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In this paper, we investigate linear instabilities of hydrodynamics with corrections up to first order in
derivatives. It has long been known that relativistic (Lorentzian) first order hydrodynamics, with positive
local entropy production, exhibits unphysical instabilities. We extend this analysis to fluids with Galilean
and Carrollian boost symmetries. We find that the instabilities occur in all cases, except for fluids with
Galilean boost symmetry combined with the choice of macroscopic variables called Eckart frame. We also
present a complete linearized analysis of the full spectrum of first order Carrollian hydrodynamics.
Furthermore, we show that even in a fluid without boost symmetry present, instabilities can occur. These
results provide evidence that the unphysical instabilities are symptoms of first order hydrodynamics, rather
than a special feature of Lorentzian fluids.
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I. INTRODUCTION

Hydrodynamics is one of the most successful effective
descriptions of many-body systems we have to date. Its
applicability ranges from the scales of the galaxy, to the
Earth’s atmosphere, or to a glass of water, to a sample of a
few millimetres of clean metal and graphene [1–3], to cold
atomic systems (see, e.g., [4] and reference therein), and
even to subatomic scales such as in quark-gluon plasma [5].
It is therefore only natural to ask why such a simple set of
equations works so well to explain reality across so many
length scales. One popular explanation is that hydrody-
namics is nothing but the gradient expansion of the
conservation laws of a system, as elucidated in [6].
In this paper, we showcase linear instabilities that arise in

the usual approach to hydrodynamics. These instabilities
are represented as modes with a complex component that
have a “wrong” sign, such that these modes grow expo-
nentially in time. This is considered to be an unphysical
instability, since physical fluids in homogeneous configu-
ration are supposed to be linearly stable.
In order to fully appreciate the mentioned linear

instabilities, we adopt a more formal perspective of
fluids, with relativistic fluids as an example, in which
one takes the viewpoint that hydrodynamics is an effective

low-energy description of a theory with the following
partition function

Z½gμν; Aμ� ¼
�
exp

�
i
Z

ddþ1x
ffiffiffiffiffiffi
−g

p ðTμνgμν þ JμAμÞ
��

;

ð1:1Þ
where gμν is the background metric of the space where our
“fluid” lives and the background gauge field Aμ represents a
background (nondynamical) electromagnetic field injected
into the system. The independence of choice of coordinates
and the gauge field implies that, in flat space with zero flux,
there are the Ward identities

∂μTμ
ν ¼ 0; ∂μJμ ¼ 0: ð1:2Þ

But just the conservation laws, by themselves, are not
helping us to determine the evolution of the system. The
next step is to assume that one can write down Tμ

ν and Jμ in
terms of macroscopic variables, such as local temperature
TðxÞ, local chemical potential μðxÞ and the fluid velocity
viðxÞ. This process can be done, assuming that the system
reaches thermal equilibrium in some infinitesimal volume,
such that the local thermodynamic variables can be defined,
even though the whole system is still evolving. The Noether
currents Tμ

ν and Jμ are then expressed in terms of these
macroscopic proxies fT; μ; vig, order by order in the
derivative expansions, for example:

Tμ
ν ¼ Tμ

0ν½∂0� þ Tμ
1ν½∂1� þ � � � ; ð1:3Þ

where the ellipsis denotes terms at higher-order in the
derivative expansion. Due to the availability of extra tensor
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structures in the gradient expansion, transport coefficients
are introduced. These are nothing but the coefficients in
front of each independent structure. It is a common practice
to simply include only first derivative terms to incorporate
dissipative effects (such as shear and bulk viscosities) and
ignore the higher-derivative terms. Once this is done, we
have a system of equations that can be solved and is capable
of determining the evolution of the system, namely,

∂μðTμ
0ν þ Tμ

1νÞ ¼ 0; ∂μðJμ0 þ Jμ1Þ ¼ 0: ð1:4Þ

These equations are the relativistic analogue of the Navier-
Stokes equations. On top of just writing down all possible
structures Tμ

1ν and J
μ
1 constitute of, it is common to impose

positivity of local entropy production. In practice, one
constructs an entropy (density) current sμ, where s0 in the
static fluid takes the form of local entropy density. Its
divergence can be written schematically as

∂μsμ ¼
X
i

aiXðiÞμ1μ2…Xμ1μ2…
ðiÞ

þ
X
j

bjXðiÞμ1μ2…Yμ1μ2…
ðiÞ þOð∂3Þ; ð1:5Þ

where Xμ1μ2…
ðiÞ and Yμ1μ2…

ðiÞ are some first derivative tensors

constructed out of T, uμ, μ, with X ≠ Y. Imposing ai ≥ 0
and bi ¼ 0, which are functions of transport coefficients,
guarantees that the entropy production is positive definite,
i.e., ∂μsμ ≥ 0. This places a restriction on the values of
transport coefficients. Similar constraints can be found by
imposing the local KMS conditions coming from the
effective action approach in [7]. See also [8] for the proof
of positivity of ∂μsμ from unitarity of the microscopic
constituents. An additional principle that places restrictions
on the values of transport coefficients are the Onsager
relations, which are a direct result of assuming time reversal
symmetry to hold in the theory [9].
There is, however, a big caveat in the above construction.

Strictly speaking, T, μ, and vi, are uniquely defined only in
equilibrium. It is nevertheless possible to redefine them by
adding terms at higher-order in derivative expansion, e.g.,

TðxÞ → TðxÞ þ ðT þ � � � ; μðxÞ → μðxÞ þ ðμþ � � � ;
viðxÞ → viðxÞ þ ðvi þ � � � ; ð1:6Þ

where ð denotes objects that are exactly first order in
derivatives and are constructed from T, μ, vi.1 In principle,
any choice, e.g., TðxÞ or TðxÞ þ ðT, is an equally good
macroscopic variable. The same applies to μðxÞ and viðxÞ.
The freedom of the formalism to choose macroscopic

variables is usually referred to as frame choice (see e.g.,
[6,10]). Chief among the popular frame choices are

(i) Landau frame: This is where the macroscopic
variable is chosen such that

Tμ
νUν ¼ −ẼðT; μÞUμ; JμUμ ¼ nðT; μÞ; ð1:7Þ

where Ẽ, n represent out-of-equilibrium energy
density andUð1Þ current density, which are functions
of only TðxÞ, μðxÞ, viðxÞ and not their derivatives.We
denote Uμ as a fluid 4-velocity constructed from vi.
Here, one can think of this frame as requiring the
energy density flux to vanish.

(ii) Eckart frame: In this case, the variables are chosen
such that

Tμ
νUμUν ¼ −ẼðT; μÞ; Jμ ¼ nðT; μÞUμ; ð1:8Þ

where, again, Ẽ and n do not contain any derivatives
of TðxÞ, μðxÞ, viðxÞ. Here, one can think of this
frame as requiring the Uð1Þ density flux to vanish.

(iii) General frame: In this case, one picks δT, δμ, such
that Ẽ and n do not contain derivative corrections but
the choice of ðvi is not chosen to restrict Tμ

νUν and
Jμ. This makes it possible to write down a super-
position between Landau and Eckart frame.2

While these choices are used to simplify the equations of
motion in Eq. (1.4), different choices result in different
PDEs which, in principle, can yield very different solutions.
Although it will not reflect in the equations of motion, we
point out that it is also possible to construct frame invariant
combinations of Jμ and projections of Tμ

ν.
In relativistic fluids, the consequence of the redefinition

of these proxy macroscopic variables is very pronounced.
This issue is demonstrated in the seminal work by Hiscock
and Lindblom [11], which studies linearized perturbations
of both a stationary fluid and a fluid flowing at constant
velocity, in all the frame choices mentioned above.
Since these results are a crucial point in our note, let us
summarize them here. Upon imposing ai ≥ 0 and bi ¼ 0 in
Eq. (1.5), one finds that:

(i) A linearized perturbation around first order relativ-
istic hydrodynamics is unstable in the Eckart frame
and in the general frame, even when the fluid is at
rest. On the other hand, the Landau frame is stable in
this configuration.

(ii) A linearized perturbation is unstable even in the
Landau frame, when perturbed around a flow with
constant velocity.

These linear instabilities invalidate first-order relativistic
hydrodynamics as an effective theory. These issues do not

1The Icelandic letter ð, pronounced eth, can be used in latex via
“\eth”.

2Note that this notion of general frame is adopted from [11]. In
some parts of the literature, the name general frame can refer to
the case where none of the choices of ðT and ðμ are made.

NAPAT POOVUTTIKUL and WATSE SYBESMA PHYS. REV. D 102, 065007 (2020)

065007-2



show up in the frame-invariant quantities—one has explic-
itly turn to themodes for finding this behavior. In the last few
decades, numbers of proposals have been made to resolve
this issue. Chief among them is to introduce new macro-
scopic degrees of freedom, which alter the structures of
hydrodynamic modes at large frequency and wave vectors
such as done in [12–16], for a review see, e.g., [17]. Another
populair approach is to view such unstable modes as an
artifact of the truncation of the gradient expansion [18–22].
The former is motivated by kinetic theory of gases [23],
while the latter emerges from the realization of the hydro-
dynamical limit in a strongly coupled quantum field theory
with a holographic dual [24,25]. We will return to some of
these proposals in the discussion of Sec. II, as well as other
open issues. Nevertheless, while these resolutions are
available and possibly correct (albeit in different regimes),
one thing is clear: first order relativistic hydrodynamics, as
presented, is not a good description for fluids due to its linear
instabilities.
One obvious question to ask is whether these artificial

instabilities are specific to a fluid with Lorentz boost
symmetry or whether they are symptoms of the truncation
of the gradient expansion. In this note, we would like to
present evidences toward the latter case. Particularly, we
show that first order fluids are unstable even when we
replace the algebras of Tμ

ν and Jμ from Poincaréþ Uð1Þ
with the Bargmann algebra or with the Carrollianþ Uð1Þ
algebra. The former is the usual massive Galilean non-
relativistic fluid (as we will see, this algebra is obtained in a
more subtle way than just a naive c → ∞ contraction of
Poincaréþ Uð1Þ algebra), while the latter corresponds to
the contraction c → 0, which is sometimes referred to as
ultra-relativistic limit. Because of these potentially confus-
ing naming conventions, we shall refer to these two types of
fluids as non-Lorentzian fluids. We found that the first
order Carrollian fluid shares the same symptoms as the
Lorentzian fluid, as found in [11]. As for the Bargmann
fluid, contradicting to what is commonly believed, it turns
out that not all “nonrelativistic fluids” are stable. Namely,
there are frame choices where the Bargmann fluid also
suffers from the spurious instability in the same way as the
Lorentzian fluid. It turns out that only the Eckart frame of a
Bargmann fluid is stable.
Additionally, in Sec. VI, we show that for a generic fluid

without imposing any boost symmetry, it is also possible
that such a fluid exhibits the same kind of instabilities as
[11]. We furthermore present conditions on transport
coefficients for which the static first order fluid without
boost symmetry is stable. This analysis can be thought of as
a guideline for making a frame choice and extensions of
hydrodynamics (which we briefly discussed above and will
further elaborate in Sec. II) to remove such spurious
unstable modes.
Other than investigating the nature of the unstable modes

of the Lorentzian and Bargmann fluids, it is beneficial to

study the spectrum of the Carrollian fluid [26–28].
Studying such a fluid can be relevant in the context of
flat space holography, due to the connection between the
Carrollian group and the BMS group [29,30]. See also [31]
and references therein. Furthermore, it was argued that the
membrane paradigm can be cast into a Carrollian fluid
formulation [32]. To the best of our knowledge, little is
known about the spectrum of hydrodynamic modes in
Carrollian fluids.
We summarize our findings in Sec. II: which frame

choice of what algebra is unstable under what circum-
stances. We also discuss in what way these unstable modes
could be removed. Section III provides an overview of the
technical details concerning thermodynamical variables
and frame choices, while Secs. IV and V are dedicated
to computing of the spectra of Bargmann and Carrollian
fluids in different frame choices. Finally, in Sec. VI, we
analyze the spectrum of a static fluid without imposing any
boost symmetry, in various frames.

II. SUMMARY AND OUTLOOK

We emphasize that we are not claiming that hydro-
dynamics (which supposedly describes real fluids) is
unstable. Our goal is to point out that (i) expressing Tμ

ν

and Jμ in terms of fT; μ; vμg and their first derivatives and
(ii) imposing the strict positivity of ∇μsμ, namely ai ≥ 0

and bi ¼ 0, implies that first order hydrodynamics contains
linear instabilities beyond Lorentzian symmetry. Many of
the controversial sounding statements have already been
addressed, for decades, in the literature. The results con-
cerning instabilities of Lorentzian fluids, constructed via
principles (i) and (ii), are well known [11,17]. The theory of
nonrelativistic fluids, which has an even longer history,
presented as a gradient expansion of conserved currents can
be found in, e.g., [6,33] and particularly [34]. The con-
struction of a Carrollian fluid, on the other hand, has been
considered very recently [26–28]. Also, only not long ago a
beginning was made in studying fluids with relaxed boost
symmetry conditions [28,35]. Of course, there are many
more developments of these fluids that we can hardly do
justice. What we did is simply analysing linear perturba-
tions of these non-Lorentzian fluids and show that they
contain the same kind of artificial unstable modes as in the
Lorentzian case.
Let us now summarize what happens if we make

different frame choices. In some frames, the theory is
outright unstable, see Fig. 1 (left). It contains modes in the
lower-half complex ω plane as well as poles in the upper-
half plane. The latter poles exist even when the wave vector
ki ¼ 0. If such poles are located in the lower-half plane,
they will decay away in the hydrodynamic regime (late time
and long distance). However, the pole in the upper-half
plane is an indication of an instability of the theory. In some
frame, this unstable mode disappears when the fluid is at
rest or, more specifically, when one studies the perturbation
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around the fluid with vanishing momentum density of the
fluid, Pi ≔ T0

i ¼ 0. However, it becomes unstable when Pi
is nonzero, see Fig. 1 (right). Table I below, summarizes the
scenario in which unstable modes occur in a fluid with
Lorentzianþ Uð1Þ, Bargmann, or Carrollianþ Uð1Þ as its
symmetries in both Eckart and Landau frame.
We furthermore show, that if one relaxes the constraint of

boost symmetry, there are still possibilities for instabilities
in a static fluid. One can use our results as a guideline for
putting restrictions on values of transport coefficients for
which, at least for a static fluid, the instability is absent.
As for the Carrollian fluid, we can trace the instability

from the Lorentzian fluid via the c → 0 contraction (see
Sec. V). Another subtle issue of the Carrollian fluid that we
found, is the lack of sound modes up to first order, even
though the theory is invariant under translations. This can
be seen from the fact that the susceptibility of the energy
density and the momentum density (as well as of energy
density and Uð1Þ density) vanishes. The collective excita-
tions, therefore, turn out be diffusive modes. Furthermore,
we found that simply taking the c → 0 contraction of both
frames of a Lorentzian fluid, does give rise to Carrollian
fluids, but they seem to be nonconnected by a frame choice.
In other words, they might both be different manifestations

of a Carrollian fluid. This seems to reflect the fact that the
longitudinal fluctuation, in the one obtained via the c → 0
limit of the Lorentzian fluid in the Landau frame, exhibits
two diffusive modes, while the one obtained via the c → 0
limit of the Lorentzian fluid in the Eckart frame only
contains one diffusive mode. Since diffusive modes are
physical quantities, it is an indication that choosing differ-
ent frame choices before taking the c → 0 limit results in
two different theories. It would be interesting to better
understand this fact from the construction of Carroll fluids
without using c → 0 contractions.
One thing we should note is the fact that the choice of

out-of equilibrium proxies T, μ, vi is called frame choice, is
rather misleading. The word frame choice sounds as if it
has something to do with the reference frame of a certain
boost symmetry. We have already seen from the current
note, that it has nothing to do with boost symmetry.
Moreover, it sounds as if it is our choice to choose
whichever frame we want to simplify a computation. For
first order hydrodynamics, different frame choices can lead
to (different) instabilities. One could argue that a reasonable
effective description of a fluid, should be formulated in a
frame choice in which it makes the system, at least, linearly
stable. However, away from the practical point of view,
there is no fundamental principle that can distinguish one
frame choice from another. It would be very interesting to
find a microscopic way to derive these out-of-equilibrium
macroscopic proxies in a way that the frame choice would
be completely determined. In other words, when we obtain
hydrodynamics from truncating higher spin currents (as in
kinetic theory) or from truncating the infinite series (as in
holography), is it possible to consistently determine a good
definition of macroscopic variables? To the best of our
knowledge, this issue remains unresolved.
What do all of these analyses mean in a bigger picture?

One question at the back of our minds is why does
hydrodynamics work so well? A conventional answer is:
because hydrodynamics is a gradient expansions of
Noether currents in terms of macroscopic quantities. But
as we have already seen here, as well as in previous works,
choosing some version of macroscopic variables leads to
artificial instabilities. While these phenomena are well-
documented in the Lorentzian fluid, we show that such
instabilities can occur beyond the Lorentzian fluid in first
order hydrodynamics. The exception that we found is in
the nonrelativistic (Bargmann) fluid in the Eckart frame.
The absence of the spurious instability in the Eckart frame

TABLE I. In this table, we showcase an overview of instabilities of first order hydrodynamics, including our results. Here Pi ≔ T0
i

denotes momentum density, which can be made zero or non-zero by performing a boost.

Landau frame Pi ¼ 0 Landau frame Pi ≠ 0 Eckart frame Pi ¼ 0 Eckart frame Pi ≠ 0

LorentzianþUð1Þ Stable Unstable Unstable Unstable
Bargmann Unstable Unstable Stable Stable
LorentzianþUð1Þ c → 0 limit Stable Unstable Unstable Unstable

FIG. 1. Left: the pole structure of the transverse fluctuations
around the static ðPi ¼ 0Þ, homogeneous configuration of a
Lorentzian, Bargmann or Carollian fluid in general frame. The
unstable mode is moved toward ω → þi∞ and is removed from
the spectrum as one continuously tunes the transport coefficient
toward the Landau frame (for Lorentzian and Carrollian fluid)
and Eckart frame (for Bargmann fluid). Right: this panel
illustrates the unstable mode in the Landau frame of a Carrollian
or a Lorentzian fluid at Pi ≠ 0, which moves down from ω →
þi∞ as we move away from Pi ¼ 0 configuration. This pole is
absent in the Eckart frame of the Bargmann fluid.
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of the Bargmann fluid makes sense, since it is nothing else
than the famous and well-tested Navier-Stokes equations.
But what about other incarnations of first order hydro-
dynamics? Can they still serve as good effective descrip-
tions, despite their instabilities? While we, regrettably,
cannot provide a conclusive answer, there are several
proposals concerning the modification of first order hydro-
dynamics in the Lorentzian case, where the artificial
instability is well investigated. Let us review some these
possibilities below:

(i) Müller-Israel-Stewart (MIS) type theory: Inspired
by kinetic theory,3 one way to formulate a theory that
is free of the mentioned unphysical instabilities is to
reformulate the theory in the Landau frame and
promote the dissipative part tμν of the stress-energy
tensor to a full-fledged dynamic field (see, e.g.,
Eq. (3.3) of Sec. III for more details on the
conventions). It is then required to provide addi-
tional equations of motion beyond the conservation
law for tμν, see, e.g., [12–14]. While being useful
phenomenologically, its physical origin is rather
unclear. Moreover, such equations are not unique
as seen in [15,16], where the additional equation is
modified in order to ensure causality and hyper-
bolicity (see also [17] for review). It was recently
argued in [37], from the point of view of memory
matrix formalism, that theories described by MIS
theory contain an additional slightly broken sym-
metry, where the equations of motion of tμν can be
thought of as the almost conservation law. If true, it
could justify the presence of the added degrees of
freedom and their equations of motion. While these
possibilities have been explored for the Lorentzian
fluid, we are not aware of works in this direction for
non-Lorentzian first order hydrodynamics.

(ii) Hydrodynamics as a gradient expansion: In strongly
interacting systems, the gauge/gravity duality pro-
vides a description of hydrodynamics as an infinite
series of gradient expansions. From the dual gravity
side, the artificial instability is absent and thus
implies that hydrodynamics as a gradient expansion
should also be stable. This strongly suggests that the
instability of Hiscock-Lindblom type originates
from truncating the infinite gradient expansion
series. Of course, one will immediately ask whether
there is a way to consistently truncate the series and,
if the truncation to first derivative is problematic,
how many orders in the derivative expansion we
should keep. It would be interesting to use the
gauge/gravity duality, particularly the method to

extract nonlinear constitutive relations from a grav-
ity dual such as [25,38–43], to gain more insight into
these questions.

(iii) The entropy current:Recently it was shown that there
is a way of making first order uncharged Lorentzian
hydrodynamics stable, evading the shortcoming of
the constructions mentioned above [44–46]. The
authors of [44–46] argued that there is a class of
frame choices (neither Eckart or Landau frame),
where Ẽ and Tμ

νUν receive derivative corrections,
which are linearly stable. Furthermore, as particularly
emphasized in [45], the constraint on the entropy
current is relaxed to only the configuration that obeys
the equations ofmotion. This approach constrains the
transport coefficients considerably less than the
approach used in [11] (we shall review this con-
struction shortly in Sec. III). It would be interesting to
understand if there is a physical reasons, other than
the fact that they are stable, why these frame choices
are the preferred one.

Furthermore, we would like to point out the role of the
Carrollian fluid as a potential dual description of gravity
theory in asymptotically flat spacetime [29–31]. When one
would be able to construct an equivalent of the well studied
AdS=CFT fluid-gravity correspondence, see [47] for a
review, one could imaging using Carrollian fluids as an
input to learn about the dynamics of flat spacetime (or vice
versa). We contribute to this avenue of research by showing
that a Carroll fluid in Landau frame is, from the instability
point of view, as trustworthyas the relativistic fluid inLandau
frame (which is employed in the context of fluid-gravity).
The absence of the sound mode, at least up to first order,
could be an interesting fact in the light of this construction.
Finally, in the context of the membrane paradigm, it is

suggested that some stretched membrane near the horizon
of a black hole experiences the emergence of Carrollian
symmetries [32]. In particular this would imply that a fluid
description of the dynamics on such a membrane, at least at
leading order, is governed by a Carrollian fluid. More
specifically, the here established results should be found to
be encoded in the horizon dynamics of a black hole.

III. TECHNICAL OVERVIEW

The goal of this section is to review important concepts
and aspects of different fluids, while establishing notation.
We will start by considering the relativistic fluid with
relaxed boost constraints.

A. Relativistic fluid

Let us consider a relativistic fluid with some Uð1Þ
charge. Here, relativistic refers to the fact that the fluid
has symmetries according to the Poincaré group. We
introduce fluid velocity vi, which we will incorporate into
(covariant) fluid velocity Uμ. In order to expand our

3See, e.g., [36] for a derivation of a theory similar to MIS
theory from (truncated) higher-spin currents in kinetic theory. A
brief recent discussion on the role of higher-spin currents in the
kinetic theory of gases can also be found in [37].
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constitutive relations perpendicular and orthogonal to Uμ,
we construct projector Δμ

ν. We explicitly take

Uμ ≔
ð1; viÞffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2

q ; Δμ
ν ≔ δμν þ

UμUν

c2
: ð3:1Þ

In order to raise and lower indices we use the metric gμν for
the Lorentzian fluid. Note that we will work in the
convention where UμUμ ¼ −c2 and that the metric in flat
space is

gμν ¼ −c2dt2 þ δijdxidxj; ð3:2Þ

where i; j ¼ 1; 2; 3;…; d labels the spatial direction.
Projecting perpendicular and parallel to Uμ, we find that
the constitutive relations of a relativistic fluid, with some
Uð1Þ charge, can generically be written as

Tμ
ν ¼ ẼUμUν þ PΔμ

ν þ ðQμUν þ UμQνÞ þ tμν;

Jμ ¼ NUμ þ jμ: ð3:3Þ

Here Ẽ, P, N are scalars, the vectors jμ and qμ are
transverse (to Uμ) and the tensor tμν is transverse, sym-
metric, and traceless. These scalars, vectors, and tensor are,
in principle, functions of all possible (derivatives of) Uμ,
temperature T and chemical potential μ.
Temperature and chemical potential are related to pres-

sure P and internal energy density Ẽ via the following first
law and Euler relation4

dẼ ¼ Tdsþ μdñ; Ẽ þ P ¼ Tsþ μñ: ð3:4Þ

At the level of the perfect fluid, the constitutive relations
receive (by construction) no derivative corrections and thus
Ẽ ¼ Ẽ=c2, P ¼ P, N ¼ ñ, and qμ ¼ jμ ¼ tμν ¼ 0. Once
one has obtained a closed form of the constitutive relations
like in the perfect fluid case above, one can compute the
equations of motion for a fluid, which are defined by
∂μTμ

ν ¼ 0, ∂μJμ ¼ 0.
We are interested in fluids with first order corrections in

derivatives. As discussed in the iintroduction, see the text
surrounding Eq. (1.7) and Eq. (1.8), one has to adopt a
frame choice and require for the entropy current sμ for
which ∂μsμ ≥ 0 for all fluid configurations. All these
results combined, results in following expressions for Ẽ,
P, N , and tμν for all considered frames [10]

Ẽ ¼ Ẽ
c2

; P ¼ P − ζ∂λUλ; N ¼ ñ;

tμν ¼ −ηΣμ
ν ≔ −ηΔμαΔβ

ν

�
∂αUβ þ ∂βUα −

2

d
ηαβ∂λUλ

�
:

ð3:5Þ

Depending on frame, the vectorsQμ and jμ are different. For
the Eckart frame, see Eq. (1.8), one finds the requirement

Qμ ¼ −κΔμνðTUλ∂λUν þ ∂νTÞ; jμ ¼ 0; ð3:6Þ

whereas the Landau frame, see Eq. (1.7), requires

Qμ ¼ 0; jμ ¼ −σTΔμν∂ν
μ

T
: ð3:7Þ

Here the transport coefficients η, ζ, σ are positive definite.
This is due to the fact that Qμ, jμ are not invariant under the
frame transformation. One can find a linear combination of
Qμ, jμ that is frame-independent, see, e.g., [10]. Evaluating
this frame-independent quantity in both frames yields that the
heat conductivity and the charge conductivity are related via
κ ¼ σðẼ þ PÞ=ðñ2TÞ. The general frame is a superposition
of the two frames above, where there is no more relation
between σ and κ. In [11], it was argued that the divergence of
the entropy production can be expressed as

T∂μsμ ¼−tμνσμν− ðP−PÞ∂λUλ−QμΔμνðTUλ∂λUνþ∂νTÞ
− jμ∂μðμ=TÞ; ð3:8Þ

where Tsμ ¼PUμ−TμνUν−μJμ ¼ sUμþðfirst derivative
correctionÞ. It is then concluded that for P and tμν in (3.5)
with

Qμ ¼ −κTΔμν

�
TUλ∂λUν þ

∂νT
T

�
;

jμ ¼ −σT∇μν∂ν

�
μ

T

�
; ð3:9Þ

where the transport coefficients are constrained to be

η ≥ 0; ζ ≥ 0; σ ≥ 0; κ ≥ 0: ð3:10Þ

The above conditions are guaranteed to give positive
entropy production in any fluid configuration.5 These con-
straints will be inherited by non-Lorentzian fluids that can be
obtained through the c → ∞ and the c → 0 limit of the
Lorentzian fluid.

4When considering thermodynamics we adopt the notational
conventions of [28].

5It is argued, see e.g., Appendix A of Ref. [45], that this
constraint is too strong and that, upon restricting to on-shell
configurations, the positivity of ∂μsμ provides less constraining
conditions on the transport coefficients.
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The linear stability analysis of Eckart, Landau and
general frame of this theory has been performed in [11].
We already summarized their results in previous sections
and will therefore not repeat it here.

B. From Lorentzian to Bargmann
and Carrollian fluids

In this section, we will give a summary of the procedure
on how to obtain the constitutive relations of Bargmann
and Carrollian fluids, from the Lorentzian one. The steps
presented here are not new, but it can be useful for
comprehending different frames in different fluids.
First, it proves useful to write down the metric in such a

way that the time direction is apparent. Namely,

gμν ¼ −c2τ̄μτ̄ν þ hμν; gμν ¼ −
1

c2
τμτν þ hμν; ð3:11Þ

where τμ, τ̄μ, hμν, hμν satisfy the orthogonality conditions

τμhμν ¼ 0; τ̄μhμν ¼ 0; τμτ̄μ ¼ 1; ð3:12Þ

and the projector to the plane orthogonal to fτμ; τ̄μg is
Pμ

ν ≔ hμρhρν. Why are we doing this, instead of simply
taking the flat Minkowski space limit and performing
c → ∞ (to Bargmann) or c → 0 (to Carrollian)? First, it
is useful to keep the generic metric, in order to define a
generating function. Second, this notation allows us to take
the limit in a covariant way, while being able to keep track
of the transformations of the geometric quantities, such that
is ensured that the Bargmann and Carrollian algebra are
manifest in these fluids.
Let us start with the c → ∞ limit, in order to obtain the

Bargmann fluid constitutive relations. Afterwards, we
proceed to obtain the Carrollian fluid constitutive relations.
While the former metric was introduced in general form,
our computations will be done only in flat space, where

τμ ¼ δμ0; τ̄μ ¼ δ0μ;

uμ ¼ ð1; viÞ; hμν ¼ diagð0; 1; 1; 1Þ; ð3:13Þ

which might be useful in order to visualize the computation.

1. Bargmann fluid

Let us first start with the fluid velocity. It is convenient to
decompose the Lorentz covariant velocity as

Uμ ¼ γuμ; uμ ¼ hμνuν; where lim
c→∞

Uμ ¼ uμ; ð3:14Þ

and where the velocity uμ is no longer normalized to speed
of light, i.e., u2 ≔ uμuμ ≠ −c2 but instead u2 ¼ v2. Note
that τ̄μuμ ¼ 1, but τμuμ ¼ τμhμνuν ¼ 0. After some algebra,
we obtain the following c → ∞ limit of the (Lorentzian)
projectors

lim
c→∞

Δμν ¼ hμν;

lim
c→∞

Δμ
ν ¼ hμρðhνρ − τ̄νuρ − τ̄ρuν þ τ̄ντ̄ρv2Þ;

lim
c→∞

Δμν ¼ hμν − τ̄μuν − τ̄νuμ þ τ̄μτ̄νv2: ð3:15Þ

Note the influence of factors of c in the metric tensor.
We might think that by simply taking c → ∞ of the

Lorentz constitutive relations, we will obtain the Bargmann
constitutive relations on the nose, but there are some subtle
issues there. To start, a naive c → ∞ limit of the Lorentzian
fluid will give us a vanishing momentum density flux:
Pi ≔ T0

i ¼ 0, see e.g., [28]. This is in conjunction with the
fact that the boost generator Qi and generator of trans-
lations Ti commute in the naive c → ∞ limit of the
Poincaré algebra, see e.g., [48], implying that a fluid at
rest cannot be boosted to finite momentum. This is clearly
an unnatural feature for a non-relativistic fluid in everyday
life and in this limit, one ought to modify the commutator

½Qi; Tj� ¼ 0; to ½Qi; Tj� ¼ −δijmN;

which results in what is known as the Bargmann algebra.
The parameter m plays the role of mass in the non-
relativistic theory and N is the generator of the Uð1Þ
central extension. It will turn out that due to this central
extension, boosting the fluid will cause the momentum to
change accordingly. In the context of the c → ∞ contrac-
tion, the modification of the commutator above arises from
the choice of considering a term on the right-hand side that
is otherwise suppressed.
The above limit where Pi ¼ 0 (or equivalently, m ¼ 0),

is referred to as massless Galilean fluid [28] and to get
away from it at the level of constitutive relations, we first
note the ambiguity of the c → ∞ limit of the metric written
in the form of Eq. (3.11). That is, we can perform the
following transformation as c → ∞

τ̄μ→ τ̄μ−
1

c2
Ψμ; hμν→hμν−2τ̄ðμΨνÞ þ

1

c2
ΨμΨν; ð3:16Þ

which also shifts the corresponding background Uð1Þ
gauge field, attributed to the central extension, by Aμ →
Aμ þmΨμ. Here Ψμ is an Oðc0Þ quantity and the c → ∞
limit, implies that only Aμ and hμν transform.6 This shift
symmetry is called Milne boost [50] and ensures a relation
between the Uð1Þ current Ji and the momentum density
flux Pi, see also [34,49,51] for a recent discussion, where
most material in this subsection is based upon. The Milne
boost can be thought of as a geometric implementation of
the Galilean boost.

6Note also that in order to ensure that hμν remains a rank d
tensor (d ¼ 3 in our case), we need Ψμ ¼ ψμ − 1

2
τ̄μψ

2 where
ψμτ

μ ¼ 0 and ψ2 ¼ hμνψμψν. See also Sec. 2 of [49] for a
thorough discussion.
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Now, we finally have the machinery to take the c → ∞
limit properly. It turns out that by directly taking the c → ∞
limit of the stress-energy tensor, we find the Milne boost
invariant object T μν, defined via

T μν ¼ lim
c→∞

cTμν
Lorentz: ð3:17Þ

Milne boost invariance implies furthermore

Jμ ≔ m lim
c→∞

cJμLorentz ¼ T μντ̄ν; Pμ ¼ Jνhμν: ð3:18Þ

For all practical purposes, we can think of the above
relation as a definition of the Uð1Þ current and the
momentum density current. The other Milne boost invariant
object that is crucial to this theory, is the Milne boost
invariant energy density

Ẽμ ¼ − lim
c→∞

ðTμν
LorentzUν þmc2JμLorentzÞ: ð3:19Þ

Note that this is not the total energy density of the system
as the latter is not invariant under a Milne boost. The
Milne Ward identity (3.18) combined with Ẽμ and T μν,
serves as macroscopic data, analogous to Tμ

ν and Jμ in the
Lorentzian case.
From the above, it follows that regularity in the c → ∞

limit alters our definition of frame choice between Lorentz
and Bargmann. Substituting the constitutive relation in
Eq. (3.3) into the Milne invariant current (3.17) and (3.19),
we find that

Ẽμ ¼ Ẽuμ þ ημ;

T μν ¼ nuμuν þ Phμν þ uμqν þ uνqμ þ tμν; ð3:20Þ
where first order derivative dissipative terms for a
Bargmann fluid are fημ; qμ; tμνg, which are orthogonal to

τ̄μ. These objects can be related to first order derivative
terms fQμ; jμ; tμνg in the Lorentzian fluid via

Qμ ¼ 1

c
qμ þ 1

c3
ðημ þ � � �Þ þOðc−5Þ;

mjμ ¼ 1

c
qμ þ 1

c3
ð…Þ þOðc−5Þ; ð3:21Þ

where the ellipsis denote terms that do not enter into the
constitutive relations. Note that the leading order in 1=c of
Qμ andmjμ are equal, due to the Milne boost Ward identity.
The field redefinition can then be used to remove either ημ

or qμ, but not both. This is the analogous to the Eckart and
Landau frame in the Lorentzian case. More precisely,
following [34], the Landau frame is defined for a theory
where the Milne invariant energy density Ẽμ receives no
derivative correction, i.e., Ẽ ¼ Ẽuμ and the Eckart frame is
defined by demanding the analogous condition for theUð1Þ
current density, i.e., Jμ ¼ T μντ̄ν ¼ nuμ. These conditions
are reflected in terms of the constitutive relations (3.20) as7

ðBargmannÞLandau frame∶ ημ ¼ 0; qμ ≠ 0;

ðBargmannÞEckart frame∶ ημ ≠ 0; qμ ¼ 0: ð3:22Þ

How are these frame choices related to the Eckart and
Landau frame in the Lorentzian fluid? Let us first consider
the Lorentzian Landau frame where jμLorentz ≠ 0. One finds
that this gives the non-relativistic theory where qμ ¼ 0 [49].
Similarly, for the Lorentzian Eckart frame, where
JμLorentz ¼ ñUμ, we find that the Uð1Þ current also receives
no derivative corrections and thus its c → ∞ limit ends up
in the (Bargmann) Eckart frame as well. To summa-
rize this8:

ðLorentzianÞ
Landau frame∶ Qμ ¼ 0; jμ ≠ 0

Eckart frame∶ Qμ ≠ 0; jμ ¼ 0

9=
; ⇒

ðBargmannÞ
Eckart frame∶ qμ ¼ 0; ημ ≠ 0

Essentially, the frame choices in the Lorentzian fluid do not
necessarily result in the same frame choice in the Bargmann
fluid, once the limit c → ∞ is taken. The actions of picking
a frame choice and taking the c→∞ limit do not commute.
Working with these Milne invariant quantities is con-

venient. However, their interpretation is slightly different
from the stress-energy tensor Tμ

ν in Eq. (1.2), as the latter
does transform under the Milne boost. Moreover, the Milne
invariant energy density current Ẽμ, is not the total energy

density of the system and the resulting equations of motion
are different from the Ward identity presented in the
introduction.9 In order to unify notation, we will work
with the non-Milne boost invariant quantities, which in flat
space, can be obtained via

T0
0 ¼ Ẽ0 þ

�
uν −

1

2
τ̄νv2

�
T 0ν;

Ti
0 ¼ Ẽi þ

�
uν −

1

2
τ̄νv2

�
T iν;

T0
i ¼ Pi; Ti

j ¼ T iμhμj; ð3:23Þ7For the frame transformation of ημ and qμ as well as the
frame-independent combinations, see, e.g., [34].

8If one starts from a Lorentz fluid in a general frame, one can
obtain a Bargmann fluid in Landau frame. 9See, e.g., Sec. 2 of [34] for a derivation.
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and Jμ ¼ ðJ0; JiÞ. These quantities obey the Ward identity
in Eq. (1.2), as shown in [34]. Their explicit constitutive
relation is given in Sec. III C 1 and the linear stability
analysis can be found in Sec. IV.

2. Carrollian fluid

The Carroll fluid is obtained as a c → 0 contraction of
the Poincaré group [26–28]. The constitutive relations are
obtained directly by taking this limit, akin to the massless
Galilean case but in contrast to the Bargmann case. This is
due to the absence of a central extension for the Carroll
algebra in general, see, e.g., [52,53].10

In order to take the c → 0 limit appropriately, one has to
take the fluid velocity vi faster to zero that c in this limit, in
order to avoid branch cuts. We execute this by introducing
inverse velocity wi and equating vi ¼ c2wi [54], which we
write more covariantly as wμ ¼ Pμ

iwi and ων ¼ hνiwi.
The constitutive relations can be obtained from

Lorentzian fluid constitutive relations by taking the limit
c → 0,

Uμ ¼ τμ þ c2
�
wμ þ 1

2
τμw2

�
þOðc3Þ;

Uν ¼ c2ðτ̄ν þ wνÞ þOð1Þ;

ημν ¼ hμν þOðc2Þ; ημν ¼ −
1

c2
τμτν þOð1Þ;

Δμ
ν ¼ δμν − τμτ̄ν þ τμwν;

Δμν ¼ hμν þ w2τμτν þ τμwν þ τνwμ þOðcÞ; ð3:24Þ

while the transport coefficient is scaled as

η → η=c2; ζ → ζ=c2; κ → c2κ: ð3:25Þ

Note that in this limit, qμUν ∼Oðc2Þ while qνUμ ∼Oð1Þ.
There are several peculiar features of the Carrollian fluid.

First, while the fluid velocity vi → 0 in the c → 0 limit, the
momentum density flux Pi ¼ T0

i is nonzero when wi ≠ 0.
In other words, momentum density flux is not related to the
fluid velocity. This is in conjunction with the result in [55],
which claims that a Carollian particle cannot move. Their
momentum density andUð1Þ current expectation value can,
nevertheless, be nonzero and can be transported by a
diffusion process, as we will show in Sec. V.
Second, the Ward identity of the Carroll boost, Ti

0 ¼ 0,
puts the energy density flux to zero by construction. This
makes the notion of the Landau frame in (1.7) rather
obscure. Nevertheless, as one obtains explicit constitutive
relations for the Carrollian fluid via the Lorentz fluid, some
of the former’s properties are inherited from the latter. For
example, the Lorentzian Eckart frame condition jμ ¼ 0

persists as one takes c → 0 limit, just as what one would
expect. We note, however, that we cannot relate these
resulting frames to one-another using a shift in μ, T and wμ,
which wewill soon show in Sec. III C 2. This is curious, but
does not change the fact that we have a self consistent
Carroll fluid. We will also present the explicit constitutive
relations in Sec. III C 2 and, in Sec. V, we present a study of
the stability of the resulting fluids.

C. Explicit constitutive relations

From a perspective of a unified framework and in the
spirit of [35], we present a translationally and spatial
rotationally invariant fluid, including a Uð1Þ symmetry
as well, from which we can reproduce the constitutive
relations for Bargmann and Carroll, by invoking the
relevant (boost) Ward identities. We can also reproduce
a specific fluid without boost invariance. The constitutive
relations of such a unified fluid can be given by

Tμ
ν ¼ −Ẽ1uμτ̄ν − Ẽ2τ

μτ̄ν þ P1Πμ
ν þ P2ðδμν − τμτ̄μÞ

þM1uμΓν þM2τ
μwν

þ iμuν − qμ0τ̄ν þ uμq̄1ν þ τμq̄2ν þ tμν;

Jμ ¼ N 1uμ þN 2τ
μ þ jμ; ð3:26Þ

where Γν ≔ uν − v2τ̄ν and tμν is traceless. In the current
context we define Πμ

ν ¼ δμν − uμτ̄ν and uμ ¼ hμνuν. The
introduced scalars, vectors, and tensor above are defined in
the same vain as the relativistic case, see text below
Eq. (3.3), with respect to taking into account the gradient
expansion. From the thermodynamics point of view, we
have a slightly more general first law and Euler relation
than in the relativistic case:

dẼ ¼ Tdsþ μdn−
1

2
ρdv2; ẼþP¼ Tsþ μn; ð3:27Þ

where ρ is generalized mass density [28]. Since there is
a priori no boost symmetry, this generalized mass density
can be thought of as a chemical potential. The frame
transformation of the constitutive relation in (3.26) can be
found in Appendix.
Finally we comment on the entropy current constraint

[6], as presented in Eq. (1.5). We can typically express the
entropy current divergence ∂μsμ in terms of the constitutive
relations. This especially means that ∂μsμ is expressed in
terms of transport coefficients such as viscosity. Requiring
∂μsμ ≥ 0 for all possible fluid configurations (not just on-
shell), implies conditions on the transport coefficients. This
condition was explicitly checked for all fluids used in this
note, except for the Carrollian fluid. However, since
the Carrollian fluid is a limit of the Lorentzian fluid, for
which we did apply this entropy current condition, it is
reasonable to assert that the Carrollian fluid satisfies the
entropy current condition.

10In some sense the Carroll algebra is already extended since
one has ½Qi; Tj� ¼ δijH, where H is the Hamiltonian.
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1. Bargmann constitutive relations

As a result of Milne or Galilean boost invariance, we
obtain the Ward identity T0

i ¼ mJi. Here m is the particle
mass, since typically Jμ is considered to be related to particle
number conservation in this setup. As a result: ρ ¼ mn.
Using the above relation between ρ and n, we can rewrite

Eq. (3.27) to be

dÊ ¼ Tdsþ μ̂dn; Ê þ P ¼ Tsþ μ̂n; ð3:28Þ

where we redefined

Ê ¼ Ẽ þ 1

2
mnv2; μ̂ ¼ μþ 1

2
mv2: ð3:29Þ

Let us now give the constitutive relations of this fluid, using
the framework presented by the more general fluid in
Eq. (3.26). For a Bargmann fluid, in the here considered
frames, one finds [34]

Ẽ1 ¼ Ẽ; P1 ¼ P − ζ∂λuλ;

M1 ¼ mN 1 ¼ n; tμν ¼ ησμν; ð3:30Þ

where σμν ≔ limc→∞Σμ
ν ¼ hμαðτ̄νhβρuρ − Pβ

νÞð∂αuβ þ
∂βuα − 2

d hαβ∂λuλÞ, Pμ
ν ¼ hμαhαν, and Ẽ2 ¼ P2 ¼ M2 ¼

N 2 ¼ q2ν ¼ 0. In the Eckart frame one finds

iμ ¼ jμ ¼ 0; qμ0 ¼ −κhμα∂αT; q̄1ν ¼ 0: ð3:31Þ

Similar to the Lorentz case, the Eckart frame is defined as
having vanishing particle density flux. For the Landau
frame it is found that

iμ¼jμ¼Vμ; qμ0¼
1

2
v2Vμ; q̄1ν¼ðhνλ− τ̄νuλÞVλ; ð3:32Þ

with Vμ ¼ −σuν∂νuμ − σTPμ
λ∂λ μ̂

T. Furthermore, requiring
that he frame-independent combinations of iμ, jμ, qμ, q̄1ν
are invariant, we find that κ ¼ σðÊ þ PÞ2=ðn2TÞ. Further
details on frame transformations in the current language
can be found in Appendix or in the language of the Milne
invariant quantities of Sec. III B 1 in [34]. The general
frame is given by

iμ ¼ jμ ¼ Vμ; qμ0 ¼ −
1

2
v2Vμ − κhμα∂αT;

q̄1ν ¼ ðhνλ − τ̄νuλÞVλ: ð3:33Þ

In this frame, κ and σ are independent. In all the here
presented cases κ, σ, ζ, and η are positive, due to explicit
check of the entropy current.

2. Carroll constitutive relations

ACarrollian fluid has to obey the Ward identity Ti
0 ¼ 0.

In other words: the energy density flux of a Carrollian fluid
always vanishes. The thermodynamics are given by

dẼ ¼ Tdsþ μdn; Ẽ þ P ¼ Tsþ μn; ð3:34Þ

since v2 → 0. The constitutive relations can be fit into the
framework in Eq. (3.26) using

Ẽ2 ¼ Ẽ; P2 ¼ P − ζ∂ρ

�
wρ þ 1

2
w2τρ

�
;

M2 ¼ Ẽ þ P; N 2 ¼ n; iμ ¼ qμ0 ¼ 0;

tμν ¼ −η
�
Π̃μρ∂ρwν þ hμρΠ̃σ

ν∂σwρ þ τμwρΠ̃σ
ν∂σwρ

−
2

d
Π̃μρhρν∂λ

�
wλ þ 1

2
w2τλ

��
; ð3:35Þ

with Ẽ1¼P1¼M1¼N 1¼ q̄1ν¼0, Π̃μ
ν ¼ limc→0Δμ

ν ¼
δμν − τμτ̄ν þ τμwν, and Π̃μν ¼ limc→0Δμν ¼ hμνþw2τμτν þ
τμwνþ τνwμ. One finds that these Carroll projectors are
transverse to τμ and τν − wν. The results for these con-
stitutive relations are obtained by taking c → 0, such that
the result automatically satisfies the entropy production
constraint.
Starting from the Landau frame in the Lorentzian fluid,

one can obtain the Carrollian constitutive relations using
(3.24). The resulting first derivative terms can be written as

q̄2ν ¼ 0; jμ ¼ −σΠ̃μν∂ν
μ

T
: ð3:36Þ

If, instead, we take c → 0 limit, starting from Eckart frame
of Lorentzian fluid, we find that

q̄2ν ¼ −κð∂νT − τ̄ντ
α∂αT þ Tτλ∂λwν þ wντ

α∂αTÞ;
jμ ¼ 0: ð3:37Þ

We retain the relation κ ¼ σðẼ þ PÞ2=ðn2TÞ. In the case
where the limit c → 0 is taken from the Lorentzian fluid’s
general frame, we have

q̄2ν ¼ −κð∂νT − τ̄ντ
α∂αT þ Tτλ∂λwν þ wντ

α∂αTÞ;
jμ ¼ −σΠ̃μν∂ν

μ

T
: ð3:38Þ

Here κ and σ are in principle independent. In all cases
here, κ, σ, η, and ζ are non-negative due to the positivity
of ∂μsμ.
We want to focus some attention to the choice of frames

in the c → 0 contraction. In order to call the Landau frame
and Eckart frame, as presented above, true frame choices
of a Carroll fluid, these frames should be connected
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by a frame transformation, which can be induced by
invoking [10]

T → T þ ðT; μ→ μþ ðμ; wμ → wi þ ðwi; ð3:39Þ

where terms accompanied by ð denote those terms to be of
first order in derivatives. Focusing on the influence of this
transformation on Jμ, we see

JμðT þ ðT;μþ ðμþwiþ ðwiÞ ¼ ðnþ ðnÞτμ þ jμ þOð∂2Þ
ð3:40Þ

where N 2ðTþðT;μþðμ;wiþðwiÞ¼nþðnððT;ðμ;ðwiÞþ
Oð∂2Þ. Thus, using a transformation as in (3.39), which
enables frame transformations, one is only able to fix the
zeroth component j0 of jμ. In other words, the Landau
frame and Eckart frame presented above cannot be related
by a frame choice, since this would require changing the i
component of ji. This issue ought to be sorted out by
constructing a Carroll fluid directly, rather than using
reductions from a Lorentzian fluid. However, that is beyond
the scope of this paper.

3. A more general fluid: Relaxing the boost constraint

In [35], a static fluid without (necessarily) imposing
boost symmetry, but with translational and rotational
invariance, was studied. This was done in a linearized
setting, where the fluid background velocity was put to
zero, i.e., uμ ¼ τμ þ δuμ. In order to fit the results of [35] in
the currently used framework, we restricted ourself to the
case where Ẽ2 ¼ 0, P2 ¼ 0, M2 ¼ 0, N 2 ¼ 0, q̄2ν ¼ 0 in
(3.26). One obtains the following linearized constitutive
relations

Tμ
ν ¼ −ðẼ þ δẼ1Þτμτ̄ν þ ðPþ δP1ÞPμ

ν

− ðẼ þ PÞδuμτ̄ν þ ρτμδuν þ τμδq̄1ν − δqμ1τ̄ν;

Jμ ¼ nτμ þ nδuμ þ δN 1τ
μ þ δjμ; ð3:41Þ

where δ denotes that an object is exactly of order linear
in derivatives (all others are constants). It turns out that
δjμ ¼ 0 is equivalent to the Landau frame, whereas δqμ ¼ 0
is equivalent to Eckart frame. In both frames we have

Ẽ1¼ Ẽ; P1¼P−ζ∂λuλ; M1¼ρ; N 1¼n; ð3:42Þ

q̄1ν ¼ −π̄∂tδuν þ ᾱTPα
ν∂αδ

μ

T
; δẼ1 ¼ δN 1 ¼ 0;

δP1 ¼ −ζ̄∂κδuκ; δtμLν ¼ ηδσμν: ð3:43Þ

Now one has the relations

ζ¼ ζ̄þfðãT ; ãμ
T
Þ; π ¼ π̄− ãT ; α¼ ᾱ− ãμ

T
; ð3:44Þ

where ãT and ãμ
T
are some functions of aðT; μTÞ, which is a

nondissipative transport coefficient. That means that
aðT; μTÞ, and thus also ãT and ãμ

T
, does not appear in the

entropy current and therefore is not restricted to any
specific range of values. Here fðãT ; ãμ

T
Þ is some function

of the two arguments and various thermodynamic quan-
tities. This object will not play any role in our further
analysis.
Furthermore we have dissipative transport coefficients:

ζ̄ ≥ 0, η ≥ 0, π̄ ≥ 0, σ ≥ 0, ᾱ2 ≤ π̄σ. These bounds on the
transport coefficients are found by examining the entropy
current as done in [35]. In the Landau frame (δqμ ¼ 0) one
finds

δjμ ¼ ᾱ∂tδuμ − σThμν∂νδ
μ

T
;

δq̄1ν ¼ −π̄∂tδuν þ ᾱTPα
ν∂αδ

μ

T
: ð3:45Þ

We can construct the Eckart frame by considering a
transformation of variables from the results of the
Landau frame, of which the technical details can be found
in Appendix. For the Eckart frame (δjμ ¼ 0) we find

δq̄1ν ¼ −
�
π̄ þ ᾱ

ρ

n

�
∂tδuν þ

�
ᾱþ σ

ρ

n

�
TPα

ν∂αδ
μ

T
;

δqμ1 ¼
Ẽ þ P
n

�
ᾱ∂tδuμ − σThμν∂νδ

μ

T

�
: ð3:46Þ

In Sec. VI, we consider the stability conditions for this
fluid. Furthermore, we can reproduce the Bargmann and
Lorentz results directly, by applying the relevant Ward
identities (Carroll can be obtained by employing the
familiar c → ∞ contraction). For the different boost cases,
the frame choices coincide with what is done for the more
general fluid, due to being in a linearized and static regime.

IV. INSTABILITIES OF FLUIDS WITH
GALILEAN BOOST SYMMETRIES

In this section, we study the spectrum of the fluid with
Bargmann symmetry. We will focus on a fluid that lives in
flat 3þ 1 spacetime dimensions. As discussed in Sec. III,
choosing the Eckart or Landau frame in the Lorentzian
fluid and taking c → ∞, results in different constitutive
relations from taking c → ∞ first and then choosing the
frame in the Bargmann fluid. To keep the physical picture
consistent, we shall refer to the Eckart frame in this section
as the theory with Jμ ¼ ñuμ, without a derivative correction
after taking c → ∞ limit. Similarly, the Landau frame will
refer to a theory with Galilean boost invariance where the
Milne invariant energy density Ẽμ receives no derivative
corrections. Their relations with frame choices in the
Lorentzian fluid are discussed in Sec. III B.
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It turns out that the Landau frame in this theory is
unstable even when the fluid is static and homogeneous.
The Eckart frame, on the other hand, is stable and remains
so when the fluid acquires a finite momentum. In hindsight,
the stability of the Bargmann fluid’s Eckart frame is not
surprising since it reproduces precisely the Navier-Stokes
equations, as is well known. What is more interesting, is
that a general frame of nonrelativistic (Bargmann) fluid,
like the relativistic fluid, is unstable. It turns out that the
Eckart frame is a special case.

A. Landau frame

We follow the standard procedure of linear perturbation
in, e.g., [56], namely

λðt; xiÞ ∼ λþ δλe−iωtþikixi ; λ ¼ fT; μ̂; vig; ð4:1Þ

where the other thermodynamic quantities, such as Ê, P, n
depend only on T and μ̂. We also set m ¼ 1 for simplicity.
Let us first focus on the transverse fluctuations, consisting
of δvi⊥ which is a fluid velocity in the direction
perpendicular to wave vector ki. The spectrum for trans-
verse momentum of the Bargmann fluid in this frame is
governed by the following polynomial

0¼ωð−inþωσÞþ ikiviðnþ2iωσÞþk2ðηþv2σÞ; ð4:2Þ

where vi and v2 ¼ vivi correspond to the background
velocity of the fluid. Solving for ωðkÞ, we find that it
consists of two modes

ω−⊥ ¼ kivi − i
�
η

n

�
k2 þOðk3Þ;

ωþ⊥ ¼ kivi þ i

�
n
σ

�
þ i

�
η

n

�
k2 þOðk3Þ: ð4:3Þ

The second pole, ωþ⊥, is the unphysical unstable mode,
analogous to the one in Lorentzian fluid’s Eckart frame, as
pointed out in [11]. Unlike the Landau frame in the
Lorentzian fluid, here vi → 0 is not a singular limit and
we can simply take vi → 0 in Eq. (4.3), in order to obtain
the spectrum for the fluid at rest. There, we see that
the positive imaginary part still persists in ωþ⊥, which
indicates that the theory is unstable even around a static
configuration.
Let us also look at the longitudinal fluctuations consist-

ing of fδT; δμ̂; δvikg. For simplicity let us choose ki ¼
ðk; 0; 0Þ and the background velocity vi ¼ ðv; 0; 0Þ. The
spectrum of modes in the longitudinal fluctuations is
governed by the quartic equation in ω. To see this, one
can write down the Fourier transformed equations of
motion as

Mðω; kÞ

0
B@

δT

δμ̂

δvx

1
CA ¼ 0; ð4:4Þ

where the matrix Mðω; kÞ ¼ −iωAðω; kÞ þ ikBðω; kÞ can
be written as

A ¼

0
B@

α1 þ iðμ̂σT Þkv α2 þ iσkv α3v

χ21 þ iðμ̂σT Þk χ22v − ikσ α3

χ21 χ22 0

1
CA; ð4:5Þ

where functions α1 ¼ Tχ11 þ χ12ðμ̂þ v2=2Þ, α2 ¼ Tχ12þ
χ22ðμ̂þ v2=2Þ, and α3 ¼ nþ iσðω − kvÞ. The matrix B
can be written as

B ¼

0
B@

α1vþ iðμ̂σ
2T kv

2Þ α2vþ i σ
2
kv2 β

sþ χ21v2 þ 2iðμ̂σT Þkv nþ χ22v2 − 2iσkv 2α3v − iγk

χ21vþ iðμ̂σT Þk χ22v − iσk nþ iσðω − kvÞ

1
CA: ð4:6Þ

Here β ¼ Ê þ Pþ 3
2
nv2 − iγkv − iσv2ðω − kvÞ, γ ¼

ζ þ 4η=3. The susceptibility matrix is defined via
χ11 ¼ ð∂s=∂TÞμ̂, χ12 ¼ ð∂s=∂μ̂ÞT , χ21 ¼ ð∂n=∂TÞμ̂, and
χ22 ¼ ð∂n=∂μ̂ÞT .
The spectrum can be determined by taking det½M� ¼ 0,

which results in a quartic equation in ω due to the ω
dependence in A. This implies that there are four solutions
to this system. There are two complex solutions corre-
sponding to the sound modes and one purely imaginary
solution corresponding to the thermoelectric diffusion (see,

e.g., [10,57] for discussion). The other mode is gapped and
contains a positive imaginary part, its spectrum can be
written as

ωþ
k ¼ i

�
ρ

σ

�
þkvþ i

�
γ

n
þσχ22ðÊþPÞðÊþPþ2nv2Þ

n2T2detχ

�
k2

þOðk3Þ; ð4:7Þ

which also leads to a linear instability.
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B. Eckart frame

This constitutive relation is the one used in the majority
of [6] and, in the limit where n ≫ T, is nothing but the
standard Navier-Stokes equations found in the literature.
This is a very successful effective description of everyday
phenomena and exhibits no artificial instabilities of the
kind discussed in this work.
In order to explicitly see the linear stability, we consider

the same setup as in the Landau frame. First, let us look at
the perturbation around the fluid with a constant velocity
vi ≠ 0. The equation of motion and the spectrum can be
found in, e.g., [6] and we will not repeat it here. It turns out
that the spectrum in the transverse channel is linear in ω
unlike in the Landau frame, and yields the standard
diffusion dispersion relation11

ω⊥ ¼ kivi − i

�
η

n

�
k2 þOðk3Þ: ð4:8Þ

In the longitudinal channel, the equation that governs the
spectrum is now a cubic equation due to the absence of a
term proportional to ωσ in A. Unlike the Landau frame in
(4.5), we have:

AEckart ¼ ALandaujσ¼0;

BEckart ¼ BLandaujσ¼0 þ ik

0
B@

κ 0 0

0 0 0

0 0 0

1
CA; ð4:9Þ

The determinant of 3 × 3 matrix M ¼ −iωAþ ikB there-
fore yields a cubic polynomial inω, indicating that there are
only three poles in the correlation functions. These are the
sound mode and the thermoelectric diffusion. There are no
unstable modes in the spectrum.

C. General frame

One can also analyze the spectrum of the theory without
choosing either Landau or Eckart frame. The spectrum for
transverse fluctuations is identical to those in Landau frame,
namely Eq. (4.3) and exhibit the same instability. Similarly,
the equation of motion for the longitudinal fluctuations
can be written in the same form as Eq. (4.4). Writing
M ¼ −iωAþ ikB, the matrices A, B are

A¼ALandau; B¼BLandauþ iþ ik

0
B@
κ 0 0

0 0 0

0 0 0

1
CA; ð4:10Þ

where ALandau, BLandau are taken from (4.5) and (4.6). As in
the Landau frame case, the spectrum in the longitudinal
channel is governed by the quartic polynomial of ω and
yields the same unstable mode as in (4.7).
We may also think of the Eckart frame as a limit where

σ → 0. It turns out that this choice of parameter is a singular
limit. This can be easily seen from the spectrum of the
transverse channel spectrum in Eq. (4.3) and the unstable
pole in the longitudinal channel Eq. (4.7). The unstable
pole becomes more unstable as we approach σ → 0 limit as
ω → þi∞ in the complex ω-plane. The situation is
opposite to the Lorentzian fluid, where the same scenario
occurs as one moves from the general to the Landau frame
[11] instead of the Eckart frame.

V. INSTABILITIES OF FLUIDS
WITH CARROLLIAN BOOST

We analyze the spectrum of the Carroll fluids given in
Sec. III C 1, starting from Landau frame followed by Eckart
frame and end with the general frame. Recall that these
frames were defined via the Lorentzian parent. We do this
in 3þ 1 dimensional flat spacetime.
To summarize our findings: the Landau frame with Pi ¼

T0
i ¼ 0 is stable, but becomes unstable when Pi ≠ 0. The

Eckart frame is unstable even in the Pi ¼ 0 case. This
pattern resembles the instabilities of the Lorentzian fluid.
Wewould like to note the absence of any sound mode in the
Carrollian fluid. This is due to the fact that conservation of
energy density ∂μTμ

0 ¼ 0 implies that ∂0Ẽ ¼ 0 and there-
fore it relates the fluctuation of temperature δT and the
chemical potential δμ. The only nontrivial dynamics of δT
(or δμ depending on our preferred choice of variables), can
be made to decouple from the longitudinal momentum.
We shall elaborate further on the absence of the sound

mode. To do this, it is convenient to write down the
thermodynamic quantities as functions of energy density
Ẽ and the Uð1Þ density n. The Carrollian Ward identity
implies that the energy density fluctuation δẼ ¼ 0. As a
result, the dynamical variables are δn and δwi in the
longitudinal channel. In the case where the background
inverse velocity wi ¼ 0, we find the following equations of
motion

0 ¼
�
−iω

�
−ikð∂T∂nÞẼκ ðẼ þ Pþ iωTκÞ

1 0

�

þ ik

� ð∂P∂nÞẼ −ikðζ þ 4
3
ηÞ

0 −ik σ
T2 ðT ∂μ

∂n − μ ∂T
∂nÞ

���
δn

δwx

�
ð5:1Þ

We should note the difference between this and the
equations of motion for the longitudinal channel in the
Bargmann and Lorentzian fluid. First, in the ideal
Carrollian fluid (where ζ, η, κ, σ vanish), the only solution
is ω ¼ 0, instead of ω ¼ �csk where cs is the speed of

11If we now compare the polynomial above to the one obtained
in (4.2) for the Landau frame, one notices that the analytic
properties of ω are different, i.e., there can be a branch cut present
or not, due to the possible square root in the solution. Asmentioned
in the Introduction, this also occurs in the Lorentzian fluid.
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sound. This signifies the fact that when the first order
correction is turned on, we find that are no modes for
which Reω ¼ 0.

A. c → 0 limit of Lorentzian fluid in Landau frame

The resultingmodes depend strongly onwi, the introduced
inverse velocity. A similar feature is observed in relation to
the dependence of fluid velocity in a Lorentzian fluid in the
Landau frame. Let us first look at the case where the fluid is
“at rest,” namely when wi ¼ 0. We find that there are three
diffusive modes. It turns out that the condition Ti

0 ¼ 0
enforces the relation between δT and δμ and their fluctua-
tions to decouple from the longitudinal velocity. The
dispersion relations for the three diffusive modes are

ω1 ¼ −i
η

Ẽ þP
k2; ω2 ¼ −i

ð∂Ẽ∂TÞμTσ=T
ð∂Ẽ∂TÞμð∂n∂μÞT − ð∂Ẽ∂μÞTð∂n∂TÞμ

k2;

ω3 ¼ −i
ζ þ 4

3
η

Ẽ þ P
k2: ð5:2Þ

These modes fω1;ω2;ω3g correspond to shear diffusion,
density diffusion, and the longitudinal momentum diffusion
respectively. The value of ð∂Ẽ∂TÞμð∂n∂μÞT − ð∂Ẽ∂μÞTð∂n∂TÞμ > 0,
since it is nothing but the determinant of the susceptibility
matrix that relates fluctuations ðδμ; δTÞ to ðδẼ; δnÞ. The
heat capacity in (5.2) is supposed to be positive [10].
Once the fluid acquires a finite inverse velocity, say

wi ¼ ðwx; 0; 0Þ, some of these diffusive modes will drive
the instabilities, depending on values of thermodynamic
quantities, similar to what happens in the Lorentzian fluid.
Let us first consider the mode due to the shear diffusion,
obtained by solving for wi perpendicular to ki. We find that
the spectrum is now described by a quadratic equation in ω
which yields the solutions

ω−
1 ¼ −i

η

Ẽ þ P
k2;

ωþ
1 ¼ 2wi

w2
ki þ i

Ẽ þ P
ηw2

þ i
η

Ẽ þ P
k2: ð5:3Þ

Hence, the first order Carrollian fluid in the Landau frame
is unstable when wi ≠ 0. One can consider the spectrum of
the two other diffusive modes, in the presence of nonzero
wi, and find that their spectrum now contains a mode with
positive imaginary part, namely

ωþ
2 ¼ 2wi

w2
ki þ i

ð∂Ẽ∂TÞμð∂n∂μÞT − ð∂Ẽ∂μÞTð∂n∂TÞμ
ð∂E∂TÞμTσw

2=T

þ i
ð∂E∂TÞμTσ=T

ð∂Ẽ∂TÞμð∂n∂μÞT − ð∂Ẽ∂μÞTð∂n∂TÞμ
k2; ð5:4Þ

and similarly for the longitudinal momentum diffusion

ωþ
3 ¼ 2ðζ þ 4

3
ηÞwi

ðζ þ 4
3
ηÞw2

ki þ i
ðẼ þ PÞ

ðζ þ 4
3
ηÞw2

þ i
ζ þ 4

3
η

Ẽ þ P
k2: ð5:5Þ

Note that all these modes ωþ
1 , ωþ

2 , ωþ
3 can still cause

instabilities even when ki ¼ 0. Its positive real part is
also proportional to 1=w2, indicating that the limit where
wi → 0 is a singular limit for which the pole ωþ → þi∞
and makes this entire mode decouple. This is the same
singular limit observed in Landau frame of Lorentzian fluid
in [11].

B. c → 0 limit of Lorentzian fluid in Eckart frame

Taking the c → 0 limit of the Lorentzian fluid’s Eckart
frame puts even stronger constraints on the Carrollian fluid
than in the Landau frame. In this case, both ∂0Ẽ and ∂0ñ
vanish. This implies that there is no diffusive mode coming
from the temperature and chemical potential fluctuations.
Nevertheless, the nontrivial linearized dynamics can still be
found in the momentum correlators. It turns out, as in the
Lorentzian case, that the Eckart frame creates an instability
but the limit wi → 0 is no longer a singular limit. First, the
pole in the transverse momentum correlation function is

ωþ⊥ ¼ 2ηwi

ηw2 þ κT
ki þ i

Ẽ þ P
ηw2 þ κT

− ω−⊥;

ω−⊥ ¼ −i
η

Ẽ þ P
k2: ð5:6Þ

Similarly, the longitudinal momentum contains two poles.
One of them describes momentum diffusion, while the
other one causes the instability

ωþ
k ¼ 2ðζ þ 2ηÞkiwi

ðζ þ 4
3
ηÞw2 þ κT

þ i
Ẽ þ P

ðζ þ 4
3
ηÞw2 þ κT

− ω−
k ;

ω−
k ¼ −i

ζ þ 4
3
η

Ẽ þ P
k2: ð5:7Þ

Hence, the Carrollian fluid in the Eckart frame is also
unstable, even when Pi ∼ wi ¼ 0. We can also see that, not
only the Eckart frame signals the instability in the wi ¼ 0
limit. This frame choice also changes the number of
diffusive poles in the spectrum, which are supposed to
be physical objects. The origin of this mismatch might be
the fact that from a Carroll point of view, the Eckart and
Landau frame seem not to be connected by a suitable
redefinition of parameters, as discussed in Sec. III B 2. The
definitions for what is Eckart and Landau frame in this
context is inherited from tracking the Lorentzian case.
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C. c → 0 limit of Lorentzian fluid in general frame

In the general frame, we treat κ and σ as general
variables. The general modes we obtain, are the density
diffusion (coming from the fluctuations in chemical poten-
tial or temperature)

ωþ
1 ¼ 2wi

w2
ki þ i

ð∂Ẽ∂TÞμð∂n∂μÞT − ð∂Ẽ∂μÞTð∂n∂TÞμ
ð∂E∂TÞμTσw

2=T
− ω−

1 ;

ω−
1 ¼ −i

ð∂Ẽ∂TÞμTσ=T
ð∂Ẽ∂TÞμð∂n∂μÞT − ð∂Ẽ∂μÞTð∂n∂TÞμ

k2: ð5:8Þ

The following modes are associated to longitudinal
momentum

ωþ
k ¼ 2ðζ þ 4

3
ηÞwi

w2ðζ þ 4
3
ηÞ þ κT

ki þ i
Ẽ þ P

w2ðζ þ 4
3
ηÞ þ κT

− ω−
k ;

ω−
k ¼ −i

ζ þ 4
3
η

Ẽ þ P
k2: ð5:9Þ

Finally, the following modes are coming from the trans-
versal channel (with multiplicity d − 1)

ωþ⊥ ¼ 2ηwi

ηw2 þ κT
ki þ i

Ẽ þ P
ηw2 þ κT

− ω−⊥;

ω−⊥ ¼ −i
η

Ẽ þ P
k2: ð5:10Þ

Putting σ ¼ 0 or κ ¼ 0, successfully reproduces the Eckart
frame and Landau frame, respectively. Only in the Landau
frame, one is able to find stability when Pi ∝ wi ¼ 0.

VI. STABILITY BEYOND BOOST SYMMETRY

The goal of this section is to research instabilities away
from boost symmetries, depending on frame choice. We
will analyze this using the linearized static fluid introduced
in Sec. III C 3.
Combing the input of the Landau frame (3.45) and

Eckart frame (3.46), we can compute eigenmodes for the
linearized spectrum in momentum space. If we consider
δui ¼ ðu; 0;…; 0Þ and ki ¼ ð0; k;…; 0Þ, we can isolate the
following two modes

ωþ ¼ i
ρ

A
þ i

η

ρ
k2; ω− ¼ −i

η

ρ
k2; ð6:1Þ

where

A ¼
	
π̄ − ãT ; for Landau frame

π̄ − ãT þ ðρn þ 1Þðᾱ − ãμ
T
Þ þ ρ

n σ; for Eckart frame:

ð6:2Þ

Since ImðωþÞ > 0 in (6.1), there will always be an insta-
bility (for small enoughmomentum k), unlessA ≤ 0. It turns
out that it is therefore, a priori, unclear whether a fluid,
without boost perse, is unstable or not. Let us now examine
what happens in various boost invariant scenarios.
Lorentz. For the Lorentzian case we have π̄ ¼ ᾱ ¼ ãT ¼

ãμ
T
¼ 0 and ρ ¼ Ẽ þ P, due to the Lorentz Ward identity

Ti
0 ¼ T0

i. It is immediate that the instability is absent (at
least for a static fluid) from the spectrum in Landau frame,
since A ¼ 0. However, in the Eckart frame we find that the
coefficient becomes

A ¼ π̄ þ
�
ρ

n
þ 1

�
ᾱþ ρ

n
σ ¼ Ẽ þ P

n
σ; ð6:3Þ

which in principle is strictly positive. As a result, the
instability persists in the Eckart frame. By reinserting c and
subsequently taking c → ∞, one is expected to retain the
same conclusions for Carroll.
Bargmann. For the Bargmann case π̄ ¼ −ᾱ ¼ σ,

ãT ¼ ãμ
T
¼ 0, and ρ ¼ n, due to theBargmannWard identity

T0
i ¼ mJi. It is immediately clear that the Landau frame

remains unstable. For the Eckart frame,we however find that
the coefficient

A ¼ π̄ þ
�
ρ

n
þ 1

�
ᾱþ ρ

n
σ ¼ ᾱþ σ ¼ 0; ð6:4Þ

which implies that the instability, for a static fluid, is absent
in the Eckart frame.
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Note added.—The work of [58], appeared in parallel, also
discussed frame choices of the fluid without boost which
overlap with Sec. III C 3 and Appendix of our manuscript.
Furthermore, Ref. [58] also extend the constitutive relations
for such fluid, from the case where fluid is at rest (discussed
in Sec. III C 3), to the case where it attains finite velocity.

APPENDIX: CHANGING FRAMES

The goal of this Appendix is to derive how we can switch
between frames for the fluid considered in Sec. III C 3.
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Specifically, we start from the constitutive relations given
in (3.26) with Ẽ2 ¼ 0, P2 ¼ 0, M2 ¼ 0, N 2 ¼ 0, q̄2ν ¼ 0

and Ẽ1 ¼ Ẽ, P1 ¼ P, M1 ¼ ρ, q̄2ν ¼ q̄ν, N 1 ¼ n. The
result of this Appendix is Eq. (A9).
We will consider a general redefinition of the form

T→TþðT; μ→ μþðμ; uμ → uμþðuμ; ðA1Þ

where all terms with an ð are of order Oð∂Þ. If we apply
such a change of variables, we obtain, keeping up to Oð∂Þ
terms,

Tμ
νðT þ ðT;μþ ðμ; uμ þ ðuμÞ
¼ Tμ

νðT;μ; uμÞ− uμτνðẼþΔμ
νðP

þ ð−Ẽτν −Pτν þ ρΓνÞðuμ
− τνðq

μ
0 þ uμΓνðρþ ρuμðΓν þ uμðq̄ν þ ðtμν þOð∂2Þ;

JμðT þ ðT;μþ ðμ; uμ þ ðuμÞ
¼ JμðT;μ; uμÞ þ uμðnþ ðuμ þ ðjμ þOð∂2Þ; ðA2Þ

where we dropped all subscripts in order avoid cluttered
notation.
Again, terms with an ð are of order Oð∂Þ and share the

same symmetry properties as their “parent.” Because we
will be interested in linearization around a zero velocity
background, we can put iμ and ðiμ to zero without any loss
of generality, since these terms are always accompanied
by uν.
From thermodynamical considerations we can express

ðI ¼
�∂I
∂T

�
ðT þ

�∂I
∂μ

�
ðμþ

� ∂I
∂uμ

�
ðuμ; ðA3Þ

where I ∈ fẼ; n; P; ρg. We will use velocity to switch
frames, but ðμ and ðT are still free to choose. We make the
usual choice, to pick ðμ and ðT in such a way that ðẼ ¼ 0
and ðn ¼ 0. Notice that in the Bargmann case, mn ¼ ρ,
where m is particle mass, such that δρ ¼ 0 too.
In order to be able to make a choice of frame, we

express the changes in ðjα, ðP, ðtμν, ðq
μ
0 and q̄ν in terms of

ðuμ by requiring that Tμ
νðT þ ðT; μþ ðμ; uμ þ ðuμÞ ¼

Tμ
νðT; μ; uμÞ and JμνðT þ ðT; μþ ðμ; uμ þ ðuμÞ ¼

JμνðT; μ; uμÞ.
Let us consider the constitutive relations linearized

around a stationary background (i.e., uμ ¼ τμ þ δuμ), it
happens that the definition for Landau and Eckart frame for
Bargmann and Lorentz coincide. The Carroll case follows
from the Lorentzian one. We aim to eliminate ðuμ in terms
of other ‘ð’ objects. In order to do that, we first establish

jα ≔Δα
μJμ ¼ jαþnðuαþðjα;

⇒ ðjα ¼−nðuα;

P≔
1

d
Δν

μTμ
ν¼PþðPþ 1

d
ρΓνðuν;

⇒ ðP¼−
1

d
ρΓνðuν;

tμν ≔Δμ
ρΔσ

νTρ
σ −

1

d
Δρ

σTσ
ρΔμ

ν

¼ tμνþðtμνþρΔλ
νΓλðuμ−ρΓλðuλΔμ

ν;

⇒ ðtμν ¼ ρΓλðuλΔμ
ν−ρΔλ

νΓλðuμ;

qμ0 ≔−Δμ
ρuσTρ

σ ¼ qμ0þðqμ0þ ẼðuμþPðuμ;

⇒ ðqμ0 ¼−ðẼþPÞðuμ;
q̄νþMΓν ≔−Δσ

νūρTρ
σ

¼ q̄νþMΓνþΓνðρþρΔα
νðΓαþðq̄ν

⇒ ðq̄νþðρΓν ¼−ρΔi
νðui; ðA4Þ

where in the last line we have made use of the iden-
tity ðΓα ¼ ūαuiðui þ Δβ

αΔi
βðui.

A new frame (denoted by tilde) can thus be related to an
old frame (no tilde) via

Ẽ0 ¼ Ẽ ¼ Ẽ; N 0 ¼ N ¼ n; P0 ¼ P −
1

d
ρΓνðuν;

q̄0ν þM0Γν ¼ q̄ν þMΓν − ρΔi
νðui; ðA5Þ

j0μ ¼ jμ − nðuμ; q0μ ¼ qμ − ðeE þ PÞðuμ;
t0μν ¼ tμν þ ρΓλðuλΔμ

ν − ρΔλ
νΓλðuμ: ðA6Þ

By choosing δuμ ¼ 1
n j

μ, we can use the equations above to
relate the Eckart frame (denoted by subscript E) and
Landau frame (denotes by subscript L):

EE ¼ EL ¼ Ẽ; N E ¼N L ¼ n; PE ¼ PL −
1

d
ρ

n
ΓνjνL;

q̄EνþMEΓν ¼ q̄LνþMLΓν −
ρ

n
Δi

νjiL; ðA7Þ

jμE ¼ 0; qμE ¼ qμL −
Ẽ þ P
n

jμL;

tμEν ¼ tμLν þ
1

d
ρ

n
ΓλjλΔμ

ν −
ρ

n
Δλ

νΓλjμ: ðA8Þ

We finally obtain the relations between Landau and Eckart
frame

IE ¼ IL; δq̄Eν ¼ δq̄Lν −
ρ

n
hνμδj

μ
L;

δqμE ¼ −
Ẽ þ P
n

δjμL; ðA9Þ
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where δ denotes a linearized fluctuation, the capital letters as subscript denote respective frame and
I ∈ fẼ; P; n; ρ; δẼ; δN ; δP; δtμνg. The Eckart frame implies δjμE ¼ 0 and the Landau frame implies δqμL ¼ 0.
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