asymptotic limit,
the relevant star product trivializes to the commutative
product and noncommutative corrections to the Killing
vectors vanish.
In Sec. II we review the quantization of Euclidean AdS2.

We parametrize the manifold in terms of two different sets
of coordinates (which differ from those used in [12,13]),
specifically, local affine coordinates and canonical coor-
dinates. The former have the advantage that they can be
applied to any complex projective space. The canonical
coordinates, on the other hand, are useful for the purpose of
quantization and satisfy three requirements: The first is, of

course, the requirement that they obey the canonical
Poisson brackets. The second, which is surprisingly non-
trivial to ensure, is that they cover the entire complex plane.
Dropping this condition would necessitate a careful treat-
ment of the boundary of the domain in the quantum theory
[18,19]. The boundary is never a sharp one, the domain of
definition is always an open set, but when the coordinates
are such that the boundary is at the finite value of these
coordinates, the quantization scheme we are using cannot
be applied. The third requirement is that the geometric
measure is identical, up to a factor, to the integration
measure of standard coherent states in the resulting
quantum theory. In this regard, the quantum theory, and
corresponding coherent states, naturally follow from
canonical quantization of the canonical Poisson brackets.
We quantize the space with the introduction of a non-
commutative star product of the Wick-Voros type, con-
structed from coherent states. We show that the product
asymptotically goes to the pointwise product after reex-
pressing it in terms of local affine coordinates. A crucial
point concerns the symmetries, implemented by the analogs
of the Killing vectors, which as stated above, preserve the
full isometry algebra, here suð1; 1Þ. We perform a pertur-
bative expansion (with respect to the quantization param-
eter) for the symmetry generators and compute the leading
order corrections to the Killing vectors. In agreement with
results in [12,13], these corrections are seen to vanish in the
asymptotic limit. The Wick-Voros product lends itself
naturally to a matrix approximation, and considering finite
matrices is tantamount to the imposition of a cutoff
geometry [20,21], which provides both an ultraviolet and
an infrared cutoff. We do not do the finite matrix approxi-
mation here.
We review CPp;q in Sec. III, along with its para-

metrization in terms of local affine coordinates and
canonical coordinates. The quantization procedure out-
lined above for EAdS2 naturally extends to CPp;q. We do
not have a universal expression for the Darboux map from
local affine coordinates that is valid for all p and q and,
instead, present the map for specific examples. The
examples are the two four-(real)-dimensional indefinite
complex projective spaces, CP1;1 and CP0;2, in Secs. IV
and V, respectively, along with their higher-dimensional
analogs given in Sec. VI. Like with EAdS2, the canonical
coordinates obey the canonical Poisson brackets, cover all
of Cp;q, and the resulting geometric measure is propor-
tional to the integration measure of standard coherent
states in the quantum theory. We carry out the quantization
explicitly for the examples in Secs. IV and V, and show,
like with ncEAdS2, that, upon taking the asymptotic limit,
the star product trivializes to the commutative product
and quantum corrections to the Killing vectors vanish.
These quantum spaces are thus asymptotically CP1;1 and
CP0;2, respectively. Some concluding remarks are given
in Sec. VI.
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II. QUANTIZATION OF EUCLIDEAN AdS2

A. Euclidean AdS2

To define AdS2 or its Euclidean counterpart EAdS2,
it is convenient to first introduce a three-dimensional
Minkowski background R2;1, which we shall coordinatize
with xα; α ¼ 1, 2, 3, using the metric diagðþ;þ;−Þ. The
spaces AdS2, or EAdS2, results from constraining the
SOð2; 1Þ invariant x21 þ x22 − x23 to be a constant, associated
with the scale. The AdS2 surface corresponds to a positive
constant, while EAdS2 corresponds to a negative constant.
We shall restrict our attention in this section to the
Euclidean case, as this has been of traditional interest
for the AdS=CFT correspondence. Therefore, we take

x21 þ x22 − x23 ¼ −1; ð2:1Þ

where for convenience we fixed the scale to be one.1 The
surface identified by this relation is a two sheeted hyper-
boloid. The reason why it is called Euclidean AdS2 is that
the induced metric has a Euclidean signature.2 Later we
shall restrict to a single component of the hyperboloid H2.
This space is maximally isotropic, and the three Killing
vectors, which we denote by Kα, α ¼ 1, 2, 3, form a basis
for an soð2; 1Þ algebra

½K1; K2� ¼ −2K3; ½K2; K3� ¼ 2K1; ½K3; K1� ¼ 2K2:

ð2:2Þ

Because H2 could be thought of as a coadjoint orbit, a
natural Lie-Poisson structure exists on it. It is easily defined
by setting the Poisson brackets of the embedding coor-
dinates to satisfy the soð2; 1Þ algebra

fx1; x2g ¼ −2x3; fx2; x3g ¼ 2x1; fx3; x1g ¼ 2x2:

ð2:3Þ

With such a choice, one can then use Lie-Poisson structure
to implement the action of the Killing vectors on arbitrary
functions f on H2. Specifically, if one defines Kα acting
on f by

½Kαf�ðxÞ ¼ fxα; fg; ð2:4Þ

then from the Jacobi identity, one recovers soð2; 1Þ algebra
of the Killing vectors (2.2).

B. Local coordinates

A number of coordinatizations have been introduced to
EAdS2. A popular choice has been Fefferman-Graham
coordinates [22] because of its convenience in the AdS=
CFT correspondence principle. Here, we shall instead
work with two other sets of coordinates, local affine
coordinates and canonical coordinates. The former has
the advantage that it can be applied to any noncompact
projective space, while the latter provides a useful step
for quantization. Although the local affine coordinates for
EAdS2 are not defined on the entire complex plane, it is
expedient, for the purpose of quantization, that the
canonical coordinates span all of C. We shall make this
requirement below. Note that the canonical coordinates
we use here differ from those used in [12,13], because
the latter are not very useful for the higher-dimensional
generalizations. Both sets of coordinates are, of course,
related by a canonical transformation. We also require
that the new coordinates (which put the boundary at finite
values) do not add a spurious compactification of space.
This is achieved requiring that continuous functions that
vanish at infinity in the original coordinates still do so at
the point (or points) to which infinity is mapped.

1. Local affine coordinates

We denote the local affine coordinate of H2 by ζ, and
its complex conjugate is ζ�. The map from the ðζ; ζ�Þ
to the embedding coordinates ðx1; x2; x3Þ corresponds
to the noncompact analog of a stereographic projection
of S2. It is

x1 − ix2 ¼
2ζ

jζj2 − 1
; x3 ¼

jζj2 þ 1

jζj2 − 1
: ð2:5Þ

By imposing the condition jζj > 1, we restrict to the
“upper” hyperboloid, x3 ≥ 1. jζj → ∞ maps the point
ðx1; x2; x3Þ ¼ ð0; 0; 1Þ on the hyperboloid, while jζj → 1
corresponds to the asymptotic limit. Starting with the
Lorentz metric on R2;1, and using (2.5), we obtain the
following induced metric on H2:

ds2 ¼ 4jdζj2
ðjζj2 − 1Þ2 : ð2:6Þ

This is the Fubini-Study metric, and as was indicated
above, it has Euclidean signature. The metric tensor gζ;ζ� ¼

2
ðjζj2−1Þ2 can be expressed in terms of the Kähler potential

gζ;ζ� ¼ ∂2
∂ζ∂ζ� V, V ¼ −2 lnðjζj2 − 1Þ. The geometric mea-

sure resulting from this metric is

dμgeomðζ; ζ�Þ ¼
2

ðjζj2 − 1Þ2 dζ ∧ dζ�: ð2:7Þ

1Alternatively, we can introduce a nonunit length scale l0

for EAdS2 by replacing the dimensionless coordinates xα
by xðl0Þα ¼ l0xi.

2For example, in the so-called global coordinates, the induced
metric takes the form

ds2jEAdS ¼ cosh2 ρdt2 þ dρ2:
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Using (2.5), the soð2; 1Þ Poisson brackets algebra of the
embedding coordinates (2.3) results from the following
fundamental Poisson bracket on H2:

fζ; ζ�g ¼ iðjζj2 − 1Þ2: ð2:8Þ

Then from (2.4) we get explicit expressions for the Killing
vectors in terms of the local affine coordinates

K1 − iK2 ¼ 2i
�
ζ2

∂
∂ζ −

∂
∂ζ�
�
;

K3 ¼ 2i

�
ζ
∂
∂ζ − ζ�

∂
∂ζ�
�
: ð2:9Þ

2. Canonical coordinates

We next apply a Darboux transformation from the
local affine coordinates to canonical coordinates ðy; y�Þ,
satisfying

fy; y�g ¼ −i: ð2:10Þ

As stated above, for the purpose of quantization, it is
necessary to have y span all of the complex plane, unlike ζ,
which is defined only outside the unit disk jζj > 1. This
fixes ðy; y�Þ up to canonical transformations. For the
natural Ansatz y ¼ fðjζjÞζ, one obtains the following
condition on the function fðxÞ:

f2 þ x
2
ðf2Þ0 ¼ −

1

ðx2 − 1Þ2 ; ð2:11Þ

which has the general solution

fðxÞ2 ¼ C
x2

þ 1

x2ðx2 − 1Þ ; ð2:12Þ

where C is an arbitrary non-negative constant. From here it
follows that jyj2 ¼ Cþ 1

jζj2−1, and it spans the entire

positive real axis (including jyj ¼ 0) only when C ¼ 0.
Then, for this Ansatz, we have

y ¼ ζ

jζj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζj2 − 1

p : ð2:13Þ

Another desirable feature, from the point of view of
quantization, is that the geometric measure reduces to a flat
measure when expressed in terms of the canonical coor-
dinates. This easily follows from the Jacobian of the
transformation, which is j ∂ðζ;ζ�Þ∂ðy;y�Þ j≡jfζ; ζ�gj ¼ ðjζj2 − 1Þ2.
So (2.7) is transformed to

dμgeomðy; y�Þ ¼ 2dy ∧ dy�: ð2:14Þ

When reexpressed in terms of ðy; y�Þ, the expression
(2.5) for the embedding coordinates becomes

x1 − ix2 ¼ 2y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyj2 þ 1

q
; x3 ¼ 2jyj2 þ 1: ð2:15Þ

Therefore, the origin of the complex plane spanned
by the canonical coordinates is the image of the point
ðx1; x2; x3Þ ¼ ð0; 0; 1Þ on the hyperboloid, while jyj → ∞
corresponds to the asymptotic limit. The Killing vectors
(2.9) when expressed in terms of the canonical coordinates
become

K1 − iK2 ¼
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jyj2 þ 1
p �

y2
∂
∂y − ð2þ 3jyj2Þ ∂

∂y�
�
;

K3 ¼ 2i

�
y
∂
∂y − y�

∂
∂y�
�
: ð2:16Þ

C. Quantization

One can now perform canonical quantization by replac-
ing the coordinates ðy; y�Þ by operators ðŷ; ŷ†Þ satisfying
commutation relations

½ŷ; ŷ†� ¼ k�1; ð2:17Þ

k� being the noncommutative parameter, and 1 being the
identity operator. Equivalently, we have raising and low-
ering operators, â† ¼ ŷ†=

ffiffiffi
k�

p
and â ¼ ŷ=

ffiffiffi
k�

p
, satisfying

½â; â†� ¼ 1. Note that, apart from the commutation relation,
it is equally fundamental that the canonical coordinates y,
y� were defined on the whole plane (unlike the case with ζ,
ζ�). Otherwise, one would require a delicate treatment of
the domain with a boundary [18,19].
The operators ŷ and ŷ† act on the infinite-dimensional

harmonic oscillator Hilbert space H spanned by orthonor-
mal states jni; n ¼ 0; 1; 2….

jni ¼ ðâ†Þnffiffiffiffiffi
n!

p j0i; ð2:18Þ

where âj0i ¼ 0, and h0j0i ¼ 1. Alternatively, one can
introduce standard coherent states fjαi ∈ H; α ∈ Cg writ-
ten on C,

jαi ¼ e−
jαj2
2 eαâ

† j0i; ð2:19Þ

where α is the eigenvalue of â, âjαi ¼ αjαi. Coherent states
form an overcomplete set with unit norm. The complete-
ness relation and normalization condition areZ

dμðα; α�Þjαihαj ¼ 1;

hαjα0i ¼ exp

�
α�α0 −

jαj2
2

−
jα0j2
2

�
: ð2:20Þ

The integration measure for coherent states dμðα; α�Þ is
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dμðα; α�Þ ¼ i
2π

dα ∧ dα� ¼ i
2πk�

dy ∧ dy�; ð2:21Þ

which is, up to a factor, identical to the geometric measure
(2.14). Here we have reintroduced the canonical coordi-
nates ðy; y�Þ using y ¼ ffiffiffi

k�
p

α and y� ¼ ffiffiffi
k�

p
α�.

The Wick-Voros star product ⋆ is constructed from the
standard coherent states. Here we briefly review it. For
details of the construction, see, e.g., [23–25]. One first
defines symbols Aðα; α�Þ on the complex plane associated
with operator functions A of â and â† using

Aðα; α�Þ ¼ hαjAjαi: ð2:22Þ

Then given any two functions A and B of â and â†,
with symbols A and B, respectively, the symbol of their
product is

½A ⋆ B�ðα; α�Þ ¼ hαjABjαi; ð2:23Þ

which gives the Wick-Voros star product of the two
symbols. It is given explicitly in terms of the canonical
coordinates by

½A ⋆ B�ðy; y�Þ ¼ Aðy; y�Þ exp
�
k�
∂⃖
∂y

∂⃗
∂y�

�
Bðy; y�Þ:

ð2:24Þ

This expression realizes the fundamental commutation rela-
tion ½y; y��⋆ ¼ k�, where ½A;B�⋆ ¼ A ⋆ B − B ⋆ A denotes
the star commutator, and gives the desired commutative
limit

A ⋆ B ¼ AB þOðk�Þ;
½A;B�⋆ ¼ ik�fA;Bg þOðk�2Þ: ð2:25Þ

The star product can be reexpressed in terms of the local
affine coordinates using (2.13). One gets

½A ⋆ B�ðζ; ζ�Þ ¼ Aðζ; ζ�Þ expfk�D⃖ D⃗�gBðζ; ζ�Þ; ð2:26Þ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζj2 − 1

p
2jζj

� ∂
∂ζ − ð2jζj2 − 1Þ ζ

�

ζ

∂
∂ζ�
�
;

D� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζj2 − 1

p
2jζj

� ∂
∂ζ� − ð2jζj2 − 1Þ ζ

ζ�
∂
∂ζ
�
: ð2:27Þ

The presence of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζj2 − 1

p
factor is crucial. As we

mentioned earlier, the conformal boundary is obtained in
the limit jζj → 1, and therefore this shows that the value of
the product of two functions asymptotically is not different
from the one obtained with the usual commutative

multiplication. It also means that the star commutator
reduces to ik� times the Poisson bracket in the asymptotic
limit. The advantage of the ζ coordinates is to put infinity at
a finite distance. In view of the above property, we must
also require the functions and their derivatives do not
diverge too much, so that the noncommutative corrections
vanish at the conformal boundary. These properties could
also have been imposed for the y coordinates. We will not
go into the details of the class of functions allowed.
We will characterize noncommutative EAdS2 in terms of

the noncommutative analogs of the embedding coordinates
ðx1; x2; x3Þ [6–10]. We need a set of noncommutative
coordinates, which we call Xα, that satisfy the ⋆ analog
of the conditions (2.1) and (2.3),

X1 ⋆ X1 þ X2 ⋆ X2 − X3 ⋆ X3 ¼ −C ð2:28Þ

and

½X1; X2�⋆ ¼ −2ik�X3; ½X2; X3�⋆ ¼ 2ik�X1;

½X3; X1�⋆ ¼ 2ik�X2; ð2:29Þ

with C > 0, a dimensionless constant that, along with k�,
defines the Euclidean version of noncommutative AdS2.
As in the commutative case, we can introduce a length
scale l by replacing the dimensionless coordinates Xα by

XðlÞ
α ¼ lXα. We note that the length scale does not get

quantized in the noncommutative theory. Rather, it is the
quantization parameter k� that gets quantized after restrict-
ing to the relevant unitary representations. For this, note
that, if we do another rescaling of the coordinates and
define X0

α ¼ Xα=ð2k�Þ, then the commutator algebra for X0
α

is suð1; 1Þ (with no scale factors). The Casimir X0
αX0α is

jðjþ 1Þ, where j is an integer for the discrete series
representations, which were shown to be the appropriate
unitary irreducible representations for noncommutative
EAdS2 [12,13]. Using (2.28), this gives C=ð4k�Þ2 ¼
jðjþ 1Þ. From this we see that the commutative limit
k� → 0 corresponds to j going to infinity. We note that, in
general, C can pick up quantum correction, and so one gets
a nontrivial result for the allowed values of k�. In order to
recover (2.1) in the commutative limit, we need
C ¼ 1þOðk�Þ. The X’s should be functions of the embed-
ding coordinates ðx1; x2; x3Þ of the commutative theory and
must reduce to them in the limit [or, in terms of the local
coordinates, they should be functions of ðζ; ζ�Þ or ðy; y�Þ
and must reduce to (2.5) or (2.15), respectively]. Relation
(2.29) for the Xα’s then defines the soð2; 1Þ algebra, and C
fixes the Casimir. We thereby obtain irreducible represen-
tations of soð2; 1Þ.
Given the noncommutative analogs of the embedding

coordinates, one can introduce noncommutative analogs of
the Killing vectors of EAdS2. Denote them by K⋆

α. They are
defined in an analogous way to Kα, by essentially replacing
the Poisson bracket in (2.4) by the star commutator,
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½K⋆
αf�ðXÞ ¼

1

ik�
½Xα; f�⋆; ð2:30Þ

where fðXÞ denotes a function on ncEAdS2. Like the
Killing vectors Kα of EAdS2, K⋆

α satisfy the soð2; 1Þ
algebra. Furthermore, from (2.25), we see that K⋆

α reduce
to Kα in the commutative limit. On the other hand, the
expressions (2.9) for Kα do not hold for the noncommu-
tative analogs of the Killing vectors (except for α ¼ 3, and
except for the asymptotic limit, as we shall see below).
Thus, quantization leads to deformations of the Killing
vectors, although the algebra they generate is not deformed.
We next write Xα in terms of the canonical coordinates y

and y�. For this we will need several simple properties of
the star product (2.24).
(1) The symbol of the operator ŷ†ŷ is jyj2. In general,

any function F ðjyj2Þ is a symbol of some operator
Fðŷ†ŷÞ and, vice versa, any operator Fðŷ†ŷÞ has a
symbol depending only on jyj2,

F ðjyj2Þ ¼ exp

�
−
jyj2
k�

�X∞
n¼0

jyj2n
k�nn!

Fðk�nÞ: ð2:31Þ

This can be readily seen by noting that ŷ†ŷ ¼
k�â†â≡ k�n̂ and using in the definition of a symbol

)2.22 ) the coherent states (2.19) in the form

jαi ¼ e−
jαj2
2

P∞
n¼0

αnffiffiffi
n!

p jni.
(2) For any function F ðy; y�Þ, we have

F ðy; y�Þ ⋆ y ¼ yF ðy; y�Þ;
y� ⋆ F ðy; y�Þ ¼ y�F ðy; y�Þ: ð2:32Þ

(The ordering on the left-hand side of the equations
is important.)

(3) For any two functions of jyj2, F ðjyj2Þ and Gðjyj2Þ,
we have

F ðjyj2Þ ⋆ Gðjyj2Þ ¼
X∞
n¼0

k�njyj2n
n!

F ðnÞðjyj2ÞGðnÞðjyj2Þ;

ð2:33Þ

where the derivative is taken with respect to jyj2.
Motivated by (0.15), we look for the noncommutative

coordinates Xα satisfying (0.29) in the form

X− ¼ X1 − iX2 ¼ 2S ⋆ y ≡ð0.32Þ2yS;
Xþ ¼ X1 þ iX2 ¼ 2y� ⋆ S ≡ð0.32Þ2y�S; ð2:34Þ

where S ¼ Sðjyj2Þ is some real function to be determined
below. Using the properties of the star product (2.31)–
(2.33), one can easily find

½X−; Xþ�⋆ ¼ 4k�ðS ⋆ S þ jyj2ðS ⋆ SÞ0Þ; ð2:35Þ

where the prime denotes a derivative with respect to jyj2.
According to (2.29), this should be equal to 4k�X3. So we
have that X3 ¼ X3ðjyj2Þ, and in terms of S, is given by

X3 ¼ S ⋆ S þ jyj2ðS ⋆ SÞ0: ð2:36Þ

Using (2.29) one more time

4k�S ⋆ y≡ 2k�X− ¼ ½X−; X3�⋆ ¼ 2S ⋆ ½y; X3�⋆ ð2:37Þ

and taking into account that there exists S−1 such that
S−1 ⋆ S ¼ 1 (since it exists to zeroth order in k�, and we
assume that the expansion in k� is valid), we arrive at the
equation for X3

½y; X3�⋆ ¼ 2k�y or X0
3 ¼ 2; ð2:38Þ

which leads to

X3 ¼ 2jyj2 þ c; c ¼ constant: ð2:39Þ

Using this in (2.36) we arrive at the differential equation
for S ⋆ S

S ⋆ S þ jyj2ðS ⋆ SÞ0 ¼ 2jyj2 þ c; ð2:40Þ

which is easily solved to give

S ⋆ S ¼ jyj2 þ cþ a
jyj2 ; ð2:41Þ

where a is another integration constant. It is clear that
one should set a ¼ 0 in order to have nonsingular non-
commutative corrections for jyj → 0 (and to recover that
X1; X2 → 0 in this limit). So, we have

S ⋆ S ¼ jyj2 þ c: ð2:42Þ

The Casimir in (2.28) is now easily computable

C ¼ −
1

2
ðX− ⋆ Xþ þ Xþ ⋆ X−Þ þ X3 ⋆ X3 ¼ c2 − 2k�c:

ð2:43Þ

In general, the constant c should have the form
c ¼ 1þOðk�Þ. We fix this freedom in quantization by
requiring that the symbol X3 remains undeformed, i.e., by
setting c ¼ 1. Then (2.42) looks exactly as in the commu-
tative case (2.15)

S ⋆ S ¼ jyj2 þ 1; ð2:44Þ

i.e., S is a symbol of the operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ŷ†ŷ

p
, which can be

formally written using (2.31) as

LIZZI, PINZUL, STERN, and XU PHYS. REV. D 102, 065012 (2020)

065012-6



Sðjyj2Þ ¼ exp

�
−
jyj2
k�

�X∞
n¼0

jyj2n
k�nn!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�nþ 1

p
: ð2:45Þ

Though we do not have the closed answer for the series
(2.45), we can systematically calculate S to any order in k�.
Let Sn be the functions independent of k� and defined by

Sðjyj2Þ ¼
X∞
n¼0

k�nSnðjyj2Þ: ð2:46Þ

Plugging this into (2.44) and using (2.33) we have after
some trivial index relabeling

1þ jyj2 ¼ S ⋆ S ¼
X∞
n¼0

k�n

�Xn
m¼0

jyj2m
m!

Xn−m
r¼0

SðmÞ
n−m−rS

ðmÞ
r

�
:

ð2:47Þ

From (2.47) we obtain the recursion relations defining Sn
for any n,

n ¼ 0; S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jyj2

q
n ≥ 1;

Xn
m¼0

jyj2m
m!

Xn−m
r¼0

SðmÞ
n−m−rS

ðmÞ
r ¼ 0: ð2:48Þ

For example, for n ¼ 1 we have

S1S0 þ S0S1 þ jyj2S0
0S0

0 ¼ 0 ⇒ S1 ¼ −
jyj2

8ð1þ jyj2Þ3=2 :

ð2:49Þ

In general, it is not hard to see from (2.48) that, for an
arbitrary n, Sn will have the following form:

Sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jyj2

q Pnðjyj2Þ
ð1þ jyj2Þ2n ≕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jyj2

q
Ln; ð2:50Þ

where PnðxÞ is some polynomial of degree n, with P0 ¼ 1.
Then we can write our noncommutative coordinates Xα in
terms of the commutative ones as

X� ¼ x�
X∞
n¼0

k�nLn; X3 ¼ x3; ð2:51Þ

x� ¼ x1 � x2 being the commutative counterparts to X�.
We conclude that X� → x� in the asymptotic limit
jyj2 → ∞,

X� ¼ x�

�
1þO

�
k�

jyj2
��

; X3 ¼ x3: ð2:52Þ

Using (2.51) and its asymptotics (2.52) we can easily
study the behavior of the noncommutative Killing vectors,

defined by (2.30), near the conformal boundary. Let us
denote by L the sum in (2.51), L ¼P∞

n¼0 k
�nLn. Since

X3 ¼ x3, K⋆
3 has exactly the same form as its commutative

counterpart K3 in (2.16). Trivial analysis shows that when
jyj → ∞, K⋆

� behave as

K⋆
�fðy; y�Þ≡ 1

ik�
½X�; f�⋆

¼ LK�f þ 1

2
x�L0K3f

þ
X∞
n¼2

ðik�Þn−1
n!

½∂n
yðx�LÞ∂n

y�f − ∂n
y� ðx�LÞ∂n

yf�

¼
�
1þO

�
k�

jyj2
��

K�f; ð2:53Þ

where we naturally assumed that K3f has the same
asymptotic behavior as K�f. This shows that the non-
commutative corrections to K⋆

α vanish in the asymptotic
limit. Of course, the same is true for the case of the local
affine coordinates ðζ; ζ�Þ. In this case, the commutative
limit for both, the coordinates Xα and Killings K⋆

α , will be
recovered as jζj2 → 1.
Thus, upon expressing the system in terms of the

canonical or local affine coordinates, we see that the
noncommutative coordinates Xα, as well as the soð2; 1Þ
isometry generators of ncEAdS2, approach the standard
EAdS2 expressions, while the star product approaches the
ordinary product, which is seen in local affine coordinates.
We can then argue that ncEAdS2 reduces to EAdS2 in the
asymptotic limit.

III. CPp;q

The natural generalization of ncEAdS2 is the quantiza-
tion of the indefinite complex projective space, denoted by
CPp;q, where p and q are positive integers; p can be zero,
while q ≥ 1. EAdS2 corresponds to p ¼ 0, q ¼ 1. In this
section, we review CPp;q, writing down the Killing vectors
and analogs of embedding coordinates in terms of appro-
priate Fubini-Study coordinates ðζi; ζ�i Þ; i ¼ 1;…; pþ q,
for these spaces. In order to reproduce the quantization
program of the previous section, we will need to find the
Darboux transform from the Fubini-Study coordinates to
canonical coordinates ðyi; y�i Þ spanning all of Cpþq. As was
mentioned for the case of EAdS2, if the canonical coor-
dinates do not span the entire Cpþq, quantization becomes
unmanageable due to the presence of boundaries. We have
not found a general expression for the Darboux trans-
formation that applies to all CPp;q spaces. Rather, we can
give the transformation for various classes of such spaces,
which we shall illustrate in Secs. IV and V.

A. Definition

The space CPp;q, q ≥ 1, is defined as the H2q;2pþ1

hyperboloid mod S1. It can be constructed starting from
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a pþ qþ 1-dimensional complex space Cpþ1;q, with
indefinite metric

ηC ¼ diagðþ � � � þ|fflfflffl{zfflfflffl}
pþ1

;− � � �−|fflfflffl{zfflfflffl}
q

Þ: ð3:1Þ

Say Cpþ1;q is coordinatized by za, a ¼ 1;…; pþ qþ 1,
along with their complex conjugates za�, where the indices
a; b;… are raised and lowered using the metric ηC. To
embed H2q;2pþ1 in Cpþ1;q, one imposes the constraint

z�aza ¼ 1: ð3:2Þ

To obtain CPp;q, one further makes the identification

za ∼ eiχza; ð3:3Þ

eiχ being an arbitrary phase. The compact complex pro-
jective space CPp corresponds to q ¼ 0. We will not be
concerned with it in the following. The space CPp;q can be
equivalently defined as the coset space SUðpþ 1; qÞ=
Uðp; qÞ.
The standard metric and Poisson bracket on complex

projective spaces are the Fubini-Study metric and the
canonical one, respectively. The former is given by

ds2 ¼ dz�adza − jz�adzaj2; ð3:4Þ

while the latter is

fza; z�bg ¼ −iδab; fza; zbg ¼ fz�a; z�bg ¼ 0;

a; b ¼ 1;…; pþ qþ 1: ð3:5Þ

Using (3.5), it follows that (3.2) is the first class constraint
(in the sense of Dirac’s Hamiltonian formalism) that
generates the phase equivalence (3.3).

B. Coordinates

Here we are interested in generalizing the two sets of
coordinates given previously for EAdS2, i.e., local affine
coordinates and canonical coordinates. While here we give
explicit expressions for the former, we just discuss quali-
tative features of the latter. We shall postpone giving
explicit expressions for the Darboux transformation to
sections that follow.

1. Local affine coordinates

The local affine coordinates ðζi; ζ�i Þ; i ¼ 1;…; pþ q,
are defined in terms of the coordinates za by3

ζi ¼ zi

zpþqþ1
; zpþqþ1 ≠ 0: ð3:6Þ

They are invariant under the phase equivalence trans-
formation (3.3). The ζ�i are obtained by taking the complex
conjugate of (3.6) and lowering the index using the back-
ground metric tensor on the pþ q-dimensional subspace
(3.1). We note that it is the Euclidean metric for the special
case of q ¼ 1. From the constraint (3.2), one has

ζiζ�i ¼ 1þ 1

jzpþqþ1j2 ; ð3:7Þ

and it follows that ζiζ�i > 1, which further implies that
jζ1j2 þ � � � þ jζpþ1j2 > 1. Therefore, the coordinate patch
spanned by ðζi; ζ�i Þ is Cpþ1;q−1 with the region ζiζ�i ≤ 1

removed. For reasons stated below we call the boundary of
this region the general “asymptotic limit,”

ζiζ�i → 1 or zpþqþ1 → 0: ð3:8Þ

This is in agreement with the asymptotic limit defined
previously for EAdS2.
While (3.1) is the background metric, the metric on the

surface CPp;q is the Fubini-Study metric (3.4). Substituting
zi ¼ zpþqþ1ζi into (3.4) gives the Fubini-Study metric
tensor in terms of local affine coordinates

ds2 ¼ gij̄ðζ; ζ�Þdζidζ�j ¼
dζ�i dζ

i

Z2
−
jζ�i dζij2
Z4

;

i; j; k;… ¼ 1;…; pþ q; ð3:9Þ

where we denote

Z2 ¼ ζiζ�i − 1: ð3:10Þ

For p ¼ 0, q ¼ 1, gij̄ðζ; ζ�Þ reduces to the metric tensor
(2.6) on EAdS2 (up to an overall factor). It can be expressed
in terms of the Kähler potential

gij̄ ¼
∂2

∂ζi∂ζ�j 2 lnZ: ð3:11Þ

The geometric measure associated with the metric (3.9) is

dμgeomðζ; ζ�Þ ¼
1

2pþqZ2ðpþqþ1Þ dζ
1 ∧ � � � ∧ dζpþq ∧ dζ�1

∧ � � � ∧ dζ�pþq; ð3:12Þ

which is the generalization of (2.7). To verify (3.12) we
only need the identity

detð1n þ vwTÞ ¼ 1þ wTv; ð3:13Þ

3As usual, one can replace zpþqþ1 in the denominator by
another complex coordinate, say za, which would be valid for
za ≠ 0, thereby defining local affine coordinates on a different
coordinate patch.
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where v; w ∈ Vecn and 1n is the n-dimensional identity
matrix, which easily follows from the definition of the
determinant, detM ¼ 1

n! ϵi1���inϵj1���jnMi1j1 � � �Minjn for any
M ∈ Matn. We can write the invariant interval in (3.9) as

ds2 ¼ dΞTGdΞ;

G ¼ γ2

2

�
0 1pþq − γ2ζ�ζT

1pþq − γ2ζζ�T 0

�
;

Ξ ¼
�

ζ

ζ�

�
; ð3:14Þ

where ζ ¼
 

ζ1

∶
ζpþq

!
, ζ� ¼

 ζ�1
∶

ζ�pþq

!
, and γ ¼ 1

Z. The

geometric measure is then

dμgeomðζ; ζ�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detGj

p
dζ1 ∧ � � � ∧ dζpþq

∧ dζ�1 ∧ � � � ∧ dζ�pþq: ð3:15Þ

In order to recover (3.12), we then use (3.13) to get

detG ¼ −
γ4ðpþqÞ

22ðpþqÞ ðdetð1pþq − γ2ζ�ζTÞÞ2 ¼ −
γ4ðpþqþ1Þ

22ðpþqÞ :

ð3:16Þ

From (3.5), the Poisson brackets on the coordinate patch
spanned by ðζi; ζ�i Þ are

fζi; ζ�jg ¼ iZ2ðζiζ�j − δijÞ; fζi; ζjg ¼ fζ�i ; ζ�jg ¼ 0; ð3:17Þ

generalizing the Poisson bracket (2.8) for the case
of EAdS2.
The isometry group of CPp;q is SUðpþ 1; qÞ. There are

then a total of ðpþ qÞðpþ qþ 2Þ Killing vectors asso-
ciated with the metric tensor (3.9). In terms of the local
affine coordinates, they are given by

κi
j ¼ ζj

∂
∂ζi − ζ�i

∂
∂ζ�j ;

κi
pþqþ1 ¼ ∂

∂ζi − ζ�i ζ
�
j
∂
∂ζ�j ;

κpþqþ1
i ¼ ∂

∂ζ�i − ζiζj
∂
∂ζj ; ð3:18Þ

generalizing (2.9). κij, κipþqþ1 and κpþqþ1i form a basis for
suðpþ 1; qÞ

½κij; κkl� ¼ δli κk
j − δjkκi

l;

½κipþqþ1; κjk� ¼ δki κj
pþqþ1;

½κij; κpþqþ1
k� ¼ δki κpþqþ1

j;

½κipþqþ1; κpþqþ1
j� ¼ −κij − δjiκk

k: ð3:19Þ

To recover the Killing vectors K1, K2, K3 defined pre-
viously for EAdS2, we need K1 − iK2 ¼ −2iκ12 and
K3 ¼ 2iκ11.
By generalizing the notion of the real embedding

coordinates xi for EAdS2 (2.5), we can implement the
action of the Killing vectors (3.18) using the Poisson
bracket (3.17). Call xab; a; b ¼ 1;…; pþ qþ 1, real
embedding coordinates for CPp;q (in contrast to the
complex embedding coordinates za). Their Poisson
bracket algebra should correspond to suðpþ 1; qÞ. For
this we define xab in terms of za’s and then on the
coordinate patch spanned by the local affine coordinates
ðζi; ζ�i Þ. In terms of the complex embedding coordinates
we have

xab ¼ z�azb; a; b ¼ 1;…; pþ qþ 1: ð3:20Þ

Using (3.5) one can easily see that the Poisson brackets of
xab close to give the suðpþ 1; qÞ isometry algebra

fxab; xcdg ¼ iðηCadxcb − ηCcbxadÞ: ð3:21Þ

Then, as usual, we can write the action of SUðpþ 1; qÞ
Killing vectors in terms of these Poisson brackets

κa
bf ¼ −ifxab; fg: ð3:22Þ

The appearance of an extra Killing vector due to xpþqþ1
pþqþ1

is apparent, which could be seen by noticing that not all
xab’s are independent due to the constraint (3.2), which
leads to

trx ¼ xaa ¼ 1;

as well as the higher order conditions

trx2 ¼ xabxba ¼ 1;

trx3 ¼ xabxbcxca ¼ 1;

…

trxn ¼ xa1
a2xa2

a3 � � � xana1 ¼ 1: ð3:23Þ

Since ½xab� is a finite-dimensional matrix, there is a finite
number of independent such conditions on xab. More
specifically, there is a maximum number of n ¼ ðpþ qÞ2
independent conditions on the ðpþ qþ 1Þ × ðpþ qþ 1Þ
on ½xab� (excluding trx ¼ 1). So, in particular, from
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trx ¼ xaa ¼ 1 it follows that κab is traceless, i.e., κ
pþqþ1
pþqþ1 is

not independent: κpþqþ1
pþqþ1 ¼ −κii.

Now we can trivially repeat this construction on the
coordinate patch spanned by the local affine coordinates
ðζi; ζ�i Þ. Using (3.6) we have

xij ¼
ζ�i ζ

j

Z2
; xipþqþ1 ¼ −

ζi

Z2
;

xipþqþ1 ¼ ζ�i
Z2

; xpþqþ1
pþqþ1 ¼ −

1

Z2
: ð3:24Þ

It is because the embedding coordinates are, in general,
divergent in the limit (3.8), that we call this the asymptotic
limit. (Components of xab may vanish in the limit in the
special cases where ζi ¼ 0.) The action of the Killing
vectors κij on functions f on the coordinate patch is written
exactly as in (3.22)

κa
bf ¼ −ifxab; fg: ð3:25Þ

Upon using (3.17) we can explicitly verify that κab has the
form (3.18) [though, of course, this should be obvious from
the derivation of (3.17) from (3.5)].
For the case of EAdS2, the three real embedding

coordinates x1, x2, x3 of the section II A are recovered
from xab by setting

x1 ¼ x12 − x21; x2 ¼ −iðx12 þ x21Þ; x3 ¼ x11 − x22:

ð3:26Þ

There is only one independent constraint in this case,
namely,

x21 þ x22 − x23 ¼ −2xabxba þ ðxaaÞ2 ¼ −1: ð3:27Þ

2. Canonical coordinates

Following the previous section, the next step is to
perform the Darboux transformation. As was mentioned
above we have not found a single expression for the
Darboux transformation that applies for all CPp;q spaces.
The difficulty is due to our restriction that the resulting
canonical coordinates ðyi; y�i Þ are valid for the whole of
Cpþq, so that there are no boundaries on our domain in the
corresponding quantized theory. As stated above, we shall
give the Darboux transformation for various examples in
the sections that follow. As in the previous case of EAdS2,
we find that the Jacobian of the Darboux transformation
goes like ���� ∂ðζ; ζ�Þ∂ðy; y�Þ

���� ¼ Z2ðpþqþ1Þ; ð3:28Þ

and hence in terms of the canonical coordinates, the
geometric measure is proportional to the flat measure

dμgeomðζ; ζ�Þ ¼
1

2pþq dy
1 ∧ � � � ∧ dypþq ∧ dy�1

∧ � � � ∧ dy�pþq: ð3:29Þ

In order to proceed further, we need to assume a Darboux
transformation for CPp;q that takes the local affine coor-
dinates ðζi; ζ�i Þ to coordinates ðyi; y�i Þ spanning all of Cpþq,
which satisfies the canonical Poisson bracket relations

fyi; y�jg ¼ −iδij; fyi; yjg ¼ fy�i ; y�jg ¼ 0 ð3:30Þ

for all i; j ¼ 1;…; pþ q. We do not have a general proof of
this existence, nor that (3.28), and hence (3.29), in general,
hold, but we are able to find such transformations for the
examples in Secs. IV and V.

C. Quantization

Generalizing the procedure that was adapted for EAdS2,
we perform canonical quantization, replacing the coordi-
nates ðyi; y�i Þ by the set of operators ðŷi; ŷ†i Þ, satisfying
commutation relations

½ŷi; ŷ†j � ¼ k�δij; ½ŷi; ŷj� ¼ ½ŷ†i ; ŷ†j � ¼ 0; ð3:31Þ

k� once again being the noncommutative parameter. This is
the algebra for pþ q harmonic oscillators. The lowering
and raising operators âi and â

†
i are obtained by rescaling ŷi

and ŷ†i , respectively,

âi ¼
1ffiffiffi
k�

p ŷi; â†i ¼
1ffiffiffi
k�

p ŷ†i : ð3:32Þ

Then ½âi; â†j � ¼ δij and ½âi; âj� ¼ ½â†i ; â†j � ¼ 0 for all i; j ¼
1;…; pþ q. âi and â†i act on the infinite-dimensional
Hilbert space H, now spanned by orthonormal states

jni ¼ jn1;…; npþqi ¼
ðâ†1Þn1 � � � ðâ†pþqÞnpþqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1! � � � npþq!
p j0i; ð3:33Þ

where ni are non-negative integers. The bottom state j0i ¼
j0;…; 0i is annihilated by any âi, and has unit norm
h0j0i ¼ 1.
It is straightforward to generalize the coherent states

(2.19) and Wick-Voros star product (2.24) to Cpþq. The
former are given by

jα⃗i ¼ jα1;…; αpþqi ¼ e−
jαj2
2 eαiâ

†
i j0⃗i ∈ H; ð3:34Þ

where αi are complex eigenvalues of âi, âijα⃗i ¼ αijα⃗i, and
jαj2 ¼ α�i αi. The completeness relation and normalization
condition are now

LIZZI, PINZUL, STERN, and XU PHYS. REV. D 102, 065012 (2020)

065012-10



Z
dμðα⃗; α⃗�Þjα⃗ihα⃗j ¼ 1;

hα⃗jα⃗0i ¼ exp

�
α�i α

0
i −

jαj2
2

−
jα0j2
2

�
; ð3:35Þ

where the integration measure for coherent states
dμðα⃗; α⃗�Þ is

dμðα⃗; α⃗�Þ ¼
�

i
2π

�
pþq

dα1 ∧ dα�1 ∧ � � � ∧ dαpþq ∧ dα�pþq:

ð3:36Þ
Upon doing the rescaling back to canonical coordinates,
yi ¼

ffiffiffi
k�

p
αi, we see that it agrees, up to a constant factor,

with the geometric measure (3.29). Symbols of operators
are defined as in (2.22), while the Wick-Voros product of
symbols is

½A ⋆ B�ðy⃗; y⃗�Þ ¼ Aðy⃗; y⃗�Þ exp
�
k�
Xpþq

i¼1

∂⃖
∂yi

∂⃗
∂y�i

�
Bðy⃗; y⃗�Þ:

ð3:37Þ

Then the star commutator gives a realization of the
fundamental commutation relations (3.31), and the require-
ments (2.25) for the commutative limit are satisfied. The
star product can be reexpressed in terms of local affine
coordinates. For the examples that follow, as well as the one
in Sec. II, we find that the star product reduces to the
ordinary product in the asymptotic limit (3.8).
To define the noncommutative version of CPp;q, we

should construct the noncommutative analogs of the matrix
elements xab. Denoting them by Xa

b, we demand that they
satisfy suðpþ 1; qÞ commutation relations

½Xa
b; Xc

d�⋆ ¼ k�ðδdaXc
b − δbcXa

dÞ; ð3:38Þ

as well as the analogs of the conditions (3.23). The analogs
of these conditions fix the Casimirs of the algebra,
restricting the allowable representations of suðpþ 1; qÞ
of the noncommutative theory. We, of course, demand that
Xa

b → xab when k� → 0. In Secs. IV and V, we shall
provide perturbative expansions in k� for Xa

b as functions
of local coordinates for the examples CP1;1 and CP0;2,
respectively.
Given Xa

b, it is then easy to define noncommutative
analogs κ⋆ab of the Killing vectors. Generalizing (2.30), the
action of κ⋆ab on functions f on noncommutative CPp;q, we
have

½κ⋆ba f�ðXÞ ¼ −
1

k�
½Xa

b; f�⋆: ð3:39Þ

Then κ⋆ab are deformations of the Killing vectors κab, with
the deformation vanishing in the commutative limit k� → 0.

In order to extract the leading order corrections to κa
b, we

need to obtain ½Xa
b; f�⋆ up to second order in k�. Even

though κ⋆ab are deformations of the Killing vectors, they
satisfy the same algebra as κab, namely, the suðpþ 1; qÞ
isometry algebra

½κ⋆ab; κ⋆c d� ¼ δdaκ
⋆
c
b − δbcκ

⋆
a
d: ð3:40Þ

For the two examples that follow, as well as the one in
Sec. II, we get that the deformation of the Killing vectors
vanishes in the asymptotic limit (3.8).

IV. CP1;1

In this section and the next one, we write down the
explicit Darboux transformation from local affine coordi-
nates and perform the quantization procedure as outlined
previously.
Here the example is CP1;1 ≃H2;3=S1 ≃ SUð2; 1Þ=

Uð1; 1Þ. It can be constructed from C2;1, spanned by za,
a ¼ 1, 2, 3. CP1;1 is then defined by the constraint (3.2),
which becomes jz1j2 þ jz2j2 − jz3j2 ¼ 1, along with the
equivalence relation (3.3).
There are two complex affine coordinates ζi, i ¼ 1, 2,

along with their complex conjugates. In this case, the
background metric on the reduced space is Euclidean,
diagðþ;þÞ. The condition (3.7) leads to the restriction that
the local affine coordinates are defined on a real four-
dimensional space with a solid three sphere removed,

Z2 ¼ jζ1j2 þ jζ2j2 − 1 > 0: ð4:1Þ

The quantity Z2 spans the positive real line, excluding the
origin that corresponds to the asymptotic limit, (3.8) or
Z2 → 0. While the background metric for the coordinates
is Euclidean, the Fubini-Study metric (3.9) has a Lorentzian
signature. The latter solves the sourceless Einstein equa-
tions with Λ ¼ 3 [26].
There are eight real embedding coordinates (3.24), xab,

with trx ¼ 1. Since CP1;1 has four real dimensions, xab are
subject to four additional independent conditions (3.23).

A. Darboux map

Here we give the transformation from local affine
coordinates to canonical coordinates ðyi; y�i Þ, i ¼ 1, 2,
satisfying (3.30). As stated previously, we require the
domain of the latter to be all of C2, unlike the domain
of local affine coordinates. Up to canonical transforma-
tions, the Darboux transformation is given by

yi ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jζij2
Z2 − 1

2

q
ζi
jζij ;

jζij2
Z2 > 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
jζij2
Z2 − 1

2

q
ζ�i
jζij ;

jζij2
Z2 < 1

2

: ð4:2Þ
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Note that the square root is not necessarily real. To see that the coordinates cover the full complex plane once, let us express
them as

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Z2
jjζ1j2 − jζ2j2 þ 1j

r
×

�
exp fi arg ζ1g; jζ1j2 − jζ2j2 þ 1 > 0

exp f−i arg ζ1g; jζ1j2 − jζ2j2 þ 1 < 0
;

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Z2
jjζ2j2 − jζ1j2 þ 1

r
j ×
�
exp fi arg ζ2g; jζ2j2 − jζ1j2 þ 1 > 0

exp f−i arg ζ2g; jζ2j2 − jζ1j2 þ 1 < 0
: ð4:3Þ

One can see that, by fixing ζ2, and letting ζ1 be arbitrary, y1 covers the complex plane, and of course the same holds
exchanging 1 with 2. The asymptotic limit is

r2 ¼ jy1j2 þ jy2j2 ¼
1

Z2
→ ∞: ð4:4Þ

The Jacobian of the Darboux transformation is j ∂ðζ;ζ�Þ∂ðy;y�Þ j ¼ Z6 in agreement with (3.28), and so we recover the flat

measure (3.29).
Substituting the Darboux transformation in the expressions for the embedding coordinates (3.24) gives

xji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jyij2 þ

1

2

��
jyjj2 þ

1

2

�s
y�i yj
jyijjyjj

; xi3 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyij2 þ

1

2

r
ryi
jyij

;

x3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyij2 þ

1

2

r
ry�i
jyij

; x33 ¼ −r2; ð4:5Þ

r being the positive square root of r2. We can then check that the constraints (3.23) and the suð2; 1Þ Poisson bracket algebra
(3.21) hold. Substituting (4.5) into (3.25) gives the Killing vectors in terms of canonical coordinates.

B. Quantization

Quantization proceeds as in Sec. III, with the Hilbert space H being that of a two-dimensional harmonic oscillator. The
Wick-Voros star product is given in (3.37) and can be reexpressed in terms of local affine coordinates by making the
replacement

∂
∂y1 →

Z

2
ffiffiffi
2

p
ζ1

�
−jζ1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζ1j2 − jζ2j2 þ 1

q �
ζ�2

∂
∂ζ�2 þ ζ2

∂
∂ζ2
�

þ −jζ2j2 þ 1

jζ1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jζ1j2 − jζ2j2 þ 1

p �
ζ�1

∂
∂ζ�1 þ ζ1

∂
∂ζ1
�
þ jζ1jðjζ1j2 − jζ2j2 þ 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jζ1j2 − jζ2j2 þ 1
p κ1

1

�
; ð4:6Þ

along with the corresponding replacement for ∂
∂y2, obtained

by switching the coordinate indices 1 and 2 in (4.6). Since
they both contain the overall factor of Z, it follows that the
star product reduces to the ordinary product in the asymp-
totic limit, Z → 0.
Next we construct the noncommutative analogs Xa

b of
the embedding coordinates (4.5). We take the following
Ansätse

½Xa
b� ¼

0
BBB@

jy1j2 þ 1
2

R1
y�
1

jy1j ⋆ R2
y2
jy2j R1

y�
1

jy1j ⋆ S

R2
y�
2

jy2j ⋆ R1
y1
jy1j jy2j2 þ 1

2
R2

y�
2

jy2j ⋆ S

−S ⋆ R1
y1
jy1j −S ⋆ R2

y2
jy2j −r2

1
CCCA;

ð4:7Þ

where we assume thatRi is a real function of jyij2, and S is
a real function of r2.
In order to recover (4.5) in the commutative limit, we

need that Ri → Rð0Þ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyij2 þ 1

2

q
, and S → Sð0Þ ¼ r

when k� → 0. Away from the commutative limit, Ri and
S can be obtained as a perturbative expansion is k�

Ri ¼ Rð0Þ
i þ k�Rð1Þ

i þ k�2Rð2Þ
i þOðk�3Þ;

S ¼ Sð0Þ þ k�Sð1Þ þ k�2Sð2Þ þOðk�3Þ: ð4:8Þ

For this we require that Xa
b satisfy the suð2; 1Þ star

commutator algebra (3.38). For the leading two corrections,
we find
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Rð1Þ
i ¼ −

1

32jyij2ðjyij2 þ 1
2
Þ3=2 þ

c1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyij2 þ 1

2

q ;

Rð2Þ
i ¼ −

7þ 48jyij2 þ 128jyij4
2048jyij4ðjyij2 þ 1

2
Þ7=2 −

3c1
128ðjyij2 þ 1

2
Þ5=2

−
c1 þ c21jyij2

128jyij2ðjyij2 þ 1
2
Þ3=2 þ

c2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyij2 þ 1

2

q ; ð4:9Þ

and

Sð1Þ ¼ −
1þ c1
8r

; Sð2Þ ¼ −
c21 þ 6c1 þ 7

128r3
−
c2
8r

; ð4:10Þ

where c1 and c2 are arbitrary real constants. While
trX ¼ Xa

a ¼ 1, as in the commutative theory, there are
noncommutative corrections to the constraints (3.23). For
example,

trX2 ¼ Xa
b ⋆ Xb

a ¼ 1þ ðc1 þ 2Þk� þ
�
c2 þ

3

2
c1 þ

3

8
c21

�
k�2 þOðk�3Þ;

trX3 ¼ Xa
b ⋆ Xb

c ⋆ Xc
a ¼ 1þ

�
3

2
c1 þ 4

�
k� þ 3

2

�
c2 þ 3c1 þ

1

2
c21 þ

8

3

�
k�2 þOðk�3Þ: ð4:11Þ

They correspond to the quadratic and cubic Casimir operators for suð2; 1Þ. We note that there is no choice of c1 and c2 for
which the noncommutative corrections in both trX2 and trX3 disappear.
Upon writing the result for the expansion (4.8) in terms of local affine coordinates, one gets

yi
jyij

Ri ¼
ζi
Z

�
1þ k�

16jζij4
Z6

ðZ2 − 2jζij2Þ

−
k�2

512

Z8

jζij8
ð63jζij4 − 50jζij2ðZ2 − jζij2Þ þ 15ðZ2 − jζij2Þ2

ðZ2 − 2jζij2Þ2
þOðk�3Þ

�
;

S ¼ 1

Z

�
1 −

k�

8
Z2 −

7k�2

128
Z4 þOðk�3Þ

�
; ð4:12Þ

where for simplicity we set c1 ¼ c2 ¼ 0. The zeroth order
terms in k� correspond to the commutative result. When
substituted into (4.7), and extracting the zeroth order terms,
we recover the formulas (3.24) for embedding coordinates.
The noncommutative corrections to yi

jyijRi are not valid near

ζi ¼ 0. The noncommutative corrections to yi
jyijRi and S,

and hence Xa
b, contain factors of Z, and so, away from

ζi ¼ 0, these corrections vanish in the asymptotic limit
Z → 0. For this we also use the above result that the star
product, when expressed in terms of local affine coordi-
nates, reduces to the ordinary product in the asymptotic
limit. Finally, we can construct the series expansion for the
noncommutative analog κ⋆ab of the Killing vector on CP1;1

using (3.39). The above arguments show that they too
reduce to the commutative Killing vectors (3.18) in the
asymptotic limit.

V. CP.0;2

Like CP1;1, CP.0;2 has four real dimensions. CP.0;2 ≃
H4;1=S1 ≃ SUð2; 1Þ=Uð2Þ can be built from C1;2, spanned
by za, a ¼ 1, 2, 3, using the constraint (3.2), which
now becomes jz1j2 − jz2j2 − jz3j2 ¼ 1, along with the

equivalence relation (3.3). This means that jz1j ≥ 1, and
also that jz1j > jz2j or jz3j.
Once again there are two complex affine coordinates ζi,

i ¼ 1, 2, along with their complex conjugates. They are
defined by ζi ¼ zi

z3, z
3 ≠ 0. Unlike the case with CP1;1, here

the indices i; j;… are raised and lowered with the
Lorentzian metric, diagðþ;−Þ. So here (3.7) implies that

Z2 ¼ jζ1j2 − jζ2j2 − 1 > 0; ð5:1Þ

and so jζ1j > 1. This restriction means that the local affine
coordinates are defined on a real four-dimensional space
with a solid three hyperboloid removed. The boundary of
this region once again corresponds to the asymptotic limit
(3.8), Z2 → 0. While the background metric is Lorentzian,
the Fubini-Study metric (3.9) for CP.0;2 has a Euclidean
signature. This is opposite the situation with CP1;1. As with
CP1;1, the Fubini-Study metric solves the sourceless
Einstein equations with Λ ¼ 3 [26].

A. Darboux map

We now give the transformation from the local affine
coordinates ðζi; ζ�i Þ; i ¼ 1, 2, to canonical coordinates
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ðyi; y�i Þ, satisfying Poisson brackets (3.30). We note that the
indices for the former are raised and lowered using the
Lorentzian metric, but the latter coordinates are defined on
a two-dimensional complex Euclidean space. Because of
this fact, it is helpful to perform an intermediate step. For
this we recognize that local affine coordinates are not
unique. Instead of using the coordinates ðζi; ζ�i Þ, as defined
in (3.6), we can choose to work with the alternative set of
coordinates ðξn; ξ�nÞ; n ¼ 1, 2, where ξn ¼ znþ1

z1 , z
1 ≠ 0. In

contrast with ðζi; ζ�i Þ, for these coordinates, the indices
n;m;… are raised and lowered with the Euclidean metric,
diagð−;−Þ. The transformation between the two sets of
local affine coordinates (in the overlapping region) is
therefore something like a Wick rotation of the parameter
space, although the signature of the Fubini-Study metric, of
course, remains Euclidean. The transformation between the
two sets of local affine coordinates is given by

ξ1 ¼ ζ2

ζ1
ξ2 ¼ 1

ζ1
; ζ1; ξ2 ≠ 0: ð5:2Þ

The two sets of coordinates are valid on different domains
and the transformation applies in the overlapping region.
From (5.2),

1 − jξ1j2 − jξ2j2 ¼
Z2

jζ1j2
¼ 1

jz1j2 > 0; ð5:3Þ

and hence ðξn; ξ�nÞ span the interior of a three sphere of
radius one, jξ1j2 þ jξ2j2 < 1. As usual, the boundary
corresponds to the asymptotic limit jξ1j2 þ jξ2j2 → 1.
The Fubini-Study metric and Poisson brackets can be
reexpressed in terms of the new local affine coordi-
nates ðξn; ξ�nÞ.
It is now not difficult to find the map from the affine

coordinates ðξn; ξ�nÞ to canonical coordinates ðyi; y�i Þ, i ¼ 1,
2, having the desired properties. Up to canonical trans-
formations, it is

y1 ¼
iξ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jξ1j2 − jξ2j2
p ; y2 ¼

−iξ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jξ1j2 − jξ2j2

p :

ð5:4Þ

There are no restrictions on the domain of ðyi; y�i Þ, i.e., they
span all of C2. To see this, note that

r2 ¼ jξ1j2 þ jξ2j2
1 − jξ1j2 − jξ2j2

≥ 0; ð5:5Þ

where we once again define r2 ¼ jy1j2 þ jy2j2. The right-
hand side of (5.5) spans the entire positive real line.
Moreover, jy1j2 and jy2j2 span the entire positive real line.
Just as with the case of CP1;1, r2 → ∞ is the boun-
dary limit.

Using (5.2) and (5.4), we can write the Darboux map
from the original set of affine coordinates ðζi; ζ�i Þ. It is

y1 ¼
−iζ�2
Z

ffiffiffiffiffi
ζ1
ζ�1

s
; y2 ¼

i
Z

ffiffiffiffiffi
ζ1
ζ�1

s
: ð5:6Þ

This is an extension of the Darboux map for EAdS2 (2.13),
where ζ and y now correspond to ζ1 and −iy2, respectively.
The Jacobian of the transformation is j ∂ðζ;ζ�Þ∂ðy;y�Þ j ¼ Z6, so we

again recover the flat geometric measure when expressed in
terms of canonical coordinates.
Writing the embedding coordinates (3.24) in terms of

canonical coordinates gives

½xab� ¼

0
B@

r2 þ 1 iy�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
iy�2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p

iy1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
−jy1j2 −y�2y1

iy2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
−y�1y2 −jy2j2

1
CA:

ð5:7Þ

We can then check that the constraints (3.23) and the
suð1; 2Þ Poisson bracket algebra (3.21) hold. Substituting
(5.7) into (3.25) gives the Killing vectors in terms of
canonical coordinates.

B. Quantization

Quantization proceeds as in the previous section. The
algebra of observables is again that of a two-dimensional
harmonic oscillator, which is realized with the Wick-Voros
star product (3.37). The star product can again be reex-
pressed in terms of the original local affine coordinates
ðζi; ζ�i Þ, now by making the replacement

∂
∂y1→

iZ
2ζ1jζ1j

�
ζ2

�
ζ1

∂
∂ζ1þζ�1

∂
∂ζ�1
�
þ2jζ1j2

∂
∂ζ�2
�
;

∂
∂y2→

−iZ
2ζ1jζ1j

�
ζ1

∂
∂ζ1þð1−2jζ1j2Þζ�1

∂
∂ζ�1−2jζ1j2ζ�2

∂
∂ζ�2
�
:

ð5:8Þ

Because of the overall factor of Z, it follows that the star
product reduces to the ordinary product in the asymptotic
limit, Z → 0.
Next we construct the noncommutative analogs Xa

b of
the embedding coordinates (5.7). We try writing

½Xa
b� ¼

0
B@ r2 þ 1 iy�1 ⋆ S iy�2 ⋆ S

iS ⋆ y1 −jy1j2 −y�2y1
iS ⋆ y2 −y�1y2 −jy2j2

1
CA; ð5:9Þ

where we assume that S is a real function of r2. We need
that S → S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
when k� → 0, in order to recover
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(5.7) in the commutative limit. In order to obtain S away
from the commutative limit, we require that Xa

b satisfy the
suð1; 2Þ star commutator algebra (3.38). We can then get S
in a perturbative expansion in k�. So, as before, we write
S ¼ S0 þ k�S1 þ k�2S2 þ � � �. For the leading two correc-
tions, we get

S1 ¼ −
r2

8ðr2 þ 1Þ3=2 ; S2 ¼
r2ð8 − 7r2Þ

128ðr2 þ 1Þ7=2 : ð5:10Þ

Once again, while trX ¼ Xa
a ¼ 1, as in the commutative

theory, there are noncommutative corrections to the con-
straints (3.23). For example,

trX2 ¼ Xa
b ⋆ Xb

a ¼ 1 − 2k� þOðk�3Þ;
trX3 ¼ Xa

b ⋆ Xb
c ⋆ Xc

a ¼ 1 − 2k� − 2k�2 þOðk�3Þ: ð5:11Þ

In comparing the expansion found here with the one found
for CP1;1, we note that the latter was expressed in terms of
undetermined integration constants c1 and c2. Integration
constants may appear for CP.0;2 as well upon generalizing
the Ansatz (5.9).
From (5.9), noncommutative corrections to the embed-

ding coordinates only appear for X1
2, X1

3, X2
1, and X3

1.
After writing the leading order terms for these four matrix
elements in the original affine coordinates ðζi; ζ�i Þ, we get

Xa
b ¼ xab

�
1 −

Z2ð1þ jζ2j2Þ
8jζ1j4

k� þ Z4ð1þ jζ2j2Þð8jζ1j2 − 15jζ2j2 − 15Þ
128jζ1j8

k�2 þOðk�3Þ
�
; ð5:12Þ

where again this only applies for ða; bÞ ¼ ð1; 2Þ; ð1; 3Þ;
ð2; 1Þ; ð3; 1Þ. We find that the corrections contain factors of
Z2, and so they vanish in the asymptotic limit, Z2 → 0.
Finally, we can obtain the leading corrections to the Killing
vectors, specifically κ1

2, κ1
3, κ2

1, and κ3
1, using the

definition (3.39) for their noncommutative analog. Since
they involve taking a star product, which reduces to the
ordinary product in the commutative limit, we once again
see that all noncommutative corrections to the Killing
vectors vanish in the asymptotic limit.

VI. CONCLUDING REMARKS

In this article we have shown how to perform a
unique quantization of CPp;q which preserves the full
suðpþ 1; qÞ isometry algebra. For the specific examples
considered here we found that noncommutativity is
effectively restricted to a limited neighborhood of some
origin, and that these quantum spaces approach CPp;q in
the asymptotic limit. It is likely that this is a universal
result that applies for all CPp;q, q ≥ 1 quantized in a
isometry preserving manner. Just as a strong-weak duality
is postulated to exist between gravity on asymptotically
AdS spaces and a CFT on the boundary, it is tempting to
speculate that a similar duality could exist between
gravity on asymptotically CPp;q spaces and some boun-
dary field theory. Adapting the standard techniques to this
case, it should be possible to compute n-point correlation
on the boundary, which are expected to be consistent
with the suðpþ 1; qÞ algebra, rather than the full
conformal algebra. So then, if we have that noncommu-
tative CPp;q is asymptotically CPp;q, there could exist a
dual SUðpþ 1; qÞ invariant boundary theory.
As was stated in the text, the main reason we do not have

an explicit construction for all quantized CPp;q, q ≥ 1, and
cannot prove asymptotic commutativity in general, is that

we do not have a universal construction of the Darboux
map. The Darboux map from local affine coordinates
needed to satisfy three requirements, one of which was
that the resulting canonical coordinates cover the entire
complex plane. We found explicit constructions of the
map for all examples in two and four dimensions.
Straightforward higher-dimensional generalizations of
these constructions exist, but they cannot be applied to
all cases. There are two types of higher-dimensional
extensions: (1) CPp;1 and (2) CP.0;q.
(1) CPp;1, the coordinate patch spanned by the local

affine coordinates ðζi; ζ�i Þ is Cpþ1 with the region
jζ1j2 þ jζ2j2 þ � � � þ jζpþ1j2 ≤ 1 removed. The Dar-
boux transformation to canonical coordinates
ðyi; y�i Þ, i ¼ 1; 2;…; pþ 1, can again be given by
(4.2). The latter are defined on all of Cpþ1. The
expressions for the su (pþ 1, 1) embedding coor-
dinates xab have the form (4.5), and their quantum
corrections can be computed as in Sec. IV.

(2) CP.0;q, the coordinate patch spanned by the local
affine coordinates ðζi; ζ�i Þ is C1;q−1 with the region
jζ1j2 − jζ2j2 − � � � − jζqj2 ≤ 1 removed. A Darboux
transformation to canonical coordinates ðyi; y�i Þ,
i ¼ 1; 2;…; q, is

y1 ¼
−iζ�2
Z

ffiffiffiffiffi
ζ1
ζ�1

s
; …; yq−1 ¼

−iζ�q
Z

ffiffiffiffiffi
ζ1
ζ�1

s
;

yq ¼
i
Z

ffiffiffiffiffi
ζ1
ζ�1

s
; ð6:1Þ

which generalizes (5.6). The coordinates ðyi; y�i Þ
span all of Cq. The expressions for the suð1; qÞ
embedding coordinates xab become
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½xab� ¼

0
BBBBBBBB@

r2 þ 1 iy�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
iy�2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
� � � iy�q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p

iy1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
−jy1j2 −y�2y1 � � � −y�qy1

iy2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
−y�1y2 −jy2j2 � � � −y�qy2

� � � � � � � � � � � � � � �
iyq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
−y�1yq −y�2yq � � � −jyqj2

1
CCCCCCCCA
; ð6:2Þ

generalizing (5.7), while their quantum corrections
can be computed as in Sec. V.

More work is required to obtain the Darboux map for
other cases, as it appears that a universal formula does not
apply. One case, in particular, that is not included in (1) and
(2), and may be worth pursuing, is CP1;2, as it contains
Euclidean AdS4 as a submanifold, and its noncommutative
version is of possible interest for quantum cosmology [11].
The noncommutative analog of Euclidean AdS4 is con-
structed from quantized CP1;2. Therefore, if, as expected,
quantized CP1;2 is asymptotically commutative, it should
naturally follow that noncommutative AdS4 is

asymptotically anti–de Sitter, having a dual three-dimen-
sional conformal theory at the boundary.
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