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The generation of coherent superposition of distinct physical systems and the construction of robust
entangled states under decoherence are the most experimental challenges of quantum technologies. In this
work, we investigate the behaviors of catlike states of a deformed harmonic oscillator under dissipative
decoherence. Varying the deformation parameters, we obtain catlike states having more resistance against
decoherence than catlike states of the ordinary harmonic oscillator. Furthermore, we study nonclassical
properties and entanglement of different catlike states subjects to decoherence caused by a dissipative
interaction with a large environment. Depending on different parameters of the deformation, we reveal that
the nonclassical properties of catlike states under dissipative interaction can be more retarded and preserved
in the time.
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I. INTRODUCTION

Coherent states or quasiclassical states of the harmonic
oscillator were first introduced by Schrödinger in order to
make a connection between the classical and quantum
formalisms [1]. It has been shown that these states not only
minimize the Heisenberg uncertainty inequality for posi-
tion and momentum operators but also maintain maximum
localizability during the time evolution of the harmonic
oscillator [2,3]. In particular, their dispersions on kinetic
energy and on potential energy are identical [2]. The
importance and the physical applicability of these states,
in quantum optics, have been investigated in many works
including the papers of Glauber, Klauder, and Sudarshan
[4–7]. The concept of coherent states has not been restricted
to only the harmonic oscillator and has been implemented
to other physical systems [8–10]. In this way, these states
are called nonlinear coherent states and have been con-
structed for certain physical systems [10–12]. Furthermore,
it has been shown that coherent states can be built for any
Lie symmetry [13–15]. Particularly, the su(1,1) coherent
states related to the SU(1,1) group and the su(2) coherent
states have been constructed and applied in quantum optics
and in condensed matter physics [3,13,16]. It is worth
noting that there are two different approaches to elaborate
su(1,1) coherent states. The first one is called Perelomov
approach which is based on the application of the dis-
placement operator on the ground state [13]. The second
one is associated with Barut-Girardello coherent states

defined as eigenstates of the annihilation operator of the
su(1,1) algebra [17]. Several mathematical generalizations
of coherent states have been introduced [2,10,18–25]. In
particular, the generalized Heisenberg algebra (GHA) non-
linear coherent states have been constructed [10] and
studied for several physical systems including the square
well potential [10], the Pöschl-Teller potential [11] and
Morse potential [19].
Recently, considerable attention is paid to the exper-

imental observations of nonclassical properties of quantum
systems such as squeezing [26], photon antibunching
[27,28] and entanglement [29]. The latter is recognized
as a key resource of quantum computing, quantum cryp-
tography, and quantum communications [30,31]. In con-
trast to classical systems whose states are always a mixture,
quantum systems can be prepared in a superposition of
quantum states. This property is an interesting quantum
effect being very hard to be prepared and detected due to
the decoherence occurring when the quantum system
interacts with a relevant environment [32]. This interaction
causes the loss of coherence of the quantum system
generating classical mixture states. This mapping is called
the decoherence [32]. The process of decoherence has been
studied both theoretically and experimentally [33–39] for
several physical systems such as the trapped ion in many
works [40–44]. The main aim of this work is to contribute
to these activities by investigating the generalized su(1,1)
coherent states superposition for a four-parameter per-
turbed oscillator [45,46] known as catlike states or even
and odd coherent states. Then, we study their nonclassical
properties under decoherence in order to compare them
with those of the generalized Heisenberg algebra catlike
states. In particular, we discuss the robustness of
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generalized catlike states against decoherence caused by
the interaction with an environment associated with an
infinite collection of harmonic oscillators by using the
fidelity. Concretely, we show that the resistance of gener-
alized catlike states depends on the corresponding algebraic
structure. Furthermore, we study the entanglement degree
of generalized catlike states under decoherence.
This paper is organized as follows: In Sec. II we briefly

recall the GHA and the generalized su(1,1) algebra and
construct the generalized su(1,1) catlike states for a
perturbed harmonic oscillator. Furthermore, in Sec. III
we study the resistance against decoherence of the con-
structed catlike states with that of the GHA catlike states.
Moreover, in Sec. IV we study the effect of the decoherence
on photon distribution function, statistical distribution and
quantum entanglement of generalized catlike states in terms
of various parameters of the deformation. Finally, our
conclusions are given in Sec. V.

II. GHA, GENERALIZED SU(1,1) ALGEBRA AND
COHERENT STATES SUPERPOSITION

A. Generalities on GHA

To start, we give a concise review on the GHA by
presenting its essential aspects [47–50]. It is recalled that
the GHA is described by the generators H, A† and A
satisfying

HA† ¼ A†fðHÞ; AH ¼ fðHÞA; ð1Þ

and

½A; A†� ¼ fðHÞ −H; ð2Þ

where H ¼ H† is the dimensionless Hamiltonian of the
physical system under consideration. ðA†Þ† ¼ A. f is an
analytical function of H, called the characteristic function
of the GHA. The associated Casimir operator reads as

C ¼ A†A −H ¼ AA† − fðHÞ: ð3Þ

The irreducible representation of the GHA is given through
an eigenvector jni of the Hamiltonian H,

Hjni ¼ εnjni such that εnþ1 ¼ fðεnÞ; for n ¼ 0; 1;…:

ð4Þ

The Fock space representation of GHA generators is then
given in terms of the lowest energy eigenvalue ε0. The
eigenvalue εn ¼ fnðε0Þ is just the n-iterate of ε0 under the
function f [47]. By using (1)–(3), one can show that

A†jni ¼ Nnjnþ 1i; ð5Þ

Ajni ¼ Nn−1jn − 1i; ð6Þ

where

N2
n ¼ εnþ1 − ε0 ¼ fðεnÞ − ε0: ð7Þ

The operators A† and A are interpreted as the creation
and annihilation operators of GHA, respectively. It is noted
that the vacuum state condition Aj0i ¼ 0 is verified. Taking
fðHÞ ¼ H þ 1, where H is the dimensionless Hamiltonian
of the harmonic oscillator, the GHA reduces to the ordinary
Heisenberg algebra spanned by H and the bosonic
ladder operators a and aþ [47]. Similarly, considering
fðHÞ ¼ qH þ 1, the relations (1)–(2) recover the
q-harmonic oscillator algebra [47]. Furthermore, it has
been shown that the GHA can be applied for physical
systems involving known spectrum such as the square well
potential [49], the Morse potential [50,51], and the Pöschl-
Teller potential [11,52].

B. Generalized su(1,1) algebra

The su(1,1) algebra is a primordial structure in physics
since it appears in many formalisms [53,54]. Furthermore,
the q-deformed su(1,1) algebra has been also constructed
and applied widely in many areas of physics [55–57].
Moreover, a generalization of the su(1,1) algebra can be
constructed by following the same ideas developed for the
GHA and the generalized su(2) introduced in [58,59]. The
generalized su(1,1) algebra is defined by the Hamiltonian
H and the ladder operators Jþ and J− satisfying

HJþ ¼ JþfðHÞ; J−H ¼ fðHÞJ−; ð8Þ

½Jþ; J−� ¼ ðH − fðHÞÞðH þ fðHÞ − 1Þ; ð9Þ

where J†þ ¼ J− and fðHÞ is a given function of the
Hamiltonian H. By considering fðHÞ ¼ H þ 1, this alge-
bra becomes the standard su(1,1) algebra. The Casimir
operator has now the following form

Γ ¼ JþJ− −HðH − 1Þ ¼ J−Jþ − fðHÞðfðHÞ − 1Þ: ð10Þ

The representations of the generalized su(1,1) algebra
generators can be easily deduced. Let εnþ1 ¼ fðεnÞ.
Assuming that J−j0i ¼ 0, we can show that

Jþjni ¼ N njnþ 1i; ð11Þ

J−jni ¼ N n−1jn − 1i; ð12Þ

where

N 2
n ¼ ðεnþ1 − ε0Þðεnþ1 þ ε0 − 1Þ for n ¼ 0; 1;…: ð13Þ

Similarly to the GHA, the generalized su(1,1) algebra
involves the creation and annihilation operators Jþ and
J−, respectively.
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C. Construction of generalized su(1,1) coherent
states superposition

Here, we would like to construct the catlike states
associated with the generalized su(1,1) algebra. For this
purpose, we first construct the generalized su(1,1) non-
linear coherent state. We define this state as an eigenstate of
the annihilation operator J−

J−jzi ¼ zjzi: ð14Þ

Since J− is a non-Hermitian operator, z is, in general, a
complex number. The state jzi is expanded in terms of
energy eigenvectors jni as

jzi ¼
X∞
n¼0

cnjni; ð15Þ

where cn are complex coefficients satisfyingP∞
n¼0 jcnj2 ¼ 1. The action of J− on such state, leads to

cn ¼ c0zn

N n−1!
where N n! ¼ N n…N 0 and N −1! ≔ 1. Let

c0 ¼ NðjzjÞ, the state jzi can be rewritten as

jzi ¼ NðjzjÞ
X∞
n¼0

zn

N n−1!
jni: ð16Þ

Imposing the normalization condition hzjzi ¼ 1, we get

NðjzjÞ ¼
�X∞

n¼0

jzj2n
ðN n−1!Þ2

�−1=2
: ð17Þ

The generalized su(1,1) catlike states can be easily
obtained. They are given by

jψ�i ¼ N �ðjzjÞðjzi � j − ziÞ; ð18Þ
where

N �ðjzjÞ ¼
�
2� 2ðNðjzjÞÞ2

X∞
n¼0

ð−1Þnjzj2n
ðN n−1!Þ2

�−1=2
: ð19Þ

D. Construction of generalized su(1,1) catlike states
for a deformed harmonic oscillator

As an application of the generalized su(1,1) algebra,
we consider a perturbed harmonic oscillator having the
dimensionless energy spectrum given by

εn ¼ nþ gðnÞ: ð20Þ

The function gðnÞ reads as

gðnÞ ¼ anþ e
cnþ d

; ð21Þ

where a, b, c, d are real parameters different from zero [45].
It is a perturbed function associated with the following
conditions

ja=cj < 1; −
4ad − 4ce

c2
≥ r − 1 and

d
c
> 0; ð22Þ

where r ∈ ½0; 1�. Subject to such conditions, the spectrum
(20) is strictly increasing. In this way, the associated
generalized su(1,1) algebra can be constructed. For simpli-
city reasons, we take c ¼ 1.
Taking n ¼ εn þ γðεnÞ, the relation (20) gives

εnþ1 ¼ nþ 1þ gðnþ 1Þ ¼ εn þ 1þ δðεnÞ; ð23Þ

where

δðεnÞ ¼ γðεnÞ þ gðεn þ 1þ γðεnÞÞ; ð24Þ

implying that

fðεnÞ ¼ εn þ 1þ δðεnÞ: ð25Þ

Thus, the characteristic function of the generalized su(1,1)
algebra is given by

fðHÞ ¼ H þ 1þ δðHÞ: ð26Þ

The generalized su(1,1) corresponding to the deformed
oscillator can be easily obtained by substituting the
function (26) in (8)–(9). It is given as follows

½H; Jþ� ¼ Jþð1þ δðHÞÞ; ð27Þ

½J−; Jþ� ¼ ð1þ δðHÞÞð2H þ δðHÞÞ: ð28Þ

By substituting (20) in (13), we find that

N n−1! ¼
�
ðΓðdÞÞ2dðadþ 2deþ eÞ n!Γðnþ dþ a − e=dþ 1ÞΓðαþ nÞΓðβ þ nÞ

Γðαþ 1ÞΓðβ þ 1ÞΓðdþ a − e=dþ 1ÞðΓð1þ dþ nÞÞ2
�
1=2

; ð29Þ

where

α ¼ aþ dþ 1þ e=d
2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðadþ d2 þ dþ eÞ2 − 4dðadþ 2deþ eÞ

p
2d

; ð30Þ
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and

β ¼ aþ dþ 1þ e=d
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðadþ d2 þ dþ eÞ2 − 4dðadþ 2deþ eÞ

p
2d

: ð31Þ

The normalization factor given in (17) can be easily computed. It can be written as

NðjzjÞ ¼
�
2F3

�
dþ 1; dþ 1; α; β; a −

e
d
þ dþ 1; jzj2

��
−1=2

; ð32Þ

where 2F3ðdþ 1; dþ 1; α; β; a − e
d þ dþ 1; jzj2Þ is the generalized hypergeometric function. By using (29) and (32), the

normalization factor (19) associated with the generalized su(1,1) catlike states can be given by

N �ðjzjÞ ¼
�
2� 2 2F3ðdþ 1; dþ 1; α; β; a − e

d þ dþ 1;−jzj2Þ
2F3ðdþ 1; dþ 1; α; β; a − e

d þ dþ 1; jzj2Þ
�−1=2

: ð33Þ

By substituting (29) and (33) in (18), we can construct the
generalized su(1,1) catlike states for the deformed har-
monic oscillator. They are given by

jψ�i ¼ N �ðjzjÞðjzi � j − ziÞ: ð34Þ

It is worth mentioning that the GHA catlike states can be
obtained by replacing N n by Nn in jzi and in N �ðjzjÞ.
In the following, we only consider the catlike states having
the form

jψþi ¼ N þðjzjÞðjzi þ j − ziÞ: ð35Þ

We will see that the construction of the generalized su(1,1)
catlike states for physical systems is advantageous because
it gives us the possibility to compare their nonclassical
properties under decoherence with the catlike states asso-
ciated with the GHA and select the ones whose properties
are more preserved and retarded in the time. We will
examine particularly the deformed harmonic oscillator
having the spectrum of the form (20). It is noted that the
deformed harmonic oscillator becomes the ordinary har-
monic oscillator by considering a ¼ 1

2
and e ¼ d

2
. In this

case, the GHA catlike states become the ordinary catlike
states given by

jψ�i ¼ ð2� 2e−2jzj2Þ−1=2ðjzi � j − ziÞ; ð36Þ

where jzi is now the ordinary Glauber coherent state
given by

jzi ¼ e−jzj2=2
X∞
n¼0

znffiffiffiffiffi
n!

p jni: ð37Þ

III. DISSIPATIVE DECOHERENCE
OF GENERALIZED SU(1,1) DEFORMED

CATLIKE STATES

We now study the interaction between the perturbed
oscillator presented above with a large environment com-
posed by an infinite collection of harmonic oscillators.
According to [60], the time evolution of the density
operator ρ̂ of the deformed harmonic oscillator is described
by the following master equation

dρ̂ðtÞ
dt

¼ γaρ̂ðtÞa† − γ

2
fa†a; ρ̂ðtÞg; ð38Þ

where γ is the damping coefficient. a and a† are the
annihilation and creation operators of the harmonic oscil-
lator, respectively.
The density operator ρ̂ðtÞ reads as

ρ̂ðtÞ ¼
X∞
j¼0

SjðtÞρ̂ð0ÞS†jðtÞ; ð39Þ

where

SjðtÞ ¼
X∞
n¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðn − jÞ!j!

s
e−ðn−jÞγt=2ð1 − e−γtÞj=2jn − jijhnj:

ð40Þ

In the following, we will consider that at t ¼ 0,
ρ̂ð0Þ ¼ jψþijhψþj, where jψþi is given in (35). In order
to quantify the robustness of catlike states, we use the
fidelity defined by

FðtÞ ¼ Trðρ̂ðtÞρ̂ð0ÞÞ: ð41Þ
This measures how states ρ̂ðtÞ are evolved compared with
the initial state ρ̂ð0Þ. By using (39), the fidelity (41) of the
states (35) becomes
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FðtÞ ¼ ðN þjzjÞ4ðNðjzjÞÞ4
X∞
j¼0

X∞
n;m¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!m!

ðn − jÞ!ðm − jÞ!ðj!Þ2
s

e−ðmþn−2jÞγt=2ð1 − e−γtÞj

×
zn þ ð−zÞn
N n−1!

zm þ ð−zÞm
N m−1!

zn−j þ ð−zÞn−j
N n−j−1!

zm−j þ ð−zÞm−j

N m−j−1!
; ð42Þ

where we have considered that z is a real number rather
than complex. The fidelity of the generalized Heisenberg
algebra coherent states superposition known as GHA
catlike states can be easily computed by replacing N n−1
by Nn−1 in (42). In the Figs. 1(a)–1(c) we show the time
evolution of the fidelity of the generalized su(1,1) and GHA
catlike states of the perturbed harmonic oscillator having
the energy spectrum (20), εn ¼ nþ anþe

nþd , for different
values of deformation parameters a, d and e. In all
numerical simulations we have taken the damping rate

γ ¼ 1. We see from these figures that for the same values of
the parameters a, d, and e, the generalized su(1,1) catlike
states are always more resistant against decoherence than
the GHA ones. In addition, we see that perturbed harmonic
oscillators having a ¼ 0.7 are more robust to decoherence
than the ordinary harmonic oscillator associated with
a ¼ 0.5 and d ¼ 2e. Furthermore, Fig. 1(c) shows that
the robustness to decoherence of the perturbed oscillators
depends also on the parameters d and e. Therefore, we can
conclude that the catlike states’ resistance to decoherence
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FIG. 1. Fidelity behavior for both GHA and generalized su(1,1) catlike states for the perturbed harmonic oscillator as function of time,
the parameter jzj and different parameters of deformation a, d, and e. (a) The time evolution of the fidelity for various catlike states with
jzj ¼ 1 and d ¼ 2e ¼ 0.2. The blue line is for the GHA catlike state with a ¼ 0.5, red line is for generalized su(1,1) catlike state with
a ¼ 0.5, black line is for GHA catlike state with a ¼ 0.7 and green line is for generalized su(1,1) catlike state with a ¼ 0.7. (b) The time
evolution of the fidelity for various catlike states with jzj ¼ 1 and d ¼ 2e ¼ 0.2. The blue line is for GHA catlike state with a ¼ 0.2, red
line is for generalized su(1,1) catlike state with a ¼ 0.2, black line is for GHA catlike state with a ¼ 0.5 and green line is for generalized
su(1,1) catlike state with a ¼ 0.5. (c) The time evolution of the fidelity for various catlike states with jzj ¼ 1 and a ¼ 0.7. The blue line
is for GHA catlike state with d ¼ 2e ¼ 0.4, red line is for generalized su(1,1) catlike state with d ¼ 2e ¼ 0.4, black line is for GHA
catlike state with d ¼ 2e ¼ 0.2 and green line is for generalized su(1,1) catlike state with d ¼ 2e ¼ 0.2. (d) The fidelity as a function of
jzj for various catlike states with t ¼ 1 and d ¼ 2e ¼ 0.2. The blue line is for GHA catlike state with a ¼ 0.5, red line is for generalized
su(1,1) catlike state with a ¼ 0.5, black line is for GHA catlike state with a ¼ 0.7 and green line is for generalized su(1,1) catlike state
with a ¼ 0.7.
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depends on the corresponding algebra from which they are
constructed, i.e., the generalized su(1,1) and the GHA.
Varying the different parameters of deformations a, d,
and e, we can find perturbed harmonic oscillators which are
more resistant to the decoherence caused by the interaction
with the environment compared to the non perturbed
harmonic oscillator. Figure 1(d) shows how the resistance
against decoherence of the perturbed harmonic oscillators
varies with the amplitude jzj. We see that all catlike states
(with different values of the parameter a) are more robust
against decoherence for very small values of jzj. For all
catlike states, the fidelity decreases monotonically with the
time and tends to zero for long values of time indicating
that the final state does not present quantum coherence.
Therefore, the final state cannot be written as a coherent
superposition of quantum states (loss of coherence). How-
ever, quantum coherence of perturbed harmonic oscillators
can be more or less resistant to decoherence depending on
the choice of the deformation parameters.

IV. PHYSICAL PROPERTIES OF GENERALIZED
CATLIKE STATES UNDER DECOHERENCE

A. Photon distribution

We now analyze the probability of finding n photons in
generalized catlike states constructed in Sec. II D. For a
density operator ρ̂ðtÞ, this probability is defined by

PnðtÞ ¼ Trðρ̂ðtÞjnijhnjÞ: ð43Þ

By using the results found in [61,62], the photon distri-
bution function of generalized su(1,1) catlike states can be
given by

PnðtÞ ¼ ðNðjzjÞÞ2ðN þðjzjÞÞ2
X∞
j¼0

ðnþ jÞ!
n!j!

ðe−γtÞnð1− e−γtÞj

×
ð1þð−1ÞnþjÞ2jzj2nþ2j

ðN nþj−1!Þ2
: ð44Þ

The photon distribution of GHA catlike states can be
obtained by replacing N n by Nn in (44). In Fig. 2, we
show the time evolution of the photon distribution function
for both GHA and generalized su(1,1) catlike states in
terms of different parameters of the deformation, the
amplitude jzj and the number of photons n. Analyzing
this figure, we can see that the behavior of the time
evolution of the photon distribution of catlike states
depends on the corresponding algebraic structure (gener-
alized su(1,1) or GHA). We also see that for all catlike
states, PnðtÞ tends to zero as the time becomes very large.
Therefore, the decoherence causes the loss of photons of
catlike states which are transferred to the environment.
Figures 2(a)–2(c) show that for particular values of a, the

probability of generalized catlike states is shown to be
larger than that of the ordinary harmonic oscillator. From
Figs. 2(a) and 2(b), we see that depending on the defor-
mation parameter a, we find perturbed oscillators having
large photon distribution function.
A close examination of Figs. 2(a) and 2(c) shows that the

probability PnðtÞ of some GHA catlike states increases to
the maximal value. Then, it decreases to its minimal value
as the time becomes significantly large indicating the
transfer of photons between the system and the bath.
Furthermore, from 2(e)–2(f), we find that as the amplitude
jzj is large as the time for which PnðtÞ ≈ 0 is maximal for
different perturbed catlike states.

B. Statistical properties of generalized catlike states

The statistical properties of generalized catlike states can
be studied by using the Mandel’s parameter

Q ¼ hðΔn̂Þ2i − hn̂i
hn̂i ; ð45Þ

where hn̂i is the average number of particles in the catlike
state in question and hðΔn̂Þ2i ¼ hn̂2i − hn̂i2 is its variance.
If Q > 0 (Q < 0), we say that the distribution is super-
Poissonian (sub-Poissonian) and if Q ¼ 0, the distribution
is Poissonian. To calculate the Mandel’s parameter for
generalized catlike states, we use the fact that

hn̂ðtÞi ¼
X∞
n¼0

nPnðtÞ and hn̂2ðtÞi ¼
X∞
n¼0

n2PnðtÞ; ð46Þ

where PnðtÞ is given in (43). In the Fig. 3, we show the time
evolution of the Mandel’s parameter for both kinds of
catlike states for different values of the deformation
parameter a with jzj ¼ 1. We immediately see that the
distribution of all examined catlike states is super-
Poissonian and that Q decreases with increasing values
of time and vanishes as the time is significantly large. It is
recalled that the distribution of the Glauber coherent state is
Poissonian, Q ¼ 0, and that this coherent state is consid-
ered as the most “classical” quantum state for the harmonic
oscillator and several measures of nonclassicality of quan-
tum states are related to this coherent state. Then, since for
all catlike states, the distribution is super-Poissonian
at t ¼ 0 and decreases tending to zero for large values
of time, we conclude that the dissipative interaction with
the relevant environment decreases the super-Poissonian
distribution of the catlike states of the perturbed harmonic
oscillators and the final state has a Poissonian distribution
as the Glauber coherent state, i.e., the final state is a
classical state. Furthermore, the larger the value of defor-
mation parameter a is, the larger the value of the Mandel’s
parameter. This implies that the behavior of the statistical
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distribution of the deformed catlike states depends on the
value of the parameter deformation.

C. Quantum entanglement

Protecting entanglement from decoherence is recognized
as a considerable experimental challenge since the entan-
glement is a key resource for quantum technologies.
Thence, several authors have studied the effect of

decoherence on entanglement of catlike states for different
physical systems. Here, we aim to quantify the amount
of entanglement of generalized su(1,1) catlike states con-
structed in Sec. II for the deformed harmonic oscillator
whose spectrum is given in (20) under decoherence caused
by the interaction with a large environment composed by an
infinite collection of harmonic oscillators. Wewill study the
effect of deformation parameters and amplitude parameter
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FIG. 2. The time evolution of the photon distribution function of GHA and generalized su(1,1) catlike states for the perturbed
harmonic oscillator for various physical parameters. (a) The time evolution of the photon distribution function for GHA catlike states
with jzj ¼ 3, n ¼ 4, and d ¼ 2e ¼ 0.2. The blue line is for a ¼ 0.2, red line is for a ¼ 0.5, and black line is for a ¼ 0.9. (b) The time
evolution of the photon distribution function for generalized su(1,1) catlike states with jzj ¼ 3, n ¼ 4 and d ¼ 2e ¼ 0.2. The blue line is
for a ¼ 0.2, red line is for a ¼ 0.5, and black line is for a ¼ 0.9. (c) The time evolution of the photon distribution function for GHA
catlike states with jzj ¼ 3, a ¼ 0.7 and d ¼ 2e ¼ 0.2. The blue line is for n ¼ 2 and red line is for n ¼ 3. (d) The time evolution of the
photon distribution function for generalized su(1,1) catlike states with jzj ¼ 3, a ¼ 0.7 and d ¼ 2e ¼ 0.2. The blue line is for n ¼ 2 and
red line is for n ¼ 3. (e) The time evolution of the photon distribution function for GHA catlike states with n ¼ 2, a ¼ 0.9 and
d ¼ 2e ¼ 0.2. The blue line is for jzj ¼ 1 and red line is for jzj ¼ 2. (f) The time evolution of the photon distribution function for
generalized su(1,1) catlike states with n ¼ 2, a ¼ 0.9 and d ¼ 2e ¼ 0.2. The blue line is for jzj ¼ 1 and red line is for jzj ¼ 2.
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jzj on the entanglement of generalized su(1,1) catlike states.
For this purpose, we appeal to the von Neumann entropy
which is a good quantifier of entanglement. The von
Neumann entropy of the density operator ρ̂ is given by

SðtÞ ¼ −Trðρ̂ðtÞ ln ðρ̂ðtÞÞ ¼ −
X
i

λiðtÞ ln ðλiðtÞÞ; ð47Þ

where λi are the eigenvalues of the reduced density matrix
ρ̂ðtÞ of the generalized catlike states. In Fig. 4, we show the
behavior of the time evolution of the von Neumann entropy.
Immediately, we observe that the entropy increases quickly
and reaches its maximum value. Then, it decreases and
vanishes for large values of time. Thus, we can conclude
that the decoherence affects on the correlations between the
catlike states and the environment. The von Neumann
entropy vanishes for long values of time t indicates that
the state describing the system when time is significantly
large, is pure and not entangled with the environment.
Interestingly, the entanglement degree is shown to be large
as the amplitude jzj is large. It depends also on different
parameters of the deformation. This is relevant because it

gives us the possibility to find cases in which the entan-
glement loss is retarded in the time evolution. It is worth to
mention that we have treated the von Neumann entropy for
higher values of jzj and the entanglement is shown to be
larger as jzj increases.
In Sec. IVA, we have seen that the fidelity vanishes also

for large values of the time for all generalized catlike states
of the perturbed harmonic oscillator. This indicates that in
this range of time, t ≫ 1, the quantum coherence (the
interference property) of the state of the perturbed oscillator
are lost due to the interaction with the environment.
Furthermore, The Mandel’s parameter Q and the photon
distribution function tend to zero as the time is significantly
large. This can be explained by the fact that the interaction
of the system with the bath transfers all photons from the
system to the environment, as PnðtÞ ≈ 0 when t → ∞, and
leaves the system in a vacuum state which has a Poissonian
distribution, i.e., Q ≈ 0 when t → ∞. This state is pure and
not entangled. Precisely, it can not be written as a coherent
superposition of other quantum states. For such a reason,
the fidelity and the von Neumann entropy vanish for large
values of time.
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FIG. 4. The time evolution of the von Neumann entropy for generalized su(1,1) catlike states of the perturbed harmonic oscillator in
terms of various parameters of deformation and amplitude parameter jzj. (a) The time evolution of the von Neumann entropy for
generalized catlike states with a ¼ 0.9, d ¼ 0.2 and e ¼ 0.1 for two different values of jzj. The blue dashed line is for jzj ¼ 1.5, black
line is for jzj ¼ 1. (b) The time evolution of the von Neumann entropy for generalized catlike states with jzj ¼ 1, d ¼ 0.2 and e ¼ 0.1 for
two different values of a. The red dashed line is for a ¼ 0.7, black line is for a ¼ 0.9.
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FIG. 3. The time evolution of the Mandel’s parameter for GHA and generalized catlike states for the deformed harmonic oscillator.
(a) The time evolution of the Mandel’s parameter for GHA catlike states with jzj ¼ 1 and d ¼ 2e ¼ 0.2. The blue line is for a ¼ 0.5, red
line is for a ¼ 0.9 and black line is for a ¼ 0.2. (b) The time evolution of the Mandel’s parameter for generalized su(1,1) catlike states
with jzj ¼ 1 and d ¼ 2e ¼ 0.2. The blue line is for a ¼ 0.5, red line is for a ¼ 0.9, and black line is for a ¼ 0.2.
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Consequently, the interaction of the perturbed harmonic
oscillators with a collection of harmonic oscillators
decreases the fidelity, the amount of their entanglement
with the environment, the super-Poissonian distribution and
the photon distribution function. However, these properties
can be preserved and retarded by varying the different
parameters of the deformation.

V. CONCLUSION

In this paper, we have built the catlike states associated
with the generalized su(1,1) algebra for a four-parameter
deformed oscillator. In terms of different deformation
parameters, we have investigated the resistance of these
states under decoherence caused by a dissipative interaction
with an environment modeled by an infinite collection of
harmonic oscillators. Subsequently, we have shown that the
generalized su(1,1) catlike states are always more robust
under decoherence than the GHA catlike states and that the
robustness against the decoherence depends on different
parameters of the deformation. Among others, we have

found that the different parameters of deformation give the
possibility to find cases more resistant than the catlike
states of the ordinary harmonic oscillator. It has been
revealed that the catlike states’ resistance depends on the
algebraic structure from which they are constructed. This
may open new windows and perspectives to construct
catlike states more robust under decoherence and to the
experimental observation of nonclassical features of quan-
tum systems. Moreover, we have studied the time evolution
of the photon distribution function, the Mandel’s parameter
and the von Neumann entropy for different catlike states
and in terms of different physical parameters. Additionally,
we have shown that depending on parameters of deforma-
tion and amplitude parameter jzj, the photon distribution
function and the degree of entanglement of the perturbed
oscillators can be more preserved in the time evolution.
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