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The massless three-dimensional Gross-Neveu-Yukawa (GNY) and Nambu–Jona-Lasinio–Yukawa
(NJLY) models at finite temperatures are analyzed within the mean field framework considering all
coupling values. When the number of Dirac fermions is taken to be Nf ¼ 1=4 (GNY) and Nf ¼ 1=2
(NJLY) these models relate to the supersymmetric Wess-Zumino (WZ) theory with cubic superpotential
and one superfield. In this case the results show that the strong-weak entropy density ratio decreases from
the Stefan-Boltzmann value, in the weak limit, to s=sfree ¼ 31=35 at strong couplings. This value agrees
with the one recently obtained by applying the large-N approximation to the supersymmetric OðNÞ WZ
model with quartic superpotential and N superfields. When Nf ¼ 0 one obtains s=sfree ¼ 4=5 recovering,
as expected, the ratio predicted in the context of theOðNÞ scalar model. However, contrary to theOðNÞWZ
model the simple Yukawa models analyzed here do not behave as CFTs for all couplings since the
conformal measure exactly vanishes only at the extremeweak and strong limits although the speed of sound
indicates that the deviation, at intermediate couplings, appears to be rather small. By comparing the thermal
masses behavior in each case one can trace this difference as being a consequence that in the GNY/NJLY
case the fermionic mass vanishes for all couplings while within the OðNÞ WZ it only vanishes at the weak
and strong limits. On the other hand, the Yukawa bosonic dimensionless masses display a more universal

behavior decreasing from 2 ln½ð1þ ffiffiffi
5

p Þ=2�, at infinite coupling, to zero (at vanishing coupling).

DOI: 10.1103/PhysRevD.102.065005

I. INTRODUCTION

Superrenormalizable massless three-dimensional theo-
ries at finite temperatures provide a useful framework to
analyze CFT candidates at all coupling values owing to the
fact that any dimensionful coupling can be expressed in
terms of the temperature. In this case, strong coupling
values can be generated by considering low temperatures
while weak coupling values are obtained at high temper-
atures. Recently, this interesting feature has been explored
in the context of the scalar OðNÞ model whose dimen-
sionful coupling, λ, has been combined with the temper-
ature in the dimensionless ratio λ=T allowing for
investigations at all couplings (including infinite values
as T → 0) [1]. That (large-N) application has produced
some interesting results such as predicting that the value of
the entropy density decreases from the Stefan-Boltzmann
value at λ ¼ 0 to exactly 4=5 of the Stefan-Boltzmann limit
at λ ¼ ∞. Recalling that in the gauge/gravity duality
context the large-N result for the entropy density of

strongly coupled N ¼ 4 SYM in 3þ 1d is exactly 3=4
of the Stefan-Boltzmann limit [2] one may argue that these
two theories share a similar strong-weak relation as far as
the entropy ratio is concerned. However, as noted in
Ref. [1], it is important to mention that the scalar OðNÞ
results were obtained by just applying the standard thermo
field machinery to a rather simple model without any
invocation of gauge/gravity duality. Regarding the results
obtained in the scalar case [1] it becomes natural to ask how
the consideration of fermionic degrees of freedom would
eventually affect the 4=5 entropy density ratio obtained
with such purely bosonic theory. To answer this question
DeWolfe and Romatschke [3] have extended the scalar
OðNÞ application to the three-dimensional supersymmetric
OðNÞ Wess-Zumino model [4], which displays a quartic
Yukawa vertex, at large-N. One of the main outcomes of
this study is that, at infinite coupling, the strong-weak ratio
is exactly 31=35when an equal number of fermions (F) and
bosons (B) is considered. At the same time by taking the
extremum case where F → 0 (or B → ∞) the value
s=sfree ¼ 4=5 is recovered while s=sfree ¼ 1 is obtained
when B → 0 (or F → ∞). Therefore, depending on the
balance between fermions and bosons the entropy density
ratio is bounded to lie between 4=5 and 1. The aim of the
present work is to investigate how three-dimensional
massless theories, with a trilinear Yukawa vertex, behave
at all coupling values by comparing the results with the
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ones obtained in the OðNÞ WZ case as well as to identify
the physical source of possible differences. With this
purpose the thermodynamics of the three-dimensional
massless Gross-Neveu-Yukawa (GNY) [5,6] and
Nambu–Jona-Lasinio–Yukawa (NJLY) [5] models will
be considered here. Thermodynamical quantities such as
the strong-weak entropy density ratio, the conformal
measure as well as the speed of sound squared will be
evaluated at the mean field (one loop) level. It goes without
saying that the interaction between fermions and bosons via
a trilinear Yukawa vertex is of utmost importance to
describe a plethora of physical situations such as the ones
covered by the standard model of elementary particles, the
Walecka model for nuclear matter [7] and the quark-meson
model [8]. At the same time the GNYand NJLY models are
related to the four-fermion Gross-Neveu (GN) [9] and
Nambu–Jona-Lasinio (NJL) [10] theories which are often
used as model approximations to quantum chromodynam-
ics (QCD) in studies related to the chiral transition. With
respect to supersymmetric models it is also important to
remark that the GNY/NJLY theories considered here relate
to the WZ model with one superfield and a cubic super-
potential [11]. On the other hand, the OðNÞ WZ version
considered in Ref. [3] describes N superfields interacting
via a quartic superpotential. The work is organized as
follows. In the next section the GNYand NJLY models are
presented and their free energy densities are evaluated
within the mean field approximation (MFA). The pressure
and other relevant thermodynamical quantities are defined
together with the gap equations in Sec. III. Analytical and
numerical results at all coupling values are presented and
discussed in Sec. IV. Finally, Sec. V contains the con-
clusions and perspectives.

II. THE YUKAWA MODELS

To facilitate further comparisons let us first recall that the
version of the WZ model analyzed in Ref. [3] describes N
superfields whose dynamics is dictated by a quartic super-
potential. Such a theory can be described by the Lagrangian
density

LWZ ¼ 1

2
ð∂μϕaÞð∂μϕaÞ þ

1

2
ψ̄aði=∂Þψa

−
2λ

N
ϕbϕbψ̄aψb −

8λ2

N
ðϕaϕaÞ3; ð2:1Þ

where ϕa (a ¼ 1;…; N) represents N-component real
scalars while ψa represents a N-component Majorana
spinor in 2þ 1d. Note that the original dimensionless
couplings have already been rescaled by 1=N in order to
allow for the implementation of large-N evaluations. Also,
for future reference, remark that bosons self interact
through a sextic vertex while bosons and fermions interact
through a quartic Yukawa vertex. At large-N the conformal
measure for such a theory vanishes for all values of λ so that

one may say that the model describes a “pure” CFT just like
the scalar OðNÞ model with a sextic vertex analyzed in
Ref. [1] (see Ref. [3] for further details).

A. The Gross-Neveu-Yukawa model

In Minkowski space the massless Gross-Neveu-Yukawa
model1 describing one scalar, ϕ, and Nf four component
Dirac fermions, ψf (f ¼ 1;…; Nf), can be described by the
Lagrangian density [5,6]

LGNY ¼ 1

2
ð∂μϕÞ2 þ ψ̄fði=∂Þψf − g1ϕψ̄fψf −

g2
8
ϕ4; ð2:2Þ

which is invariant under the discrete transformations2

ψf → γ5ψf and ϕ → −ϕ. Note that in 2þ 1 dimensions
the couplings have canonical dimensions ½g1� ¼ 1=2 and
½g2� ¼ 1 and the theory is superrenormalizable. Also, since
there are no logarithmic divergencies the β functions vanish
which is a further requirement for CFTs. For our purposes
the large-N approximation does not seem to be the most
appropriate tool to treat this model not only because there is
just one boson but also because we shall relate its results to
the WZ model with only one superfield as will be further
discussed. In this case one may alternatively consider the
MFA which, by considering only one loop (direct) con-
tributions, relates not only to the large-N itself but also to
the traditional Hartree approximation. One may implement
the MFA by defining a space-time independent classical
field, σc ¼ hϕ2i0, while considering the mean field
approximation ϕ4 ≃ 2σcϕ

2 − σ2c. One can then shift ϕ →
ϕ0 þ ϕc and reexpand neglecting all terms linear in ϕ0 since
they either produce non 1PI contributions or 1PI terms
which only contribute beyond the (one loop) mean field
level. After doing that, dropping the superscript in ϕ0,
rescaling σc → g2σc=2, and ϕc → g1ϕc the Lagrangian
density within the MFA can be written as

LGNY ≃
1

2
½ð∂μϕÞ2 − σcϕ

2� þ ψ̄f½ði=∂Þ − ϕc�ψf

þ σ2c
2g2

−
σcϕ

2
c

2g21
: ð2:3Þ

Since now the bosonic and fermionic integrals are Gaussian
the free energy density can be easily evaluate by standard
methods [14] yielding

FGNYðσc;ϕcÞ ¼ −
σ2c
2g2

þ σcϕ
2
c

2g21
−
i
2

Z
d3p
ð2πÞ3 lnðp

2 − σcÞ

þ 2Nfi
Z

d3p
ð2πÞ3 lnðp

2 − ϕ2
cÞ: ð2:4Þ

1Sometimes called Higgs-Yukawa model.
2Note that in 2þ 1d this is true only one considers 4 × 4 Dirac

matrices as we do here. See Refs. [12,13] for details.
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To perform finite temperature evaluations in the Matsubara
imaginary time formalism [14–16] one needs to rewrite the
zeroth momentum component as p0 → iωn where ωn
represents the Matsubara’s frequencies which are defined
as ωF;n ¼ ð2nþ 1ÞπT, for fermions, and ωB;n ¼ 2πTn for
bosons where n ¼ 0;�1;�2;…. Also, in order to sum
over the Matsubara’s frequencies the integrals over loops
need to be modified according to [15,16]

Z
d3p
ð2πÞ3 → iT

XZ
p

≡ iT

�
eγEM2

4π

�
ϵ Xþ∞

n¼−∞

Z
d2−2ϵp
ð2πÞ2 ; ð2:5Þ

where γE is the Euler-Mascheroni constant andM is the MS
arbitrary regularization energy scale. One then gets

FGNYðσc;ϕcÞ ¼ −
σ2c
2g2

þ σcϕ
2
c

2g21
þ 1

2
JBð ffiffiffiffiffi

σc
p Þ − 2NfJFðϕcÞ;

ð2:6Þ

where JBðσcÞ and JFðϕcÞ represent thermal integrals. In
terms of the dispersions ω2

B ¼ p2 þ σc and ω2
F ¼ p2 þ ϕ2

c
these integrals read

JBð ffiffiffiffiffi
σc

p Þ¼
XZ
p

ln½ω2
B;nþω2

B� and JFðϕcÞ¼
XZ
p

ln½ω2
F;nþω2

F�:

ð2:7Þ

In 2þ 1 dimensions both integrals, which are finite and
scale independent within dimensional regularization, can
be expressed in a compact form in terms of polylogarithmic
functions as

JBðσcÞ ¼ −
σ3=2c

6π
−

ffiffiffiffiffi
σc

p T2

π
Li2½e−

ffiffiffiffi
σc

p
=T � − T3

π
Li3½e−

ffiffiffiffi
σc

p
=T �;
ð2:8Þ

and

JFðϕcÞ ¼ −
ϕ3
c

6π
− ϕc

T2

π
Li2½−e−ϕc=T � − T3

π
Li3½−e−ϕc=T �:

ð2:9Þ

Regarding the relation between supersymmetric models
and the GNY model it is interesting to observe that the
balance between bosons and fermions is dictated by the
coefficients of JB and JF appearing in Eq. (2.6). One
immediately notices that, in particular, the value Nf ¼ 1=4
represents the relevant case as far as comparisons with the
WZ results of Ref. [3] are concerned. Indeed, as suggested
in Ref. [11] one may define N ¼ 4Nf so that N is the
number of two component Majorana fermions in 2þ 1
dimensions. In this vein it is worth it to recall the suggestion

that a minimal N ¼ 1 SCFT containing a single two-
component Majorana fermion may exist in 2þ 1d. To
describe such a theory the following Lagrangian density, in
Minkowski space, has been proposed [17–19]

LN¼1 ¼
1

2
ð∂μϕÞ2 þ

1

2
ψ̄ði=∂Þψ −

λ

2
ϕψ̄ψ −

λ2

8
ϕ4: ð2:10Þ

When the coupling relation λ2 ¼ g2 ¼ g21 is satisfied this
N ¼ 1 Wess-Zumino model belongs to the same univer-
sality class as the GNY at Nf ¼ 1=4 [11,20].

B. The Nambu–Jona-Lasinio–Yukawa model

The massless Nambu–Jona-Lasinio–Yukawa Lagrangian
density describing two scalars, ϕi (i ¼ 1; 2), and Nf four
component Dirac fermions, ψf (f ¼ 1;…; Nf), can be
written as [5]

LNJLY ¼ 1

2
ð∂μΦ�Þð∂μΦÞ þ ψ̄f½ði=∂Þ − g1ðϕ1 þ iγ5ϕ2Þ�ψf

−
g2
8
ðΦ�ΦÞ2; ð2:11Þ

where Φ ¼ ϕ1 þ iϕ2 such that the theory is invariant under
the continuous transformations ψf → eiαγ5ψf and
Φ → ei2αΦ. As in the GNY case the interactions can be
linearized by using the MFA

ðΦ�ΦÞ2 ≃ 2Φ�Φðξ�cξcÞ1=2 − ξ�cξc; ð2:12Þ

where ξc ¼ σc þ iπc with σc ¼ hϕ2
1i0 and πc ¼ hϕ2

2i0.
Then, shifting ϕi → ϕ0

i þ ϕi;c (i ¼ 1, 2) and proceeding
as in the GNY case one obtains the MFA free energy
density

FNJLYðσc; πc;ϕ1;c;ϕ2;cÞ
¼ −

g2
8
ðσ2c þ π2cÞ þ

g2
4
ðσ2c þ π2cÞ1=2ðϕ2

1;c þ ϕ2
2;cÞ

− i
Z

d3p
ð2πÞ3 ln

�
p2 −

g2
2
ðσ2c þ π2cÞ1=2

�

þ 2Nfi
Z

d3p
ð2πÞ3 ln½p

2 − g21ðϕ2
1;c þ ϕ2

2;cÞ�: ð2:13Þ

Due to the apparent symmetry the free energy density can
be more conveniently examined at the particular points
πc ¼ 0 and ϕ2;c ¼ 0. Next, one can define ϕ1;c ¼ ϕc while
rescaling ϕc → ϕc=g1 and σc → ð2=g2Þσc to finally write

FNJLYðσc;ϕcÞ ¼ −
σ2c
2g2

þ σcϕ
2
c

2g21
þ JBð ffiffiffiffiffi

σc
p Þ − 2NfJFðϕcÞ;

ð2:14Þ

where JBð ffiffiffiffiffi
σc

p Þ and JFðϕcÞ are given by Eqs. (2.8) and
(2.9). Regarding analogous SUSYmodels note that we now
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have two bosons and the definition N ¼ 4Nf ¼ 2 sets
Nf ¼ 1=2 as the relevant value when relating the NJLY to
the Wess-Zumino N ¼ 2 theory of a chiral superfield with
cubic superpotential (see Ref. [11] and references therein
for more details).

III. THERMODYNAMICS

In order to easily explore the thermodynamics of the
GNY and NJLY models let us rewrite the free energy
density in terms of the number of bosons, Nb, as

F ðσc;ϕcÞ ¼ −
σ2c
2g2

þ σcϕ
2
c

2g21
þ Nb

2
JBð ffiffiffiffiffi

σc
p Þ − 2NfJFðϕcÞ;

ð3:1Þ

which is a form appropriate to treat both situations by
selecting Nb ¼ 1 and Nf ¼ 1=4 (GNY) or Nb ¼ 2 and
Nf ¼ 1=2 (NJLY). The pressure can be obtained from the
relation P ¼ −F ðσ̄; ϕ̄Þ where σ̄ and ϕ̄ satisfy the “gap”
equations ∂F=∂σc ¼ 0 and ∂F=∂ϕc ¼ 0. One then
obtains the coupled equations

ϕ̄2

2g21
¼ σ̄

g2
þ Nb

8π
½ ffiffiffī

σ
p þ 2T ln ð1 − e−

ffiffī
σ

p
=TÞ�; ð3:2Þ

and

σ̄
ϕ̄

g21
¼ −Nf

ϕ̄

π
½ϕ̄þ 2T ln ð1þ e−ϕ̄=TÞ�; ð3:3Þ

where the last equation has not been simplified since the
trivial solution ϕ̄ ¼ 0 will prove to be useful in the sequel.
Next, let us write the entropy density s ¼ ∂P=∂T as a sum
of the bosonic and fermionic contributions sðTÞ ¼ sBðTÞ þ
sFðTÞ where

sBðTÞ ¼
Nb

2π
f3 ffiffiffī

σ
p

TLi2½e−
ffiffī
σ

p
=T � þ 3T2Li3½e−

ffiffī
σ

p
=T �

− σ̄ ln½1 − e−
ffiffī
σ

p
=T �g; ð3:4Þ

and

sFðTÞ ¼ −Nf
2

π
f3ϕ̄TLi2½−e−ϕ̄=T � þ 3T2Li3½−e−ϕ̄=T �

− ϕ̄2 ln½1þ e−ϕ̄=T �g: ð3:5Þ

The above equations are guaranteed to be thermo-
dynamically consistent thanks to the gap equations which
eliminate the crossed terms ð∂ϕ̄=∂TÞð∂P=∂ϕ̄Þ and
ð∂σ̄=∂TÞð∂P=∂σ̄Þ. The Stefan-Boltzmann limit can be
easily obtained by taking σ̄ ¼ 0 and ϕ̄ ¼ 0 so that we
can write sfree ¼ sB;free þ sF;free where

sB;free ¼ T2Nb
3ζð3Þ
2π

and sF;free ¼ T2Nf
9ζð3Þ
2π

; ð3:6Þ

implying that sF;free ¼ 3ðNf=NbÞsB;free. At the same time
these relations allow us to trivially set Pfree ¼ Tsfree=3.
Using these results one can easily obtain the energy density
E ¼ −Pþ sT, the trace anomaly Δ ¼ ðE − 2PÞ as well as
the conformal measure

C ¼ Δ
E
; ð3:7Þ

and the speed of sound squared

V2
s ¼

∂P
∂E ¼ s

Cv
; ð3:8Þ

where Cv ¼ Tð∂sÞ=ð∂TÞ is the specific heat.

IV. RESULTS

To examine thermodynamical quantities we first need to
solve the gap equations (3.2) and (3.3). To do that let us
start by defining the dimensionless thermal masses mF ¼
ϕ̄=T and mB ¼ ffiffiffī

σ
p

=T so that the gap equations become

T
2g21

m2
F ¼ T

g2
m2

B þ Nb

8π
fmB þ 2 ln½1 − e−mB �g; ð4:1Þ

and

T
g21

m2
BmF ¼ −mF

Nf

π
fmF þ 2 ln½1þ e−mF �g; ð4:2Þ

where we again have not canceled an overall factor ofmF in
the last equation.
We can now solve the above equations at the strong

(T → 0) and weak (T → ∞) coupling limits starting with
the former. In this case the gap equations decouple and the
first one sets

mB ¼ 2 lnΦ; ð4:3Þ
where Φ represents the golden ratio ð1þ ffiffiffi

5
p Þ=2 exactly as

in the OðNÞ scalar case [1]. The second equation has two
solutions: the first one is the trivial mF ¼ 0 while the
second gives the complex mF ¼ �ð2πiÞ=3 which we
discard. As expected, at the Stefan-Boltzmann limit the
solutions aremF ¼ mB ≡ 0. As it was numerically checked
mF ¼ 0 for all temperatures so that one ends up with only
the following equation for mB

T
g2

m2
B ¼ −

Nb

8π
fmB þ 2 ln½1 − e−mB �g: ð4:4Þ

Defining the dimensionless coupling ĝ ¼ g2=T it is then
possible to investigate mB in between the strong (ĝ → ∞)
and weak (ĝ → 0) limits by plotting the bosonic mass in the
compactified interval ð1þ ffiffiffî

g
p Þ−1 ∈ ½0; 1� as in Fig. 1.
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Then, taking into account that mF ¼ 0 for all couplings
the pressure can be written in a more compact form as

P ¼ T3

�
m4

B

2ĝ
þ Nb

2π

�
m3

B

6
þmBLi2½e−mB � þ Li3½e−mB �

��

þ NfT3
3ζð3Þ
2π

; ð4:5Þ

where the last term is just PF;free. In this case the entropy
density reads

sðTÞ ¼ Nb
T2

2π
f3mBLi2½e−mB � þ 3Li3½e−mB �

−m2
B ln½1 − e−mB �g þ NfT2

9ζð3Þ
2π

; ð4:6Þ

where the last term represents sF;free.

The ratio s=sfree can be readily studied at the two
extremum limits by using mB ¼ 2 lnΦ and mF ¼ 0 for
strong ĝ and mB ¼ mF ≡ 0 for weak ĝ. As expected within
the weak regime the Stefan-Boltzmann limit is achieved
yielding s=sfree ¼ 1. At the strong limit one obtains, after
some little algebra, the result for the GNY/NJLY ratio at
infinite coupling

s
sfree

¼ 4=5þ 3Nf=Nb

1þ 3Nf=Nb
: ð4:7Þ

When Nf ¼ 0 this relation reproduces the result s=sfree ¼
4=5 which has been originally obtained in Ref. [1] in the
case of the scalar OðNÞ model. As Nf → ∞ the ratio
becomes s=sfree → 1. Regarding the SUSY theory with
cubic superpotential the cases (Nb ¼ 1; Nf ¼ 1=4) and
(Nb ¼ 2; Nf ¼ 1=2), respectively concerning the GNY
and NJLY models, are the relevant ones. In this case
one obtains s=sfree ¼ 31=35 which is exactly the ratio
found within the OðNÞWess-Zumino theory with a quartic
superpotential [3]. For completeness it is worth recalling
that for this model the analytical result quoted in Ref. [3] is

s
sfree

¼ 4=5þ 3F=ð4BÞ
1þ 3F=ð4BÞ ; ð4:8Þ

so that when B ¼ F the ratio predicted for the OðNÞ ZM
model agrees with the one predicted by the GNYand NJLY
models at (Nb ¼ 1; Nf ¼ 1=4) and (Nb ¼ 1; Nf ¼ 1=4) as
Eq. (4.7) implies. Figure 2 shows the GNY/NJLY s=sfree
ratio for all couplings and different values of Nf. A detailed
discussion about the type of fractionalization implied by
Eqs. (4.7) and (4.8) can be found in Ref. [21].
To examine the conformal measure one can start by ana-

lytically obtaining the interaction measure Δ ¼ E − 2P ¼
sT − 3P. Using mF ¼ 0 and mB as given in Eq. (4.4) one
gets

Nf 0

Nf 1 4

Nf 3

0 0.2 0.4 0.6 0.8 1

4
5

31
35

49
50

1

1 1 g

s
s f
re
e

GNY

NJLY

0 0.2 0.4 0.6 0.8 1

31
35

1

1 1 g

s
s f
re
e

FIG. 2. The strong-weak entropy density ratio, s=sfree, as a function of the quantity 1=ð1þ
ffiffiffî
g

p Þ which ranges from 0 (strong coupling
or low T limit) to 1 (weak coupling or high T limit). The left panel regards the GNY model with Nb ¼ 1 for Nf ¼ 0; 1=4 and 3 showing
that, as ĝ → ∞, the curves go to 4=5 (Nf ¼ 0), 31=35 (Nf ¼ 1=4) and 49=50 (Nf ¼ 3). The right panel compares the GNY with at
Nb ¼ 1 and Nf ¼ 1=4 with the NJLY at Nb ¼ 1 and Nf ¼ 1=4.

GNY

NJLY

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1 1 g

m
B
m
B
0

FIG. 1. The GNY and NJLY bosonic masses, normalized by
mBð0Þ ¼ 2 lnΦ, as a function of the quantity 1=ð1þ ffiffiffî

g
p Þ which

ranges from 0 (strong coupling or low T limit) to 1 (weak
coupling or high T limit). The masses vary from mB ¼ 2 lnΦ ≃
0.962 at ĝ ¼ g2=T → ∞ to mB ¼ 0 at the Stefan-Boltzmann
limit, ĝ ¼ g2=T → 0.
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Δ
T3

¼ m4
B

2ĝ
; ð4:9Þ

which, in view of Eq. (4.4), shows that the GNY/NJLY are
CFTs at ĝ ¼ 0 (mB ¼ 0) and ĝ ¼ ∞ (mB ¼ 2 lnΦ) but not
in between as illustrated in Fig. 3 which shows C ¼ Δ=E
for all couplings. The maxima ðC ≃ 0.011Þ occur at ĝ ¼
4.63 for the NJLY and at twice this value, ĝ ¼ 9.26, for the
GNY which respectively correspond to ð1þ ffiffiffî

g
p Þ−1 ≃ 0.32

and ð1þ ffiffiffî
g

p Þ−1 ≃ 0.25. Note also that since Eq. (4.9) does
not depend on the fermionic degrees of freedom the
interaction measure in the GNY/NJLY case is similar to
the one found in the OðNÞ scalar case with quartic self
interactions [1]. From the phenomenological point of view
the speed of sound represents an interesting physical
observable to be analyzed at all coupling values. For this
purpose Fig. 4 shows V2

s as a function of ð1þ
ffiffiffî
g

p Þ−1 for the

GNY and the NJLY cases indicating that the maximum
deviation from the free gas value, V2

s ¼ 0.5, occurs at
V2
s ≃ 0.494. It is tempting to interpret this rather small

difference as a suggestion that apart from being exact CFTs
at ĝ ¼ 0 and ĝ ¼ ∞ these theories behave as such, to a
good approximation, also at intermediate couplings.
Finally, in order to better understand the differences

between the OðNÞ WZ and the GNY/NJLY (and related
WZ with cubic superpotential) models observed at inter-
mediate couplings it is instructive to compared the mass
behavior of the former theory with the results displayed in
Fig. 1 for the GNY/NJLY case. With this aim let us
examine Fig. 5 (taken from Ref. [3]) which displays mF

and mB as a function of the coupling. The figure shows
that both masses vanish at weak coupling while mF → 0

and mB → 2 lnΦ at the strong coupling limit. These two
situations coincide with the results for the GNY/NJLY
models which also predict C ¼ 0 at these two coupling
limits. However, the most important difference arises at
intermediate couplings when mF is nonzero while mB

displays a behavior which is reminiscent of the one
observed in the GNY/NJLY case (compare with Fig. 1).
The origin of the difference can be traced back to the
polynomial structure of the potential energy density
describing each theory. In the case of the GNY/NJLY
the Yukawa vertex is trilinear so that the effective
fermionic mass at the MFA level is given by a (one loop)
fermionic tadpole, see right hand side of Eq. (4.2) and
Fig. 6, which does not effectively contribute at any
coupling. On the other hand in the case of the OðNÞ
the Yukawa vertex if quartic so that the effective fermionic
mass at the large-N (one loop) level is given by a (one
loop) scalar tadpole which contributes at intermediate
couplings, see gap equations in Ref. [3] and Fig. 6 in
the present work.
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FIG. 3. The conformal measure, C, as a function of the
quantity 1=ð1þ ffiffiffî

g
p Þ which ranges from 0 (strong coupling or

low T limit) to 1 (weak coupling or high T limit). The results
are for the GNY with at Nb ¼ 1 and Nf ¼ 1=4 and the NJLY
at Nb ¼ 1 and Nf ¼ 1=4.

NJLY
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FIG. 4. The speed of sound squared, V2
s , as a function of

ð1þ ffiffiffî
g

p Þ−1. The results are for the GNY with at Nb ¼ 1 and
Nf ¼ 1=4 and the NJLY at Nb ¼ 1 and Nf ¼ 1=4. The free gas
value is V2

s ¼ 0.5.
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FIG. 5. The bosonic and fermionic masses for the OðNÞ WZ
model, both normalized by mBð0Þ ¼ 2 lnΦ, as a function of the
quantity 1=ð1þ λÞ which ranges from 0 (strong coupling) to 1
(weak coupling). Taken from Ref. [3].
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V. CONCLUSIONS

The thermodynamics of the massless three-dimensional
GNYand NJLY models has been analyzed within the MFA
framework for all coupling values. The results obtained
when evaluating the conformal measure, C, show that both
models behave as CFTs only at infinite and vanishing
couplings. Therefore, unlike the OðNÞ scalar model with
sextic interaction [1] or the OðNÞ WZ model with quartic
superpotential [3] they cannot be considered to represent
pure CFTs (for which C vanishes at any coupling value).
Nevertheless, the results obtained for the entropy density
ratio, s=sfree, at infinite coupling show an exact agreement
between the three models when considering the particular
values (Nf ¼ 1=4, Nb ¼ 1), (Nf ¼ 1=2, Nb ¼ 2), (F ¼ B)
for the GNY, NJLY, and OðNÞWZ theories respectively. In
this strong coupling regime, where all models observe
C ¼ 0, one reproduces the ratio s=sfree ¼ 31=35 originally
obtained in the context of the OðNÞ WZ model [3]. When
varying Nf within the GNY (where Nb ¼ 1) and NJLY
(whereNb ¼ 2) models at infinite coupling one predicts the
s=sfree ratio to lie between 4=5 (Nf ¼ 0) and 1 (Nf → ∞)
which is also in agreement with Ref. [3]. Here, a possible
explanation for such an exact agreement was found by
examining how the dimensionless fermionic and bosonic
masses (mF and mB) behave at infinite couplings since in
all three modelsmF ¼ 0 whilemB ¼ 2 lnΦ. This allows us
to conclude that in this particular regime all these theories
display universal characteristics effectively behaving as a
gas of massive self interacting bosons plus an independent
gas of free massless fermions. Therefore, when the
system is dominated by fermionic degrees of freedom
(Nf; F → ∞) one obtains s=sfree ¼ 1 whereas in the case
of a purely bosonic system (Nf ¼ F≡ 0) the result
s=sfree ¼ 4=5, originally obtained in theOðNÞ scalar model

context [1], is exactly reproduced. As expected, at vanish-
ing couplings all models behave as a system composed by a
gas of massless free bosons plus an independent gas of
massless free fermions so that the theories display an
universal behavior with C ¼ 0 and s=sfree ¼ 1. The main
difference between the GNY/NJLY (which are related to
the WZ with cubic superpotential [11]) and the OðNÞ WZ
theories with quartic superpotentials happens at intermedi-
ate couplings where the former do not represent CFTs.
Based on the present results one may conjecture that one of
the main reasons for this difference is the fact that the
fermion masses behave in a much less universal way than
the bosonic masses in the different cases. In particular,
within the GNY/NJLY models with trilinear Yukawa vertex
the solutions to the gap equations imply that mF vanishes
for all couplings. Therefore, at least within the MFA
employed here, the system always behaves as a gas of
massive self interacting bosons plus an independent gas of
free massless fermions. In this case the (trilinear) Yukawa
coupling (g1) does not play any role and the dynamics is
driven solely by the (scalar) quartic coupling (g2) so that the
GNY/NJLY and the scalar OðNÞ model with quartic
interaction [1] display a similar conformal measure. On
the other hand, within the OðNÞ WZ theory with quartic
Yukawa vertex mF attains finite values at intermediate
couplings while vanishing only at the extremum λ ¼ 0 and
λ ¼ ∞ values.
In summary, the results obtained here together with the

ones obtained in Refs. [1,3], confirm that the OðNÞ scalar
model with sextic interaction and theOðNÞWZmodel with
quartic superpotential represent pure CFTs in contrast to
the OðNÞ scalar model with quartic interaction and the
GNY/NJLY models (as well as the related WZ model with
cubic superpotential). The latter models behave as CFTs
only at vanishing and infinite couplings where the thermo-
dynamical behavior displayed by all theories considered
appears to be more universal. However, from a more
quantitative point of view it is worth recalling that the
values reached by the of speed of sound within the GNY/
NJLY models at intermediate couplings are never lower
than V2

s ≃ 0.494. This value is still very close to the free gas
value, V2

s ≃ 0.5, observed by pure CFTs.
Regarding further refinements one question that immedi-

ately arises concerns the reliability of all those results
which were obtained with the MFA, in the present work,
and at large-N in Refs. [1,3]. This becomes a very relevant
question especially if one recalls how these two approx-
imations may fail in correctly describing the thermody-
namics of low dimensional systems at finite temperatures.
One example occurs within the related Gross-Neveu model
in 2þ 1d where the large-N approximation predicts that
chiral symmetry at finite temperatures and densities is
restored through a second order phase transition at all finite
temperatures and through a first order transition only at
T ¼ 0 [22]. In this situation the inclusion of finite N effects

+

+

...

...

+

+

FIG. 6. Feynman diagrams contributing to the fermionic masses,
mF, for the different models. Top: contributions to the OðNÞ WZ
model with quartic superpotential. The first (scalar tadpole)
diagram is the only one contributing in the large-N approximation
considered in Ref. [3] while the second would bring a finite N
correction. Bottom: contributions to the GNY/NJLY models (and
related WZ with cubic superpotential). The first diagram (fermion
tadpole), which vanishes, is the only one consiedered within the
MFA adopted here while the second represents an exchange (Fock)
type of correction. In both cases the dashed lines represent bosons
and continuous lines represent fermions.
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[23] changes the transition pattern predicting that a first
order transition boundary, also present at low finite temper-
atures, terminates at a tricritical point located at intermedi-
ate temperatures and densities. This prediction, missed in
large-N applications, agrees with the results of lattice
simulations [24] (see Ref. [23] for more examples). One
possiblity to improve theMFA and large-N evaluations is to
consider alternative non perturbative techniques such as the
optimized perturbation theory [25], used in Ref. [23], or the
resummation scheme recently proposed in Ref. [26] so
as to dress the fermionic masses with exchange (Fock like)
type of contributions which are not considered at the
MFA/large-N/Hartree level.
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