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Exact analytic solutions of static, stable, nonplanar Bogomol’nyi-Prasad-Sommerfield (BPS) domain
wall junctions are obtained in extended Abelian-Higgs models in (Dþ 1)-dimensional spacetime. For
specific choice of mass parameters, the Lagrangian is invariant under the symmetric group SDþ1 of degree
Dþ 1 spontaneously broken down to SD in vacua, admitting SDþ1=SD domain wall junctions. In D ¼ 2,
there are three vacua and three domain walls meeting at a junction point, in which the conventional
topological charges Y and Z exist for the BPS domain wall junctions and the BPS domain walls,
respectively, as known before. In D ¼ 3, there are four vacua, six domain walls, four junction lines on
which three domain walls meet, and one junction point on which all the six domain walls meet. We define a
new topological charge X for the junction point in addition to the conventional topological charges Y and Z.
In general dimensions, we find that the configuration expressed in theD-dimensional real space is dual to a
regular D-simplex in the D-dimensional internal space and that a d-dimensional subsimplex of the regular
D-simplex corresponds to a (D − d)-dimensional intersection. Topological charges are generalized to the
level-d wall charge Wd for the d-dimensional subsimplexes.

DOI: 10.1103/PhysRevD.102.065006

I. INTRODUCTION

Domain walls (or kinks) are the simplest topological
solitons separating discrete vacua or ground states [1–3],
often created in phase transitions associated with sponta-
neous breakings of discrete symmetries [4,5] in various
systems from small to large such as magnets [6], graphenes
[7], carbon nanotubes, chiral p-wave superconductors [8],
Bose-Einstein condensations of ultracold atomic gases [9],
helium superfluids [10–12], nuclear matter [13,14], as well
as quark matter [15] relevant for interior of neutron stars,
and our Universe [4,16]. In cosmology, if they appear at a
phase transition in the early Universe, then there happens
the so-called domain wall problem [16], that is, the domain
wall energy dominates Universe to make it collapse.
However, if the tension of the domain walls is sufficiently
low, cosmological domain wall networks are allowed and
are suggested as a candidate of dark matter and/or dark

energy [17]. In helium superfluids, such domain walls are
created in a similar manner, thereby simulating cosmo-
logical phase transitions [11,12].
On the other hand, it is widely known that supersym-

metry (SUSY) is very intimate notion with various topo-
logical solitons such as domain walls, vortices, monopoles,
and instantons etc. [18]. As one of fascinating features,
SUSY allows for topological solitons to be the so-called
Bogomol’nyi-Prasad-Sommerfield (BPS) states [19,20],
which attain the minimum energy for a fixed boundary
condition or topology. The BPS solitons satisfy first order
differential equations, the so-called BPS equations, rather
than equations of motion which are of second order
differential equations, and they preserve a fraction of
SUSY. Their topological charges are directly connected
to central charges of SUSY algebras. The BPS domain
walls in 3þ 1-dimensional spacetime have been exten-
sively studied in N ¼ 1 SUSY theories [21–36] and N ¼
2 SUSY theories [37–54] (see Refs. [18,55–57] as a
review). They preserve a half of SUSY and thereby are
called 1

2
BPS states, and the corresponding SUSY central

(tensorial) charge [23,25,58] is conventionally expressed as
Z. In the models with three or more discrete vacua, there
can appear multiple domain walls. The multiple domain
walls remain as the 1

2
BPS states as long as they are all

parallel.
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In general, it is more natural that the multiple domain
walls are not parallel. If all the domain walls have one
spatial dimension (say the z-axis) in common, domain
walls extend to two-dimensional (2D) space (the x-y plane).
The domain walls meet at a line to form a domain wall
junction. We call these two-dimensional (of codimensions
two) configurations planar domain wall junctions. In SUSY
models, the planar domain wall junctions preserve a quarter
of supersymmetry [59–61]. They are called the 1

4
BPS states

and are accompanied with a junction topological charge Y
in addition to Zm (m ¼ 1, 2).1 The 1

4
BPS domain wall

junctions have been also studied in N ¼ 1 SUSY models
[33,71–79] andN ¼ 2 SUSYmodels [80–89]. The domain
wall junctions are similar to vortex strings, but the junction
charge Y was found to negatively contribute to the total
energy [73–75] in contrast to the domain wall charge Z1;2

always contributing positively to the total energy. Thus, the
junction charge Y should be understood as a sort of binding
energy bonding the domain walls [73,75] rather than
independent topological solitons. Planer network of the
domain walls and junctions were studied as non-BPS states
in Refs. [90,91]. Then, it was found that the N ¼ 2 SUSY
gauge models can have any kind of planar domain wall
networks as the 1

4
BPS states [81,82], similarly to D-brane

networks [92,93].
In this paper, we study nonplanar BPS domain wall

junctions in which three or more domain walls having
angles meet at a point. Namely, we consider the domain
wall junctions which are essentially D-dimensional in
Dþ 1-dimensional spacetime for D ≥ 3. The planar
domain wall junctions are N-pronged junctions (N ≥ 3)
of codimension two typically appearing when the models
under consideration possess a ZN symmetry spontaneously
broken in the vacua; see, for example, [59,60,71,72,74].
Note that the ZN symmetry is an Abelian group naturally
associated with a discrete rotation group of a regular N-gon
in two dimensions. The ZN is a subgroup of SOð2Þ rotation
of the two-dimensional space.
In this work, we generalize this to the higher dimensions.

A symmetry group preserving a D-dimensional object
(D ≥ 3) is usually non-Abelian since it is a subgroup of
SOðDÞ. For instance, the symmetry group of a regular
tetrahedron is the symmetric group of degree four S4 which
is non-Abelian. Inspired by the N ¼ 2 SUSY QED in 3þ
1 dimensions, we study a Uð1Þ gauge theory coupled with
NF charged scalars and N0

F reals scalars in (Dþ 1)-
dimensional spacetime. It turns out that the vacuum
structure of the model is indeed N0

F dimensional. Then,
to obtain BPSD-dimensional domain wall junctions, we set

N0
F ¼ D and derive the BPS equations. Interestingly,

the BPS equations involve arbitrary D signs ξm ¼ �1

(m ¼ 1; 2;…; D). Therefore, there exist 2D different sets of
the BPS equations according to choices of ξm. When
D ¼ 2, there are four sets and we find they are identical
to four sets of 1

4
BPS equations in N ¼ 2 SQED studied in

Refs. [80–86]. In the SUSY context, the number four
comes from the number of way of selecting two among
eight supercharges.
The main result of this paper is to present exact analytic

solutions of nonplanar domain wall junctions in generic
Dþ 1-dimensional spacetime. For this purpose, we will
restrict ourself to the models of NF ¼ Dþ 1 with the
largest symmetry, that is the symmetric group SDþ1. The
previously known exact solution of the three-pronged
planar domain wall junction [80] corresponds to the case
of D ¼ 2. In the vacua, S3 is spontaneously broken to S2,
so that the vacuum structure is the coset S3=S2 consists of
three elements. We then construct a novel exact solution of
the three-dimensional domain wall junction connecting the
four different vacua for D ¼ 3. The model has the S4

symmetry spontaneously broken to S3. The vacua are the
coset S4=S3 with four elements. Reflecting the fact that the
symmetric group S4 is the symmetry group of the regular
tetrahedron, the vacua correspond to four vertices of the
tetrahedron. The configuration in the real space has the
same symmetric property S4=S3 as the vacua structure; it
consists of six domain walls. Two domain walls arbitrary
chosen from them glue along a line junction. There exist
four such junction lines, and all the junction lines meet at
one point. Correspondingly, the topological charges of the
domain walls and domain wall junction lines are Zm and
Ymn (m, n ¼ 1, 2, 3 and m > n), respectively, as before. In
addition, there is a new topological charge X for the
junction point. Although the topological charges Zm and
Ymn contribute to the energy density, the new topological
charge X does not. We then construct an exact solution of a
BPS SDþ1=SD domain wall junction in Dþ 1-dimensional
spacetime. We find several geometric properties of the
solution. The SDþ1=SD domain wall junction expressed in
the real space is dual to a regular D-simplex in the internal
space whose Dþ 1 vertices correspond to the vacua. A
d-face, a d-dimensional subsimplex (0 ≤ d ≤ D) of the
D-simplex (the 0-faces are the vertices, the 1-faces are the
edges, and so on) are dual to (D − d)-dimensional building
blocks of the configuration. For example, the 0-faces are
dual to the D-dimensional vacuum domains, the 1-faces to
the (D − 1)-dimensional domain walls, and so on. For
each d, we define a topological charge Wd of the level-d
(W1;m ¼ Zm,W2;mn ¼ Ymn, andW3;lmn ¼ Xlmn, and so on).
The symmetric group SDþ1 which is the symmetry group
of the regular D-simplex is isomorphic to the Coxeter
group of the type AD. The orthographic projection in two-
dimensional plane of the D-simplex is known as the
Coxeter plane of type AD. We find that the exact solution

1In N ¼ 2 SUSY theories, there are other 1
4
BPS states, vortex

strings ending on domain walls called D-brane solitons
[56,62–67], instantons inside vortices [68], and intersecting
vortices [69]. See Ref. [70] for classification of all possible 1

4

and 1
8
BPS solitons.
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of the SDþ1=SD domain wall junction provides the Coxeter
plane of the type AD when it is expressed in a two-
dimensional internal space.
This paper is organized as follows. In Sec. II, we present

our model, its symmetry structure and vacua. In Sec. III, we
derive BPS equations for domain wall junctions. In Sec. IV,
we construct a planar S3=S2 domain wall junction in
D ¼ 2, which is essentially a review of Ref. [80]. In
Sec. V, we construct a S4=S3 domain wall junction in
D ¼ 3. In Sec. VI, they are generalized to S4=S3 domain
wall junctions in D dimensions, and geometric properties
are discussed. Section VII is devoted to a summary and
discussion. The Appendix summarizes explicit expression
of the symmetric group S4 and the coset S4=S3.

II. THE MODEL, SYMMETRY, AND VACUA

A. The model

We study aUð1Þ gauge theory with NF charged complex
scalar fieldsHA (A ¼ 1; 2;…; NF) and N0

F real scalar fields
ΣA0

(A0 ¼ 1; 2;…; N0
F) in Dþ 1-dimensional spacetime.

The Lagrangian is given by

L ¼ −
1

4e2
FμνFμν þ 1

2e2
XN0

F

A0¼1

∂μΣA0∂μΣA0 þDμHðDμHÞ†

−
1

2e2
Y2 −

XN0
F

A0¼1

ðΣA0
H −HMA0 ÞðΣA0

H −HMA0 Þ†;

ð2:1Þ

where H is an NF component row vector made of HA,

H ¼ ðH1; H2;…; HNFÞ; ð2:2Þ

Y is a scalar quantity defined by

Y ¼ e2ðv2 −HH†Þ; ð2:3Þ

andMA0
(A0 ¼ 1;…; N0

F) are NF by NF real diagonal mass
matrices defined by

MA0 ¼ diagðmA0;1; mA0;2;…; mA0;NF
Þ: ð2:4Þ

The spacetime index μ runs from 0 to D, and Fμν is a Uð1Þ
gauge field strength. The coupling constants in the
Lagrangian in Eq. (2.2) are taken to be the so-called
Bogomol’nyi limit.2

Let us discuss the symmetry structure of our model.
When all the mass matrices are proportional to the unit
matrix, the flavor symmetry for H is SUðNFÞ. It reduces to

a subgroup according to degeneracy of the mass eigenval-
ues. LetmA be an N0

F vector whose components are the Ath
diagonal elements of MA0

s, namely,

mA ¼ ðm1;A; m2;A;…; mN0
F;A

Þ: ð2:5Þ

Then, the flavor symmetry SUðNFÞ is explicitly broken
maximally to Uð1ÞNF−1 when

mA ≠ mB; if A ≠ B: ð2:6Þ

When all the mass matrices are zero, there is a flavor
symmetry OðN0

FÞ acting on Σ ¼ ðΣ1;Σ2;…;ΣN0
FÞ.

When the masses are specially tuned, a discrete sym-
metry appears. This can be found by studying the following
term in the potential:

X
A0

ΣA0
HMA0

H† ¼
X
A0;A

ΣA0
mA0;AjHAj2 ¼ ΣTMjHj2��!

; ð2:7Þ

where M is an N0
F by NF matrix defined by

ðMÞA0;A ¼ mA0;A, and jHj2��!
is an NF vector defined by

jHj2��! ¼ ðjH1j2; jH2j2; � � � ; jHNF j2Þ. Thus, a transformation

Σ → UΣΣ, jHj2��!
→ UHjHj2��!

satisfying

UT
ΣMUH ¼ M ð2:8Þ

is an extra symmetry of L.
To illustrate such a discrete symmetry, let us give a

concrete example for the case of NF ¼ 3 and N0
F ¼ 2 with

MA0¼1 ¼ m diag

�
1; cos

2π

3
; cos

4π

3

�
;

MA0¼2 ¼ m diag

�
0; sin

2π

3
; sin

4π

3

�
; ð2:9Þ

which give

m1 ¼ mð1; 0Þ; m2 ¼ m

�
cos

2π

3
; sin

2π

3

�
;

m3 ¼ m
�
cos

4π

3
; sin

4π

3

�
: ð2:10Þ

This can equally be expressed in the matrix form as

M ¼ m

�
1 cos 2π

3
cos 4π

3

0 sin 2π
3

sin 4π
3

�
: ð2:11Þ

One can easily check that M is invariant under a set of the
following transformations:

2This does not immediately imply that the model can be made
supersymmetric by adding fermions. Only in certain cases, this
can be supersymmetric.
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½UΣ; UH� ∈

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

2
64� 1 0

0 1

�
;

0
B@

1 0 0

0 1 0

0 0 1

1
CA
3
75;
2
64
 
cos 2π

3
sin 2π

3

sin 2π
3

− cos 2π
3

!
;

0
B@

0 1 0

1 0 0

0 0 1

1
CA
3
75;

2
64� 1 0

0 −1

�
;

0
B@

1 0 0

0 0 1

0 1 0

1
CA
3
75;
2
64
 
cos 4π

3
sin 4π

3

sin 4π
3

− cos 4π
3

!
;

0
B@

0 0 1

0 1 0

1 0 0

1
CA
3
75;

2
64
 
cos 2π

3
− sin 2π

3

sin 2π
3

cos 2π
3

!
;

0
B@

0 0 1

1 0 0

0 1 0

1
CA
3
75;
2
64
 
cos 4π

3
− sin 4π

3

sin 4π
3

cos 4π
3

!
;

0
B@

0 1 0

0 0 1

1 0 0

1
CA
3
75

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

: ð2:12Þ

It is obvious that fUHg is the complete set of the symmetric
group of degree three S3, which is the group of all
permutations of a three-element set. Moreover, fUΣg is
the 2 by 2 matrix representation of S3. We should verify if
the other terms in the Lagrangian is invariant or not.
Clearly, both HH† and DμHðDμHÞ† are invariant under
any transformations fUHg. Then,

P
A0 HMA02H† is the

only term which we need to check. For the special mass
matrix given in Eq. (2.9), we have

X2
A0¼1

HMA02H† ¼ m2HH†; ð2:13Þ

and so it is also invariant. Henceforth, the global symmetry
of the Lagrangian is Uð1Þ2 × S3 in this special case.3

This kind of discrete symmetry will play an important
role when we construct an exact solution of a domain wall
junction.

B. Vacua

Since the scalar potential is positive semidefinite, a
classical vacuum of the theory is determined by V ¼ 0.
Thus, the vacuum condition reads

HH† ¼ v2; ΣA0
H −HMA0 ¼ 0: ð2:14Þ

In general, there are NF discrete vacua given by

hAi∶HB ¼ vδBA; ΣB0 ¼ mB0;A: ð2:15Þ

While we can specify the vacua by using eitherHA or ΣA0
, it

will turn out that ΣA0
is more useful and so we express the

vacua in the N0
F dimensional internal space spanned by ΣA0

.
The vacua are identical to the discrete points in the Σ space.
The hAi vacuum corresponds to the point specified by

hAi∶Σ ¼ mA; ð2:16Þ

where mA is the N0
F vector whose components are the Ath

eigenvalues of MA0
, namely, mA ¼ ðm1;A; m2;A;…; mN0

F;A
Þ.

Hence, the number of the discrete vacua depends only on
NF. Figure 1 shows three examples with NF ¼ 3 and
N0

F ¼ 1, 2, 3. Note that the vacua have an N0
F dimensional

structure when NF ≥ N0
F.

C. Comments on supersymmetry

Note that the parameters of the above Lagrangian are
tuned in such a way that it becomes identical to a bosonic
part of supersymmetric Lagrangian. For comparison, let us
write down the N ¼ 2 supersymmetric Lagrangian in 3þ
1 dimensions,

LðD¼3Þ
N¼2

¼ −
1

4e2
FμνFμν þ 1

2e2
X2
A0¼1

∂μΣA0∂μΣA0

þ
X2
i¼1

DμHiðDμHiÞ† −
1

2e2
X3
a¼1

Y2
a

−
X2
A0¼1

X2
i¼1

ðΣA0
Hi −HiMA0 ÞðΣA0

Hi −HiMA0 Þ†;

ð2:17Þ
with

Ya ¼ e2ðca − H⃗σaH⃗
†Þ; H⃗ ¼ ðH1; H2Þ: ð2:18Þ

This is nothing but the N ¼ 2 SQED with Aμ and Σ1;2

being bosonic components of a vector multiplet whereas
Hi¼1;2 being those of hypermultiplets (the subscription i is
the index of the SUð2ÞR symmetry). Ya¼1;2 are the so-called
Fayet-Illiopoulos (FI) F terms, and Ya¼3 is called the FI D
term, which forms an SUð2ÞR triplet. The constants ca are
the FI terms which we can set ca ¼ ð0; 0; v2Þ without loss
of generality.
Now, the SUSY vacua read very similar to those in

Eq. (2.15) as

hAi∶HB
1 ¼ vδBA; HB

2 ¼ 0; ΣB0 ¼ mB0;A: ð2:19Þ3In Ref. [80], the symmetry is said as Z3 but it is indeed S3.
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One can easily be convinced thatLwithD ¼ 3 andN0
F ¼ 2

is identical toLðD¼3Þ
N¼2

except for the additional complex scalar
H2. However, it was found that H2 is completely inert for
the BPS states which we are interested in this paper.
Therefore, the Lagrangian (2.2) with ignoring the sterile
scalarH2 makes sense [we can includeH2 in Eq. (2.2) but it
will be identically zero for BPS configurations].

III. BPS EQUATIONS FOR DOMAIN
WALLL JUNCTIONS

From now on, we will investigate BPS states of L in
Eq. (2.2) with N0

F ¼ D under the expectation that the BPS
states can exist only when the symmetric structures in the
spatial and the internal spaces are identical as mentioned in
the Introduction. In what follows, the Roman index m
stands for the spacial index as m ¼ 1; 2;…; D and we will
use it for the index of N0

F (m≡ A0). The energy density of
static configurations is

E ¼ 1

2e2
X
m>n

F2
mn þ

1

2e2
X
m;n

ð∂mΣnÞ2 þ
X
m

DmHðDmHÞ†

þ 1

2e2
Y2 þ

X
m

ðΣmH −HMmÞðΣmH −HMmÞ†:

ð3:1Þ
In order to perform a standard Bogomol’nyi completion to
this energy density, let us first note that the derivative terms
of Σm can be cast into the following form:X
m;n

ð∂mΣnÞ2¼
X
m

ð∂mΣmÞ2þ
X
m>n

fð∂mΣnÞ2þð∂nΣmÞ2g

¼
�X

m
ξm∂mΣm

�
2

þ
X
m>n

ð∂mΣnþχmn∂nΣmÞ2

−2
X
m>n

ðξmξn∂mΣm∂nΣnþχmn∂mΣn∂nΣmÞ;

ð3:2Þ

where we have introduced the signs χmn; ξm ¼ �1. Then,
the Bogomol’nyi completion goes as follows:

E ¼ 1

2e2
X
m>n

fF2
mn þ ð∂mΣn þ χmn∂nΣmÞ2g

þ 1

2e2

�X
m
ξm∂mΣm − Y

�
2

þ
X
m

fDmH þ ξmðΣmH −HMmÞg

× fDmH þ ξmðΣmH −HMmÞg†
þ
X
m

ξmZm þ
X
m>n

ξmξnYmn þ
X
m

∂mJ m; ð3:3Þ

where we have introduced Zm, Ymn, and J m as

Zm ¼ v2∂mΣm; ð3:4Þ

Ymn ¼ −
1

e2
ð∂mΣm∂nΣn þ χmnξmξn∂mΣn∂nΣmÞ; ð3:5Þ

J m ¼ −ξmðΣmH −HMmÞH†: ð3:6Þ

The termsZm andYmn can contribute only topologically.
Indeed, the first quantity Zm is related to a domain wall
tension measured along the xm direction as

Zm ¼
Z

∞

−∞
dxmξmZm ¼ v2ξmðΣmjxm¼þ∞ − Σmjxm¼−∞Þ:

ð3:7Þ

It is well known that Zm is always positive regardless of the
choice of ξm, which is naturally understood as the domain
wall tension. On the other hand, the contribution of J m
vanishes since it is asymptotically zero because of the
vacuum condition (2.14). The term Ymn is not topological
as it is in general. To make it topological, we need to
impose an additional condition

FIG. 1. The discrete vacua correspond to isolated points (red circles) in the internal Σ space. We show three examples withNF ¼ 3 and
N0

F ¼ 1, 2, 3.
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χmnξmξn ¼ −1: ð3:8Þ

Then, it becomes

Ymn ¼ −
1

e2
ð∂mΣm∂nΣn − ∂mΣn∂nΣmÞ

¼ −
1

e2
det

� ∂mΣm ∂mΣn

∂nΣm ∂nΣn

�
; ð3:9Þ

and its integration over the xm − xn plane gives another
topological quantity,4

Ymn ¼ ξmξn

Z
dxmdxnYmn ¼ −

ξmξn
e2

Smn; ð3:10Þ

where we have defined

Smn ≡
Z

dxmdxn det

� ∂mΣm ∂mΣn

∂nΣm ∂nΣn

�
: ð3:11Þ

The term Smn corresponds to an area of the region in the
Σm − Σn plane mapped from the whole xm − xn plane by
the function ðΣmðxm; xnÞ;Σnðxm; xnÞÞ with all other coor-
dinates xk (k ≠ m, n) being fixed. Thus, with appropriately
normalized, the Smn represents the degree of the map
counting how many times a certain area defined below in
the Σm − Σn plane is covered when the real xm − xn plane is
swept once. Precisely speaking, Smn can be positive or
negative, and its absolute value is the area. Interestingly,
ξmξnYmn is always negative5 independent of choice of the
signs ξm and ξn, so it should be understood as a sort of
binding energy among domain walls [73–75].
Once we have confirmed that all the terms in the third

line of Eq. (3.3) are topological, it assures us that the energy
density is bounded from below as

E ≥
X
m

ξmZm þ
X
m>n

ξmξnYmn þ
X
m

∂mJ m: ð3:12Þ

This is saturated when the following first order equations
are satisfied:

Fmn ¼ 0; ð3:13Þ

ξm∂mΣn − ξn∂nΣm ¼ 0; ð3:14ÞX
m

ξm∂mΣm − Y ¼ 0; ð3:15Þ

ξmDmH þ ðΣmH −HMmÞ ¼ 0; ð3:16Þ

where m; n ¼ 1; 2;…; D. One can verify that all solutions
of the above BPS equations solve the full equations of
motion.6 The stability of the solutions is ensured by the fact
that they saturate the Bogomol’nyi energy bound. These are
a set of the BPS equations of the domain wall junction inD
dimensions (D ≥ 3) obtained for the first time. Note that
they are a D-dimensional generalization of the BPS
equations of the domain wall junction in D ¼ 2 cases
studied in Refs. [80,81]. Note that it is called the 1

4
BPS

equations when D ¼ 2. It is because a solution of the
equations preserves a quarter of the supersymmetry when
embedded into a supersymmetric theory Refs. [59–61].
Although we have not dealt with any supersymmetry at all
in this paper, one can grasp the origin of 1

4
BPS-ness by

looking at our BPS equations.7 When D ¼ 2, we have two
signs ξ1;2 ¼ �1. Therefore, depending on ξ1;2, there exist
four different ways for performing the Bogomol’nyi
completion to obtain BPS equations. Turning to our BPS
equations in D dimensions, they involve the D signs
ξ1;2;…;D. Therefore, there exist 2D different ways to perform
the Bogomol’nyi completion of the energy density.

IV. A PLANAR S3=S2 DOMAIN WALL
JUNCTION IN D= 2: A REVIEW

As worming up, we briefly review an exact solution for a
S3=S2 domain wall junction in the case with NF ¼ 3 and
D ¼ N0

F ¼ 2, which was found in Ref. [80] (with NF ¼
D ¼ 3 and N0

F ¼ 2).8 Now, the indices m, n run from 1 to
2. The mass matrices are those given in Eqs. (2.9) and
(2.10), leading to the S3 symmetric group. Following the
generic argument obtained in Eq. (2.15), we find three
discrete vacua shown in Fig. 2(a). In the first vacuum
h1i∶Σ ¼ m1, the discrete symmetry is spontaneously bro-
ken as S3 → S2, where the elements of the unbroken S2

symmetry are given by UΣ ∈ fð1
0
0
1
Þ; ð1

0
0
−1Þg, and the corre-

sponding UH elements are

UH ∈

8<
:
0
B@

1 0 0

0 1 0

0 0 1

1
CA;

0
B@

1 0 0

0 0 1

0 1 0

1
CA
9=
;:

4Note that Ymn (m > n) can be cast into a total derivative form
in the xm − xn plane as Ymn ¼ − 1

e2 ∂kðϵklΣm∂lΣnÞ where k and l
take the value inm and n, and ϵmn ¼ −ϵnm ¼ 1. Therefore, this is
a topological charge density.

5The negativeness of Ymn was proved for the D ¼ 2 case,
namely, m ¼ 1 and n ¼ 2, in Ref. [81]. The same proof holds for
the generic Ymn in D ≥ 2, so we do not repeat it here.

6Note that if we took the wrong sign χmnξmξn ¼ þ1 instead of
Eq. (3.8), the BPS equations conflict with equations of motion.

7Indeed, the 1
4

BPS equations can also be derived via
appropriate supersymmetry preserving conditions to the super-
symmetry transformation on the fermionic fields. The sings ξ1;2
enter in this argument when we select 1

4
of the supercharges by

two appropriate projection operators.
8It was called the Z3 junction in Ref. [80]. However, note that

the symmetry of the Lagrangian is S3 but not Z3 and that we call
it the S3=S2 domain wall junction.
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Thus, the vacuum structure respects the symmetry breaking
pattern as S3=S2 which corresponds to the three vertices of
the equilateral triangle.
To be concrete, we will set ξ1 ¼ ξ2 ¼ þ1 without loss of

generality in what follows. The gauge field plays no role in
solutions, and so they vanish A0 ¼ A1 ¼ A2 ¼ 0. Then,
Eq. (3.13) is trivially satisfied. Equation (3.14) is solved by
introducing a scalar potential ϕðx1; x2Þ for Σ1;2 by

Σm ¼ ∂mϕ; ðm ¼ 1; 2Þ: ð4:1Þ

Then, one can verify that Eq. (3.16) is solved by

H ¼ ve−ϕðem1·x; em2·x; em3·xÞ; ð4:2Þ

where the mass vectors are those given in Eq. (2.10) and
x ¼ ðx1; x2Þ. Note that we have omitted translational
moduli parameters since they can always be absorbed by
the translational invariance.9 Finally, we are left with
Eq. (3.15) which is now expressed in terms of ϕ as

1

e2v2
△2ϕ ¼ 1 − e−2ϕψ ; ð4:3Þ

where △2 stands for the two-dimensional Laplacian, and
we have introduced a semipositive function

ψ ≡ e2m1·x þ e2m2·x þ e2m3·x: ð4:4Þ

No exact solutions for this equation have been known so
far, except for the special case [80] in which the model
parameters are tuned as

ev ¼
ffiffiffi
3

2

r
m: ð4:5Þ

In this special case, an exact solution of Eq. (4.3) is
given by

ϕ ¼ log ðem1·x þ em2·x þ em3·xÞ: ð4:6Þ

This corresponds to the exact solution found in Ref. [80].
Note that the previous work [80] for D ¼ 2 solved the

BPS equations in a quite different way where the scalar
potential was not introduced. The procedure of obtaining
the solution presented here is peculiar to the present work.
We would like to stress that introducing the scalar potential
ϕ makes things transparent and is an important clue for
obtaining the exact solutions in higher dimensions.
As a consistency check, let us verify the contribution of

Y12 to the energy density. It can be expressed as

E ⊃ ξ1ξ2Y12 ¼ −
1

e2
½∂2

1ϕ∂2
2ϕ − ð∂1∂2ϕÞ2�

¼ −
27m4

4e2
e−3ϕ < 0: ð4:7Þ

Thus, it is negative whole over the x1 − x2 plane, and so
that its integration is also negative as expected. Figure 3
shows several plots for the exact solution.
It is worthwhile mentioning how useful depicting the

solution on the Σ1 − Σ2 plane is. We should emphasize that
Fig. 2(a) has almost all information not only of the vacua
but also of 1=2 BPS domain walls and 1=4 BPS domain
wall junctions [81]. As we explained, the three vertices of
the equilateral triangle correspond to the three vacua hAi
with Σ ¼ mA (A ¼ 1, 2, 3). In addition, the edge vector
mA −mB is identical to the domain wall interpolating the
vacua hAi and hBi. The domain wall tension can easily be
read from the length of the edge as ZAB ¼ v2jmA −mBj
from Eq. (3.7). Finally, the junction of the three domain
walls corresponds to the face of the triangle. As we have
explained, the junction charge Y12 is proportional to the
area of the triangle, and so it can be easily calculated as

Y12 ¼ − ð3þ ffiffi
3

p Þm2

e2 . This is not all information we can get
from the Σ1 − Σ2 plane, and we can also read the geometric
information of the domain wall junction in the x1 − x2

plane. Namely, we can find angles of the domain walls
extending from the junction point: they are the orthonormal
lines of the edges of the triangle. This can be more
rigorously confirmed by regarding Σðx1; x2Þ as a function
which maps the real x1 − x2 plane to the internal Σ1 − Σ2

plane. Figure 4 shows the image of the mapping: the whole
x1 − x2 plane is mapped onto the compact equilateral
triangle in the Σ1 − Σ2 plane. As can be shown in Fig. 4(c),
generic points are mapped onto either of three vertices
as expected. Hence, the configuration in the real space
[shown in Fig. 2(b)] is a dual picture of the internal plane

FIG. 2. (a) The S3=S2 mass vectors in the Σ1-Σ2 plane. (b) The
dual picture depicted in the x1-x2 plane.

9Although the domain wall junction consists of the three
domain walls, the number of the independent moduli is not three
but two. This is because, once we fix the positions of the two
domain walls, the position of the third one is automatically
determined. Therefore, we can always fix the moduli by the two-
dimensional translations without loss of generality. See Ref. [81]
for more details.
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[shown in Fig. 2(b)] [81]. They both have the almost
same information, and neither of them has a big
advantage in the D ¼ 2 case. However, as we will see
below, the representation in the internal space is easier
than the one in the real space when we go to higher
dimensions D ≥ 3. This is because that the former treats
compact objects while the latter deals with noncompact
configurations.

V. A TETRAHEDRAL S4=S3 DOMAIN
WALL JUNCTION IN D= 3

In this section, we construct a novel exact solution of a
nonplanar 3D domain wall junction. To this end, we set
D ¼ N0

F ¼ 3 (m ¼ 1; 2; 3Þ and NF ¼ 4 (A ¼ 1, 2, 3, 4). To
be concrete, we take ξ1 ¼ ξ2 ¼ ξ3 ¼ þ1 in what follows.
In order to construct an exact solution, we need to

arrange the model parameters in such a way that it has the
highest discrete symmetry. Hence, our choice of the mass
matrices is of the form

M1 ¼
mffiffiffi
3

p diagð1;−1;−1; 1Þ; ð5:1Þ

M2 ¼
mffiffiffi
3

p diagð−1; 1;−1; 1Þ; ð5:2Þ

M3 ¼
mffiffiffi
3

p diagð−1;−1; 1; 1Þ; ð5:3Þ

or equivalently we have

m1 ¼
mffiffiffi
3

p ð1;−1;−1Þ; ð5:4Þ

m2 ¼
mffiffiffi
3

p ð−1; 1;−1Þ; ð5:5Þ

m3 ¼
mffiffiffi
3

p ð−1;−1; 1Þ; ð5:6Þ

FIG. 4. (a) 5000 points are randomly sampled in the region x1;2 ∈ ½−10; 10�, (b) the corresponding points in the Σ1-Σ2 plane are plot,
and (c) the histogram counting the number of mapped points. The colors of points correspond to the angle in the x1-x2 plane.

FIG. 3. The exact solution of the S3=S2 planar domain wall junction. (a) The domain wall tension density Z1 þ Z2, (b) the absolute
value of the Y12 charge density, and (c) the total energy density. We set m ¼ v ¼ 1.
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m4 ¼
mffiffiffi
3

p ð1; 1; 1Þ: ð5:7Þ

These are nothing but the four vertices of the regular
tetrahedron which are inscribed by a sphere of radius m.
Then, the discrete symmetry of the masses is the tetrahedral
symmetry which is isomorphic to the symmetric group of
degree four S4, as depicted in Fig. 5(a). So, we expect that
the symmetry of the model is also S4. This can be verified
by examining the rectangle mass matrix M defined in
Eq. (2.7),

M ¼ mffiffiffi
3

p

0
B@

1 −1 −1 1

−1 1 −1 1

−1 −1 1 1

1
CA: ð5:8Þ

This is indeed invariant under the transformation M →
UT

ΣMUH with any 4 × 4 matrices UH of S4 together with
the corresponding 3 × 3 matrices UΣ which are explicitly
shown in the Appendix. Furthermore, the mass matrices
given in Eqs. (5.1)–(5.3) satisfy M2

1 þM2
2 þM2

3 ¼ m213,
so that, similarly to Eq. (2.13), we have

P
3
A0¼1

HMA02H† ¼
m2HH†. Hence, all the terms in the Lagrangian are indeed
S4 invariant.
Let us mention the vacua. There are four discrete vacua

in the model, and selecting one among four correspond to
choosing one vertex from the tetrahedron. We choose for
instance the first vacuum h1i∶Σ ¼ m1. A subgroup S3 of
S4 which transforms the remaining vertices m2;3;4 is
unbroken. Hence, the spontaneous symmetry breaking
S4 → S3 occurs in this case. The vacuum structure (the
discrete four points) respects this and it is isomorphic to the
coset S4=S3; see the Appendix for some details. This is a
straightforward extension of S3=S2 in the previous
subsection.
We are ready for constructing a novel exact solution of a

nonplanar 3D domain wall junction in the S4 symmetric
model. As before, all the gauge fields are set to be zero

Aμ¼0;1;2;3 ¼ 0 so that Eq. (3.13) is trivially satisfied.
Equation (3.14) can be solved by introducing an arbitrary
scalar potential ϕ as

Σm ¼ ∂mϕ; ðm ¼ 1; 2; 3Þ: ð5:9Þ

Then, one can verify that Eq. (3.16) is solved by

HA ¼ ve−ϕwA; wA ≡ emA·x; ðA ¼ 1; 2; 3; 4Þ:
ð5:10Þ

Finally, we are left with Eq. (3.15) which is now expressed
in terms of ϕ as

1

e2v2
△3ϕ ¼ 1 − e−2ϕψ ; ð5:11Þ

where △3 stands for the three-dimensional Laplacian, and
we have introduced a semipositive function

ψ ≡X4
A¼1

w2
A: ð5:12Þ

Thanks to the S4 symmetric masses given in Eqs. (5.4)–
(5.7), Eq. (5.11) can be exactly solved by

ϕ ¼ log
X4
A¼1

wA; ð5:13Þ

only if the model parameters satisfy the following
condition:

ev ¼ 2ffiffiffi
3

p m: ð5:14Þ

This is the exact analytic solution of a nonplanar domain
wall junction in D ¼ 3 obtained for the first time.
Now, we make a comment on the power of the scalar

potential ϕ. All the procedures to obtain the exact solutions
for D ¼ 3 are straightforward extension of those for D ¼ 2
in the previous section. If we tried to solve the BPS
equations without the aid of the scalar potential ϕ, as
was done forD ¼ 2 in Ref. [80], it was difficult to reach the
BPS equations in D ¼ 3.10 We thus have succeeded in
obtaining the new exact solution in the case of D ¼ 3.
Similarly, to the planar S3=S2 junction in the previous

section, we can compute the Ymn charge ðm > nÞ explicitly
showing negativeness,

FIG. 5. (a) The regular tetrahedron in the Σ space. Each vertex
corresponds to the vacuum. (b) The dual picture of (a) depicted in
the real space. The painted triangles correspond to the domain
walls. Only a part of the domain walls inside the auxiliary cube
are shown.

10Furthermore, the discrete symmetry of the D ¼ 2 model was
incorrectly understood as Z3 in Ref. [80]. We have found the
correct symmetry S3 for D ¼ 2 and figured out that the correct
extension of the discrete symmetry is S4 for D ¼ 3, which is also
the important clue for discovery of the exact analytic solution in
D ¼ 3.
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Ymn ¼ −
16m4

9e2

P
4
C¼1 w

−1
C

ðP4
C¼1 wCÞ3

< 0; ð5:15Þ

for m, n ¼ 1, 2, 3.
In Fig. 6, we show several plots of the S4 symmetric

exact solution in the real space. For ease of realization of
the complicated 3D graphs, we individually plot the vacua,
domain walls, and domain wall junctions in Figs. 6(a)–6(c),
respectively. The red region of Fig. 6(a) is identified as the
region of fΣ1 > m

2
g ∧ fΣ2 < − m

2
g ∧ fΣ3 < − m

2
g, corre-

sponding to the vacuum h1i with Σ ¼ mffiffi
3

p ð1;−1;−1Þ.
Similarly, the green, cyan, and yellow regions correspond
to the vacua h2i, h3i, and h4i, respectively. Note that we

only show the interior of the sphere of the radius 10 with
the unit of m−1. Figure 6(b) shows a superposition of six
domain walls dividing the four vacua, where the orange
part is the region inside which

P
3
m¼1Zm > 1

2v2m2 holds.
Figure 6(c) shows a superposition of four domain wall
junctions of the six domain walls, where the gray part is the
region inside which

P
m>n Ymn < − 9

100
m4

e2 holds.
Let us next describe the exact solution on the internal Σ

plane. As already shown in Fig. 5(a), the vacua correspond
to the four vertices of the regular tetrahedron. Then, from
our experience with the S3=S2 domain wall junction, we
naturally expect that the six edges and four faces corre-
spond to the six domain walls and the four domain wall

FIG. 6. The exact solution of the S4 tetrahedral domain wall junction. We set m ¼ v ¼ 1. (a) shows the four domains of different
vacua with fred; green; cyan; yellowg ¼ fh1i; h2i; h3i; h4ig, (b) shows the domain wall energy density

P
m Zm, and (c) showsP

m>n Ymn junction charge density. The panels in the second row are superpositions of the panels in the first row. The rightmost panel
shows view from opposite side of the middle panel.
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junctions, respectively. To confirm this, we show the map
from the internal Σ space to the real x space by ΣðxÞ in
Fig. 7 which is the 3D extension of Fig. 4. We take
sampling points randomly on the three spheres with radius
r ¼ 2, 5, 10 in the real x space as shown in Fig. 7(a1). The
number of the sampling points are 1200, 7500, and 30,000,
respectively. Their images on the internal Σ space are
shown in Figs. 7(b1)–7(b3). We can see that generic points
on the spheres are mapped onto either of the vertices of the
tetrahedron. The population on the edges are much less
than those on the vertices since inverse images of points on
the edges are arcs [Fig. 7(a2)] which are intersections of the
sampling spheres and the domain walls. The sampling
points inside the domain wall junctions are mapped onto
the faces of the tetrahedron. Clearly, there are much rare
points on the faces. Comparing (b1)–(b3), one sees that the
tetrahedral shape becomes clearer for the lager sphere. We
also show orthographic projections of the tetrahedral
images onto the Σ1–Σ2 plane as Figs. 7(c1)–7(c3).
As we have learned above, there is a good relation

between the configuration expressed in the x space and that

in the Σ space. As is summarized in Table I, the vacua,
domain walls, and the domain wall junctions correspond to
the 3D domains, the 2D planes, and the 1D lines in the x
space, and to the vertices, the edges, and the faces of the
tetrahedron in the Σ space. At this point, we realize that
there is one more piece, namely, the junction of the domain
wall junctions in the x space, which is a pointlike object. Its
natural counterpart in the Σ space should be 3D interior of
the tetrahedron. This can be already seen in Fig. 7(b1)
where the small sphere near the junction of the domain wall
junctions is mapped on the tetrahedral inner surface. In
order to make a more rigorous argument, we return to the
Bogomol’nyi completion in Eq. (3.3). There, we found the
two topological quantities Zm and Ymn for the domain
walls and the domain wall junctions, respectively. No other
topological objects take part. However, we now realize that
Zm is the 1D Jacobian between xm and Σm, and Ymn is the
2D Jacobian between fxm; xng and fΣm;Σng. Along this
line, we naturally define a new topological quantity as the
three-dimensional Jacobian between fx1; x2; x3g and
fΣ1;Σ2;Σ3g by

FIG. 7. (a1) The 1200, 7500, and 30,000 sampling points on the spheres of radii r ¼ 2, 5, 10. (a2) The sampling points only inside the
domain walls are shown. (b1)–(b3) The images of the sampling points of (a1). (c1)–(c3) The orthographic projections of (b1)–(b3) onto
the Σ1–Σ2 plane.

TABLE I. Duality among the constituents of the S4=S3 three-dimensional domain wall junction in the x space and
the Σ space.

Vac DW DW junction Junction of DW junctions

x space 3D domain Plane (2D) Line (1D) Point (0D)
Σ space Vertex (0D) Edge (1D) Face (2D) Interior (3D)
Degree 4 6 4 1
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X123 ≡ det

0
B@

∂1Σ1 ∂1Σ2 ∂1Σ3

∂2Σ1 ∂2Σ2 ∂2Σ3

∂3Σ1 ∂3Σ2 ∂3Σ3

1
CA: ð5:16Þ

Note that this can be cast into the total derivative form as

X123 ¼ ∂lðϵlmnΣ1∂mΣ2∂nΣ3Þ; ð5:17Þ

with m, n, l run from 1 to 3. Therefore, this is a topological
charge density. For the S4 symmetric solution, we have

X ¼
Z

d3xX123 ¼
1

3

�
2mffiffiffi
3

p
�

3

: ð5:18Þ

This corresponds to the volume of the tetrahedron in the Σ
space. Thus, the X divided by the reference tetrahedron
volume represents the topological charge 1 of the map.
Figure 8 shows a 3D constant-level surface with X 123 ¼

1
100

, which is indeed a tetrahedral blowup of the junction
point of the domain wall junctions in the x space.

VI. EXACT SOLUTIONS OF SD+ 1=SD
DOMAIN WALL JUNCTIONS

A. Deriving exact solutions in generic dimensions

The derivation of the exact solutions of the domain wall
junctions in Secs. IV and V can be generalized straight-
forwardly to higher dimensions. To this end, let us consider
the (Dþ 1)-dimensional model with N0

F ¼ D and NF ¼
Dþ 1 (we have studied D ¼ 2, 3 in Secs. IV and V).
We will prove that the 1

2D
BPS equations (3.13)–(3.16)

admit an exact solution

Aμ ¼ 0; Σm ¼ ∂mϕ; HA ¼ ve−ϕwA; ð6:1Þ

wherem ¼ 1; 2;…; D and A ¼ 1; 2;…; Dþ 1, and wA and
ϕ are given by

wA ¼ emA·x; ϕ ¼ log
XDþ1

A¼1

wA; ð6:2Þ

and the mass vectors mA should correspond to the coor-
dinates of Dþ 1 vertices of a regular D-simplex of the
radius m, namely, jmAj ¼ m. One can easily show that
Eqs. (3.13), (3.14), and (3.16) are solved by Eqs. (6.1) and
(6.2). Then, it will turn out that a highlight of the proof is
verifying Eq. (3.15) which is written as

1

e2v2
△2

Dϕ ¼ 1 − e−2ϕψ ; ψ ≡XDþ1

A¼1

w2
A; ð6:3Þ

only if the relation

ev ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 1

D

r
m ð6:4Þ

holds. This is the first solution for the domain wall junction
in generic D dimensions.
One of the less beautiful parts in the following argument

comes from complexity of giving the coordinate of each
vertex of the regularD-simplex in the internalD-dimensional
space; see, for example, Eq. (2.10) forD ¼ 2 and Eqs. (5.4)–
(5.7) forD ¼ 3. In order to avoid this inessential complexity,
we here embed the problem of the D-dimensional real
and internal spaces into the Dþ 1-dimensional ones.
Namely, we consider L with the spacetime dimensions
ðDþ 1Þ þ 1 and the flavor number N0

F ¼ Dþ 1, with
keeping NF ¼ Dþ 1. Namely, we leave the D-simplex as
it is (we do not consider aDþ 1-simplex); see Fig. 9 for the
case of 2-simplex before and after the embedding. There are

FIG. 8. The topological charge density X 123 of the junction of the domain wall junctions. (a) shows the constant-level surface with
X123 and (b) shows superposition of Figs. 8(a) and 6(c).
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two advantages to do this. One is that the mass vectors
(corresponding to the vertices of the regular D-simplex) can
be simply expressed as

m1 ¼ m0ð1; 0; 0;…; 0; 0Þ; ð6:5Þ

m2 ¼ m0ð0; 1; 0;…; 0; 0Þ; ð6:6Þ

..

.

mD ¼ m0ð0; 0; 0;…; 1; 0Þ; ð6:7Þ

mDþ1 ¼ m0ð0; 0; 0;…; 0; 1Þ; ð6:8Þ

with

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 1

D

r
m: ð6:9Þ

The second merit is that the discrete symmetry among these
vectors is clearly the SDþ1 group which is identical to
permutations of the Dþ 1 axes. Thanks to the first advan-
tage, wA becomes drastically simple as

wA ¼ em
0xA ; ðA ¼ 1; 2;…; Dþ 1Þ: ð6:10Þ

Then, we can easily verify that ϕ given in Eq. (6.2) satisfies
the following equation:

△Dþ1ϕ ¼ m02ð1 − e−2ϕψÞ: ð6:11Þ

This is identical to Eq. (6.3)with Eq. (6.4) only except for the
Laplacian △Dþ1 instead of △D. To complete the proof, we
need to show the equivalence between Eqs. (6.3) and (6.11).
This can be done as follows. First, we note that any D-
simplex is included in a D-dimensional subspace of the
Dþ 1-dimensional space. However, we used the Dþ 1
vectors mA (A ¼ 1; 2;…; Dþ 1Þ for expressing the Dþ 1
vertices of the regular D-simplex as in Eqs. (6.5)–(6.8).

Therefore, there exists an appropriate U ∈ SOðDþ 1Þ
transformation which transforms the vectors as

mA → m̃A ¼ UmA ¼ m0ðm̃1;A;…; m̃D;A; 0Þ; for all A:

ð6:12Þ

At the same time, we can also redefine the extendedDþ 1-
dimensional spacial coordinate by the same SOðDþ 1Þ
element by

x → x̃ ¼ Ux: ð6:13Þ

This transformation does not change the inner product

mA · x ¼ m̃T
AU

TUx̃ ¼ m̃A · x̃: ð6:14Þ

Since the (Dþ 1)th component of m̃A ðA ¼ 1; 2;…; Dþ 1Þ
is zero, the (Dþ 1)th coordinate x̃Dþ1 does not appear in
Eq. (6.14). Both ϕ and ψ include x̃ only through the
combination mA · x ¼ m̃A · x̃, so that x̃Dþ1 is completely
redundant. Hence, the (Dþ 1)-dimensional Laplacian in
terms of the new coordinate x̃ is identical to the D-dimen-
sional one in Eq. (6.11).
We again have faced the power of the scalar potential ϕ.

All the procedures to obtain the exact analytic solutions for
generic D are straightforward extension of those developed
in this work for D ¼ 2 in the previous section, together
with the correct understanding of the discrete symmetry
SDþ1. Without these developments, we could not find the
analytic solutions.

B. Geometric properties

We now have the picture that the SDþ1=SD domain wall
junction in D-dimensional real space is dual to the regular
D-simplex. Due to this correspondence, we can easily
understand the physical structure of the higher dimensional
domain wall junctions. In mathematics, the convex hull of a
subset of size dþ 1 of theDþ 1 points of theD-simplex is

FIG. 9. A regular 2-simplex (an equilateral triangle) drawn in D ¼ 2 and D ¼ 3 spaces.
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called a d-face of the D-simplex (the 0-faces are the
vertices, the 1-faces are the edges, and the (D − 1)-faces
are called the facets). The number of the d-faces is the
binomial coefficient ðDþ1

dþ1
Þ. Several low-lying examples

are shown in Table II. In the physics context, by the duality,
we relate the 0-faces to the D-dimensional vacuum
domains, the 1-faces to the (D − 1)-dimensional domain
walls, and the 2-faces to the (D − 2)-dimensional
domain wall junctions, and so on. We call the d-faces
the d-walls. Namely, the 0-wall means the vacuum, the 1-
wall corresponds to the domain wall, and the 2-wall stands
for the domain wall junction, and so on. We have already
studied the 2- and 3-simplexes in Secs. IV and V,
respectively.
Let us introduce a topological quantity to each of the

d-wall for d ≥ 1. For d ¼ 1, the natural quantity is Zm
defined in Eq. (3.4) and its integration over the xm
coordinate. Similarly, we ran into Ymn in Eq. (3.5) and
its integral over the xm − xn plane for the 2-wall for d ¼ 2.
Note that the numbers of Zm and Ymn of the SDþ1=SD

domain wall junction are D and ðD−1ÞD
2!

, respectively, which
coincide with ðDdÞ for d ¼ 1 and d ¼ 2, respectively. For
d ¼ 3, we have encountered X123 given in Eq. (5.16) for
the S4=S3 domain wall junction in the model with D ¼ 3.
Having Zm and Ymn for generic SDþ1=SD domain wall
junction together with X123 of the S4=S3 domain wall
junction at hand, we are now ready to define the topological
quantity of the level d by

Wdðm1; m2;…; mdÞ

¼ det

0
BBBBB@

∂m1
Σm1

∂m1
Σm2

� � � ∂m1
Σmd

∂m2
Σm1

∂m2
Σm2

� � � ∂m2
Σmd

..

. . .
. ..

.

∂md
Σm1

∂md
Σm2

� � � ∂md
Σmd

1
CCCCCA; ð6:15Þ

where mα ∈ f1; 2;…; Dg (α ¼ 1; 2;…; d) and mα > mβ if
α > β. The number of the level-dW is ðDdÞ; see Table III for
several low-lying D ¼ 1, 2, 3, 4, 5, 6. Note that this can be
cast into the total derivative form. For example,WD can be
expressed as

WD ¼ ∂m1
ðϵm1���mDΣ1∂m2

Σ2∂m3
Σ3 � � � ∂mD

ΣDÞ: ð6:16Þ

Thus, this is a topological charge density. The same can be
said for Wd for all d ≤ D.
By definition, the level-d wall charge coincides with

the volume of a d-face of the D-simplex inscribed by a
D-sphere of radius m [the side length is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDþ 1Þ=Dp

m
defined in Eqs. (6.5)–(6.8)],

Wdðm1; m2;…; mdÞ

¼
Z

dxm1
dxm2

� � � dxmd
jWðm1; m2;…; mdÞj

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðDþ 1Þ
D

r
m

�d ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

p

d!2
d
2

: ð6:17Þ

The level-1 W1ðxmÞ and the level-2W2ðxm; xnÞ are related
to Zm and Ymn, respectively. Therefore, as in the lower
dimensional case, with appropriately normalized, Wd
represents the degree of the map counting how many times
the d-dimensional subpolytope is covered when we sweep
the d-dimensional subspace xm1

− xm1
− � � � − xmd

once.
Before closing this section, let us briefly sketch a higher

dimensional junction which we have not shown yet. The
first example is the S5=S4 domain wall junction (the
4-simplex) in the model with NF ¼ 5 and D ¼ N0

F ¼ 4.
A concrete set of the five mass vectors is given by

TABLE II. The number of d-faces (d-walls) of D-simplex for
D ¼ 1, 2, 3, 4, 5, 6.

0-face 1-face 2-face 3-face 4-face 5-face 6-face

1-simplex 2 1
2-simplex 3 3 1
3-simplex 4 6 4 1
4-simplex 5 10 10 5 1
5-simplex 6 15 20 15 6 1
6-simplex 7 21 35 35 21 7 1

0-wall 1-wall 2-wall 3-wall 4-wall 5-wall 6-wall

TABLE III. The number of level-d W of SDþ1=SD domain wall junction for D ¼ 1, 2, 3, 4, 5, 6.

Level-1 W Level-2 W Level-3 W Level-4 W Level-5 W Level-6 W

S2 DW 1
S3=S2 DWJ 2 1
S4=S3 DWJ 3 3 1
S5=S4 DWJ 4 6 4 1
S6=S5 DWJ 5 10 10 5 1
S7=S6 DWJ 6 15 20 15 6 1

Zm Ymn X lmn
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m1 ¼
ffiffiffi
5

p

4
m

�
1;−1;−1;−

1ffiffiffi
5

p
�
; ð6:18Þ

m2 ¼
ffiffiffi
5

p

4
m

�
−1; 1;−1;−

1ffiffiffi
5

p
�
; ð6:19Þ

m3 ¼
ffiffiffi
5

p

4
m

�
−1;−1; 1;−

1ffiffiffi
5

p
�
; ð6:20Þ

m4 ¼
ffiffiffi
5

p

4
m

�
1; 1; 1;−

1ffiffiffi
5

p
�
; ð6:21Þ

m5 ¼
ffiffiffi
5

p

4
m

�
0; 0; 0;

4ffiffiffi
5

p
�
: ð6:22Þ

The corresponding S5=S4 domain wall junction divides
D ¼ 4 space into five vacuum domains. It is not easy to
imagine such noncompact higher dimensional object, but,
instead, all the geometric data can be easy read from
Table II. As a supplementary, we show the images on a two-
dimensional plane in Σ space whose preimages are ran-
domly chosen 20,000 points on the 3-sphere S3 of the
radius jxj ¼ 40 in Fig. 10. Almost all points are mapped on
either of five vertices (0-walls) of the pentagon, and the
much less points are mapped on the ten edges (1-wall) of
the pentagon and pentagram. Much rarer points are mapped
onto interior of the pentagon. These two-dimensional
images, the pentagon and pentagram, are familiar for the
5-cell. It is a orthographic projection of the 5-cell onto a
two-dimensional plane (the so-called Coxeter plane). The
pentagon with pentagram is the type A4 Coxeter plane in
which all the vertices and edges of 5-cells are separately
shown. The symbol A4 comes from the fact that the
symmetric group S5 of the 5-cell is isomorphic to the
Coxeter group of the type A4.
The symmetry group SDþ1 of a regular D-simplex is

known as the Coxeter group of type AD, and its Coxeter

plane is known as a convex regular (Dþ 1)-gon. Our
exact solution of the SDþ1=SD domain wall junction gives
the Coxeter plane of type AD via the map from the
D-dimensional real space x to the D-dimensional internal
space Σ. We show several concrete diagrams for D ¼ 3, 4,
5, 6 in Fig. 10.

VII. SUMMARY AND DISCUSSION

In this work, we have constructed the exact solutions of
the SDþ1=SD domain wall junctions in Dþ 1-dimensional
spacetime. We have considered SUSY motivated Abelian
gauge theories with NF charged complex scalar fields HA
and N0

F ¼ D real scalar fields ΣA0 and have derived the
new BPS equations for the domain wall junctions. We then
have restricted ourselves to the cases with specific flavor
numbers NF ¼ Dþ 1 and have obtained the analytic exact
BPS solutions in the extended Abelian-Higgs model for the
first time. There are two necessary conditions for finding
the exact solutions. The first is the SDþ1 symmetric masses
mA so that the mass vectors should be placed at vertices of a
regular D-simplex in the internal space. The other is the
special relation between the coupling constants given in
Eq. (6.4). When these conditions are satisfied, we find that
the exact BPS solutions can be obtained by the scalar
potential ϕ as in Eqs. (6.1) and (6.2). We should emphasize
that introducing the scalar potential ϕ has been crucial to
reformulate the complicated BPS equations to be surpris-
ingly simple. We have been able to accomplish construct-
ing the analytic solutions with the aid of ϕ. We have
verified that the solution for D ¼ 2 is identical to the one
previously obtained in Ref. [80] in which the scalar
potential ϕ was not used. We also have developed how
to describe such noncompact extended solitons in higher
dimensional spaces. We have found that there is a one-to-
one correspondence between the BPS configuration in the
real x space and that in the internal Σ space. The latter is
more useful and tractable because it deals with compact
objects, the regularD-simplex. This correspondence allows

FIG. 10. Orthographic projections of images for randomly chosen 20,000 points on a (D − 1)-sphere (radius jxj ¼ 40) by the exact
solutions of SDþ1=SD domain wall junctions with D ¼ 3, 4, 5, 6. The diagrams are identical to the so-called Coxeter plane of type AD
for a regular D-simplex.
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us to understand what kind of intersections are included.
We have found that all the building blocks are in one-to-one
correspondence to the d-faces (we called them the d-walls)
of the regular D-simplex. Thus, the SDþ1=SD domain wall
junction consists of ðDþ1

dþ1
Þ d-walls; see Table II. The

Bogomol’nyi completion shows that the energy density
of the SDþ1 domain wall junctions depends on only two
kinds of the topological charge densities, the domain wall
(1-wall) charge Zm and the domain wall junction (2-wall)
charge Ymn. The topological charge densities Zm and Ymn
are a one-dimensional Jacobian from xm to Σm and a two-
dimensional Jacobian from xm − xn to Σm − Σn, respec-
tively. Then, we have been naturally led to extend them for
the generic d-walls by the d-dimensional Jacobian from the
real Rd space to the internal Rd space. The simplest
example is X (d ¼ 3) for the tetrahedral domain wall
junction (D ¼ 3); see Fig. 8. All the topological charges
for the generic d-walls have been unified by the level-dwall
chargeWd in Eq. (6.15). The final achievement in this work
is on the visualization of the SDþ1=SD domain wall
junctions. Describing the regular D-simplex in lower
dimensions is known as the Coxeter plane. It is a two-
dimensional projection on a convex regular (Dþ 1)-gon
which is the Coxeter diagram of type AD. We also find that
the exact solutions ΣðxÞ are canonical mappings from the
former to the regular D-simplex in the Σ space, and their
images are nothing but the Coxeter diagram of the type AD.
We have assumed the special relation among the param-

eters e, v, and the masses, in order to find the analytic
solutions of the newly found BPS equations in generic D
dimensions. The models are limited, however, with the
analytic solutions at our hands; now we clearly have
understood the whole picture of the domain wall junctions
in higher dimensions. We have been able to easily explain
how many d-walls are included in the D-dimensional
junction. Since these properties are topological, they do
not change even when we continuously deform the model
parameters. For generic parameters, there are no analytic
solutions and therefore one needs to solve numerically the
complicated differential equations in D dimensions.
Before closing this paper, let us mention several future

directions. First, we have considered only SDþ1 sym-
metric masses corresponding to vertices of the regular
D-simplex to construct the exact solutions. If we consider
more general masses corresponding to a deformed
D-simplex, the corresponding the domain wall junction
is also deformed from the SDþ1 symmetric configuration.
For such generic case, we cannot expect the existence
of analytic solutions for generic couplings, but in the
strong coupling limit analytic solutions would be avail-
able as for the D ¼ 2 case [81]. For generic dimensions,
we have exhausted all exact solutions with full moduli
parameters in a separated paper [94]. More generally, we
would need numerical works to obtain the BPS solutions
for generic couplings.

Second, we have studied the minimal models in which
the flavor number of the charged scalar fields is chosen as
NF ¼ Dþ 1. When we increase the number NF of flavors,
the number of the vacua increases accordingly. This leads
to generic polytopes other than the D-simplex which
correspond to more complicated networks in the real x
space. In particular, it admits domain wall loops for D ¼ 2
[81], in which case the low energy effective action was
constructed for localized modes of domain wall loops [84],
and the low energy dynamics of such loops was studied in
the moduli approximation [85]. The same can be done for
higher dimensional extensions in this paper, which would
admit higher dimensional loops, like holes surrounded by
domain walls.
Third, we can extend the Abelian gauge theory studied in

this paper to UðNCÞ gauge theories. For the D ¼ 2 case, it
was found that the non-Abelian extension of the junction
charge Y12 exists in the non-Abelian gauge theories [81]. In
such a case, if some masses are degenerated, there appear
non-Abelian moduli on the domain walls, called non-
Abelian clouds [47,52,54]. Such non-Abelian moduli
would also appear in the domain wall junctions in general
dimensions.
Fourth, we can consider non-BPS domain wall junction

in Dþ 1-dimensional spacetime, while in this paper, we
have concentrated only on the BPS solutions. Once we
relax the BPS condition, we would have more generic
networks of the domain walls, as for the simplest Wess-
Zumino model [90].
Fifth, as for a possible connection with differential

geometry, the case of D ¼ 2 was found to be interpreted
in terms of tropical geometry and amoeba in mathematics
[86]. Higher dimensional extensions of the present paper
will provide higher dimensional correspondence to tropical
geometry and amoeba.
Finally, let us mention possible applications of our model

to physics. Single or parallel domain walls can be applied to
Josephson junction arrays of superconductors sandwiching
insulators [95,96]. This can be extended to three-dimen-
sional junction found in this paper. Also, cosmological
domain wall networks [17] will be one of the most
interesting physical applications.
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APPENDIX: THE SYMMETRIC GROUP S4 AND
THE COSET S4=S3

We give the 4 × 4 matrix representation of S4,

UH ∈

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA;

0
BBB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCCA;

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1
CCCA;

0
BBB@

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1
CCCA;

0
BBB@

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1
CCCA;

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1
CCCA;

0
BBB@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1
CCCA;

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA;

0
BBB@

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

1
CCCA;

0
BBB@

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1
CCCA;

0
BBB@

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

1
CCCA;

0
BBB@

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

1
CCCA;

0
BBB@

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

1
CCCA;

0
BBB@

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

1
CCCA;

0
BBB@

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

1
CCCA;

0
BBB@

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

1
CCCA;

0
BBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA;

0
BBB@

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

1
CCCA;

0
BBB@

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1
CCCA;

0
BBB@

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

1
CCCA;

0
BBB@

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

1
CCCA;

0
BBB@

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

1
CCCA;

0
BBB@

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

1
CCCA;

0
BBB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCA

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

ðA1Þ

and the corresponding 3 × 3 representation,

UΣ ∈

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
B@

1 0 0

0 1 0

0 0 1

1
CA;

0
B@

0 −1 0

−1 0 0

0 0 1

1
CA;

0
B@

1 0 0

0 0 1

0 1 0

1
CA;

0
B@

0 −1 0

0 0 1

−1 0 0

1
CA;

0
B@

0 0 −1
−1 0 0

0 1 0

1
CA;

0
B@

0 0 −1
0 1 0

−1 0 0

1
CA;

0
B@

0 1 0

1 0 0

0 0 1

1
CA;

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA;

0
B@

0 0 1

1 0 0

0 1 0

1
CA;

0
B@

0 0 1

0 −1 0

−1 0 0

1
CA;

0
B@

−1 0 0

0 0 −1
0 1 0

1
CA;

0
B@

0 1 0

0 0 −1
−1 0 0

1
CA;

0
B@

0 1 0

0 0 1

1 0 0

1
CA;

0
B@

−1 0 0

0 0 1

0 −1 0

1
CA;

0
B@

0 0 1

0 1 0

1 0 0

1
CA;

0
B@

0 0 1

−1 0 0

0 −1 0

1
CA;

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA;

0
B@

0 1 0

−1 0 0

0 0 −1

1
CA;

0
B@

0 0 −1
0 −1 0

1 0 0

1
CA;

0
B@

0 0 −1
1 0 0

0 −1 0

1
CA;

0
B@

0 −1 0

0 0 −1
1 0 0

1
CA;

0
B@

1 0 0

0 0 −1
0 −1 0

1
CA;

0
B@

0 −1 0

1 0 0

0 0 −1

1
CA;

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ðA2Þ

These satisfy the relation (2.8) with the mass matrixM given in Eq. (5.8). Note that the one-to-one correspondence between
UH and UΣ is given by UΣ ¼ ðMMTÞ−1MU−1T

H MT. The 4! ¼ 24 matrices of Eq. (A1) coincide to the standard 4 × 4
representation of S4. On the contrary, the 3 × 3matrices in Eq. (A2) might not be familiar, but indeed they also form another
representation of S4.
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The six matrices in the top row of Eq. (A1) which is a subgroup S3 in S4 leave the first vacuum intact as

Σjh1i ¼ m1 ¼
mffiffiffi
3

p

0
B@

1

−1
−1

1
CA → UΣm1 ¼ m1: ðA3Þ

Thus, the coset of S4 by the S3 quotient has four representatives,

S4=S3 ¼

8>><
>>:
0
B@

1 0 0

0 1 0

0 0 1

1
CA;

0
B@

0 1 0

1 0 0

0 0 1

1
CA;

0
B@

0 1 0

0 0 1

1 0 0

1
CA;

0
B@

0 0 −1
0 −1 0

1 0 0

1
CA
9>>=
>>;: ðA4Þ

Note that S3 is not a normal subgroup of S4. Therefore, the coset S4=S3 is not a group.
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