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We argue a smallness of gauge couplings in Abelian quiver gauge theories, taking the anomaly
cancellation condition into account. In theories of our interest there exist chiral fermions leading to chiral
gauge anomalies, and an anomaly-free gauge coupling tends to be small, and hence can give a nontrivial
condition of the weak gravity conjecture. As concrete examples, we consider Uð1Þk gauge theories with a
discrete symmetry associated with cyclic permutations between the gauge groups, and identify anomaly-
free Uð1Þ gauge symmetries and the corresponding gauge couplings. Owing to this discrete symmetry, we
can systematically study the models and we find that the models would be examples of the weak coupling
conjecture. It is conjectured that a certain class of chiral gauge theories with too many Uð1Þ symmetries
may be in the swampland. We also numerically study constraints on the couplings from the scalar weak
gravity conjecture in a concrete model. These constraints may have a phenomenological implication to
model building of a chiral hidden sector as well as the visible sector.
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I. INTRODUCTION

Swampland conjectures attract much attention recently
in various aspects [1–7]. The conjectures are expected to
constrain effective field theories to be consistent with
quantum gravity, and give us new insights into not only
the string theory as a candidate of quantum gravity but also
physics beyond the Standard Model (SM).
Among them, the weak gravity conjecture (WGC)

requires theories consistent with quantum gravity to include
a charged state with a charge q and a mass m satisfying the
weak gravity bound [3],

eq ≥
mffiffiffi
2

p
MPl

; ð1Þ

so that an extremal black holes can have a decay channel.
The WGC briefly states that the gravity is the weakest
force. Here, e is an anomaly-free gauge coupling andMPl is
the reduced Planck mass. The WGC can be extended to
theories with multiple Uð1Þ groups [8] and also to a scalar
exchange force such as a Yukawa interaction [9–13].

The latter extension is called the scalar weak gravity
conjecture (SWGC). These conjectures also have been
checked in several aspects [14,15], and indicate that
repulsive forces of gauge interactions among the same
species of particles are stronger than attractive forces of
gravity and Yukawa interactions among them [16].
The situation may not be so simple in chiral gauge

theories. IR symmetries are often obtained through the
breaking of UV symmetries, and an IR gauge coupling is
given by a linear combination of UV gauge couplings as
in the SM. The linear combinations are determined by
the Stückelberg couplings among the gauge bosons and
would-be Nambu-Goldstone bosons (or axions) associated
with the symmetry breaking. This is applicable not only
to anomaly-free gauge theories but also to consistent
theories possessing anomalous Uð1Þ gauge groups. In
theories with an anomalous Uð1Þ, an axion field plays
an important role to cancel the gauge anomalies: the gauge
invariance is (nonlinearly) restored owing to the axion
coupling to topological terms of the gauge fields on
top of the Stückelberg couplings.1 As in the ordinary
spontaneous symmetry breaking, these Stückelberg cou-
plings lead to the gauge boson mass and determine
the eigenstate of massless gauge boson. Thus the gauge
boson of anomalous Uð1Þ symmetry is decoupled in the
low energy limit.2 In the string theory, this anomaly
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1See also a recent work [17].
2Some of gauge bosons in the anomaly-free gauge groups can

also become massive through the Stückelberg couplings.
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cancellation is realized by the Green-Schwarz mechanism
[18] involving string theoretic axions. 4D string models
with anomalous Uð1Þ’s have been well discussed for
realizing the SM [19–24].
In this paper, we will focus on models with multiple

Uð1Þ symmetries and chiral fermions. For models with
Uð1Þk, an anomaly-free Uð1Þ is given by a linear combi-
nation of the original symmetries:

Uð1Þanomaly-free ¼
Xk
i¼1

ciUð1Þi; ð2Þ

where k is the number of Uð1Þ symmetries, ci (i ¼ 1;
2;…; k) is a model-dependent Oð1Þ coefficient and Uð1Þi
is the ith gauge group. We will discuss some examples in
the following section. Then, the corresponding anomaly-
free gauge coupling e is given by

1

e2
¼

Xk
i¼1

c2i
g2i

; ð3Þ

where gi is the gauge coupling of the Uð1Þi symmetry. The
gauge coupling e will become necessarily very weak
and smaller than the original coupling gi as the number
of Uð1Þ gauge groups increases in the large k limit.3 Thus,
the WGC condition in Eq. (1) looks hard to be satisfied
with an assumption that chiral anomalies can be canceled.
In other words, the repulsive force among particles will
then become very weak. It is conjectured that a certain class
of chiral gauge theories with too many Uð1Þ symmetries
can be in the swampland.4 It is noted that the gauge groups
in 10D superstring theories are restricted [26], while those
in 4D brane models seem less-constrained in the view point
of tadpole condition.5 When magnitude of all the gauge
couplings is comparable to each other, the Eq. (3) is
rewritten as

eq ∼
g̃ffiffiffi
k

p q≳ m
MPl

; ð4Þ

where g̃ ∼ gi for ∀ i is the average of the gauge couplings.
We find that the gauge coupling is scaling as e ∼ k−1=2 for a
large k and there exists an upper bound on k, k≲ ðqg̃ MPl

m Þ2,
if the WGC is correct and the ratio of m=MPl remains
fixed in the large k limit. This upper bound on k is similar to
the species bound [27], but k is not the number of
species but the number of Uð1Þ gauge groups in our

case.6 Similar conditions for theories with a discrete Zk
(gauge) symmetry are also discussed in Refs. [28,29].
Equation (4) could be regarded as an example of the weak
coupling conjecture [29].
A notion of quiver gauge theory is often used for theories

in the presence of multiple gauge groups and bifundamental
chiral fermions, and matches model building involving
D-branes well [30–40]. Instead of concrete string models,
in this paper we will consider quiver gauge theories with
Uð1Þk gauge groups and focus on the anomaly-free gauge
groups and the (S)WGC in a bottom-up approach, suppos-
ing that the remaining anomalies are canceled and then the
anomalous gauge bosons get massive. In general, compu-
tation of anomalies depends on the matter content in
models. In order to check anomaly-free Uð1Þ’s systemati-
cally and study concretely the (S)WGC constraints on the
gauge couplings, we restrict ourselves to several types of
models controlled by discrete symmetries. However, a
behavior of the anomaly-free gauge coupling in Eq. (3)
does not change in general models with anomalous Uð1Þ’s.
The (S)WGC can constrain range of free parameters in low
energy theories and show what parameter values are
favored by UV theory in the view point of IR physics.
In some quiver gauge theories of our interest, there exist a
discrete symmetry associated with cyclic permutations
between the gauge groups in certain quiver gauge theories,
and the symmetry can generally be broken in anomaly-free
Uð1Þ theories by a linear combination of Uð1Þ’s as in
Eq. (3). Some of quiver gauge theories remind us of
deconstructed extra dimension [41,42], which could relate
our approach to the weak coupling conjecture in hologra-
phy [29]. Also new insights can be given to chiral Abelian
gauge theories which may be a candidate of hidden sectors
of dark matter models in particle physics [43].
This paper is organized as follows. In Sec. II, we give

a brief review of the (S)WGC and anomalous Uð1Þ
symmetries. In Sec. III, we will discuss concrete quiver
gauge theories with Uð1Þk, then identify the anomaly-free
Uð1Þ symmetries. In Sec. IV, we numerically show the
SWGC constraint on the gauge couplings and Yukawa
couplings in aUð1Þ4 quiver gauge theory. We discuss also a
toy model from 5D orbifold compactification similarly.
Section V is devoted to summary and conclusion. In this
paper, we will discuss the above arguments with the tree
level parameters.

II. BRIEF REVIEWS OF THE (S)WGC
AND ANOMALOUS Uð1Þ’S
A. The WGC and the SWGC

In this subsection, we give a brief review of the WGC
and the SWGC in four dimension. The WGC claims that

3The WGC with a similar gauge coupling is discussed in
Ref. [25].

4This will generally be applicable to theories with a semi-
simple gauge group of G ¼ Q

k
i¼1 Gi in the large k limit, when G

is spontaneously broken to a simple group. Here Gi is a simple
group.

5In the heterotic string, the rank of the gauge group is sixteen.

6If we have too large ci’s, the theory would be in the
swampland owing to the appearance of very weak coupling.
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there exists a state with a charge q and a mass m satisfying
the inequality

eq ≥
mffiffiffi
2

p
MPl

ð5Þ

in a theory consistent with quantum gravity [3]. The factor
of 1=

ffiffiffi
2

p
comes from the relative normalization of the

Newton force against the Coulomb one, and a generaliza-
tion to an arbitrary dimension is straightforward [44]. This
conjecture makes (super)extremal black holes decay into
lighter ones.
The WGC can be extended to theories including a scalar

exchange force such as a Yukawa interaction. This is called
the SWGC [9,10,14]. Let us consider a theory with multiple
Uð1Þ gauge groups:

SEM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

X
a;b

1

2
Kab∂μϕ

a∂μϕb

−
1

4

X
i;j

fijðϕÞFðiÞ
μνFðjÞμν

�
ð6Þ

where R is a Ricci scalar, ϕa is a real scalar field, FðiÞ
μν is a

field strength of Uð1Þi, Kab is a scalar kinetic matrix, fij is
a gauge kinetic function, and i, j (¼ 1; 2;…; k) and a, b
denote the labels of Uð1Þ gauge groups and those of scalar
fields respectively. The diagonal parts of fij give the gauge
couplings of Uð1Þi ’s and the off-diagonal components are
kinetic mixings. The matter part action is given by

Smatter ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2

X
a;b

Kab∂μΦa∂μΦb

þ ψ̄iγμ
�
∇μ þ i

X
j

qjA
ðjÞ
μ

�
ψ −mðΦÞψ̄ψ

�
ð7Þ

where ψ is a Dirac spinor of a test particle for the SWGC
and has a charge qi under the gauge groupUð1Þi and a mass
mðΦÞ, and Φa is a real scalar field which may be different
from ϕa in general. Here, the covariant derivative ∇μ

includes the spin connection. The Φa is decomposed as

Φa ¼ φ̄a þ φa; ð8Þ

where φ̄a is the background configuration of Φa and φa

denotes a fluctuation around the background. With these,
the mass mðΦÞ is rewritten as

mðΦÞ ¼ mðφ̄Þ þ ∂m
∂φa φ

a þ � � � : ð9Þ

mðφ̄Þ is the mass of the ψ in the background φ̄a, and the
higher order terms of φa give the interaction terms between
φa’s and ψ . Thus the Yukawa coupling reads:

Smatter ⊃
Z

d4x
ffiffiffiffiffiffi
−g

p X
a

yaðφ̄Þφaψ̄ψ ; ð10Þ

yaðφ̄Þ ≔
∂m
∂φa ðφ̄Þ ¼ ∂amðφ̄Þ: ð11Þ

Then the SWGC for ψ is given by

X
i;j

fijqiqj ≥
m2

2M2
Pl

þ
X
a;b

Kabyayb; ð12Þ

where fij and Kab are the inverse matrix of the fij and Kab

respectively. This inequality can be interpreted as the total
gauge repulsive force is stronger than the sum of the
attractive forces of the gravity and the total Yukawa
interactions when we focus on forces acting between the
test particle ψ : jF⃗Coulombj ≥ jF⃗gravityj þ jF⃗Yukawaj. The abso-
lute value of long-range force mediated by massless fields
in four dimension is expressed as

jF⃗j ¼ A
4πr2

; ð13Þ

where a numerator A is the factor corresponding to each
force:

ACoulomb ¼
X
i;j

fijqiqj; Agravity ¼
m2

2M2
Pl

;

AYukawa ¼
X
a;b

Kabyayb ð14Þ

If the scalars φa are heavy, Yukawa interactions are short-
range forces and neglected. Then the SWGC gets back to
the WGC.

B. Anomalous Uð1Þ symmetries

In this subsection, we review cancellation of chiral Uð1Þ
gauge anomalies by axion fields. In 4D effective field
theories, gauge transformation of the axions can cancel the
chiral anomalies produced by light chiral fermions in
the presence of topological terms of the gauge fields
and the Stückelberg couplings. In field theories with an
anomaly-free Uð1Þ gauge symmetry, such axions are
would-be Nambu-Goldstone bosons associated with the
spontaneous breaking of the Uð1Þ symmetry. After inte-
grating out heavy fermions with chiral Uð1Þ charges, we
can obtain anomalousUð1Þ in the low energy limit [17,45].
In 4D string models, anomalies can be canceled by the
Green-Schwarz mechanism involving string theoretic axi-
ons that originate from tensor fields, when tadpoles of
brane charges are canceled [46,47].
We shall consider the 4D action involving axions in

addition to chiral fermions leading to chiral anomalies:
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Saxion ¼
X

i∈Uð1Þanomaly

Z
d4x

�
−
1

2

m2
i

g2i

� X
I∈axions

BiI∂μθI þAðiÞ
μ

�
2

þ
X

I∈axions

CiIθI
32π2

ϵμνρσFðiÞ
μνF

ðiÞ
ρσ

�
: ð15Þ

Here, θI is an axion, BiI and CiI are constants, mi is the
gauge boson mass. For the anomalous Uð1Þ symmetries,
the fields transform as

θI → θI −DIiΛi; AðiÞ
μ → AðiÞ

μ þ ∂μΛi; ð16Þ

where Λi is the transformation parameter, and we assume
that DIi satisfies

P
I BiIDIj ¼ δij. The theory is invariant

in the presence of chiral anomalies produced by gauge
transformations against chiral fermions:

Sanomaly ¼
X

i∈Uð1Þanomaly

Z
d4x

� X
I∈axions

Λi
CiIDIi

32π2
ϵμνρσFðiÞ

μνF
ðiÞ
ρσ

�
;

ð17Þ

such that δΛStotal ¼ Sanomaly þ δΛSaxion ¼ 0. Thus, in terms
of axions the anomaly-free Uð1Þ’s are determined such
that the coefficients of CiI ’s are vanishing.7 4D effective
action from 5D theory is also discussed, for instance,
in Refs. [48,49]. The anomalous gauge bosons become
massive as

−
1

2

m2
i

g2i
ðBiI∂μθI þ AðiÞ

μ Þ2 ≕ −
1

2

m2
i

g2i
ðÃðiÞ

μ Þ2; ð18Þ

after θ’s are eaten by them as in spontaneous gauge sym-
metry breaking. Further, for some nonanomalous gauge
bosons, there can exist Stückelberg couplings

Saxion ¼
X

i∈Uð1Þnonanomalous

Z
d4x

�
−
1

2

m2
i

g2i

×

� X
I∈axions

B0
iI∂μθI þ A0ðiÞ

μ

�
2
�
: ð19Þ

The nonanomalous gauge bosons can become massive
as the anomalous ones. Then, the repulsive forces mediated
by such massive gauge bosons will not contribute to
the WGC.
Hereafter, we suppose that this mechanism works in the

quiver gauge theories studied in this paper, and these terms
are ignored otherwise stated.

III. QUIVER GAUGE THEORIES
AND THE WGC

In this section, we discuss quiver theories with Uð1Þk
gauge symmetry and identify anomaly-free gauge groups.
In general, computation of anomalies depends on the matter
content in models. To check anomaly-free Uð1Þ’s system-
atically and identify the gauge couplings concretely, we
focus on several types of models controlled by discrete
symmetries. However, an anomaly-free gauge coupling
will be given by Eq. (3) in general cases. As for a quiver
diagram in this paper, each node implies a gauge group
whereas each arrow among two nodes shows a left-handed
chiral fermion charged under two gauge groups. The
number of arrows shows that of matters and a direction
of an arrow is corresponding to the representation against
two gauge groups. An arrowhead corresponds to anti-
fundamental representation while its opposite side means
fundamental one. For theories only with multiple Uð1Þ
groups, (anti-)fundamental representation is supposed to
have a charg e þ1 (−1). A solid line shows a chiral (left-
handed) fermion whereas a dashed line shows a complex
scalar.
At first, we shall focus on nonsupersymmetric gauge

theories with bifundamental chiral fermions of ðN1;N2Þ
representation under UðN1Þ ×UðN2Þ × � � � gauge group,
which is inspired by D-brane models. Although there
exist many types of quiver diagrams corresponding to
gauge theories, for simplicity we focus on theories includ-
ing only Uð1Þ groups in the diagrams such as Fig. 1. Since
there exist chiral fermions, chiral gauge anomalies can gen-
erally be produced as a consequence. We study cancellation
condition of chiral anomalies to identify anomaly-free
gauge couplings at the tree level, and apply the couplings
to the WGC. Anomaly-free conditions for UðNÞ3 and
UðNÞ4 are discussed in Appendix A. For instance, in
SUðNÞk theories with a general N, non-Abelian gauge
anomaly cancellations require that the number of incoming
arrows is equal to that of outgoing ones at each node. In
Uð1Þk theories we will simply mimic SUðNÞk cases
because in D-brane models a gauge group can be given
by UðNÞ ¼ Uð1Þ × SUðNÞ rather than just SUðNÞ,
hence Uð1Þ and SUðNÞ are considered simultaneously.

FIG. 1. A quiver diagram with k nodes.

7Once anomalous gauge fields are written as Aanomalous
μ ¼P

i biA
ðiÞ
μ , bi’s would be related to ci’s in Eq. (3) through the

orthogonality among Uð1Þ’s. If there exists a large hierarchy
among bi’s in bið∂μθÞAðiÞ

μ , some ci’s would become very large.
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We suppose that the anomalies are canceled as in Sec. II B
and then (non)anomalous gauge fields get massive in a
gauge invariant form. Quiver gauge theories associated
with deconstructed extra dimension [41,42] could relate our
approach to the weak coupling conjecture [29].
In quiver gauge theories with Uð1Þk of our interest, the

action is written by

S ¼
Xk
j¼1

Z
d4x

�
−

1

4g2j
FðjÞ
μνFðjÞμν

þ ψ̄ j;jþ1iγμð∂μ þ iAðjÞ
μ − iAðjþ1Þ

μ Þψ j;jþ1 þ � � �
�
; ð20Þ

where ellipsis shows gravity and interaction terms among
fermions which we have neglected. We assume that kinetic
mixings among gauge fields are absent at the tree level for
simplicity, and will ignore them in this paper. The gauge

field of Uð1Þj is denoted by AðjÞ
μ and ψ j;jþ1 is a left-handed

spinor with a charge of ðþ1;−1Þ against the ðUð1Þj;
Uð1Þjþ1Þ gauge group as noted above. The index runs
as j ¼ 1; 2;…; k and satisfies kþ 1≡ 1. There will exist a
symmetry8 that shifts labels simultaneously as j → jþ 1:

gj → gjþ1; AðjÞ
μ → Aðjþ1Þ

μ ; ψ j;jþ1 → ψ jþ1;jþ2;

ð21Þ

when we treat the gauge couplings as spurion fields, which
are expected to be moduli fields in the string theory. This
can be regarded as a Zk symmetry acting on k nodes with a
element of

0
BBBBBB@

0 1 0 0 � � � 0

0 0 1 0 � � � 0

0 0 0 1 � � � 0

. .
.

1 0 0 0 � � � 0

1
CCCCCCA
: ð22Þ

We can study anomalies and identify anomaly-free Uð1Þ’s
systematically owing to this symmetry as seen below. This
symmetry will be broken in the low energies when an
anomaly-free gauge group is given by a linear combination
of UV Uð1Þ’s. So, interactions of axions to gauge fields are
expected to violate this discrete symmetry.
In terms of particle phenomenology, this theory may be

the hidden sector for dark matter apart from the visible
sector [43]. In Appendix B, we discussed also several
quiver models not shown in this section.

A. Uð1Þ2k − 1
We consider quiver gauge theories with Uð1Þ2k−1 groups

as shown in Fig. 1. These types of (supersymmetric)
models have often been studied in D-brane models on
orbifolds or intersecting/magnetized D-brane models.
They are used also to realize realistic Yukawa couplings
or higher order couplings. We hereafter focus just on
fermions producing anomalies. As seen below, these
theories can have an unique anomaly-free Uð1Þ.

1. Uð1Þ3
One of the simplest case is the quiver gauge theory with

Uð1Þ3 ¼ Uð1Þ1 ×Uð1Þ2 ×Uð1Þ3 groups9 in Fig. 2. As in
Eq. (20), there exist three left-handed chiral fermions ψLi
(i ¼ 1, 2, 3), which have charges of ð1;−1; 0Þ; ð0; 1;−1Þ
and ð−1; 0; 1Þ against ðUð1Þ1; Uð1Þ2; Uð1Þ3Þ respectively.
This model will have a Z3 symmetry as noted above, and
there is no other choices to connect each node. The
divergences of Uð1Þ3 chiral currents jiμ (i ¼ 1, 2, 3) are
given by

8><
>:

∂ · j1 ¼ Q2 −Q3

∂ · j2 ¼ Q3 −Q1

∂ · j3 ¼ Q1 −Q2;

ð23Þ

where ∂ · ji ¼ ∂μjiμ and Qi is the topological charge

density, Qi ¼ 1
32π2

ϵμνρσFðiÞ
μνF

ðiÞ
ρσ . Thus we define the

anomaly-free Uð1Þ by

Uð1ÞX ≔ c1Uð1Þ1 þ c2Uð1Þ2 þ c3Uð1Þ3; ð24Þ

and impose the divergence of its current to vanish

∂ · jX ¼
X

i¼1;2;3

ci∂ · ji ¼ ð−c2 þ c3ÞQ1 þ ðc1 − c3ÞQ2

þ ð−c1 þ c2ÞQ3 ≡ 0: ð25Þ

FIG. 2. Three nodes quiver diagram.

8See also Refs. [39,50,51]. 9In a supersymmetric case, we have a Yukawa coupling.
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Then the solution is

Uð1ÞX ¼ Uð1Þ1 þUð1Þ2 þ Uð1Þ3: ð26Þ

In this model, the anomaly-free gauge group is determined
uniquely (up to overall normalization of the charges), and
its gauge coupling is given by

1

e2X
¼ 1

g21
þ 1

g22
þ 1

g23
: ð27Þ

Here, the anomaly-free gauge coupling eX is written so that
the gauge kinetic term becomes the canonical form:

−
X
j

1

4g2j
FðjÞ
μνFðjÞμν ¼ −

1

4e2X
FðXÞ
μν FðXÞμν

þ ðanomalous gauge fieldsÞ: ð28Þ

Thus, the anomaly-free gauge coupling eX can be smaller
than the original Uð1Þ gauge couplings gi’s.
It is noted that all the matters are then neutral under

this anomaly-free Uð1ÞX, i.e., ∀ qX ¼ 0. It seems that this
model may not be naively applied to the WGC, but the
presence of global symmetries is important. The low energy
Lagrangian will be given by

L ¼
X

i∈matter

iψLi=∂ψLi −
1

4e2X
ðFðXÞ

μν Þ2 þ � � � ; ð29Þ

if anomaly-free gauge boson AðXÞ
μ survives in low energy

limit. Ellipsis includes interactions among fermions and
anomaly-free gauge boson and there will additionally exist
kinetic mixings such as Kijψ iL=∂ψ jL and Majorana mass

terms of −Mijψ
C
iLψ jL in low energy limit after anomalous

massive bosons are integrated out. These terms will violate
invariance under phase rotations of fermions. Now the

original Z3 symmetry acts as eX → eX, A
ðXÞ
μ → AðXÞ

μ and
ψLi → ψLiþ1, but whether this low energy theory has the
Z3 symmetry depends on parameters for fermions. Since all
fermions are neutral under Uð1ÞX, global symmetries will

be hard to survive in the low energy limit while discrete
gauge symmetries originating from the anomalous Uð1Þ’s
can survive if any. If global symmetries survive, this model
is in the swampland. It will be necessary to embed this
model into string theory in order to know what kind of
symmetries survives. This is beyond the scope of the paper
and left for future work.

2. Uð1Þ2k− 1

We consider quiver gauge theories with more general
Uð1Þ2k−1 groups. Figure 3 shows quiver diagrams with the
five nodes, and it is noted that the number of incoming
arrows is equal to that of outgoing ones at each node and
both diagrams have a Z5 cyclic symmetry among each
node. As in Eq. (20) and in the left diagram of Fig. 3,
we have five left-handed fermions charged against
ðUð1Þ1; Uð1Þ2; Uð1Þ3; Uð1Þ4; Uð1Þ5Þ. The divergences of
Uð1Þ5 chiral currents are given by

∂ ·

0
BBBBBB@

j1

j2

j3

j4

j5

1
CCCCCCA

¼

0
BBBBBB@

0 1 0 0 −1
−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

1 0 0 −1 0

1
CCCCCCA

0
BBBBBB@

Q1

Q2

Q3

Q4

Q5

1
CCCCCCA
:

ð30Þ

The number of anomaly-freeUð1Þ’s is given by that of zero
eigenvalues of this coefficient matrix, and we find only one
zero eigenvalue in this model. The anomaly-free Uð1Þ is
given by the corresponding eigenvector

Uð1Þanomaly-free ¼ Uð1Þ1 þUð1Þ2 þ Uð1Þ3
þ Uð1Þ4 þ Uð1Þ5: ð31Þ

Thus all matters are again neutral under this anomaly-free
Uð1Þ and this system will not simply be applied to the
WGC. The situation is similar to the three quivers model in
Sec. III A 1.

FIG. 3. Quiver diagrams with five nodes. Both diagrams have a Z5 cyclic symmetry among each node. In the right diagram, all nodes
are connected with arrows.
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The result is not changed by adding five chiral fermions
to this model as in the right diagram of Fig. 3. Then their
action is additionally given by

S¼
X5
j¼1

Z
d4x½ψ̄ j;jþ2iγμð∂μ þ iAðjÞ

μ − iAðjþ2Þ
μ Þψ j;jþ2 þ � � ��:

ð32Þ

The anomaly coefficient matrix reads

0
BBBBBB@

0 1 1 −1 −1
−1 0 1 1 −1
−1 −1 0 1 1

1 −1 −1 0 1

1 1 −1 −1 0

1
CCCCCCA
: ð33Þ

Thus, the anomaly-freeUð1Þ is similarly given by Eq. (31).
So far we have discussed specific quiver models with

three and five nodes, but the result can be simply extended
to general models with odd number nodes as shown in
Fig. 1. Since the entries of the anomaly coefficient matrix
are composed of the same number of 1 and −1 as above, the
anomaly-free Uð1Þ is uniquely determined as

Uð1Þanomaly-free ¼
X2k−1
i

Uð1Þi; ð34Þ

and the gauge coupling is given by

1

e2
¼

X2k−1
i¼1

1

g2i
: ð35Þ

In concrete models, these are easily verified and it is
checked also that the result does not change for models
with odd nodes and full diagonal lines that are similar to the
right diagram of Fig. 3. As noted previously, however, there
exist no charged chiral matters for this anomaly-free Uð1Þ.

3. Uð1Þ2k− 1 × Uð1Þ2l − 1 with vectorlike matters

We shall consider quiver gauge theories with Uð1Þ2k−1 ×
Uð1Þ2l−1 in the presence of vectorlike matters. As in
Fig. 4, the correspoinding diagram is composed of two
diagrams with odd nodes which are connected by a pair of
two arrows of vectorlike matters. Action is given by two
kinds of Eq. (20) showing Uð1Þ2k−1 × Uð1Þ2l−1 symmetry
and vectorlike part of

S ¼
Z

d4x½ψ̄1;2kiγμð∂μ þ iAð1Þ
μ − iAð2kÞ

μ Þψ1;2k

þ ψ̄2k;1iγμð∂μ − iAð1Þ
μ þ iAð2kÞ

μ Þψ2k;1

−mψC
2k;1ψ1;2k þ H:c:�; ð36Þ

where we assume that the bifundamental vectorlike matters
are charged under the gauge groups of Uð1Þ1 ×Uð1Þ2k and
that the mass m remains nonzero in the weak gauge
coupling limit. In this case, the discrete symmetry is
explicitly broken since ψ1;2k is transformed to ψ2;2kþ1 that
is originally absent. For instance, we focus on Uð1Þ3 ×
Uð1Þ5 theory with vectorlike matter, which is the case of
k ¼ 2 and l ¼ 3. Since vectorlike matter does not contrib-
ute to the chiral anomalies, we have two anomaly-free
Uð1Þ’s as mentioned above: one denotesUð1ÞX fromUð1Þ3
and another denotes Uð1ÞX0 from Uð1Þ5. Here,

Uð1ÞX ¼
X3
i¼1

Uð1Þi; Uð1ÞX0 ¼
X8
i¼4

Uð1Þi; ð37Þ

hence charges of vectorlike matters are ðþ1;−1Þ and
ð−1;þ1Þ for ðUð1ÞX; Uð1ÞX0 Þ and other chiral matters
are neutral for them. The respective gauge couplings are
given by

1

e2X
¼

X3
i¼1

1

g2i
;

1

e2X0
¼

X8
i¼4

1

g2i
: ð38Þ

These can be weaker than the original gauge couplings of
gi’s. Then the WGC for the vectorlike matter reads

e2X þ e2X0 ≥
m2

2M2
Pl

: ð39Þ

In the large limit of k and l with a given m and gi’s, we find

e2X þ e2X0 ∼
g2i
k
þ g2i

l
→ 0; ð40Þ

and then the WGC can be violated since the couplings
becomes very weak as long as the mass m remains nonzero
in the limit of eX → 0 and eX0 → 0. Note that we now fix
gi’s but change only k and l. This indicates that there exists
an upper bounds on the numbers of Uð1Þ gauge groups, k
and l as kþ l≲ ðgi MPl

m Þ2 if the WGC is correct.

FIG. 4. A quiver diagram of three nodes connected with five
nodes by a pair of two arrows of vectorlike matters.
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B. Uð1Þ2k
We consider quiver gauge theories with Uð1Þ2k sym-

metry as shown in Fig. 1. These types of models are
also studied in D-brane models similarly to Uð1Þ2k−1 cases.
As the simplest model with chiral anomalies, we focus on
Uð1Þ4 symmetry and this model has four left-handed
fermions as in Fig. 5. Divergences of each chiral current
are given by

∂ ·

0
BBB@

j1

j2

j3

j4

1
CCCA ¼

0
BBB@

0 1 0 −1
−1 0 1 0

0 −1 0 1

1 0 −1 0

1
CCCA

0
BBB@

Q1

Q2

Q3

Q4

1
CCCA: ð41Þ

Since the anomaly coefficient matrix have two zero eigen-
state, this model has two independent anomaly-freeUð1Þ’s,
which are represented by the eigenvectors ð1; 0; 1; 0ÞT and
ð0; 1; 0; 1ÞT. The former relates first node to third one,
whereas the latter does second node to fourth one. The
independent anomaly-free Uð1Þ’s are generally given by

Uð1ÞX ¼ cUð1Þ1 þ Uð1Þ2 þ cUð1Þ3 þUð1Þ4; ð42Þ

Uð1ÞX0 ¼ −
1

c
Uð1Þ1 þ Uð1Þ2 −

1

c
Uð1Þ3 þ Uð1Þ4; ð43Þ

where c is a free parameter that depends on the D-brane
configuration in concrete UV string models [19–21],10 and
will be a rational number. Otherwise, there exists a global
symmetry [52–54]. The result does not change even if
we add bifundamental vectorlike matters that are charged
under only Uð1Þ1 ×Uð1Þ3 or only Uð1Þ2 × Uð1Þ4. For
c ¼ 0, we find Uð1ÞX ¼ Uð1Þ2 þ Uð1Þ4 and Uð1ÞX0 ¼
Uð1Þ1 þUð1Þ3. It is noted that for a general c a linear
combination canviolate theZ4 toZ2

2 exchanging 1 ↔ 3 and
2 ↔ 4. The gauge couplings relevant to the anomaly-free
Uð1Þ’s read

1

e2X
¼ c2

g21
þ 1

g22
þ c2

g23
þ 1

g24
; ð44Þ

1

e2X0
¼ 1=c2

g21
þ 1

g22
þ 1=c2

g23
þ 1

g24
: ð45Þ

In this model, the chiral fermions have nontrivial charges
under these anomaly-freeUð1Þ’s as shown in Table I. In the
next section, we will numerically study the SWGC in this
model by adding a complex scalar.
Extending this model to general theories with Uð1Þ2k is

simple, and we can verify that there exists at least two
anomaly-free Uð1Þ’s in a concrete model. So it is expected
that in the large k limit with a given c and a fixed gi,
anomaly-free gauge couplings become very small as in
cases of Uð1Þ2k−1 ×Uð1Þ2l−1. Then there exists an upper
bound on the number of Abelian gauge groups if the WGC
is correct and a fermion mass remains nonzero in the large
k limit.

IV. A Uð1Þ4 MODEL AND THE SWGC

In this section, we discuss the detail of Uð1Þ4 quiver
gauge theory shown in the previous section and its
application to the SWGC at the tree level in the presence
of a complex scalar field. The motivation for this is to study
SWGC in a more realistic (or string-inspired) model with a
scalar field. The SWGC shows numerically constraints of a
smallness of gauge couplings against Yukawa couplings.
We also study a UV completion of 5D orbifold model for it.

A. Constraints of the SWGC

Figure 6 shows a quiver diagram of Uð1Þ4 model in the
presence of a complex scalar φ, whose charge is ðþ1;−1Þ
for ðUð1Þb; Uð1ÞdÞ.11 Due to this scalar field, we have
Yukawa couplings of

FIG. 5. The Z4 symmetric quiver diagram with four nodes.

TABLE I. The charges of fields for the anomaly-free Uð1ÞX ×
Uð1ÞX0 group.

Fields qX qX0

ψab −1þ c −1 − 1=c
ψda 1 − c 1þ 1=c
ψbc 1 − c 1þ 1=c
ψcd −1þ c −1 − 1=c
φ 0 0

10A gauge boson in one of the two Uð1Þ’s could be massive in
UV models. But, the behavior of gauge coupling will not change
in the large k limit.

11The direction of the dashed arrow shows the scalar charge
same as chiral fermions. We changed the names of gauge groups
from Uð1Þ1 ×Uð1Þ2 × Uð1Þ3 × Uð1Þ4 to Uð1Þa × Uð1Þb ×
Uð1Þc ×Uð1Þd and accordingly those of left-handed fermions
from ðψ1;2;ψ2;3;ψ3;4;ψ4;1Þ to ðψab;ψbc;ψcd;ψdaÞ for the latter
convenience.
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LYukawa ¼ −yφψC
abψda − y0φ†ψC

bcψcd þ H:c: ð46Þ

This model is inspired by intersecting brane models
[30,32]. No Z4 symmetry exists. This is because φ can
be written as φbd in the view point of the Uð1Þ charges and
hence φbd is transformed to φca that is originally absent.
There could exist Z2 that simultaneously exchanges the
labels as a ↔ c and b ↔ d for y ¼ y0, if we can identify
φbd ¼ φ†

db. As seen in the previous section, two anomaly-
free Uð1Þ’s are given by

Uð1ÞX ¼ cUð1Þa þ Uð1Þb þ cUð1Þc þUð1Þd; ð47Þ

Uð1ÞX0 ¼ −
1

c
Uð1Þa þUð1Þb −

1

c
Uð1Þc þUð1Þd; ð48Þ

where a free parameter c is a rational number and can be
fixed in concrete models by the brane configuration in the
string theory. The charges of the fields are summarized in
Table I.
The effective Lagrangian showing two anomaly-free

Uð1Þ’s may read

L¼
X

I¼ab;bc;cd;da

iψ I =Dψ I−j∂μφj2−
1

4e2X
ðFðXÞ

μν Þ2− 1

4e2X0
ðFðX0Þ

μν Þ2

−½yφψC
abψdaþy0φ†ψC

bcψcdþH:c:�þ���; ð49Þ

where Dμ ¼ ∂μ þ iqXA
ðXÞ
μ þ iqX0AðX0Þ

μ , gauge bosons rel-
evant to two anomalous Uð1Þ’s are neglected since they
become massive if the Green-Schwarz mechanism works.
Yukawa couplings between the complex scalar and chiral
fermions are denoted by y and y0, which are not the same in
general. It is noted that vectorlike pairs of ψab þ ψda
and ψbc þ ψcd will constitute the Dirac spinors.12 Now

scalar φ is neutral under anomaly-free Uð1Þ’s and will not
be considered for the SWGC. The scalar potential will
be neglected hereafter with an assumption that φ is
sufficiently light at energy scales of our interest since
the scalar potential will be model-dependent. To check
strong SWGC [11] for φ is an interesting issue, but this is
left for future work and we focus on the SWGC for
fermions with nontrivial anomaly-free gauge charges.
Here the anomaly-free gauge couplings are given by

1

e2X
¼ c2

g2a
þ 1

g2b
þ c2

g2c
þ 1

g2d
; ð50Þ

1

e2X0
¼ 1=c2

g2a
þ 1

g2b
þ 1=c2

g2c
þ 1

g2d
: ð51Þ

In the presence of a very light φ, the SWGC can be
expressed as

ð−1þ cÞ2e2X þ
�
1þ 1

c

�
2

e2X0 ≥
M2

2M2
Pl

þ Y2

2
; ð52Þ

for a test fermion. Here, Y ¼ y andM ¼ yReðφÞ for a Dirac
fermion of ψab þ ψda, whereas Y ¼ y0 and M ¼ y0ReðφÞ
for ψbc þ ψcd. A factor Y2=2 is obtained because of the
canonical normalization of ReðφÞ, and ImðφÞ contributes to
the spin-dependent interaction that is not 1=r2-force. If the
scalar is sufficiently heavy, Y does not contribute to the
SWGC condition owing to exponentially damping force
and hence the WGC can be easily satisfied. To reduce the
number of parameters, we will set gb ¼ gd ≕ g for sim-
plicity. In the next subsection, we will study this situation
realized in the 5D orbifold model. Thus this equation can be
rewritten as

ð1 − cÞ2
c2ðg2=g2a þ g2=g2cÞ þ 2

þ ð1þ 1=cÞ2
ð1=c2Þðg2=g2a þ g2=g2cÞ þ 2

≳ 1

2

�
Y
g

�
2

: ð53Þ

Here, the masses are neglected because M=MPl ≪ 1 is
numerically expected in the effective field theory. Indeed,
there is almost no change in appearance of the plots for
M=gMPl ≲ 0.1, where gMPl is expected as a cutoff scale
[3], when the scalar is massless. It is noted also that a gauge
boson in either Uð1ÞX or Uð1ÞX0 may be massive owing to
the Stückelberg coupling and then either eX or eX0 vanishes
in Eq. (53).
In the top panels of Fig. 7, we show the plots of the

SWGC (53) in the ðX; Y=gÞ-, ðc; Y=gÞ- and ðc; XÞ-planes,
where X ≔ g2=g2a þ g2=g2c. The each line saturates Eq. (53),
hence the allowed region exists below them. In the presence
of the mass, the SWGC is violated on each line. Note that
these plots are symmetric under c → −1=c owing to the

FIG. 6. A quiver diagram of Uð1Þ4 model including a complex
scalar.

12From the view point of the anomaly-free Uð1Þ’s, there may
exist Yukawa couplings including ψC

abψbc and ψC
cdψda, but they

are supposed to be much smaller than y and y0 here. Similarly,
there may exist Dirac masses to these fermions because φ is
singlet for the anomaly-free Uð1Þ’s in the low energy, but the
masses would be negligibly small against the Planck scale.
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definition of the anomaly-free Uð1Þ’s. A region for a
large Yukawa coupling is excluded by the SWGC. For a
large X, the constraint becomes tighter. In other words,
a big discrepancy between gauge couplings is disfavored. It
turns out that the constraint becomes stronger near c ¼ �1
because either eX or eX0 vanishes then. We find also that the
constraint is independent of c for special values of X ¼ 2

and Y=g ¼ ffiffiffi
2

p
. This is because for X ¼ 2 the left-hand side

of Eq. (53) becomes unity and hence for Y=g ≥
ffiffiffi
2

p
the

SWGC is then violated in the presence of the mass term.
We can find also that the constraint becomes weaker as the
c > 0 increases in the top-left panel for X > 2, because
either eX or eX0 gets stronger then whereas the constraint
does not depend on c for X ≪ 1. It is noted that in the string
theory c depends on the D-brane configuration and the
couplings depend on moduli fields with the fixed configu-
ration. The middle (bottom) figures show the similar plots
with eX0 ¼ 0 (eX ¼ 0), when only a gauge boson of Uð1ÞX
(Uð1ÞX0) remains massless and mediates the long-range
repulsive force. In these cases, the condition of the SWGC
tends to give tighter constraints.

B. A Uð1Þ4 model from S1=Z2 orbifold and the SWGC

We consider a 5D gauge theory with Uð2Þ ×Uð1Þa ×
Uð1Þc on the S1=Z2 orbifold for realizing chiral fermions.
The purpose of this subsection is to give a concrete Yukawa
coupling associated with the gauge coupling and a relation
between gauge couplings as in the previous subsection via
the symmetry breaking of Uð2Þ → Uð1Þb ×Uð1Þd by an
orbifold projection. The fields contents and their represen-
tations are exhibited in Table II. The 5D action is given by

S5D ¼
Z
M4×S1=Z2

d4xdy
ffiffiffiffiffiffiffiffiffi
−G5

p �
1

2κ25
R5 −

1

2ĝ22
trðFMNÞ2

−
1

4ĝ2a
ðFðaÞ

MNÞ2 −
1

4ĝ2c
ðFðcÞ

MNÞ2

þΨaði=D −MaÞΨa þΨcði=D −McÞΨc

�
; ð54Þ

where M ¼ 0; 1; 2; 3; y, DM ¼ ∇M þ iAM þ iq̂aA
ðaÞ
M þ

iq̂cA
ðcÞ
M and q̂a and q̂c are the charges of Uð1Þa and

FIG. 7. Plots of the SWGC constraints in ðX; Y=gÞ-, ðc; Y=gÞ- and ðc; XÞ-planes. The top panels plot the constraints of Eq. (53). The
middle (bottom) figures show the similar plots with eX0 ¼ 0 (eX ¼ 0), when Uð1ÞX (Uð1ÞX0 ) gauge group survives in low energy limit.
The condition is saturated on each lines, below which there exist an allowed region. In the presence of mass, the SWGC is violated on
each line.
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Uð1Þc respectively. 5D Chern Simons terms associated
with 4D Green-Schwarz mechanism is neglected as already
noted. The field strengths are given by FMN ¼ ∂MAN −
∂NAM þ i½AM; AN � and Fða;cÞ

MN ¼ ∂MA
ða;cÞ
N − ∂NA

ða;cÞ
M for

the non-Abelian gauge field and Abelian gauge fields
respectively. The normalization of generator of Uð2Þ is
chosen as trðTaTbÞ ¼ δab=2, hence the Uð2Þ gauge field

is expanded as AM ¼ 12
2
Að0Þ
M þ σa

2
AðaÞ
M , where 12 is 2 × 2

identity matrix and σa’s (a ¼ 1, 2, 3) are the Pauli matrices.
Since the covariant derivative is acting on Ψa as DMΨa ∋
iAMΨa ¼ i 12

2
Að0Þ
M Ψa þ � � �, Ψa has 1=2 charge against the

overall Uð1Þ. This is similar to Ψc, which has the opposite
Uð1Þ charge. Here, Ψa;c ¼ ðψa;c1;ψa;c2ÞT are doublets for
the SUð2Þ and ψa;c are the 4D Dirac spinors. The metric of
M4 × S1=Z2 is written by ds25 ¼ e−σgμνdxμdxν þ e2σdy2,
where σ is the radion field, and gives 4D Einstein frame.
The size of S1=Z2 is assumed to be πL and we take hσi ¼ 0
without loss of generality. The graviphoton gμy is dropped
since it is parity odd while the 4D graviton gμν remains
massless. Then, the massive graviphoton mediates the
short-range force among particles which have the Kaluza-
Klein (KK) charges, and does not contribute to the SWGC
condition. On top of the usual periodic boundary condition
of S1, the orbifold boundary conditon is given by

PAMðx;−yÞP−1 ¼ ηAAMðx; yÞ;
Aða;cÞ
M ðx;−yÞ ¼ ηAA

ða;cÞ
M ðx; yÞ; ð55Þ

PΨa;dðx;−yÞ ¼ γ5Ψa;dðx; yÞ; ð56Þ

where P ¼ diagðþ1;−1Þ ∈ Uð2Þ, ηA ¼ 1 for M ¼ μ ¼ 0,
1, 2, 3 and ηA ¼ −1 for M ¼ y. Thus 4D massless modes
read

Aμ ¼
�
AðbÞ
μ

AðdÞ
μ

�
; Ay ¼

�
iφ=

ffiffiffi
2

p

−iφ†=
ffiffiffi
2

p
�
;

AðaÞ
μ ; AðcÞ

μ ; ð57Þ
ψa1R; ψa2L; ψc1R; ψc2L: ð58Þ

where AðbÞ
μ ≔ 1

2
ðAð0Þ

μ þ Að3Þ
μ Þ, AðdÞ

μ ≔ 1
2
ðAð0Þ

μ − Að3Þ
μ Þ, φ ¼

−ðiAð1Þ
y þ Að2Þ

y Þ= ffiffiffi
2

p
is the complex scalar originating from

the W-boson of y-direction,13 and the ψL (ψR) is the left-
handed (right-handed) chiral fermion in 4D. It turns out that
there exists the gauge symmetry of Uð1Þa ×Uð1Þb ×
Uð1Þc × Uð1Þd. As seen from the zero mode basis in the
Uð2Þ gauge bosons, we find matter charges for the gauge
symmetry: As for ðUð1Þa; Uð1Þb; Uð1Þc; Uð1ÞdÞ, ψC

a1R ≡
ψab∶ðþ1;−1;0;0Þ, ψC

c1R≡ψbc∶ð0;þ1;−1;0Þ, ψc2L≡ψcd∶
ð0;0;1;−1Þ, ψa2L ≡ ψda∶ð−1; 0; 0; 1Þ and φ∶ð0; 1; 0;−1Þ.
This is the same field content as in the previous subsection,
hence φ is a neutral scalar under anomaly-free Uð1Þ’s and
will not be considered for the SWGC. The scalar potential
will be neglected as previously noted since the scalar
potential including radion will depend on the model and the
radion stabilization. Deriving the scalar potential and
checking the strong SWGC for this is left for future work.
The 4D parameters are given by the 5D parameters with

an assumption of hσi ¼ 0. For the details, see Appendix C.
The 4D Planck mass is associated with the 5D gravitational
coupling κ5 as

M2
Pl ¼

πL
κ25

; ð59Þ

and the gauge couplings in 4D are expressed by

2

g22
≔

1

g2b
¼ 1

g2d
¼ 2πL

ĝ22
;

1

g2a
≔

πL
ĝ2a

;
1

g2c
≔

πL
ĝ2c

: ð60Þ

This is because we have the gauge kinetic term L ¼
−2=4g22ðFðbÞ

μν Þ2 − 2=4g22ðFðdÞ
μν Þ2 via the symmetry breaking

of Uð2Þ → Uð1Þb ×Uð1Þd. With these, the anomaly-free
couplings are defined as previously:

1

e2X
¼ c2

g2a
þ 2

g22
þ c2

g2c
þ 2

g22
; ð61Þ

1

e2X0
¼ 1=c2

g2a
þ 2

g22
þ 1=c2

g2c
þ 2

g22
; ð62Þ

where a free parameter c is a rational number.
The Yukawa couplings between φ and ψ’s are given by

y ¼ y0 ¼ ĝ2ffiffiffiffiffiffiffiffiffi
2πL

p ¼ g2ffiffiffi
2

p : ð63Þ

Here, y and y0 are the same definition as in the previous
subsection. This equation relates the Yukawa coupling
to the gauge coupling. In the presence of a light ReðφÞ

TABLE II. Table of the field contents and their charges in 5D
model for realizingUð1Þ4 gauge theory in 4D. Subscripts ofUð2Þ
representation for fermions are Uð1Þ charges against the overall
Uð1Þ ∈ Uð2Þ.
Fields Uð2Þ Uð1Þa Uð1Þc
AM adj 0 0
Ψa 21=2 −1 0
Ψc 2̄−1=2 0 þ1

AðaÞ
M

0 adj 0

AðcÞ
M

0 0 adj

13Here we define the complex scalar by multiplying the
ordinary Wþ-boson by −i so that the effective Lagrangian of
the zero modes reproduces Eq. (49) after this orbifold projection.

IMPLICATIONS OF THE WEAK GRAVITY CONJECTURE IN … PHYS. REV. D 102, 065004 (2020)

065004-11



and the radion, the SWGC inequality for zero mode
fermions reads

ð1 − cÞ2e2X þ
�
1þ 1

c

�
2

e2X0 ≥
y2

2
þ
�
1

2
þ 1

6

�
M2

M2
Pl

ð64Þ

where M has the same definition as in the previous
subsection14 and 1=6 comes from the radion exchange

via ye−σc=
ffiffi
6

p
MPlReðφÞψ̄ψ with the canonically normalized

radion σc ¼
ffiffiffiffiffiffiffiffi
3=2

p
MPlσ. We have neglected momentum-

dependent terms induced by the radion exchange with
terms of ψ̄γμψ∂μσ. If ReðφÞ is sufficiently heavy, the
Yukawa interaction in this equation can be neglected
and the WGC can be then easily satisfied. Gravitational
interactions including radion exchange will be numerically
neglected below as in the previous subsection owing to the
Planck-suppressed interaction within the effective field
theory. For M=g2MPl ≲ 0.1 and p=g2MPl ≲ 0.1, where p
is the momentum of a test fermion, there are not signi-
ficant differences compared to the plots shown below.
Substituting the above couplings given by Eqs. (61)–(63) to
Eq. (64), we then find the SWGC condition

ð1− cÞ2
ðc2=2Þðg22=g2a þ g22=g

2
cÞ þ 2

þ ð1þ 1=cÞ2
ð1=2c2Þðg22=g2a þ g22=g

2
cÞ þ 2

≳ 1

4
: ð65Þ

This is also obtained when the parameters in Eq. (53) are
replaced as g2 → g22=2 and ðY=gÞ2 → 1=2. This gives a
constraint between c and X ≔ g22=g

2
a þ g22=g

2
c.

As for the KK modes or the massive parity odd ones, a
similar equation to Eq. (64) will be hold. It is noted that
massive gauge bosons do not contribute to long-range

forces and all bosons including scalar zero mode are neutral
under anomaly-free Uð1Þ’s and fermions with nontrivial
gauge charges are considered for the SWGC. Parity odd
fermions of ψa1L;ψa2R;ψc1L and ψa2R have opposite
charges to zero mode fermions. KK modes of a field have
the same charge as that of the lightest mode. Yukawa
couplings that are invariant under Z2 projection are given
by ϕevenψ evenψ even, ϕevenψoddψodd, ϕoddψoddψ even, where
ϕeven (ϕodd) is an even (odd) parity scalar and ψ even (ψodd)
is an even (odd) parity fermion. As massive scalars
do not contribute to a long-range force, Yukawa
couplings relevant to the SWGC are associated with φ:
φψevenψ even;φψoddψodd. After integration over the extra
dimension, we will find Yukawa couplings of yφψ 0

nψn in
addition to KK mass terms ðn=LÞψ̄nψn þ ðn=LÞψ 0

nψ
0
n for

n-th KK modes with the canonically normalized kinetic
terms (up to the radion dependence). Then nth KK mass
eigenstates will have massM2 ¼ ðn=L� yReðφÞÞ2. As the
SWGC could be violated by heavy KK modes, it is
necessary to check whether lighter modes including the
zero modes satisfy the SWGC.
Figure 8 shows the plots of the SWGC (65) in the ðc; XÞ

plane. The each line saturates Eq. (65), hence the allowed
region exists below them. In the presence of mass, the
SWGC is violated on each line. The these plots are
symmetric under c → −1=c. The left panel shows the
constraint when there exists two anomaly-free Uð1Þ’s.
This is very similar to the top-right one of Fig. 7 for a
small value of Yukawa. For a large X, not only Uð1Þb ×
Uð1Þd gauge coupling but also Yukawa coupling ∝ g2
become much stronger than ga or gc, and hence there exist
an upper bound on X. It is noted that in the context of the
string theory a large X may imply a big discrepancy among
moduli vacuum expectation values. In the vincity of
c ¼ �1, matter becomes neutral against either one of the
anomaly-free Uð1Þ’s, then the constraint becomes tighter.
In the right panel, plots show the SWGC constraint with
eX ¼ 0 or eX0 ¼ 0, when only the gauge boson of either

FIG. 8. Left panel: plots of the SWGC conditons (65) in the ðc; XÞ-planes. The condition is saturated on each lines, below which there
exist an allowed region. In the presence of mass, the SWGC is violated on each line. Right panel: a similar plot with only Uð1ÞX (red)
and one with only Uð1ÞX0 (blue).

14We have factored out the common radion dependence e−σ .
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Uð1ÞX or Uð1ÞX0 remains massless owing to a Stückelberg
coupling as often seen in concrete string models.

V. CONCLUSION

We have studied the (S)WGC in several types of quiver
gauge theories with Uð1Þk gauge symmetry in the presence
of bi-fundamental chiral fermions leading to the chiral
anomalies, which is supposed to be canceled by the Green-
Schwarz mechanism. The theories which we consider
possesses a cyclic Zk symmetry associated with a shift
of the label of the gauge groups. As a consequence of this,
we can study anomalies in the models systematically and
the (S)WGC constraints on the gauge couplings. We
identified concretely the anomaly-free Uð1Þ’s and their
gauge couplings obtained via linear combinations of the
original Uð1Þ’s. Then, Zk symmetry can be broken in
general. In the large k limit, an anomaly-free gauge
coupling becomes very weak as e ∼ k−1=2, and there exists
an upper bound on k if the WGC is correct and the mass for
a test particle remains in the large k limit. This may be
regarded as an example of the weak coupling conjecture.
For quiver theories with Uð1Þ2k−1, an unique anomaly-free
Uð1Þ is proportional to

P
2k−1
i¼1 Uð1Þi and all matters are

neutral under the anomaly-free Uð1Þ. There exist charged
matters in the presence of vectorlike pairs, and Z2k−1
symmetry is broken then. For quiver theories with Uð1Þ2k
gauge symmetry, there exist two anomaly-free Uð1Þ’s and
charged matters under these gauge groups, and Z2k
symmetry is broken in general. Even if the gauge couplings
of the anomaly-free Uð1Þ’s receive quantum corrections,
the IR couplings will remain very weak in the large k limit
since Uð1Þ couplings are generally asymptotic nonfree as
far as the perturbation theory is valid.
We have numerically studied also the SWGC in Uð1Þ4

theory in the presence of a complex scalar field, and
construct a similar model based on a 5D orbifold. It turns
out that a much larger Yukawa coupling than gauge
couplings is forbidden and also that a big discrepancy
among gauge couplings is disfavored. A special linear
combination for realizing the anomaly-free Uð1Þ’s can be
also be disfavored, since matter charge becomes small then.
So far, we neglected kinetic mixings χijFi

μνFjμν among
gauge fields. If we have such terms, we may have a kinetic
mixing of χFX

μνFX0μν, where χ ∼
P

k
i;j χijcic

0
j, for anomaly-

free Uð1ÞX ¼ P
i ciUð1Þi and Uð1ÞX0 ¼ P

i c
0
iUð1Þi with

ci’s¼ Oð1Þ. If the mixing χ is at most ofOðk3=2−αÞ (α > 0)
in the large k limit, the WGC can still be violated as in
Sec. III. This is because the canonically normalized mixing
is given by eXeX0χ and hence an induced coupling of a
fermion to an anomaly-free gauge field is proportional to
e2XeX0χ or eXe2X0χ that are scaling as k−α then. However, if
χ ¼ Oðk2Þ in the large k limit, the WGC can be satisfied.
In the Sec. IV, the scalar φ is a singlet under the anomaly-

free gauge groups, and we did not discuss the detail of the

scalar potential in addition to the radion. Hence it may be
an interesting challenge to check the strong SWGCwithin a
fixed model. This is left for future work.
It will be worth to investigate the (S)WGC in theories

with more general gauge groups. In actual string compac-
tifications, the number of closed string axions is known to
be finite and depends on the Hodge number of compacti-
fication manifold. Some of the axions play an important
role to cancel anomalies through the Green-Schwarz
mechanism. Hence, the number of anomalous Uð1Þ gauge
theories, which is k − 1 or k − 2 in our cases, should be
constrained by the number of such axions. If the anomalies
are independent among the anomalous theories, the number
of anomalous Uð1Þ’s can be less than that of axions for
anomaly cancellation. Also in the string theory, the con-
jecture would constrain brane configuration and moduli
values. If one starts with 10D super Yang-Mills theory, 4D
effective action including an anomaly-free Uð1Þ may be
given by [55,56]

L ¼ −c
S
4
ðFμνÞ2 −

ϑðτÞffiffiffi
S

p ϕψ̄ψ þ � � � ; ð66Þ

where S is the 4D dilaton, τ is a complex structure modulus,
and a rational number c originates from a linear combi-
nation of Uð1Þ’s depends on brane configuration of the
number of branes and magnetic fluxes. The SWGC of e2 ≳
y2 (up to mass term) for matter fermion may read

c≲ 1

jϑðτÞj2 : ð67Þ

However, it will be required a deep understanding of
the string theory or concrete effective field theories includ-
ing (non-Abelian) Dirac-Born-Infeld action to study the
SWGC constraints on moduli space for consistent gauge
theories in the presence of the Green-Schwarz mechanism.
This is also left for future works.
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APPENDIX A: ANOMALIES IN STRING-
INSPIRED (SUSY) GAUGE THEORIES

We discuss anomaly-free Uð1Þ’s in UðNÞk quiver gauge
theories inspired by the string theory. We focus only on
certain types of quiver theories considered in Sec. III in this
section. Hereafter, Na denotes the rank of the gauge group
of UðNaÞ at the a-node, and nab shows the number of
bifundamental matter fields which correspond to that of
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arrows connecting between a-node and b-node in the
quiver diagram.

1. UðNÞ3
We consider a UðNÞ3 quiver gauge theory as shown in

Fig. 9, and identify an anomaly-free Uð1Þ. To this end, we
calculate chiral anomalies and mixed anomalies. Then, we
find the constraints on the ranks of gauge groups and the
numbers of generations. For a consistent theory, the non-
Abelian cubic anomalies ASUðNa;b;cÞ3 give the following
constraints,

ASUðNaÞ3 ∝ ðnabNb − ncaNcÞ≡ 0; ðA1Þ

ASUðNbÞ3 ∝ðnbcNc − nabNaÞ≡ 0; ðA2Þ

ASUðNcÞ3 ∝ðncaNa − nbcNbÞ≡ 0: ðA3Þ

With these equations, the ranks of the gauge groups are
related as

Na ¼
nbc
nab

Nc ∈ N; Nb ¼
nca
nab

Nc ∈ N: ðA4Þ

Thus, we find Na ¼ Nb ¼ Nc for nab ¼ nbc ¼ nca. The
divergences of the chiral currents ja;b;c for Uð1Þa;b;c are
given by

∂ · ja ¼ NaðNbnabQb − NcnacQcÞ
þ NaðnabNb − ncaNcÞQa þAUð1ÞaG2 ; ðA5Þ

∂ · jb ¼ NbðNcnbcQc − NanabQaÞ
þ NbðnbcNc − nabNaÞQb þAUð1ÞbG2 ; ðA6Þ

∂ · jc ¼ NcðNancaQa − NbnbcQbÞ
þ NcðncaNa − nbcNbÞQc þAUð1ÞcG2 ; ðA7Þ

whereQx¼QUð1Þx þ 1
Nx
QSUðNxÞ,QGx ¼ 1

16π2
ϵμνρσtrðFðxÞ

μν F
ðxÞ
ρσ Þ

for x ¼ a, b, c, and trðTiTjÞ ¼ δij=2 for UðNÞ generators

Ti’s. These include anomalies of Uð1Þ3, Uð1ÞSUðNÞ2 and
the mixed anomalies between the gravity and Uð1Þ’s,
which are denoted by AUð1Þa;b;cG2. We impose that they are
vanishing:

AUð1ÞaG2 ∝ NaðnabNb − ncaNcÞ≡ 0; ðA8Þ

AUð1ÞbG2 ∝ NbðnbcNc − nabNaÞ≡ 0; ðA9Þ

AUð1ÞcG2 ∝ NcðncaNa − nbcNbÞ≡ 0: ðA10Þ

This is the same condition as in the non-Abelian
anomalies. There are not existing charged fields under
all ðUð1Þa; Uð1Þb; Uð1ÞcÞ, then the anomaly between
Uð1ÞaUð1ÞbUð1Þc vanishes automatically. Then we find

∂ · ja ≡ NaðNbnabQb − NcnacQcÞ; ðA11Þ

∂ · jb ≡ NbðNcnbcQc − NanabQaÞ; ðA12Þ

∂ · jc ≡ NcðNancaQa − NbnbcQbÞ: ðA13Þ

To identify the anomaly-free Uð1Þ we define it as

Uð1ÞX ≔
ca
Na

Uð1Þa þ
cb
Nb

Uð1Þb þ
cc
Nc

Uð1Þc; ðA14Þ

and we impose that the divergence of the current associated
with Uð1ÞX vanishes

∂ · jX ¼
X

x¼a;b;c

cx
Nx

∂ · jx

¼ Naðccnca − cbnabÞQa þ Nbðcanab − ccnbcÞQb

þ Ncðcbnbc − cancaÞQc ≡ 0: ðA15Þ

From this equation, the coefficients satisfy the following
conditions

ca ¼
nbc
nab

cc; cb ¼
nca
nab

cc: ðA16Þ

We take cc ¼ 1 and use Eqs. (A4) and (A16), then the
anomaly-free Uð1Þ is given by

Uð1ÞX ¼ cc
Nc

ðUð1Þa þ Uð1Þb þ Uð1ÞcÞ: ðA17Þ

It is noted that all fields are neutral matter under this
anomaly-free Uð1Þ. The anomaly-free gauge coupling is
given by

1

e2X
¼ 1

g2a
þ 1

g2b
þ 1

g2c
: ðA18Þ

FIG. 9. A quiver diagram of UðNÞ3 gauge theory.

ABE, HIGAKI, and TAKAHASHI PHYS. REV. D 102, 065004 (2020)

065004-14



2. UðNÞ4
In this case, we impose that the anomaly coefficients of

non-Abelian cubic anomaly are vanishing:

ASUðNaÞ3 ∝ ðnabNb − ndaNdÞ≡ 0; ðA19Þ

ASUðNbÞ3 ∝ð−nabNa þ nbcNc þ nbdNdÞ≡ 0; ðA20Þ

ASUðNcÞ3 ∝ð−nbcNb þ ncdNdÞ≡ 0; ðA21Þ

ASUðNdÞ3 ∝ðndaNa − nbdNb − ncdNcÞ≡ 0: ðA22Þ

Solving these equations, we find that the ranks of gauge
groups and the numbers of generations have the following
relations,

Nb ¼
nda
nab

Nd ∈ N; Nc ¼
nda
ncd

�
Na −

�
nbd
nab

�
Nd

�
∈ N;

nda
nab

¼ ncd
nbc

: ðA23Þ

The cancellation of the mixed anomaly between the gravity
and Uð1Þ’s imposes the same constraints as above:

AUð1ÞaG2 ∝ NaðnabNb − ndaNdÞ≡ 0; ðA24Þ

AUð1ÞbG2 ∝ Nbð−nabNa þ nbcNc þ nbdNdÞ≡ 0; ðA25Þ

AUð1ÞcG2 ∝ Ncð−nbcNb þ ncdNdÞ≡ 0; ðA26Þ

AUð1ÞdG2 ∝ NdðndaNa − nbdNb − ncdNcÞ≡ 0: ðA27Þ

The divergences of the Uð1Þ currents are expressed as

∂ · ja ≡ NaðNbnabQb − NdndaQdÞ; ðA28Þ

∂ · jb ≡ Nbð−NanabQa þ NbnbcQc þ NdnbdQdÞ; ðA29Þ

∂ · jc ≡ Ncð−NbnbcQb þ NdncdQdÞ; ðA30Þ

∂ · jd ≡ NdðNandaQa − NbnbdQb − NcncdQcÞ; ðA31Þ

where we used vanishing conditions of non-Abelian
anomalies. We define the anomaly-free Uð1Þ by the
following equation as in the previous subsection

Uð1ÞX ≔
ca
Na

Uð1Þa þ
cb
Nb

Uð1Þb þ
cc
Nc

Uð1Þc þ
cd
Nd

Uð1Þd;

ðA32Þ

and impose the current divergence associated with this
Uð1ÞX is vanishing

X
x¼a;b;c;d

cx
Nx

∂ · jx ¼ Nað−cbnab þ ndndaÞQa

þ Nbðcanab − ccnbc − cdnbdÞQb

þ Ncðcbnbc − cdncdÞQc

þ Ndð−canda þ cbnbd þ ccncdÞQd

≡ 0: ðA33Þ

Solving these equations for the coefficients cx, we get the
following relations

cb ¼
nda
nab

cd; cc ¼
nda
ncd

�
ca −

�
nbd
nab

�
cd

�
;

nda
nab

¼ ncd
nbc

:

ðA34Þ

From Eqs. (A23) and (A34), the coefficient ca (or cb) is a
free parameter. In order to solve these equations, we shall
impose some assumptions. Here we will list some examples
satisfying these equations.

(i) ∀ N ¼ 1
– nbd ¼ 0
A solution is

Na ¼ Nb ¼ Nc ¼ Nd ¼ 1;

nab ¼ nbc ¼ ncd ¼ nda;

nbd ¼ 0: ðA35Þ

This is similar to the quiver gauge theory shown
in Fig. 5. The two independent anomaly-free
Uð1Þ’s are generally given by Eqs. (42) and
(43), and the corresponding gauge couplings
are expressed as Eq. (44) and (45).

– nbd ¼ 2
A solution is given by

Na ¼ Nb ¼ Nc ¼ Nd ¼ 1;

nab ¼ nda ¼ −nbc ¼ −ncd ¼ 1; nbd ¼ 2:

ðA36Þ

FIG. 10. UðNÞ4 quiver diagram.
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The minus sign represents the opposite arrow of
Fig. 10. The independent anomaly-free Uð1Þ’s
are defined by

Uð1ÞX ¼ cUð1Þa þUð1Þb þ ð2 − cÞUð1Þc
þUð1Þd; ðA37Þ

Uð1ÞX0 ¼ c − 3

c − 1
Uð1Þa þ Uð1Þb þ

cþ 1

c − 1
Uð1Þc

þUð1Þd: ðA38Þ

For these anomaly-free Uð1Þ’s, bd matters are
neutral. The anomaly-free gauge couplings are
given by

1

e2X
¼ c2

g2a
þ 1

g2b
þ ð2 − cÞ2

g2c
þ 1

g2d
; ðA39Þ

1

e2X0
¼

�
c − 3

c − 1

�
2 1

g2a
þ 1

g2b
þ
�
cþ 1

c − 1

�
2 1

g2c
þ 1

g2d
:

ðA40Þ

(ii) ∀ jnj ¼ 1
A solution is given by

Nb ¼ Nd ¼ 2; Na ¼ Nc ¼ 1;

nab ¼ nda ¼ nbd ¼ −nbc ¼ −ncd ¼ 1: ðA41Þ

The independent anomaly-free Uð1Þ’s for this sol-
ution is defined as

Uð1ÞX ¼ cUð1Þa þ
1

2
Uð1Þb þ ð1 − cÞUð1Þc

þ 1

2
Uð1Þd; ðA42Þ

Uð1ÞX0 ¼ 2c − 3

4c − 2
Uð1Þa þ

1

2
Uð1Þb þ

2cþ 1

4c − 2
Uð1Þc

þ 1

2
Uð1Þd: ðA43Þ

bd matter is neutral for these anomaly-free gauge
groups. The gauge couplings are given by

1

e2X
¼ c2

g2a

1=2
g2b

þ ð1 − cÞ2
g2c

þ 1=2
g2d

; ðA44Þ

1

e2X0
¼

�
2c − 3

4c − 2

�
2 1

g2a
þ 1=2

g2b
þ
�
2cþ 1

4c − 2

�
2 1

g2c
þ 1=2

g2d
:

ðA45Þ

It is noted that a coefficient of 1=g2b;d is given by
1=2 ¼ Nb;d · ð1=2Þ2 for Nb;d ¼ 2.

APPENDIX B: MODELS INSPIRED BY THE SM

We consider two quiver models with Uð1Þ4 and Uð1Þ5
symmetries inspired by the SM. These are different from
the models exhibited in the Sec. III in terms of chiral
fermions. We show just that the anomaly-free gauge
couplings are still given by a linear combination of the
original couplings. The SM might not originate from a
gauge symmetry that has too many Uð1Þ’s.

1. A model inspired by Pati-Salam

We shall consider the Uð1Þ4 gauge theory shown in the
right panel of Fig. 11. It is noted that we have two left-
handed fermions charged only under Uð1Þ3 ×Uð1Þ4, and
there exist six chiral fermions and two complex scalars.
This model is obtained from three nodes model of Uð2Þ ×
Uð1Þ3 ×Uð1Þ4 in the left panel of Fig. 11 by the Higgs
mechanism of Uð2Þ complex adiont scalar whose vacuum
expectation value is given by hΦi ¼ diagðv;−vÞ. This can
be regard as a toy model of left-right symmetric theory
obtained from the Pati-Salam model [57–59] as in Fig. 12.
The Uð1Þ4 model has two anomaly-free Uð1Þ’s and

nontrivial charged matter fields, but we focus only on the
relevant gauge couplings. The detail of the anomaly
cancellation is discussed in Appendix A. The divergences
of Uð1Þ currents are given by

FIG. 11. The left panel: Uð2Þ ×Uð1Þ1 × Uð1Þ2 quiver diagram. The right panel: Uð1Þ1 × Uð1Þ2 × Uð1Þ3 × Uð1Þ4 quiver diagram
obtained from Uð2Þ → Uð1Þ1 × Uð1Þ2 by the Higgs mechanism. The dashed quiver shows bifundamental scalars arising from this
symmetry breaking.
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∂ ·

0
BBB@

j1

j2

j3

j4

1
CCCA ¼

0
BBB@

0 0 1 −1
0 0 1 −1
−1 −1 0 2

1 1 −2 0

1
CCCA

0
BBB@

Q1

Q2

Q3

Q4

1
CCCA; ðB1Þ

and we define two independent anomaly-free Uð1Þ’s with a
free parameter c as

Uð1ÞX ¼ cUð1Þ1 þ ð2 − cÞUð1Þ2 þUð1Þ3 þ Uð1Þ4;
ðB2Þ

Uð1ÞX0 ¼ 3 − c
1 − c

Uð1Þ1 −
1þ c
1 − c

Uð1Þ2 þUð1Þ3 þ Uð1Þ4:
ðB3Þ

Two chiral fermions charged only under Uð1Þ3 ×Uð1Þ4 is
still neutral but other fermions have nontrivial charges
under these anomaly-free Uð1Þ gauge groups. The corre-
sponding anomaly-free gauge couplings read

1

e2X
¼ c2

g21
þ ð2 − cÞ2

g22
þ 1

g23
þ 1

g24
; ðB4Þ

1

e2X0
¼

�
3 − c
1 − c

�
2 1

g21
þ
�
1þ c
1 − c

�
2 1

g22
þ 1

g23
þ 1

g24
: ðB5Þ

These gauge couplings are given by linear combinations of
the original ones, and when Uð1Þ1 × Uð1Þ2 is unified to
Uð2Þ we find g1 ¼ g2.

2. A model inspired by the SM

Another example is a model in Fig. 13 that is inspired by
the SM-like model in Fig. 14.15 The divergences of chiral
currents are given by

∂ ·

0
BBBBBB@

j1

j2

j3

j4

j5

1
CCCCCCA

¼

0
BBBBBB@

0 −2 1 0 1

2 0 −2 2 −2
−1 2 0 −1 0

0 −2 1 0 1

−1 2 0 −1 0

1
CCCCCCA

0
BBBBBB@

Q1

Q2

Q3

Q4

Q5

1
CCCCCCA
:

ðB6Þ

We find three anomaly-free Uð1Þ’s and they can generally
be written as

Uð1ÞX ¼ c1Uð1Þ1 þ Uð1Þ2 þ c2Uð1Þ3 þ ð2 − c1ÞUð1Þ4
þ ð2 − c2ÞUð1Þ5; ðB7Þ

with two free parameters of c1 and c2 which will be a
rational numbers. The parameters of ci ’s are taken as a
gauge group is orthogonal to each other. Then the fermions
have nontrivial charge in this anomaly-free Uð1Þ’s, but we
focus only on the gauge couplings. The relevant gauge
coupling is given by

1

e2X
¼ c21

g21
þ 1

g22
þ c22
g23

þ ð2 − c1Þ2
g24

þ ð2 − c2Þ2
g25

: ðB8Þ

As mentioned earlier, an anomaly-free coupling can contain
more of the original couplings as the number of Uð1Þ’s in a
theory increases.

FIG. 13. A diagram of quiver gauge theory inspired by the SM.

FIG. 14. A quiver diagram of the SM-like model [33].

FIG. 12. A quiver diagram of left-right symmetric Pati-Salam
model.

15The authors of Ref. [33] discussed the world-volume theory
on a stack of D3-branes reproducing the field content of the
minimal supersymmetric standard model with extended Higgs
sector in a quiver extension.
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APPENDIX C: ORBIFOLD COMPACTIFICATION

Let us dimensionally reduce the 5D action in Eq. (54)
and show the gauge couplings and Yukawa couplings
in 4D. The metric of M4 × S1=Z2 is written by ds25 ¼
e−σgμνdxμdxν þ e2σdy2. Thus, the vielbein is given as

EA
M ¼

�
e−σ=2eaμ

eσ

�
; ðC1Þ

where A and a represent 5D and 4D local Lorentz indices
respectively, and eaμ is the 4D vielbein. The off-diagonal
element of the vielbein is absent because the orbifold
projection prohibits the graviphoton. It is noted that 5D
fermion kinetic term is given by Ψ̄ΓAEA

MDMΨ, where
EA

M is the inverse matrix of EA
M. Using these equations,

we obtain 4D action for massless modes in Eqs. (57)
and (58):

S4D ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−g4

p �
πL
2κ25

R4 −
3πL
4κ25

ð∂μσÞ2

−
1

4

πLeσ

ĝ2a
ðFðaÞ

μν Þ2 − 2
1

4

πLeσ

ĝ22
ðFðbÞ

μν Þ2 − 1

4

πLeσ

ĝ2c
ðFðcÞ

μν Þ2 − 2
1

4

πLeσ

ĝ22
ðFðdÞ

μν Þ2 − πLe−2σ

ĝ22
jDμφj2

þ πLe−σ=2iψab=Dψab þ πLe−σ=2iψda=Dψda þ πLe−σ=2iψcd=Dψcd þ πLe−σ=2iψbc=Dψbc

−
πLe−2σffiffiffi

2
p φRðψC

abψda þ ψdaψ
C
abÞ −

πLie−2σffiffiffi
2

p φIðψC
abψda − ψdaψ

C
abÞ

−
πLe−2σffiffiffi

2
p φRðψC

bcψcd þ ψcdψ
C
bcÞ þ

πLie−2σffiffiffi
2

p φIðψC
bcψcd − ψcdψ

C
bcÞ − Vðσ;φÞ

�
; ðC2Þ

where Dμ ¼ ∂μ þ i
P

j¼a;b;c;d qψA
ðjÞ
μ is the covariant deri-

vative associated with the gauge group Uð1Þa ×Uð1Þb ×
Uð1Þc × Uð1Þd, and the chiral fermions ψ ij are defined in
Sec. IV B. The four dimensional Ricci scalar is denoted by
R4, and φ ¼ φR þ iφI is the complex scalar. We introduce
the scalar potential Vðσ;φÞ formally.16 Thus, the gauge
couplings are given as in Eq. (60).
In order to find the relation between the Yukawa

coupling and the gauge coupling, we canonically normalize
the fermion and the complex scalar as

ψ ij →
eσ=4ffiffiffiffiffiffi
πL

p ψ ij; φ →
ĝ2eσffiffiffiffiffiffi
πL

p φ: ðC3Þ

Then, the kinetic term is rewritten as

πLe−σ=2iψ ij=Dψ ij → iψ ij=Dψ ij −
i
2
ψ ijγ

μψ ij∂μσ: ðC4Þ

Hereafter, we will ignore the derivative coupling of the
radion to the fermions. The Yukawa interactions are
expressed as

L4D;Yukawa ¼ −
ĝ2e−σ=2ffiffiffiffiffiffiffiffiffi

2πL
p φRðψC

abψda þ ψdaψ
C
abÞ

−
ĝ2ie−σ=2ffiffiffiffiffiffiffiffiffi

2πL
p φIðψC

abψda − ψdaψ
C
abÞ

−
ĝ2e−σ=2ffiffiffiffiffiffiffiffiffi

2πL
p φRðψC

bcψcd þ ψcdψ
C
bcÞ

þ ĝ2ie−σ=2ffiffiffiffiffiffiffiffiffi
2πL

p φIðψC
bcψcd − ψcdψ

C
bcÞ: ðC5Þ

We introduce the Dirac fermions as

ψa ¼
�
ψda

ψC
ab

�
:ψc ¼

�
ψcd

ψC
bc

�
: ðC6Þ

With these Dirac fermions, the kinetic terms of the
anomaly-free sector read

L4D;KT ¼ −
1

4e2X
ðFðXÞ

μν Þ2 − 1

4e2X0
ðFðX0Þ

μν Þ2 − ð∂μφRÞ2

− ð∂μφIÞ2 þ iψ̄a=Dψa þ iψ̄c=Dψc; ðC7Þ

where we neglected gauge bosons in anomalousUð1Þ’s, the
anomaly-free gauge couplings are defined by Eqs. (61) and
(62). As shown in Table I, the covariant derivatives of the
Dirac fermions associated with anomaly-free Uð1Þ’s are
expressed as

16At the classical level, the scalars σ and φ do not have
potential due to the gauge symmetries, but the potential can
be generated by the radiative corrections. In addition, we
assume the radion field develops the VEV of hσi ¼ 0 around
the radius L.
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Dμψa ¼
�
∂μ þ ið−1þ cÞAðXÞ

μ − i

�
1þ 1

c

�
AðX0Þ
μ

�
ψa; ðC8Þ

Dμψc ¼
�
∂μ − ið−1þ cÞAðXÞ

μ þ i

�
1þ 1

c

�
AðX0Þ
μ

�
ψc: ðC9Þ

The charges of ψa and ψc under Uð1ÞX and Uð1ÞX0 are
opposite to each other due to the 4D anomaly-free con-
ditions. With the Dirac spinor, the Yukawa terms in this
Lagrangian are rewritten as below:

L4D;Yukawa ¼ −ye−σ=2φRψaψa − iye−σ=2φIψaγ5ψa

− ye−σ=2φRψcψc þ iye−σ=2φIψcγ5ψc;

ðC10Þ

where the 4D Yukawa coupling is defined as

y ¼ ĝ2ffiffiffiffiffiffiffiffiffi
2πL

p : ðC11Þ
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