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We argue a smallness of gauge couplings in Abelian quiver gauge theories, taking the anomaly
cancellation condition into account. In theories of our interest there exist chiral fermions leading to chiral
gauge anomalies, and an anomaly-free gauge coupling tends to be small, and hence can give a nontrivial
condition of the weak gravity conjecture. As concrete examples, we consider U(1)* gauge theories with a
discrete symmetry associated with cyclic permutations between the gauge groups, and identify anomaly-
free U(1) gauge symmetries and the corresponding gauge couplings. Owing to this discrete symmetry, we
can systematically study the models and we find that the models would be examples of the weak coupling
conjecture. It is conjectured that a certain class of chiral gauge theories with too many U(1) symmetries
may be in the swampland. We also numerically study constraints on the couplings from the scalar weak
gravity conjecture in a concrete model. These constraints may have a phenomenological implication to
model building of a chiral hidden sector as well as the visible sector.

DOI: 10.1103/PhysRevD.102.065004

I. INTRODUCTION

Swampland conjectures attract much attention recently
in various aspects [1-7]. The conjectures are expected to
constrain effective field theories to be consistent with
quantum gravity, and give us new insights into not only
the string theory as a candidate of quantum gravity but also
physics beyond the Standard Model (SM).

Among them, the weak gravity conjecture (WGC)
requires theories consistent with quantum gravity to include
a charged state with a charge ¢ and a mass m satisfying the
weak gravity bound [3],

m

V2Mp,

eq >

(1)

so that an extremal black holes can have a decay channel.
The WGC briefly states that the gravity is the weakest
force. Here, e is an anomaly-free gauge coupling and Mp, is
the reduced Planck mass. The WGC can be extended to
theories with multiple U(1) groups [8] and also to a scalar
exchange force such as a Yukawa interaction [9-13].
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The latter extension is called the scalar weak gravity
conjecture (SWGC). These conjectures also have been
checked in several aspects [14,15], and indicate that
repulsive forces of gauge interactions among the same
species of particles are stronger than attractive forces of
gravity and Yukawa interactions among them [16].

The situation may not be so simple in chiral gauge
theories. IR symmetries are often obtained through the
breaking of UV symmetries, and an IR gauge coupling is
given by a linear combination of UV gauge couplings as
in the SM. The linear combinations are determined by
the Stiickelberg couplings among the gauge bosons and
would-be Nambu-Goldstone bosons (or axions) associated
with the symmetry breaking. This is applicable not only
to anomaly-free gauge theories but also to consistent
theories possessing anomalous U(1) gauge groups. In
theories with an anomalous U(1), an axion field plays
an important role to cancel the gauge anomalies: the gauge
invariance is (nonlinearly) restored owing to the axion
coupling to topological terms of the gauge fields on
top of the Stiickelberg couplings. As in the ordinary
spontaneous symmetry breaking, these Stiickelberg cou-
plings lead to the gauge boson mass and determine
the eigenstate of massless gauge boson. Thus the gauge
boson of anomalous U(1) symmetry is decoupled in the
low energy limit.> In the string theory, this anomaly

1

See also a recent work [17].

Some of gauge bosons in the anomaly-free gauge groups can
also become massive through the Stiickelberg couplings.
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cancellation is realized by the Green-Schwarz mechanism
[18] involving string theoretic axions. 4D string models
with anomalous U(1)’s have been well discussed for
realizing the SM [19-24].

In this paper, we will focus on models with multiple
U(1) symmetries and chiral fermions. For models with
U(1)k, an anomaly-free U(1) is given by a linear combi-
nation of the original symmetries:

Zc u(1),, (2)

where k is the number of U(1) symmetries, ¢; (i =1,

., k) is a model-dependent O(1) coefficient and U(1),
is the ith gauge group. We will discuss some examples in
the following section. Then, the corresponding anomaly-
free gauge coupling e is given by

1 k2
rad Y1 G

where g; is the gauge coupling of the U(1); symmetry. The
gauge coupling e will become necessarily very weak
and smaller than the original coupling ¢; as the number
of U(1) gauge groups increases in the large k limit.” Thus,
the WGC condition in Eq. (1) looks hard to be satisfied
with an assumption that chiral anomalies can be canceled.
In other words, the repulsive force among particles will
then become very weak. It is conjectured that a certain class
of chiral gauge theories w1th too many U(1) symmetries
can be in the swampland It is noted that the gauge groups
in 10D superstring theories are restricted [26], while those
in 4D brane models seem less-constrained in the view point
of tadpole condition.” When magnitude of all the gauge
couplings is comparable to each other, the Eq. (3) is
rewritten as

u(1)

anomaly-free —

g > m
~Tgz— 4
eq~ R (4)

where g ~ g; for V i1is the average of the gauge couplings.
We find that the gauge coupling is scaling as e ~ k='/% for a
large k and there exists an upper bound on &, k < (¢g MP‘)

if the WGC is correct and the ratio of m/Myp remains
fixed in the large k limit. This upper bound on k is similar to
the species bound [27], but k is not the number of
species but the number of U(1) gauge groups in our

*The WGC with a similar gauge coupling is discussed in
Ref. [25].

This will generally be applicable to theories with a semi-
simple gauge group of G = [[*_| G; in the large k limit, when G
is spontaneously broken to a simple group. Here G; is a simple
group.

°In the heterotic string, the rank of the gauge group is sixteen.

case.® Similar conditions for theories with a discrete Zy
(gauge) symmetry are also discussed in Refs. [28,29].
Equation (4) could be regarded as an example of the weak
coupling conjecture [29].

A notion of quiver gauge theory is often used for theories
in the presence of multiple gauge groups and bifundamental
chiral fermions, and matches model building involving
D-branes well [30—40]. Instead of concrete string models,
in this paper we will consider quiver gauge theories with
U(1)* gauge groups and focus on the anomaly-free gauge
groups and the (S)WGC in a bottom-up approach, suppos-
ing that the remaining anomalies are canceled and then the
anomalous gauge bosons get massive. In general, compu-
tation of anomalies depends on the matter content in
models. In order to check anomaly-free U(1)’s systemati-
cally and study concretely the (S)WGC constraints on the
gauge couplings, we restrict ourselves to several types of
models controlled by discrete symmetries. However, a
behavior of the anomaly-free gauge coupling in Eq. (3)
does not change in general models with anomalous U(1)’s.
The (S)WGC can constrain range of free parameters in low
energy theories and show what parameter values are
favored by UV theory in the view point of IR physics.
In some quiver gauge theories of our interest, there exist a
discrete symmetry associated with cyclic permutations
between the gauge groups in certain quiver gauge theories,
and the symmetry can generally be broken in anomaly-free
U(1) theories by a linear combination of U(1)’s as in
Eq. (3). Some of quiver gauge theories remind us of
deconstructed extra dimension [41,42], which could relate
our approach to the weak coupling conjecture in hologra-
phy [29]. Also new insights can be given to chiral Abelian
gauge theories which may be a candidate of hidden sectors
of dark matter models in particle physics [43].

This paper is organized as follows. In Sec. II, we give
a brief review of the (S)WGC and anomalous U(1)
symmetries. In Sec. III, we will discuss concrete quiver
gauge theories with U(1)¥, then identify the anomaly-free
U(1) symmetries. In Sec. IV, we numerically show the
SWGC constraint on the gauge couplings and Yukawa
couplings in a U(1)* quiver gauge theory. We discuss also a
toy model from 5D orbifold compactification similarly.
Section V is devoted to summary and conclusion. In this
paper, we will discuss the above arguments with the tree
level parameters.

II. BRIEF REVIEWS OF THE (S)WGC
AND ANOMALOUS U(1)’S

A. The WGC and the SWGC

In this subsection, we give a brief review of the WGC
and the SWGC in four dimension. The WGC claims that

°If we have too large c¢;’s, the theory would be in the
swampland owing to the appearance of very weak coupling.
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there exists a state with a charge ¢ and a mass m satisfying
the inequality

m
eq > 5
1 V2Mpy ®)

in a theory consistent with quantum gravity [3]. The factor
of 1/4/2 comes from the relative normalization of the
Newton force against the Coulomb one, and a generaliza-
tion to an arbitrary dimension is straightforward [44]. This
conjecture makes (super)extremal black holes decay into
lighter ones.

The WGC can be extended to theories including a scalar
exchange force such as a Yukawa interaction. This is called
the SWGC [9,10,14]. Let us consider a theory with multiple
U(1) gauge groups:

M 1
SEm = /d“x\/—_g |:TPIR - ZEKabaﬂfﬁ"B”(pb
a,b
! i .
_ ZZfij(¢)F;(43F(1)uu] o
i

where R is a Ricci scalar, ¢ is a real scalar field, F ,(,'3 isa
field strength of U(1);, K, is a scalar kinetic matrix, f; is
a gauge kinetic function, and i, j (= 1,2,...,k) and a, b
denote the labels of U(1) gauge groups and those of scalar
fields respectively. The diagonal parts of f;; give the gauge
couplings of U(1),’s and the off-diagonal components are
kinetic mixings. The matter part action is given by

Snatter = / d*x\/=g [——ZK 50, DO D
+1,T/iy”< +qu] >

where y is a Dirac spinor of a test particle for the SWGC
and has a charge ¢, under the gauge group U(1); and a mass
m(®), and ®“ is a real scalar field which may be different
from ¢ in general. Here, the covariant derivative V,
includes the spin connection. The ®¢ is decomposed as

‘D)WV/} (7)

O =+ g )

where ¢ is the background configuration of ®“ and ¢*
denotes a fluctuation around the background. With these,
the mass m(®) is rewritten as

n(®) = m(@) + 5

P ©)

m(p) is the mass of the y in the background @“, and the
higher order terms of ¢ give the interaction terms between
@®’s and . Thus the Yukawa coupling reads:

Smatter D / d*x\/= Zya ) iy, (10)

@) = 0,m(p). (11)

Then the SWGC for y is given by

Zf”q q; 2 M2 +Z “Yayps (12)

where %/ and K are the inverse matrix of the f;; and K,
respectively. This inequality can be interpreted as the total
gauge repulsive force is stronger than the sum of the
attractive forces of the gravity and the total Yukawa
interactions when we focus on forces acting between the

test partide y: |FC0ulomb| 2 ‘Fgravity| + |FYukawa|' The abso-
lute value of long-range force mediated by massless fields
in four dimension is expressed as

(13)

where a numerator A is the factor corresponding to each
force:

m2

Acoulomb = foq iqj M
Pl

A gravity —

ZK“”yayb (14)

AYukawa

If the scalars ¢“ are heavy, Yukawa interactions are short-
range forces and neglected. Then the SWGC gets back to
the WGC.

B. Anomalous U(1) symmetries

In this subsection, we review cancellation of chiral U(1)
gauge anomalies by axion fields. In 4D effective field
theories, gauge transformation of the axions can cancel the
chiral anomalies produced by light chiral fermions in
the presence of topological terms of the gauge fields
and the Stiickelberg couplings. In field theories with an
anomaly-free U(1) gauge symmetry, such axions are
would-be Nambu-Goldstone bosons associated with the
spontaneous breaking of the U(1) symmetry. After inte-
grating out heavy fermions with chiral U(1) charges, we
can obtain anomalous U(1) in the low energy limit [17,45].
In 4D string models, anomalies can be canceled by the
Green-Schwarz mechanism involving string theoretic axi-
ons that originate from tensor fields, when tadpoles of
brane charges are canceled [46,47].

We shall consider the 4D action involving axions in
addition to chiral fermions leading to chiral anomalies:

065004-3



ABE, HIGAKI, and TAKAHASHI

PHYS. REV. D 102, 065004 (2020)

Lm? (i)
Saxion = ' Z /d4x |:_§? ( Z Bila,ﬂl +A”
i€U(1) gnomaty t N eaxions
n Z 11 1 s )Ff,g} (15)
Ieax10ns

Here, 6; is an axion, B;; and C;; are constants, m; is the
gauge boson mass. For the anomalous U(1) symmetries,
the fields transform as

0[ - 91 - DIiAi’ A/(;) = Alal) + 8,/\,-, (16)
where A; is the transformation parameter, and we assume
that Dy; satisfies ) ; B;;D;; = 6;;. The theory is invariant
in the presence of chiral anomalies produced by gauge
transformations against chiral fermions:

Sty = 5[] 30 a2l

i€U(1) anomaly I€axions

(17)

such that 55 Sioia1 = Sanomaly T OaSaxion = 0. Thus, in terms
of axions the anomaly-free U(1)’s are determined such
that the coefficients of C;;’s are vanishing.7 4D effective
action from 5D theory is also discussed, for instance,
in Refs. [48,49]. The anomalous gauge bosons become
massive as

L m} i Im?
— (B9, +A,<l))2=: ___2<A£))2’

18
Zgi 2yg (18)

after 0’s are eaten by them as in spontaneous gauge sym-
metry breaking. Further, for some nonanomalous gauge
bosons, there can exist Stiickelberg couplings

N axion —

1€ U< 1 )nonunomalom

(ZB&9,+A

I€axions

2
>) ] (19)
The nonanomalous gauge bosons can become massive
as the anomalous ones. Then, the repulsive forces mediated
by such massive gauge bosons will not contribute to
the WGC.

Hereafter, we suppose that this mechanism works in the
quiver gauge theories studied in this paper, and these terms
are ignored otherwise stated.

"Once anomalous gauge fields are written as Az‘“"mal"“g =

Sib A(’ , b;’s would be related to ¢;’s in Eq. (3) through the
onhogonahty among U(1)’s. If there exists a large hierarchy

among b;’s in bi(a"G)A,(,l), some ¢;’s would become very large.

III. QUIVER GAUGE THEORIES
AND THE WGC

In this section, we discuss quiver theories with U(1)*
gauge symmetry and identify anomaly-free gauge groups.
In general, computation of anomalies depends on the matter
content in models. To check anomaly-free U(1)’s system-
atically and identify the gauge couplings concretely, we
focus on several types of models controlled by discrete
symmetries. However, an anomaly-free gauge coupling
will be given by Eq. (3) in general cases. As for a quiver
diagram in this paper, each node implies a gauge group
whereas each arrow among two nodes shows a left-handed
chiral fermion charged under two gauge groups. The
number of arrows shows that of matters and a direction
of an arrow is corresponding to the representation against
two gauge groups. An arrowhead corresponds to anti-
fundamental representation while its opposite side means
fundamental one. For theories only with multiple U(1)
groups, (anti-)fundamental representation is supposed to
have a charg e +1 (—1). A solid line shows a chiral (left-
handed) fermion whereas a dashed line shows a complex
scalar.

At first, we shall focus on nonsupersymmetric gauge
theories with bifundamental chiral fermions of (N, N)
representation under U(N;) x U(N,) x --- gauge group,
which is inspired by D-brane models. Although there
exist many types of quiver diagrams corresponding to
gauge theories, for simplicity we focus on theories includ-
ing only U(1) groups in the diagrams such as Fig. 1. Since
there exist chiral fermions, chiral gauge anomalies can gen-
erally be produced as a consequence. We study cancellation
condition of chiral anomalies to identify anomaly-free
gauge couplings at the tree level, and apply the couplings
to the WGC. Anomaly-free conditions for U(N)* and
U(N)* are discussed in Appendix A. For instance, in
SU(N)* theories with a general N, non-Abelian gauge
anomaly cancellations require that the number of incoming
arrows is equal to that of outgoing ones at each node. In
U(1)* theories we will simply mimic SU(N)* cases
because in D-brane models a gauge group can be given
by U(N)=U(1)x SU(N) rather than just SU(N),
hence U(1) and SU(N) are considered simultaneously.

FIG. 1.

A quiver diagram with k nodes.
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We suppose that the anomalies are canceled as in Sec. II B
and then (non)anomalous gauge fields get massive in a
gauge invariant form. Quiver gauge theories associated
with deconstructed extra dimension [41,42] could relate our
approach to the weak coupling conjecture [29].

In quiver gauge theories with U(1)¥ of our interest, the
action is written by

o

. )G
+ W ir (0 + AL — AT 4|, (20)

where ellipsis shows gravity and interaction terms among
fermions which we have neglected. We assume that kinetic
mixings among gauge fields are absent at the tree level for
simplicity, and will ignore them in this paper. The gauge
field of U(1); is denoted by AM and y/; ;; is a left-handed
spinor with a charge of (+1,-1) against the (U(1);,
U(1);;,) gauge group as noted above. The index runs
as j = 1,2, ...,k and satisfies k + 1 = 1. There will exist a
symmetry8 that shifts labels simultaneously as j — j + 1:

A/(AJ) N A(f""l)

gj = Gjt1 W Vit = Vit j+2

(21)

when we treat the gauge couplings as spurion fields, which
are expected to be moduli fields in the string theory. This
can be regarded as a Z; symmetry acting on k nodes with a
element of

01 00 0
00 10 0
00 0 1 0 (22)
1 000 --- 0

We can study anomalies and identify anomaly-free U(1)’s
systematically owing to this symmetry as seen below. This
symmetry will be broken in the low energies when an
anomaly-free gauge group is given by a linear combination
of UV U(1)’s. So, interactions of axions to gauge fields are
expected to violate this discrete symmetry.

In terms of particle phenomenology, this theory may be
the hidden sector for dark matter apart from the visible
sector [43]. In Appendix B, we discussed also several
quiver models not shown in this section.

8See also Refs. [39,50,51].

U(Ds U1,

FIG. 2. Three nodes quiver diagram.

A. U(1)*-1

We consider quiver gauge theories with U(1)?~! groups
as shown in Fig. 1. These types of (supersymmetric)
models have often been studied in D-brane models on
orbifolds or intersecting/magnetized D-brane models.
They are used also to realize realistic Yukawa couplings
or higher order couplings. We hereafter focus just on
fermions producing anomalies. As seen below, these
theories can have an unique anomaly-free U(1).

Lua)?

One of the simplest case is the quiver gauge theory with
U(1)> = U(1), x U(1), x U(1), groups’ in Fig. 2. As in
Eq. (20), there exist three left-handed chiral fermions y;
(i =1, 2, 3), which have charges of (1,—1,0),(0,1,-1)
and (—1,0,1) against (U(1),,U(1),,U(1)3) respectively.
This model will have a Z; symmetry as noted above, and
there is no other choices to connect each node. The
divergences of U(1)* chiral currents j* (i =1, 2, 3) are
given by

a’jl =0-0;
9-j*=03-0 (23)
a.j3:Ql_Q2a

where - j'=0,j* and Q; is the topological charge
density, Q; = o 26"”/’"F <)F <2 Thus we define the
anomaly-free U(1) by

U(l)y = c;U(1); + coU(1); + c3U(1)3. (24)

and impose the divergence of its current to vanish

9 X = Z ci0-j = (=cy +¢3)0; + (c; — ¢3)0»

=123

+ (=¢c; + )03 =0. (25)

9 . .
In a supersymmetric case, we have a Yukawa coupling.

065004-5
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FIG. 3.
are connected with arrows.

Then the solution is
Ul)y =U(1), +U(1), + U(1);. (26)

In this model, the anomaly-free gauge group is determined
uniquely (up to overall normalization of the charges), and
its gauge coupling is given by

_Lorn
G5 G

Here, the anomaly-free gauge coupling ey is written so that
the gauge kinetic term becomes the canonical form:

1
— 27
@)

_Zi FU pliw — _LF(X)F(X)W
2 4e§( e

+ (anomalous gauge fields). (28)

Thus, the anomaly-free gauge coupling ey can be smaller
than the original U(1) gauge couplings g;’s.

It is noted that all the matters are then neutral under
this anomaly-free U(1)y, i.e., V¥ gy = 0. It seems that this
model may not be naively applied to the WGC, but the
presence of global symmetries is important. The low energy
Lagrangian will be given by

) 1
L= Z lWLiWLi_E(FI(j))Z"'_“" (29)

i€matter X

if anomaly-free gauge boson Aflx) survives in low energy

limit. Ellipsis includes interactions among fermions and
anomaly-free gauge boson and there will additionally exist
kinetic mixings such as K;y;; @y, and Majorana mass

terms of —M; jwﬁw ;i in low energy limit after anomalous
massive bosons are integrated out. These terms will violate
invariance under phase rotations of fermions. Now the
original Z; symmetry acts as ey — ey, A;(,X) - A,(,X) and
Wi = Wi, but whether this low energy theory has the
Z5 symmetry depends on parameters for fermions. Since all

fermions are neutral under U(1)y, global symmetries will

Quiver diagrams with five nodes. Both diagrams have a Z5 cyclic symmetry among each node. In the right diagram, all nodes

be hard to survive in the low energy limit while discrete
gauge symmetries originating from the anomalous U(1)’s
can survive if any. If global symmetries survive, this model
is in the swampland. It will be necessary to embed this
model into string theory in order to know what kind of
symmetries survives. This is beyond the scope of the paper
and left for future work.

2. U(1)*-!

We consider quiver gauge theories with more general
U(1)?*=! groups. Figure 3 shows quiver diagrams with the
five nodes, and it is noted that the number of incoming
arrows is equal to that of outgoing ones at each node and
both diagrams have a Zs5 cyclic symmetry among each
node. As in Eq. (20) and in the left diagram of Fig. 3,
we have five left-handed fermions charged against
(U(1),,U(1),,U(1)5,U(1),,U(1)s). The divergences of
U(1)3 chiral currents are given by

j! 0 1 0 0 -1\ /0
7 -1 0 0 0 0,
o-121=l0o -1 0o 1 o0 0,
i 0 0 -1 0 1 o
I 1 0 0 -1 0 0s

(30)

The number of anomaly-free U(1)’s is given by that of zero
eigenvalues of this coefficient matrix, and we find only one
zero eigenvalue in this model. The anomaly-free U(1) is
given by the corresponding eigenvector

u(1)

anomaly-free —

+U(1), +U(1)s. (31)

Thus all matters are again neutral under this anomaly-free
U(1) and this system will not simply be applied to the
WGC. The situation is similar to the three quivers model in
Sec. IITA 1.

065004-6
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The result is not changed by adding five chiral fermions
to this model as in the right diagram of Fig. 3. Then their
action is additionally given by

5
- Z / A X 12" (O + il - iA/(tj+2))l//j.j+2 +-]
(32)

The anomaly coefficient matrix reads
-1 -1 0 1 1 [. (33)

Thus, the anomaly-free U(1) is similarly given by Eq. (31).
So far we have discussed specific quiver models with
three and five nodes, but the result can be simply extended
to general models with odd number nodes as shown in
Fig. 1. Since the entries of the anomaly coefficient matrix
are composed of the same number of 1 and —1 as above, the
anomaly-free U(1) is uniquely determined as

2k—1

Z Ul (34)

and the gauge coupling is given by

u(1)

anomaly-free —

1 2k—1 1

i=1 gi

In concrete models, these are easily verified and it is
checked also that the result does not change for models
with odd nodes and full diagonal lines that are similar to the
right diagram of Fig. 3. As noted previously, however, there
exist no charged chiral matters for this anomaly-free U(1).

3. U)*-1 xU1)*~! with vectorlike matters

We shall consider quiver gauge theories with U(1)%~! x

U(1)?-! in the presence of vectorlike matters. As in
Fig. 4, the correspoinding diagram is composed of two
diagrams with odd nodes which are connected by a pair of
two arrows of vectorlike matters. Action is given by two
kinds of Eq. (20) showing U(1)%*~! x U(1)?~! symmetry
and vectorlike part of

S = /d4x[l/71,2ki7”(a,4 + iA,(ll) - iA;(42k>)l//1,2k

o () 2k
+ Yo iy (0, — lA;(t) + zA/(, ))ll/2k,1

- ml;/gk’ll//mk +H.c], (36)

U(1):

FIG. 4. A quiver diagram of three nodes connected with five
nodes by a pair of two arrows of vectorlike matters.

where we assume that the bifundamental vectorlike matters
are charged under the gauge groups of U(1), x U(1),, and
that the mass m remains nonzero in the weak gauge
coupling limit. In this case, the discrete symmetry is
explicitly broken since y 5 is transformed to y, ;4 that
is originally absent. For instance, we focus on U(1)? x
U(1)3 theory with vectorlike matter, which is the case of
k =2 and [ = 3. Since vectorlike matter does not contrib-
ute to the chiral anomalies, we have two anomaly-free
U(1)’s as mentioned above: one denotes U(1)y from U(1)3
and another denotes U(1)y, from U(1)>. Here,

8
Uy =Y U, (37)

i=1 i=4

hence charges of vectorlike matters are (+1,—1) and
(=1,+1) for (U(1)y,U(1)y) and other chiral matters
are neutral for them. The respective gauge couplings are
given by

1 K1 8
a2 2rF atXg

i—1 Ji X =

(38)

iQN| —_

These can be weaker than the original gauge couplings of
g;’s. Then the WGC for the vectorlike matter reads

2

. 39
Z o, 9

ex + eX,

In the large limit of k and [ with a given m and g;’s, we find

2 2
9 Y
~ZL 4 2L 50, 40

ex + %
and then the WGC can be violated since the couplings
becomes very weak as long as the mass m remains nonzero
in the limit of ex — 0 and ey — 0. Note that we now fix
g;’s but change only k and /. This indicates that there exists
an upper bounds on the numbers of U(1) gauge groups, k

and [ as k + 1 < (g; ) if the WGC is correct.

065004-7
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FIG. 5. The Z4 symmetric quiver diagram with four nodes.

B. U(1)*

We consider quiver gauge theories with U(1)%* sym-
metry as shown in Fig. 1. These types of models are
also studied in D-brane models similarly to U(1)%*~! cases.
As the simplest model with chiral anomalies, we focus on
U(1)* symmetry and this model has four left-handed
fermions as in Fig. 5. Divergences of each chiral current
are given by

0 1 0 -1\ /0,

jl

2 -1 0 1 O

Tl = ol RS
7 0 -1 0 1 0;

J* 1 0 -1 0 [on

Since the anomaly coefficient matrix have two zero eigen-
state, this model has two independent anomaly-free U(1)’s,
which are represented by the eigenvectors (1,0, 1,0)T and
(0,1,0,1)T. The former relates first node to third one,
whereas the latter does second node to fourth one. The
independent anomaly-free U(1)’s are generally given by

U(l)x = cU(1), + U(1), + cU(1)y + U(l),,  (42)

Uy = =2 U, +U(), = LU, + U(1)y, (43)

where c is a free parameter that depends on the D-brane
configuration in concrete UV string models [19—21],10 and
will be a rational number. Otherwise, there exists a global
symmetry [52-54]. The result does not change even if
we add bifundamental vectorlike matters that are charged
under only U(1), x U(1); or only U(1), x U(1),. For
c=0, we find U(l)y =U(1), +U(1), and U(1l)y =
U(1), + U(1);. It is noted that for a general ¢ a linear
combination can violate the Z, to Z3 exchanging 1 <> 3 and
2 <> 4. The gauge couplings relevant to the anomaly-free
U(1)’s read

%A gauge boson in one of the two U (1)’s could be massive in
UV models. But, the behavior of gauge coupling will not change
in the large k limit.

TABLE I.  The charges of fields for the anomaly-free U(1)y %
U(1l)y group.
Fields qx gy
Wab —1+c —-1-1/c
Yda l-c 14+ l/C
Ve 1-c¢ 1+1/c
Wed -1+4+c -1-1/c
17 0 0
1 2 1 1
Z=at5t 5+, (44)
€x 1 9 93 U
1 1/ 1 1/ 1
Dl s i S (45)
ex G5 B G

In this model, the chiral fermions have nontrivial charges
under these anomaly-free U(1)’s as shown in Table L. In the
next section, we will numerically study the SWGC in this
model by adding a complex scalar.

Extending this model to general theories with U(1)%* is
simple, and we can verify that there exists at least two
anomaly-free U(1)’s in a concrete model. So it is expected
that in the large k limit with a given ¢ and a fixed g;,
anomaly-free gauge couplings become very small as in
cases of U(1)%*~! x U(1)*~'. Then there exists an upper
bound on the number of Abelian gauge groups if the WGC
is correct and a fermion mass remains nonzero in the large
k limit.

IV. A U(1)* MODEL AND THE SWGC

In this section, we discuss the detail of U(1)* quiver
gauge theory shown in the previous section and its
application to the SWGC at the tree level in the presence
of a complex scalar field. The motivation for this is to study
SWGC in a more realistic (or string-inspired) model with a
scalar field. The SWGC shows numerically constraints of a
smallness of gauge couplings against Yukawa couplings.
We also study a UV completion of 5D orbifold model for it.

A. Constraints of the SWGC

Figure 6 shows a quiver diagram of U(1)* model in the
presence of a complex scalar ¢, whose charge is (+1,—1)
for (U(1),.U(1),)."" Due to this scalar field, we have
Yukawa couplings of

""The direction of the dashed arrow shows the scalar charge
same as chiral fermions. We changed the names of gauge groups
from U(l), xU(1), xU(1); xU(1), to U(1l),x U(1l), x
U(1), x U(1), and accordingly those of left-handed fermions

from (w12, %23, V34 Wa1) © Waps Woes Weas Waa) Tor the latter
convenience.
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FIG. 6. A quiver diagram of U(1)* model including a complex
scalar.

Lukawa = =YPW Waa =Y 9 Wi W ea + Hee. (46)
This model is inspired by intersecting brane models
[30,32]. No Z, symmetry exists. This is because ¢ can
be written as ¢, in the view point of the U(1) charges and
hence ¢, is transformed to ¢, that is originally absent.
There could exist Z, that simultaneously exchanges the
labels as a <> ¢ and b <> d for y = y/, if we can identify

Opg = gojib. As seen in the previous section, two anomaly-
free U(1)’s are given by

Ull)y =cU(1),+U(1), +cU(1),+U), (47)

U(l)y = -

, -
C

U(1),+ U(1), = - U(1), + U(1),. (48)

where a free parameter c is a rational number and can be
fixed in concrete models by the brane configuration in the
string theory. The charges of the fields are summarized in
Table I.

The effective Lagrangian showing two anomaly-free
U(1)’s may read

o 1 X X
L= > Wbyl (F) = (Fu)?
I=ab.bc,cd.da €x eX’
— oS Waa+Y o Wl wea+He ]+, (49)

where D, = 0, + inAf,X) + in/A,(,XI>, gauge bosons rel-

evant to two anomalous U(1)’s are neglected since they
become massive if the Green-Schwarz mechanism works.
Yukawa couplings between the complex scalar and chiral
fermions are denoted by y and y’, which are not the same in
general. It is noted that vectorlike pairs of w,, + w4,
and v, + ., Will constitute the Dirac spinors. ©~ Now

"From the view point of the anomaly-free U(1)’s, there may

exist Yukawa couplings including v, v, and y<y 4, but they
are supposed to be much smaller than y and y’ here. Similarly,
there may exist Dirac masses to these fermions because ¢ is
singlet for the anomaly-free U(1)’s in the low energy, but the
masses would be negligibly small against the Planck scale.

scalar ¢ is neutral under anomaly-free U(1)’s and will not
be considered for the SWGC. The scalar potential will
be neglected hereafter with an assumption that ¢ is
sufficiently light at energy scales of our interest since
the scalar potential will be model-dependent. To check
strong SWGC [11] for ¢ is an interesting issue, but this is
left for future work and we focus on the SWGC for
fermions with nontrivial anomaly-free gauge charges.
Here the anomaly-free gauge couplings are given by

S+, (50)
g

+ s (51)

In the presence of a very light ¢, the SWGC can be
expressed as

1\2 M? Y?
(—1 + c)2e§(+ (1 +C> 63(/ Zm+7, (52)

for a test fermion. Here, Y = y and M = yRe(¢) for a Dirac
fermion of y;, + y,,, whereas Y =y’ and M = y'Re(¢p)
for y,. +w.q. A factor Y2/2 is obtained because of the
canonical normalization of Re(¢), and Im(¢) contributes to
the spin-dependent interaction that is not 1/r?-force. If the
scalar is sufficiently heavy, Y does not contribute to the
SWGC condition owing to exponentially damping force
and hence the WGC can be easily satisfied. To reduce the
number of parameters, we will set g, = g, =:¢g for sim-
plicity. In the next subsection, we will study this situation
realized in the 5D orbifold model. Thus this equation can be
rewritten as

(1-c)? (1+1/c)?
APl +a/g)+2 (/AN G ga+9°]g2) +2
A

Here, the masses are neglected because M/Mp < 1 is
numerically expected in the effective field theory. Indeed,
there is almost no change in appearance of the plots for
M/gMp < 0.1, where gMyp, is expected as a cutoff scale
[3], when the scalar is massless. It is noted also that a gauge
boson in either U(1)y or U(1)y may be massive owing to
the Stiickelberg coupling and then either ey or ey vanishes
in Eq. (53).

In the top panels of Fig. 7, we show the plots of the
SWGC (53) in the (X,Y/g)-, (¢,Y/g)- and (c, X)-planes,
where X := ¢/ g% + ¢*/ g%. The each line saturates Eq. (53),
hence the allowed region exists below them. In the presence
of the mass, the SWGC is violated on each line. Note that
these plots are symmetric under ¢ - —1/¢ owing to the
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3.0 3.0
14
25 2.5 12
10
20 0 c=0 20 W o X=1 o Yig=1/2
245 vtz 215 ox=2 x 8 5 Yig=1Z
oe=1 0 X=4 6 o Yig=1
1.0 0 c=3 1.0 W o X=10 4 9 Yig=v2
5 c=6 0 X=12 _
05 0.5 ) o Yig=2
0.0 0.0 o~
0 2 4 6 8 10 12 14 3 -2 -1 0 2 3 3 2 -1 0 1 2 3
X
3.0 3.0 7
25 2.5 12
2. 2. 10
0 5 60 0 - X ° Yig=1/2
215 st 215 aX=2 x 8 7 Yig=1NZ
o c=1 0 X=4 6 0 Y/g=1
1.0 o ¢c=3 1.0 o X=10 4 o Y/g:\/f
5 c=6 o X=12 _
05 05 5 / 0 Y/g=2
0.0 0.0 0 /\
0 2 4 6 8 10 12 14 3 -2 -1 0 2 3 3 2 -1 0 1 2 3
X c
3.0 3.0 "
25 2.5 12
2.0 2.0 10
0 =0 o X=1 0 YIg=1/2
215 stz 215 aX=2 x 8 5 Yig=12
o c=1 0 X=4 6 0 Ylg=1
1.0 o ¢c=3 1.0 o X=10 4 . Y/g=\/3
5 c=6 o X=12 _
0.5 0.5 5 o Yig=2
0.0 0.0 0
0 2 4 6 8 10 12 14 3 -2 -1 0 2 3 3 2 1 0 1 2 3
X c

FIG. 7. Plots of the SWGC constraints in (X, Y/g)-, (¢, Y/g)- and (c, X)-planes. The top panels plot the constraints of Eq. (53). The
middle (bottom) figures show the similar plots with ey» = 0 (ex = 0), when U(1)y (U(1)y) gauge group survives in low energy limit.
The condition is saturated on each lines, below which there exist an allowed region. In the presence of mass, the SWGC is violated on

each line.

definition of the anomaly-free U(1)’s. A region for a
large Yukawa coupling is excluded by the SWGC. For a
large X, the constraint becomes tighter. In other words,
a big discrepancy between gauge couplings is disfavored. It
turns out that the constraint becomes stronger near ¢ = +1
because either ey or ey vanishes then. We find also that the
constraint is independent of ¢ for special values of X = 2
and Y /g = /2. This is because for X = 2 the left-hand side
of Eq. (53) becomes unity and hence for Y/g > V2 the
SWGC is then violated in the presence of the mass term.
We can find also that the constraint becomes weaker as the
¢ > 0 increases in the top-left panel for X > 2, because
either ey or ey gets stronger then whereas the constraint
does not depend on ¢ for X < 1. Itis noted that in the string
theory ¢ depends on the D-brane configuration and the
couplings depend on moduli fields with the fixed configu-
ration. The middle (bottom) figures show the similar plots
with ey, = 0 (ex = 0), when only a gauge boson of U(1)y
(U(1)y) remains massless and mediates the long-range
repulsive force. In these cases, the condition of the SWGC
tends to give tighter constraints.

B. A U(1)* model from S'/Z, orbifold and the SWGC

We consider a 5D gauge theory with U(2) x U(1), x
U(1), on the S'/Z, orbifold for realizing chiral fermions.
The purpose of this subsection is to give a concrete Yukawa
coupling associated with the gauge coupling and a relation
between gauge couplings as in the previous subsection via
the symmetry breaking of U(2) - U(1), x U(1), by an
orbifold projection. The fields contents and their represen-
tations are exhibited in Table II. The 5D action is given by

1 1
Ssp = d*xdy\/—Gs | = Rs — —tr(Fyy)?
5D A@xs'/zz xay 5{2@ 5 292 ( MN)

2
1 1 e
= 3 (i) = 32 (Fin?
+¥,(ib-M,)¥Y, + ¥ (ib - MC)‘PC] , (54)

where M =0,1,2.3,y, Dy =V + iAy + ig,AL +

(c)

iq.A,, and g, and §. are the charges of U(1), and
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TABLE II. Table of the field contents and their charges in 5D
model for realizing U(1)* gauge theory in 4D. Subscripts of U(2)
representation for fermions are U(1) charges against the overall
U(l) e U(2).

Fields U(2) u(l), U(l),
Ay adj 0 0
¥, 2, -1 0
¥ 2., 0 +1
4 0 adj 0
A0 0 0 adj
U(1), respectively. 5D Chern Simons terms associated

with 4D Green-Schwarz mechanism is neglected as already
noted. The field strengths are given by Fyny = Oy Ay —
OnAy + i[Ay. Ay] and F%8 = 0,41 — 9yA%9 for
the non-Abelian gauge field and Abelian gauge fields
respectively. The normalization of generator of U(2) is
chosen as tr(7,T;,) = 8,,/2, hence the U(2) gauge field
is expanded as Ay = %AES) +”—2“A1(§), where 1, is 2 x 2
identity matrix and 6*’s (a = 1, 2, 3) are the Pauli matrices.
Since the covariant derivative is acting on ¥, as Dy,¥, 2
iAyY, =i 1]TZA[(S“I’“ + -+, ¥, has 1/2 charge against the
overall U(1). This is similar to ¥, which has the opposite
U(1) charge. Here, ¥, . = (Wac1,Wac2)" are doublets for
the SU(2) and y,, . are the 4D Dirac spinors. The metric of
My x S'/Z, is written by ds3 = e™°g,, dx"dx* + e*°dy?,
where o is the radion field, and gives 4D Einstein frame.
The size of S'/Z, is assumed to be zL and we take (¢) = 0
without loss of generality. The graviphoton g, is dropped
since it is parity odd while the 4D graviton g,, remains
massless. Then, the massive graviphoton mediates the
short-range force among particles which have the Kaluza-
Klein (KK) charges, and does not contribute to the SWGC
condition. On top of the usual periodic boundary condition
of S', the orbifold boundary conditon is given by

PAy(x,—y)P™" = Ay (x.y),

AN (=) = maAly ) (x, y), (55)
PY, 4(x,=y) = ys¥.q(x.y), (56)

where P = diag(+1,-1) € U(2), 5y =1 for M = u =0,
1, 2,3 and 4 = —1 for M = y. Thus 4D massless modes
read

G
H A(d) ’ Y —i(pT/\/E

"

ifp/ﬁ),

AW Al (57)
YalRrs YarLs YelRs Year- (58)

where A\ = : A + AP, A = : AV —AD), ¢ =
—(iAgvl) + A&z)) //2 is the complex scalar originating from
the W-boson of y—direction,13 and the y; (wp) is the left-
handed (right-handed) chiral fermion in 4D. It turns out that
there exists the gauge symmetry of U(1), x U(1), x
U(1), x U(1),. As seen from the zero mode basis in the
U(2) gauge bosons, we find matter charges for the gauge
symmetry: As for (U(1), U(1),, U(1). U(1),). WS =
Yap - (+1’_1’0’O>’ WSIR El)’/bc:(oﬂ_l_l’_l’o)’ Vet =Wea-
(0,0,1,=1), wapor =wa,:(—1,0,0,1) and ¢:(0,1,0,-1).
This is the same field content as in the previous subsection,
hence ¢ is a neutral scalar under anomaly-free U(1)’s and
will not be considered for the SWGC. The scalar potential
will be neglected as previously noted since the scalar
potential including radion will depend on the model and the
radion stabilization. Deriving the scalar potential and
checking the strong SWGC for this is left for future work.

The 4D parameters are given by the 5D parameters with
an assumption of (¢) = 0. For the details, see Appendix C.
The 4D Planck mass is associated with the 5D gravitational
coupling x5 as

L
M12>1 = K_§ (59)

and the gauge couplings in 4D are expressed by

1 zlL 1 L
—, =, 5 = (60)
B 9 % B A A A

This is because we have the gauge kinetic term £ =
—2/AR(F0))? = 2/42(F\Y)? via the symmetry breaking

of U(2) » U(1), x U(1),. With these, the anomaly-free
couplings are defined as previously:

1 2 2 22
2=ttt (61)
€x Y9a 93 ge 2
1 1/c2 2 1/
& 9% B g

2
+, (62)
93

where a free parameter c is a rational number.
The Yukawa couplings between ¢ and y’s are given by

/ 92 92
pr— pr— = — . 63
y=y ARG (63)

Here, y and y’ are the same definition as in the previous
subsection. This equation relates the Yukawa coupling
to the gauge coupling. In the presence of a light Re(¢p)

“Here we define the complex scalar by multiplying the
ordinary W*-boson by —i so that the effective Lagrangian of
the zero modes reproduces Eq. (49) after this orbifold projection.
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FIG. 8. Left panel: plots of the SWGC conditons (65) in the (¢, X)-planes. The condition is saturated on each lines, below which there
exist an allowed region. In the presence of mass, the SWGC is violated on each line. Right panel: a similar plot with only U(1) (red)

and one with only U(1)y (blue).

and the radion, the SWGC inequality for zero mode
fermions reads

1\?2 y? 1 1\ M?
1—c)?e3 l+-) e >4 (=4+-|— (64
( c)eX+< +c> eX_2+<2+6>M]2)1 (64)

where M has the same definition as in the previous
subsection'* and 1 /6 comes from the radion exchange
via ye=o/ VoMy Re(¢)wy with the canonically normalized
radion o, = \/3/2Mpc. We have neglected momentum-
dependent terms induced by the radion exchange with
terms of yy'wd,c. If Re(g) is sufficiently heavy, the
Yukawa interaction in this equation can be neglected
and the WGC can be then easily satisfied. Gravitational
interactions including radion exchange will be numerically
neglected below as in the previous subsection owing to the
Planck-suppressed interaction within the effective field
theory. For M/g,Mp < 0.1 and p/g,Mp; < 0.1, where p
is the momentum of a test fermion, there are not signi-
ficant differences compared to the plots shown below.
Substituting the above couplings given by Egs. (61)—(63) to
Eq. (64), we then find the SWGC condition

(1-c)? (1+1/c)?
(2/2)(g5/ga + 33/ 92) +2  (1/2¢*)(95/ g2 + 93/ 92) +2
z%. (65)

This is also obtained when the parameters in Eq. (53) are
replaced as ¢ — ¢3/2 and (Y/g)* — 1/2. This gives a
constraint between ¢ and X = g3/g2 + g3/ g2

As for the KK modes or the massive parity odd ones, a
similar equation to Eq. (64) will be hold. It is noted that
massive gauge bosons do not contribute to long-range

"“We have factored out the common radion dependence .

forces and all bosons including scalar zero mode are neutral
under anomaly-free U(1)’s and fermions with nontrivial
gauge charges are considered for the SWGC. Parity odd
fermions of w,i7,Wanor - Wer and w,p have opposite
charges to zero mode fermions. KK modes of a field have
the same charge as that of the lightest mode. Yukawa
couplings that are invariant under Z, projection are given
by ¢evenl//evenl//even’ ¢evenl//0ddl//0dd’ ¢0ddW0ddWeven’ where

¢even (¢0dd) is an even (Odd) Paﬁty scalar and Yeven (Wodd)
is an even (odd) parity fermion. As massive scalars

do not contribute to a long-range force, Yukawa
couplings relevant to the SWGC are associated with ¢:
PW evenW evens PWoddWoad- After integration over the extra
dimension, we will find Yukawa couplings of ygy/y, in

addition to KK mass terms (n/L)y .y, + (n/L)y’ ', for
n-th KK modes with the canonically normalized kinetic
terms (up to the radion dependence). Then nth KK mass
eigenstates will have mass M? = (n/L + yRe(¢))?. As the
SWGC could be violated by heavy KK modes, it is
necessary to check whether lighter modes including the
zero modes satisfy the SWGC.

Figure 8 shows the plots of the SWGC (65) in the (c, X)
plane. The each line saturates Eq. (65), hence the allowed
region exists below them. In the presence of mass, the
SWGC is violated on each line. The these plots are
symmetric under ¢ — —1/c. The left panel shows the
constraint when there exists two anomaly-free U(1)’s.
This is very similar to the top-right one of Fig. 7 for a
small value of Yukawa. For a large X, not only U(1), x
U(1), gauge coupling but also Yukawa coupling « g,
become much stronger than g, or g., and hence there exist
an upper bound on X. It is noted that in the context of the
string theory a large X may imply a big discrepancy among
moduli vacuum expectation values. In the vincity of
¢ = %1, matter becomes neutral against either one of the
anomaly-free U(1)’s, then the constraint becomes tighter.
In the right panel, plots show the SWGC constraint with
ex =0 or ey =0, when only the gauge boson of either
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U(1)y or U(1)y remains massless owing to a Stiickelberg
coupling as often seen in concrete string models.

V. CONCLUSION

We have studied the (S)WGC in several types of quiver
gauge theories with U(1)¥ gauge symmetry in the presence
of bi-fundamental chiral fermions leading to the chiral
anomalies, which is supposed to be canceled by the Green-
Schwarz mechanism. The theories which we consider
possesses a cyclic Z, symmetry associated with a shift
of the label of the gauge groups. As a consequence of this,
we can study anomalies in the models systematically and
the (S)WGC constraints on the gauge couplings. We
identified concretely the anomaly-free U(1)’s and their
gauge couplings obtained via linear combinations of the
original U(1)’s. Then, Z; symmetry can be broken in
general. In the large k limit, an anomaly-free gauge
coupling becomes very weak as e ~ k~'/2, and there exists
an upper bound on k if the WGC is correct and the mass for
a test particle remains in the large k limit. This may be
regarded as an example of the weak coupling conjecture.
For quiver theories with U(1)%*~!, an unique anomaly-free
U(1) is proportional to > 2*71 U(1); and all matters are
neutral under the anomaly-free U(1). There exist charged
matters in the presence of vectorlike pairs, and Z,;_;
symmetry is broken then. For quiver theories with U(1)%*
gauge symmetry, there exist two anomaly-free U(1)’s and
charged matters under these gauge groups, and Z,;
symmetry is broken in general. Even if the gauge couplings
of the anomaly-free U(1)’s receive quantum corrections,
the IR couplings will remain very weak in the large k limit
since U(1) couplings are generally asymptotic nonfree as
far as the perturbation theory is valid.

We have numerically studied also the SWGC in U(1)*
theory in the presence of a complex scalar field, and
construct a similar model based on a 5D orbifold. It turns
out that a much larger Yukawa coupling than gauge
couplings is forbidden and also that a big discrepancy
among gauge couplings is disfavored. A special linear
combination for realizing the anomaly-free U(1)’s can be
also be disfavored, since matter charge becomes small then.

So far, we neglected kinetic mixings y;;F, F/* among
gauge fields. If we have such terms, we may have a kinetic
mixing of yFX,FX, where y ~ Y% y;;¢;c, for anomaly-
free U(1)y = >, c;U(1); and U(1)y = >, ciU(1); with
¢;’s = O(1). If the mixing y is at most of O(k3/>~%) (a > 0)
in the large k limit, the WGC can still be violated as in
Sec. III. This is because the canonically normalized mixing
is given by eyeyy and hence an induced coupling of a
fermion to an anomaly-free gauge field is proportional to
e} exy or exey,y that are scaling as k™ then. However, if
x = O(K?) in the large k limit, the WGC can be satisfied.

In the Sec. IV, the scalar ¢ is a singlet under the anomaly-
free gauge groups, and we did not discuss the detail of the

scalar potential in addition to the radion. Hence it may be
an interesting challenge to check the strong SWGC within a
fixed model. This is left for future work.

It will be worth to investigate the (S)WGC in theories
with more general gauge groups. In actual string compac-
tifications, the number of closed string axions is known to
be finite and depends on the Hodge number of compacti-
fication manifold. Some of the axions play an important
role to cancel anomalies through the Green-Schwarz
mechanism. Hence, the number of anomalous U(1) gauge
theories, which is k — 1 or kK — 2 in our cases, should be
constrained by the number of such axions. If the anomalies
are independent among the anomalous theories, the number
of anomalous U(1)’s can be less than that of axions for
anomaly cancellation. Also in the string theory, the con-
jecture would constrain brane configuration and moduli
values. If one starts with 10D super Yang-Mills theory, 4D
effective action including an anomaly-free U(1) may be
given by [55,56]

L=—c3(FuF —%)ww o (66)

where S is the 4D dilaton, 7 is a complex structure modulus,
and a rational number ¢ originates from a linear combi-
nation of U(1)’s depends on brane configuration of the
number of branes and magnetic fluxes. The SWGC of e >
y? (up to mass term) for matter fermion may read

(67)

However, it will be required a deep understanding of
the string theory or concrete effective field theories includ-
ing (non-Abelian) Dirac-Born-Infeld action to study the
SWGC constraints on moduli space for consistent gauge
theories in the presence of the Green-Schwarz mechanism.
This is also left for future works.
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APPENDIX A: ANOMALIES IN STRING-
INSPIRED (SUSY) GAUGE THEORIES

We discuss anomaly-free U(1)’s in U(N)* quiver gauge
theories inspired by the string theory. We focus only on
certain types of quiver theories considered in Sec. III in this
section. Hereafter, N, denotes the rank of the gauge group
of U(N,) at the a-node, and n,, shows the number of
bifundamental matter fields which correspond to that of
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P L
NSNS

Npc

FIG. 9. A quiver diagram of U(N)® gauge theory.

arrows connecting between a-node and b-node in the
quiver diagram.

1. UN)

We consider a U(N)? quiver gauge theory as shown in
Fig. 9, and identify an anomaly-free U(1). To this end, we
calculate chiral anomalies and mixed anomalies. Then, we
find the constraints on the ranks of gauge groups and the
numbers of generations. For a consistent theory, the non-
Abelian cubic anomalies Agyy,, y» give the following

¢

constraints,
Asun,p o (ngpNp —neoN.) =0, (A1)
-ASU(N,,)3 x(npeNe = ngpN,) =0, (A2)
Asuinyp %(neaNg —npcNp) = 0. (A3)

With these equations, the ranks of the gauge groups are
related as

n n
N,=-2%N.eN, N,=-“N,eN.
Nap Nap

(A4)

Thus, we find N, = N, = N, for n,, =n,. = n., The

divergences of the chiral currents j*>< for U(1),, . are
given by
a9-j*= Na(anabe - Nc”ach)
+Na(nabNb _ncaNc)Qa +AU(1)aG2v (AS)
0- jb = Nb(Ncnchc - Nanaan)
+ Np(npeNe = napNo)Qp + Ay, 2 (A6)
0- jc = Nc(NancaQa - anchh)
+Nc(ncaNa - nthh)Qc +AU(1)CG2’ (A7)
where 0.= QU(I)x _|_#Q5U(Nx)7 QGx :#E”WMH‘(FI%)FS;))

for x = a, b, ¢, and tr(T'T/) = 8 /2 for U(N) generators

T"s. These include anomalies of U(1)3, U(1)SU(N)? and
the mixed anomalies between the gravity and U(1)’s,
which are denoted by A1) 2. We impose that they are

vanishing:
AU(l)aGZ &« Ny(ngpNy = neoNe) =0, (A8)
Avay,e2 &« Np(npeNe —ngpN,) =0, (A9)
Ay, 2 X Ne(neaNy = npeNp) =0, (A10)

This is the same condition as in the non-Abelian
anomalies. There are not existing charged fields under
all (U(1),,U(1),.U(1),), then the anomaly between

U(1),U(1),U(1), vanishes automatically. Then we find
9" =No(NpngpQp — Nenge Q) (Al1)
9+ j" = Nyp(Nenpe Qe = Nanap Q) (A12)
9 j*=Nc(NaneaQu — Npnpc Q). (A13)

To identify the anomaly-free U(1) we define it as

Uy = - U, + 32 U, + 17U, (A14)

and we impose that the divergence of the current associated
with U(1)y vanishes

0. =Y oy

x=a,b,c” X
= Na(ccnca - chnah)Qu + Nb(cunab - ccnhc)Qh
+ N (cpnpe — cuneg) Q. = 0. (A15)

From this equation, the coefficients satisfy the following
conditions

Ny L
C, = Ces Cp = Ce.
Nap Ngp

(A16)

We take c¢. =1 and use Eqgs. (A4) and (A16), then the
anomaly-free U(1) is given by

U(1)y = ~&(U(1), + U(1), + U(1),).

- (A17)

c

It is noted that all fields are neutral matter under this
anomaly-free U(1). The anomaly-free gauge coupling is
given by

I B
=S+5+5. (A18)

1
& & 9 9
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2. UNN)*

In this case, we impose that the anomaly coefficients of

non-Abelian cubic anomaly are vanishing:

Asuv,y & (napNp —1n4aNg) =0, (A19)
Asu,y (=napNg + npeNe +nyyNg) =0, (A20)
Asu,p %(=npcNp +negNg) =0, (A21)
ASU(NJP x(ngeNg = npaNp = negN.) = 0. (A22)

Solving these equations, we find that the ranks of gauge
groups and the numbers of generations have the following
relations,

N, =N e, NC_%{NQ—<@>N,J, en,
nap Neq Nap
Nda _ Ned (A23)

Nap Npe

The cancellation of the mixed anomaly between the gravity
and U(1)’s imposes the same constraints as above:

Avy,c2 X No(ngpNy —ng,Ng) =0, (A24)

Ay, < Np(=nagpNy +npeNe +npqNg) =0, (A25)
Ayy.g2 % Ne(=npeNp +neqNg) =0, (A26)

AU(l)dG2 & Ng(ngaNg = npaNp —neaNe) = 0. (A27)

The divergences of the U(1) currents are expressed as

9+ j*=Ny(NpnapQp — Nang,Qa) (A28)
9+ " = Np(=NanayQq + Npntype Qe + NanpaQq),  (A29)
0 jC=N(=NpnpcQp + NgneaQq),  (A30)
9+ j*=Ng(NangaQu = NpnpaQp = NeneqQ.),  (A31)

where we used vanishing conditions of non-Abelian
anomalies. We define the anomaly-free U(1) by the
following equation as in the previous subsection

c Ce
U1y = U+ 3 U0, + U+ 4

(A32)

and impose the current divergence associated with this
U(1)y is vanishing

FIG. 10. U(N)* quiver diagram.

C .
0+ j* = Ny (=cpngp + nang,)Qq

v=abed
+ Np(Caltap = Cclpe = Capa) Qo
+ Ne(epnpe = Canea) Qe
+ Na(=Calga + Cppa + ccnea) Qu
=0. (A33)

Solving these equations for the coefficients c,, we get the
following relations

_ Nda _ Naa Npq Ngqg _ Neq
Cp=—Cyg, Co=—|Co—|—|cyl, —= .
Nap Neq Nap Nap Npe

(A34)

From Eqgs. (A23) and (A34), the coefficient ¢, (or ¢;) is a
free parameter. In order to solve these equations, we shall
impose some assumptions. Here we will list some examples
satisfying these equations.
i VN=I1
— Npg = 0
A solution is

Na:Nh:Nc:Nd: 1,
Nap = Npe = Neg = Ngas
I’lhd:O. (ASS)

This is similar to the quiver gauge theory shown
in Fig. 5. The two independent anomaly-free
U(1)’s are generally given by Egs. (42) and
(43), and the corresponding gauge couplings
are expressed as Eq. (44) and (45).

= Npg =2
A solution is given by

Na :Nb :Nc:Nd: 1,
nbd:2.
(A36)

Ngp = Ngg = —Npe = —Neg = L,
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The minus sign represents the opposite arrow of
Fig. 10. The independent anomaly-free U(1)’s
are defined by

U(l)y = cU(1), + U(1), + (2= c)U(1),

+U(1), (A37)
Uy = 200, + v, + o),
LU, (A38)

For these anomaly-free U(1)’s, bd matters are
neutral. The anomaly-free gauge couplings are
given by

1
e_2 _
X Ya 9p g

1_<c—3>21+1+<c—|—1>21+1
ei, c-1) ¢ g c-1) ¢ g

(A40)
() V |nl=1
A solution is given by
Nb:NdZZ, Na:NCZI,
Nap = Ngg = Npg = —Npe = —Neg = 1. (A41)

The independent anomaly-free U(1)’s for this sol-
ution is defined as

V(1) = cU(1), + 5 U(1), + (1= U(1),
F3U(),, (A42)
2c¢ -3 1 2c+1

Uy = 55 Uy +5U(1), + 55 U(),
+3U(), (A43)

U1y U3
FIG. 11.

bd matter is neutral for these anomaly-free gauge
groups. The gauge couplings are given by

1 212 (1—¢? 12
=5 Tt (Ad4)

€x  Ya 9p 9e 94
L (2e=3\21 12 (2c+1)\21 12
ei,_ 4c-2) g3 g 4c-2) ¢ g7
(A45)

It is noted that a coefficient of 1/ g,z,’ 4 1s given by
1/2 = Nb.d . (1/2)2 for Nb.d =2

APPENDIX B: MODELS INSPIRED BY THE SM

We consider two quiver models with U(1)* and U(1)?
symmetries inspired by the SM. These are different from
the models exhibited in the Sec. III in terms of chiral
fermions. We show just that the anomaly-free gauge
couplings are still given by a linear combination of the
original couplings. The SM might not originate from a
gauge symmetry that has too many U(1)’s.

1. A model inspired by Pati-Salam

We shall consider the U(1)* gauge theory shown in the
right panel of Fig. 11. It is noted that we have two left-
handed fermions charged only under U(1); x U(1),, and
there exist six chiral fermions and two complex scalars.
This model is obtained from three nodes model of U(2) x
U(1); x U(1), in the left panel of Fig. 11 by the Higgs
mechanism of U(2) complex adiont scalar whose vacuum
expectation value is given by (®) = diag(v, —v). This can
be regard as a toy model of left-right symmetric theory
obtained from the Pati-Salam model [57-59] as in Fig. 12.

The U(1)* model has two anomaly-free U(1)’s and
nontrivial charged matter fields, but we focus only on the
relevant gauge couplings. The detail of the anomaly
cancellation is discussed in Appendix A. The divergences
of U(1) currents are given by

The left panel: U(2) x U(1), x U(1), quiver diagram. The right panel: U(1), x U(1), x U(1); x U(1), quiver diagram

obtained from U(2) — U(1), x U(1), by the Higgs mechanism. The dashed quiver shows bifundamental scalars arising from this

symmetry breaking.
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FIG. 12. A quiver diagram of left-right symmetric Pati-Salam
model.

jl

2

J

5| = . (Bl)
j -1 -1 0 2 0;

Iz 1 1 =2 0 0,

and we define two independent anomaly-free U(1)’s with a
free parameter ¢ as

U()x = cU(1), + (2= )U(1), + U(1); + U(1),.

(B2)
Ul =3 = SU(0), = 1 U(1), + U, + U1,
(83)

Two chiral fermions charged only under U(1); x U(1), is
still neutral but other fermions have nontrivial charges
under these anomaly-free U(1) gauge groups. The corre-
sponding anomaly-free gauge couplings read

I 2 2=-¢? 1 1

P BLI-E (B4)

ex 9N 9 93 Yy
1 3—c\21 1+c\21 1 1
T:<—> —2+<—> —2+—2+—2. (BS)
ey l-c) g l-c/) g5 95 9

These gauge couplings are given by linear combinations of
the original ones, and when U(1), x U(1), is unified to
U(2) we find g, = g».

2. A model inspired by the SM

Another example is a model in Fig. 13 that is inspired by
the SM-like model in Fig. 14."> The divergences of chiral
currents are given by

The authors of Ref. [33] discussed the world-volume theory
on a stack of D3-branes reproducing the field content of the
minimal supersymmetric standard model with extended Higgs
sector in a quiver extension.

@Q@k@
N

FIG. 13. A diagram of quiver gauge theory inspired by the SM.

FIG. 14. A quiver diagram of the SM-like model [33].

j! 0 -2 1 0 1 0,
7 2 0 =2 2 =21]o0
o-lAl=1-1 2 0o -1 o 0,
I 0 -2 1 0 1 0,
7 -1 2 0 -1 0 0s

(B6)

We find three anomaly-free U(1)’s and they can generally
be written as

Uy =cU(1); +U(1); + c2U(1)3 + (2 = ¢;)U(1)4
+ (2= ¢)U(1)s, (B7)

with two free parameters of ¢; and ¢, which will be a
rational numbers. The parameters of ¢;’s are taken as a
gauge group is orthogonal to each other. Then the fermions
have nontrivial charge in this anomaly-free U(1)’s, but we
focus only on the gauge couplings. The relevant gauge
coupling is given by

1 C2 1 C2 2—C2 2—02
Lody 1 d Coal Boal gy
¢ 91 9 93 91 95

As mentioned earlier, an anomaly-free coupling can contain
more of the original couplings as the number of U(1)’s in a
theory increases.
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APPENDIX C: ORBIFOLD COMPACTIFICATION

Let us dimensionally reduce the 5D action in Eq. (54)
and show the gauge couplings and Yukawa couplings
in 4D. The metric of M, x S'/Z, is written by ds? =
€™%g,,dx"dx” + e*’dy*. Thus, the vielbein is given as

where A and a represent SD and 4D local Lorentz indices
respectively, and e“, is the 4D vielbein. The off-diagonal
element of the vielbein is absent because the orbifold
projection prohibits the graviphoton. It is noted that 5D
fermion kinetic term is given by YIE,”D,,¥, where
E4M is the inverse matrix of E4 ;. Using these equations,

e—0/2 4 we obtain 4D action for massless modes in Egs. (57)
EAy, = < K e">’ (C1)  and (58):
|
L 3zL
Sip = [ d*x\/=gs|= R4 —— (0,06)?
4D / 9a [21% 4 4K§ (0,0)
1zLe° (a) 1zLe’ (b) 1 zLe® (c) 1 zLe® (d) nLe %
- (F)? =2~ F))? =~ Fi/)?> =2~ F.W)? - D,
+aLe= i Dy + ale P igg Dy, + nle” PPy + nLe™ 2 i, Dy,
mLe™®  — . nLie™ —~ .
- Tpr(ng‘//da + WaaWsy) = 7 1 Waa = VaaV/ )
zLe % — o rLie™® — o
=5 PRWEW ea + WeaWie) + i 1V Wea = WeaVi) = V(0. @) |. (C2)
) I
where D, = 0, +i) i ypca qv,A,(," ) is the covariant deri- r  pe? = .
vative associated with the gauge group U(1), x U(1), x 4D Yukawa = =7 PRW bW da + VaaV ap)
U(1), x U(1),, and the chiral fermions y;; are defined in . a2
. . . . grie — .
Sec. IV B. The four dlmen510nal Ricci scalar is de.:noted by _22° 01 (WS Waa — WaawS,)
Ry, and ¢ = @g + i@ is the complex scalar. We introduce V2rL
the scalar potential V(c,¢) formally.'® Thus, the gauge pe?  — .
couplings are given as in Eq. (60). - 7\/2”—L PrWpeWed + WeaVie)
In order to find the relation between the Yukawa e e
coupling and the gauge coupling, we canonically normalize + gate wCw . —w—wC). Cs
the fermion and the complex scalar as V2rL WV eca = VedV'nc) (©5)
oo/t fre” We introduce the Dirac fermions as
2
o ==, - . C3
Wij = Y 0= T (C3)
Ya Yed
() e
Then, the kinetic term is rewritten as Vav Vb
With these Dirac fermions, the kinetic terms of the
S R i anomaly-free sector read
nLe /leijBWij — Py — El//ij}/ﬂl//ijaﬂa' (C4) Y

Hereafter, we will ignore the derivative coupling of the
radion to the fermions. The Yukawa interactions are
expressed as

At the classical level, the scalars ¢ and ¢ do not have
potential due to the gauge symmetries, but the potential can
be generated by the radiative corrections. In addition, we
assume the radion field develops the VEV of (¢) =0 around
the radius L.

I Le'd)
L =- F))? - Fi )2 = (0,08)?
4D KT 4e§(( 7 ) 463(/( w ) ( ﬂ(pR)
- (aﬂ(p1>2 + il//_aDl//a + il/chl//c’ (C7)

where we neglected gauge bosons in anomalous U(1)’s, the
anomaly-free gauge couplings are defined by Egs. (61) and
(62). As shown in Table I, the covariant derivatives of the
Dirac fermions associated with anomaly-free U(1)’s are
expressed as
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1 /
Do = {aﬂ +i(=1+c)Ald - i<1 +E>A,EX)}%, (C8)

1 /
Dy, = {a,, —i(=14c)AM + i<1 —l—E)A/(,X)]y/C. (C9)

The charges of w, and . under U(1)y and U(1)y are
opposite to each other due to the 4D anomaly-free con-
ditions. With the Dirac spinor, the Yukawa terms in this
Lagrangian are rewritten as below:

Lap Yukawa = =Ve™ 2 Qriaw, — iye™ 2 oiarsv,
—ye PRy, + ive o ysw.,
(C10)
where the 4D Yukawa coupling is defined as
9
= . Cl11
Y= (C11)
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