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We initiate the application of Hamiltonian truncation methods to solve strongly coupled QFTs in
d ¼ 2þ 1. By analysing perturbation theory with a Hamiltonian truncation regulator, we pinpoint the
challenges of such an approach and propose a way that these can be addressed. This enables us to formulate
Hamiltonian Truncation theory for ϕ4 in d ¼ 2þ 1, and to study its spectrum at weak and strong coupling.
The results obtained agree well with the predictions of a weak/strong self-duality possessed by the theory.
The ϕ4 interaction is a strongly relevant UV divergent perturbation, and represents a case study of a more
general scenario. Thus, the approach developed should be applicable to many other QFTs of interest.
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I. INTRODUCTION

There is currently no known universal and efficient
method to derive the phenomenological implications of
strongly coupled quantum field theories (QFTs). Thus any
new strategy to understand the strongly coupled regime
merits scrutiny. In this paper we analyze one such
approach: the Hamiltonian truncation (HT) method.
The basic idea behind HT is quite transparent, consisting

of a generalization of the Rayleigh-Ritz method of
quantum mechanics to QFT: Consider a theory whose
Hamiltonian can be decomposed as H ¼ H0 þ V, where
H0 denotes a solvable Hamiltonian1—H0jEii¼EijEii—
and V denotes a perturbation. Then, HT proceeds by
truncating the Hamiltonian H into a large finite matrix
Hij with Ei≤ET , and diagonalizing it numerically. There is
a systematic error due to the truncation energy ET, however
in many instances the spectrum of the full theory can be
recovered from results obtained at finite ET by performing
precise extrapolations ET → ∞.2

Although conceptually simple, the strength of the HT
idea is that it can be used to tackle strongly coupled QFTs.
Indeed, it has been applied very successfully in d ¼ 2
spacetime dimensions. There are various incarnations of the
method differing in the quantization frame and the choices

of basis and H0. One important version is the truncated
conformal space approach (TCSA) introduced in [1,2],
which sparked numerous further studies. In TCSA the
HamiltonianH0 is that of a solvable two dimensional CFT.3

More recently, a closely related version, coined conformal
truncation, exploits light-cone quantization to truncate
the wave-functions at infinite volume [3–7]. Another guise
of HT uses a massive Fock-Space basis to truncate the
Hamiltonian. Early work on this direction was done in [8].
Since then, the method has been developed in [9–12] and
results with a precision that is competitive with other up to
date techniques have been obtained [13].
The literature on HT in d ¼ 2 is by now extensive, with a

plethora of fascinating results for strongly coupled QFTs.
For example, HT has allowed strongly coupled real time
dynamics, and strongly coupled perturbations of interacting
fixed points, to be studied. We refer the reader to [14] for a
review where further references may also be found.
Despite this success in d ¼ 2, it has remained an

unsolved challenge to apply the ideas of HT to d ≥ 3
strongly coupled QFTs. The main obstacle is the appear-
ance of UV divergences that require regularization. In
particular, divergences appear in many QFTs that we care
about for d ≥ 3, when the QFT is formulated by perturbing
a solvable theory by a relevant operator, H0 → H0 þ V.
The ET cutoff is a natural regulator for the divergences. But
then, what are the counterterms required to formulate HT?
And, is a covariant Lorentz spectrum recovered as the ET

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1A free-theory or an interacting integrable theory, be it a
solvable CFT or and integrable massive QFT.

2We will formulate HT more precisely in Sec. II.

3More precisely, the CFT is placed on the cylinder R × S1R of
radius R. Then, due to the state-operator map, H0 is the dilatation
operator and the role of ET is played by the dimension of a heavy
operator ET ∼ Δmax=R.
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regulator is removed? In this paper we will address these,
and other, key open questions.
We will be pragmatic and approach these problems in a

particular instance of HT, using the massive Fock-Space
basis. We will study the ϕ4

3 theory, namely we will perturb
the free massive theory by the operator V ¼ g

R
ϕ4 in

d ¼ 2þ 1. This is a relevant operator, in the RG sense.
Thus, very naively, we may expect that the spectrum will
converge in a powerlike manner g=ET as ET is increased.
However, the ϕ4

3 theory has a linear UV divergence
associated to the vacuum and a logarithmic UV divergence
associated to the mass. Thus, it will act as a prototype case
study, capturing the key features of a far more general class
of theories. In particular, many of the techniques that we
will develop should be useful for formulating HT in any
dimension for theories in which V is a strongly relevant
perturbation.
We will study the theory at finite volume. This allows

us to focus on the UV conundrums without having to
deal with other problems associated to the large volume
dynamics, such as the orthogonality catastrophe recently
analyzed in [15]. It would be very interesting to carry out
a separate investigation of the infinite volume limit in the
future.
There have been various interesting works prior to us in

d > 2 that we would like to highlight. In [16] the TCSA
method was developed at 2 < d ≤ 2.5 spacetime dimen-
sions. In this range of d the UV divergences of the ϕ4

d
theory are absent. Then, Ref. [17] investigated, among
other things, the allowed counterterms at second order in
perturbation theory in TCSA for general d.4 In the
conformal truncation line of development, Ref. [5] studied
ϕ4
3 at weak coupling, and the ðϕ⃗:ϕ⃗Þ2 perturbation for large

vector size N. Meanwhile Ref. [18] laid down formulas to
efficiently compute the matrix elements of ϕ4

3 in the
conformal truncation approach. Finally, other recent work
has been done in [19]. There, the main results for d ¼ 3 [on
a S3 manifold] are restricted to ϕ2 and iϕ3 perturbations,
where the UV divergences are either absent or only
logarithmic.
First, we review the basics of HT and Hamiltonian

perturbation theory in Secs. II and III, respectively. Then,
our strategy is as follows. The results of Hamiltonian
truncation at weak coupling must match those of pertur-
bation theory. Therefore, we begin our main investigation
by analyzing perturbation theory regulated with an ET

cutoff. In Sec. IV we analyse the ϕ2
3 perturbation from

three perspectives: the exact solution, the Hamiltonian
perturbation theory solution, and HT. Then, in Sec. V we
study the ϕ4

3 theory. Although in this case we do not know
the exact solution, we carry out an analogous perturbation

theory analysis. The ET cutoff is a rather unusual regulator
and various surprises lie ahead. For instance, disconnected
vacuum diagrams cancel in an intricate manner in
Hamiltonian perturbation theory; and we find that such
cancelation is spoiled with the ET regularization, intro-
ducing new UV divergences. We manage to precisely
delineate all such challenges and we offer a solution
in Sec. V.
After understanding perturbation theory, we uplift our

formalism into Hamiltonian truncation. In Sec. VI we start
our numerical explorations. First we implement HT and
find agreement with perturbation theory. Having matched
perturbation theory and seen that extrapolations to large ET
are feasible, we increase the coupling in Sec. VII. There we
perform a crosscheck of the strong coupling spectrum by
making use of a strong/weak self-duality that the theory
possesses. Finally, we conclude and discuss some of the
many interesting possible directions for future work in
Sec. VIII.

II. HAMILTONIAN TRUNCATION

We begin our study of Hamiltonian truncation in higher
dimensions focusing on the ðϕ2Þ3 and ðϕ4Þ3 perturbations
at finite volume. In this section we review the basics of HT
and set our conventions.

A. Definitions

The theory that we study is defined by deforming the free
massive theory by a strongly relevant perturbation, ðϕ4Þ3.
The free theory is quantized on a flat torus space of size
L × L, and the time direction is left uncompact t ∈ R. We
impose periodic boundary conditions on the operator
ϕðt; x; yÞ ¼ ϕðt; x; yþ nLÞ ¼ ϕðt; xþ nL; yÞ for n ∈ Z.
Since the space directions are compact the spectrum
of the free theory is discrete and free of IR divergences.
In canonical quantization ϕ can be expanded in terms of
creation and annihilation operators as

ϕð0; xÞ ¼
X
k

ake−ik·x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2L2ωk

q
þ H:c: ð2:1Þ

where k¼ðk1;k2Þ, ki¼2πni=L, ni∈Z, ωk¼ðk21þk22þm2Þ1=2
and a†, a satisfy the algebra of creation/annihilation
operators ½ak;a†k0 �¼δk;k0 ;½ak;ak0 �¼0. The free Hamiltonian
is H0 ¼

P
k ωka

†
kak and it is diagonalized by the H0

eigenbasis basis jEii ¼
a
†nN
kNffiffiffiffiffi
nN !

p � � � a
†n2
k2ffiffiffiffiffi
n2!

p a
†n1
k1ffiffiffiffiffi
n1!

p j0i with eigenval-

ues Ei ¼
P

N
s¼1 ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s þm2

p
.5 The free vacuum is defined

by H0j0i ¼ 0.

4As we will show below many interesting effects start at fourth
and higher order.

5In (2.1) ki is obviously a two-dimensional vector [instead of
components of k, below (2.1)]. From here on any subscripted
momenta is a label for a two-dimensional vector.
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The interacting Hamiltonian is

HðETÞ¼H0þV with V¼g2V2þg4V4þCðETÞ ð2:2Þ

where

Vn ¼
1

n!

Z þL=2

−L=2
d2x∶ϕnðxÞ∶; ð2:3Þ

and ∶ϕnðxÞ∶ indicates normal ordering, i.e., annihilation
operators are placed to the right of creation operators.6

The operator C in (2.2) is a counterterm that must
take a somewhat unusual form and will be explained in
the sections below. For future use we define Oij ≡
hEijOjEji and g4 ≡ g.

B. The approach

The Hamiltonian defined in Sec. II A acts in the Hilbert
spaceH spanned by the free states jEii. In the Hamiltonian
truncation approach, we study the theory by considering
only states Ei ≤ ET , with the counterterms in (2.2) evalu-
ated at ET . In this case the Hamiltonian (2.2) can be viewed
as the finite dimensional matrix

Hij ¼ hEijHjEji: ð2:4Þ

The spectrum of H can then be obtained by applying a
numerical routine to obtain the lowest few eigenvalues of
Hij. Similarly to Hamiltonian perturbation theory, the actual
theory that we are interested in is recovered by removing the
regulator, i.e., taking the limit ET → ∞. In practice this is

done by considering a series of Hamiltonians HðEðiÞ
T Þ with

Eð0Þ
T < Eð1Þ

T < � � � < EðnÞ
T such that EðnÞ

T ≫ m, and extrapo-
lating the eigenvalues to infinite ET .
The symmetry transformations of the theory (2.2) can be

used to simplify the task of obtaining the eigenvalues of H.
These transformations are the field parity Z2 (ϕðxÞ →
−ϕðxÞ), the momentum, and the finite subgroup of O(2)
that corresponds to the symmetry group of a flat torus
[further details may be found in Appendix A]. The matrix
(2.4) can therefore be diagonalized separately in the
different selection sectors. Throughout this paper we focus
on states with zero total momenta, and we diagonalize the
Z2 ¼ � sectors separately. We have verified that the lowest
lying states are in the singlet sector of the square torus
transformations, as expected from perturbation theory.
Therefore we restrict to this sector in what follows.
A basis of the Hilbert space up to a given cutoff ET can

be straightforwardly constructed in a computer program.
Then the Hamiltonian can be calculated, although some

care is required in the algorithm to enable large basis sizes
to be reached. The lowest lying eigenvalues can be obtained
using standard algorithms, for example based on the
Lanczos method. Further details on our numerical approach
can be found in Appendix E.
In Fig. 1 we plot the size of the singlet sector of the basis

for a theory with m ¼ 1 as a function of the cutoff energy
for ET [including both field parity sectors]. Using moderate
computational resources we are able to obtain eigenvalues
for bases of size up to ∼107. We see that our numerical
reach corresponds to ET=m ∼ 32 for a box of length
L ¼ 4=m, which will turn out to be sufficient to perform
reasonable extrapolations ET → ∞.

III. PERTURBATION THEORY

At weak coupling, the spectrum of the truncated
Hamiltonian can be computed using Hamiltonian perturba-
tion theory (HPT), a.k.a. old fashioned perturbation theory.
Throughout the paper we will make extensive use of HPT.
Since HPT is somewhat in disuse, in this section we provide
a basic review and set up the notation—the reader familiar
with such material may safely skip this section.
In perturbation theory we compute the ith energy level

in a truncated power series of the interaction strength

Ei ¼
P

n E
ðnÞ
i . The general structure of the corrections EðnÞ

i
is always the same, namely, the nth order correction is
given by

EðnÞ
i ¼ hEijV̂ð½Ei −H0�−1V̂Þn−1jEii − subtraction terms;

ð3:1Þ

where we have defined V̂ ¼ PVP, and P is the projector
P ¼ 1 − jEiihEij. The role of the subtraction terms will be
clarified in the sections below, and they will turn out to be
crucial for our work. For instance, the first terms of
perturbation theory for the energy levels are given by

FIG. 1. The size of the Fock space basis as a function of ET for
m ¼ 1 and different box sizes L. For L ¼ 4 the contributions from
basis elements with different occupation numbers N is shown.

6Normal ordering in finite volume differs from the normal
ordering in infinite volume. The difference is a scheme choice and
it can be accounted for by finite counterterms that are exponen-
tially small in the large volume limit [9].
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Ei¼ Vii|{z}
Eð1Þi

þVik
1

Eik
Vki|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Eð2Þ
1

þVik
1

Eik
Vkk0

1

Eik0
Vk0i−ViiVik

1

E2
ik

Vki|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Eð3Þ
0

þVikVkk0Vk0k00Vk00i

EikEik0Eik00
−Eð2Þ

i
VikVki

E2
ik

−2Vii
VikVkk0Vk0i

E2
ikEik0

−V2
ii
VikVki

E3
ik|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eð4Þ
0

þOðV5Þ; ð3:2Þ

where Eij ¼ Ei − Ej, and a sum over intermediate states
k; k0; k00 ≠ i is implicit. See Appendix B 1 for a derivation
of (3.2).
To calculate (3.2), we can proceed by evaluating the

expressions hEijFnðzÞjEii ¼ hEijVð½z −H0�−1VÞn−1jEii.
These can be conveniently written as

Fnðzþ EiÞ ¼ ð−iÞn−1
Z

∞

0

dt1 � � � dtn−1eizðt1þ���tn−1ÞVðTn−1Þ

× VðTn−2Þ � � �Vð0Þ; ð3:3Þ

where Tk ¼
P

i¼k
i¼1 ti, VðtÞ ¼ eiH0tVe−iH0t.7 From (3.3) it is

easy to extract (3.2). Equation (3.3) is time ordered in the
whole integration domain and thus we can apply Wick’s
theorem. For concreteness let us take V ¼ gkϕk=k!, gen-
eralizations are straightforward. Applying Wick’s theorem
to the product VðTn−1ÞVðTn−2Þ � � �Vð0Þ we get

gnk
k!n

Z
L=2

L=2

Yn−1
i¼0

d2yiskfna;bg
Yn−1
a¼1

Ya−1
b¼0

Dna;b
ab ∶ϕk−Σs≠n−1nn−1;s

Yn−1;Tn−1

× ϕ
k−Σs≠n−2nn−2;s
Yn−2;Tn−2

� � �ϕk−Σs≠0n0;s
Y0;T0

∶; ð3:4Þ

where ϕx;t ≡ ϕðx; tÞ. Dij ≡Dðxμi − xμj Þ is the propagator

joining the points ðY⃗i; TiÞ and ðY⃗j; TjÞ, where Y⃗i ¼
y⃗0 þ

P
i
p¼1 y⃗p, given by

θðtÞDðz⃗; tÞ ¼
X
k⃗

1

2L2ωk⃗

e−iωk⃗tþik⃗·z⃗: ð3:5Þ

The tensor na;b ¼ nb;a is symmetric and takes indices in the
numbered vertices VðTaÞ. Thus, if we have a number n1;2
of propagators connecting the 1 and 2 vertices, these same
number of fields is subtracted from the vertices ϕk

Y1;T1
and

ϕk
Y2;T2

. Finally the combinatoric factor sfna;bg is given by

skfna;bg ¼
k!nQ

n−1
j¼0ðk − Σs≠jnj;sÞ!

1Q
n−1
a¼1

Q
a−1
b¼0 na;b!

: ð3:6Þ

Upon plugging the field mode expansion (2.1) and the
propagators (3.5) into Eqs. (3.3) and (3.4), we can perform
the straightforward integrals over the exponentials and we
are left with a sum over the momentum modes. Since the
index structure in formula (3.4) is somewhat involved, let
us give a couple of examples.

A. Examples

For instance for k ¼ 4, the Oðg2Þ correction to the
vacuum is computed as follows

V0kE−1
k Vk0 ¼

g2L2s44
4!2

Z
∞

0

dt1eizt1
Z

L=2

−L=2
d2y1D4ðy⃗1; t1Þ;

ð3:7Þ

with skp ¼ k!2=ðk − pÞ!2=p!. Upon performing the straight-
forward integrals of the previous expression we get

ð3:8Þ

where we have introduced the Feynman diagrammatic
notation that we review later. Here and in many examples
below, it will be convenient to write the sum over the
intermediate states in (3.8) in terms of the relativistic
phase-space. At d ¼ 2þ 1, the finite volume phase space
is given by

ΦnðPμÞ¼
X
k0s

1Q
j2L

2ωk⃗j

L2δΣik⃗i;P⃗
ð2πÞδðΣiωk⃗i

−EÞ; ð3:9Þ

where Pμ ¼ ðE; P⃗Þ. Its infinite volume limit can be
computed in d ¼ 2þ 1 and it is given by

Φnð
ffiffiffi
s

p Þ →
L→∞

Z
∞

−∞

Yn
s¼1

d2ks
ð2πÞ22ωk⃗s

δð3ÞðΣn
i¼1k

μ
i − PμÞ

¼ π2−n41−n

ðn − 2Þ!
ð ffiffiffi

s
p

− n
ffiffiffiffiffiffi
m2

p
Þn−2ffiffiffi

s
p ; ð3:10Þ

where s ¼ P2
μ, see for instance [20]. Thanks to the closed

form expression in (3.10) we will be able to analytically

7Generically we will need Fðz1; z2;…; znÞ ¼ V
Q

n
i¼1ðzi −

H0Þ−1V and its derivatives, which involves a straightforward
generalization. Note also that the integrals in (3.3) converge for
Imz > 0, and for other values of z analytic continuation is
understood.
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evaluate many HPT diagrams with a large number of
loops. Now, upon inserting 1¼R ET

4mdEδðE−ΣiωkiÞ in (3.8)
we get

ð3.8Þ ¼ −
ðgLÞ2
24

Z
ET

4m

dE
2π

Φ4ðEÞ
E

; ð3:11Þ

wherewe have introduced a regulator by cutting themaximal
energy of the intermediate state Ek ≤ ET . More generally,
regulating the theory with an energy cutoff ET—so that all
Fock space states have H0-energies Ei ≤ ET—corresponds
to requiring that the energy of the states between the vertices
in (3.3) is Ei ≤ ET . This can be easily implemented in the
HPT diagrams by imposing that each of the energy propa-
gators is bounded from below by 1=ET.

8 The value of (3.11)
in the infinite volume limit is straightforwardly computed
using (3.10).
As a second example, consider a mass perturbation, i.e.,

k ¼ 2. Then (3.3)–(3.4) for n ¼ 2 gives

−
ig2

2!2

Z
∞

0

dt
Z þL=2

−L=2
d2xd2z

X2
p¼0

s2pD
p
Fðz⃗;tÞ∶ϕ2−p

ðx⃗þz⃗;t=2Þϕ
2−p
ðx⃗;−t=2Þ∶

ð3:12Þ

For concreteness let us compute the p ¼ 1 Wick’s con-
traction and take the expectation value with the one particle
state at rest jmi, i.e.,

− i
g22L

2

2

Z
∞

0

dteitðϵ−mÞ

×
Z þL=2

−L=2
d2zDðz⃗;tÞhmj∶ϕðz⃗; tÞϕð0; 0Þ∶jmi ð3:13Þ

where ϵ → i0þ. Carrying out all the integrals of the
previous expression we get

ð3:14Þ

If this was the calculation of V1kE−1
1k Vk1 in (3.2), the second diagram would not contribute and needs to be discarded

because the energy of the state between the two vertices is Ek ¼ 1. This is a particular instance of a general rule: when
computing (3.2) through the correlation functions (3.4) we need to discard those contributions in which the state being
propagated between two consecutive vertices is equal to Ei. Note that there are two possible vertex orderings in (3.14)
giving rise to two different expressions.
Indeed the order of the vertices matters because the integrand (3.3) is time-ordered in the whole integration domain, thus

diagrams differing by the vertex ordering give rise to different expressions. A more dramatic instance occurs in the
following corrections to the 1-particle state

ð3:15Þ

ð3:16Þ

8This constraint on the propagator applies when calculating the vacuum energy. The generalization when the propagator is shifted by
nonzero external energy is straightforward.
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where for simplicity we defined
P≡P

momenta
s:t:Ei≤ET

1Q
i
2ωiL2

i.e., all internal lines of the diagrams are summed over
including relativistic factors 1=ð2ωL2Þ and under the
constraint that the state Ei flowing between any two
consecutive vertices is smaller than the energy cutoff,
Ei ≤ ET . Even-though the diagram (3.16) is a permutation
of the vertices of diagram (3.15), it is apparent that the
expression in Eq. (3.15) differs from Eq. (3.16). The latter
is finite as ET → ∞, while diagram (3.15) diverges
logarithmically in the limit ET → ∞. Indeed,

ð3.15Þ ¼ g3

6

XL2δqþp;0

ωp þ ωq

X L2δk1þk2þk3þp;0

ωk1 þ ωk2 þ ωk3 þ ωp

þOðm2=ETÞ ð3:17Þ

where the second factor
P L2δk1þk2þk3 ;0

ωk1
þωk2

þωk3
∼ logðETÞ. Further

details and examples are given in Appendix D.
For clarity, in each of the preceding diagrams we have

drawn vertical lines cutting between consecutive vertices to
signal the state propagating. We will not draw such lines in
what follows. However, one should remember that the
vertices of all the diagrams below are ordered.

B. Rules

The general rules to compute the first term in (3.1) can
be summarized as follows. First, consider all possible
Feynman diagrams for the transition i → i, including both
connected and disconnected diagrams. Now, draw each
nth order Feynman diagram n! times ordering the n
vertices in every possible way, with the external lines
kept fixed. Label each internal line with space momenta p⃗.
Then the rules associated to each particular vertex-ordered
diagram are

(i) For every vertex except the last [leftmost], include
a factor L2 times a momentum conservation Kro-
necker delta.

(ii) For every intermediate state j, i.e., a set of lines
between any to consecutive vertices, include a factor

½Ei − Ej þ iϵ�−1 ð3:18Þ

where Ej ≡P
ω is the total energy of the state j.

(iii) For every internal line include a factor ½ðL2ð2ωp⃗Þ�−1
while every external line counts a factor
½ðL2ð2ωp⃗Þ�−1=2.

(iv) Multiply by gn=n! and by the symmetry factor
associated to the diagram. If in doubt, resort to
the general formula given in (3.6).

(v) Integrate the product of these factors over all the
internal momenta.

Finally, sum all the expressions associated to the vertex
ordered diagrams. The rules to compute the pieces in the

subtraction terms are analogous, only differing in some
extra powers of ðEi − Ej þ iϵÞ−1 which are readily traced.
In order to get (3.2) we need to remember not to include
the state Ei in the sum over internal states, then the ϵ in
(3.18) can be safely dropped. At infinite volume the
internal lines are changed as 1=ðL22ωp⃗Þ→1=ðð2πÞ22ωp⃗Þ,
the Kronecker deltas L2δk⃗ → ð2πÞ2δð2Þðk⃗Þ and the sumsP

k⃗ →
R
d2k. The rules just described are similar to those

to compute scattering matrix elements in old fashioned
perturbation theory, see e.g., [21].

IV. ϕ2 TEST

In this section we apply Hamiltonian truncation tech-
niques to a mass perturbation ϕ2 in 2þ 1 dimensions. This
perturbation is exactly solvable. It is nevertheless interest-
ing to compare the exact solution with perturbation theory
and HT since these latter two approaches are of much more
general. In our detailed comparison with perturbation
theory we will learn a lesson that will be crucial when
generalizing the HT method to the ϕ4 perturbation.

A. Analytic solution

The free theory is given by the action

S0 ¼
Z

d3x

�
1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 þm2

2
Z

�
; ð4:1Þ

where Z ¼ R d3p
ð2πÞ2

1
p2þm2. The only potential divergence of

the theory, which consists of a one loop diagram with a
single mass insertion, is canceled by the m2Z term. Thus,
the vacuum energy of the theory in (4.1) is zero and the
excited states are the free theory Fock states jEii, with
energies Ei. Next we perturb the theory by m2 → m2 þ g2,

Sg2 ¼
Z

d3x

�
1

2
ð∂ϕÞ2 − 1

2
M2ϕ2 þM2

2
Z

�
; ð4:2Þ

with M2 ¼ m2 þ g2. In the perturbed theory (4.2) the
vacuum energy is nonzero and measurable. Indeed, the
vacuum energy density is given by the effective potential

Veffðg2Þ ¼
2

24π

�
ðm2Þ3=2 − ðm2 þ g2Þ3=2 þ

3

2
g2m

�
; ð4:3Þ

where (4.3) only receives contributions from a single loop,
i.e., the Coleman-Weinberg [22] potential Veffðg2Þ¼
1
2

R d3p
ð2πÞ2 logðp2þM2Þ−M2Z. The excited states are Fock

space states with energy

L2Veffðg2Þ þ Ei; ð4:4Þ
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where L2 is the volume of the space. Equation (4.4) is valid
for large volumes, so that winding corrections can be
ignored.9

B. Perturbative solution

Next we compute the first terms of the perturbative
expansion of Veff and of the mass gap Δ ¼ E1 − E0 using
time ordered perturbation theory [for the calculations of
this section we setm ¼ 1]. We will do the calculation up to

Oðg42Þ where the effect that we want to discuss first arises
for the vacuum energy. The conclusions that we draw in this
section are insensitive to whether we work in finite or
infinite volume, so we use the infinite volume phase space
formula throughout.

1. Vacuum

The vacuum is given by E0 ¼ Eð2Þ
0 þ Eð3Þ

0 þ Eð4Þ
0 þ

Oðg52Þ. At Oðg22Þ and Oðg32Þ we have the contributions

ð4:5Þ

At Oðg42Þ we have three connected diagrams

ð4:6Þ

and two disconnected diagrams

ð4:7Þ

all arising from the VH−1
0 VH−1

0 VH−1
0 V piece. Meanwhile

the second term of Eð4Þ
0 in (3.2) gives a fully disconnected

piece

−Eð2Þ
0 V0kE−2

k Vk0 ¼
g22
2

Z
∞

2

dE
2π

Φ2ðEÞ
E

g22
2

Z
∞

2

dE
2π

Φ2ðEÞ
E2

¼ g42
256ð4πÞ2 : ð4:8Þ

As expected, the disconnected pieces cancel,
ð4.7Þ þ ð4.8Þ ¼ 0; and adding up all the corrections we
reproduce (4.3)

L2Veff ¼ −
g22
32π

þ g32
192π

−
g42

512π
þOðg52Þ: ð4:9Þ

The point of this exercise is to note that if we set up a
sharp ET cutoff on the energy of the states propagating in
between the vertices, Eq. (4.7) is now given by

−
1

4

Z
ET−2

2

dE2

2π

Φ2ðE2Þ
E2
2

Z
ET−E2

2

dE1

2π

Φ2ðE1Þ
E1

ð4:10Þ

while the integrals of (4.8) are cut off independently

1

2

Z
ET

2

dE
2π

Φ2ðEÞ
E

1

2

Z
ET

2

dE
2π

Φ2ðEÞ
E2

: ð4:11Þ

Therefore, when the ET cutoff is introduced, the discon-
nected diagrams do not cancel by terms of Oð1=ETÞ,

ð4.10Þ þ ð4.11Þ ¼ 1

512π2
1

E2
T
: ð4:12Þ

This effect is harmless in practice for this theory because it
decouples fast enough. However, these kind of effects will
turn out to be very important for the ϕ4 theory [or generic
UV divergent theories] because for ϕ4 theory the non-
cancellation of disconnected bubbles is not suppressed by
powers of ET . This will be discussed in detail in Sec. V.

2. First excited state

To develop our intuition further, we now carry out the
analogous calculation of the energy of the first excited state.
We start by computing the connected diagrams, and then
we compute the disconnected diagrams contributing to E1.

9We do however include winding corrections in our sub-
sequent comparison with HT calculations, since they have a small
but not negligible effect for the box sizes we use.
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Connected diagrams. The leading correction to the first excited state E1 is given by . Next,
at Oðg22Þ,

ð4:13Þ

meanwhile at Oðg32Þ we find

ð4:14Þ

Finally, there are several connected contributions at Oðg4Þ:

ð4:15Þ

It is straightforward to compute these diagrams and we are
led to

Eð4Þ
1 jConn ¼ −g42

11

128
ð4:16Þ

Disconnected diagrams. There is a single diagram at
Oðg22Þ and it is equal to the Oðg22Þ vacuum correction. At
Oðg32Þ, we have various kinds of pieces arising from
V1kE−1

1k Vkk0E−1
1k0Vk01. The first type is

ð4:17Þ

where the blob is fully connected and given in (4.5). Then
we can also have

ð4:18Þ

which cancels with the disconnected 1-loop bubble of

− V11 × V1kðm − EkÞ−2Vk1

¼ −
g2
2
×

�
g22
4

1

ð1 − 3Þ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
tree

þ g22
2

Z
∞

2

dE
2π

Φ2ðEÞ
E2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

1−loop

�
; ð4:19Þ

while the tree-level piece of the former equation combines
with (4.14) to give −g32=16.
At Oðg42Þ the term V½1=ðm −H0ÞV�3 gives rise to two

types of disconnected contribution.

ð4:20Þ

where the bubble is fully connectedOðg4Þ vacuum given in
(4.6)—once the fully disconnected contribution from

−Eð2Þ
1 V1kE−2

k Vk1 [proportional to π−2] are added up.
Meanwhile there are a number disconnected diagrams of
the second type

ð4:21Þ

given by

JOAN ELIAS-MIRÓ and EDWARD HARDY PHYS. REV. D 102, 065001 (2020)

065001-8



− g42

Z
∞

2

dE
2π

Φ2ðEÞ
�
1

8

�
1

4

1

2þ E
þ 1

2E
1

2þ E
þ 1

E2

1

2þ E

þ 1

2E
1

2þ E
þ 1

2E3

�
þ 1

E4

�
¼ −

17g42
3072π

;

where each summand in the ½� � �� piece of the integrand
corresponds to the five first diagrams in (4.21); while the
last two in (4.21) correspond to the 1=E4 piece. Next we
need to compute the fully disconnected pieces, there are

three of them [the last three pieces of Eð4Þ
i in (3.2)]:

−Eð2Þ
1 × ½V1kð1−EkÞ−2Vk1� ¼

�
g22
8
þ g22
32π

�
×

�
g22
16

þ g22
128π

�
;

ð4:22Þ

− 2V11 × V1kð1 − EkÞ−2Vkk0 ð1 − Ek0 Þ−1Vk01

¼ g2 ×

�
3
g32
64

þ g32
768π

þ g32
512π

�
ð4:23Þ

V2
11 × V1kð1 − EkÞ−3Vk1 ¼ −

g22
4
×

�
g22
32

þ g22
384π

�
: ð4:24Þ

Thus, we have that

ð4.22Þ þ ð4.23Þ þ ð4.24Þ ¼ 3

64|{z}
tree

þ 17

3072π|fflffl{zfflffl}
1−loop

þ 1

4096π2|fflfflffl{zfflfflffl}
2−loop

:

ð4:25Þ

The two loop piece has already been accounted for in
(4.20); the one-loop piece cancels against (4.21) [we have
colored terms that cancel each other]; while the tree-level
piece combines with the connected tree-level diagrams in

(4.16) to give Eð4Þ
1 jtree ¼ −g42 5

128
. This again shows the

importance of the subtraction terms in (3.1).
Adding all the contributions, we have

ð4:26Þ

where the blob involves fully connected vacuum diagrams.
The cancellation of disconnected bubbles is expected

from Lorentz covariant perturbation theory. It is however
interesting to note that in the noncovariant calculation, the
cancellation of the disconnected bubbles appears nontrivial.
Additionally, although disconnected bubble diagrams can-
cel out as ET → ∞, note that in HPT not all disconnected
diagrams cancel. Indeed, the tree-level pieces of Oðg32Þ and
Oðg42Þ involve disconnected tree-level diagrams [this is also
expected since we are computing the mass gap instead of
the mass-gap squared].
All in all, the mass gap is given by

Δ≡ E1 − E0 ¼ mþ g2
2m

−
g22
8m3

þ g32
16m5

−
5g42

128m7
þOðg52Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ g2

q
þOðg52Þ; ð4:27Þ

which of course reproduces the result of a Lorentz covariant
calculation. Our derivation of (4.27) with HPT is a very
inefficient way to solve for the harmonic oscillator.
However, Hamiltonian truncation [which will require a
detailed understanding of the cancelation of the discon-
nected bubbles] will turn out to be a very efficient way to
solve for other theories that we do not know how to solve
analytically.

C. Hamiltonian truncation solution

As well as providing a useful theoretical warm up for
what will follow, we can use the ϕ2 perturbation as a first
test of the Hamiltonian truncation method. This is analo-
gous to the analysis carried out in 1þ 1 dimension in [9].
Starting from a Fock space basis of the theory in (4.1) we
introduce a perturbation

ΔH ¼ g2V2: ð4:28Þ

This simply corresponds to turning off g4 in (2.2) with
m ¼ 1. Since the theory is UV finite, and the cancellation
of bubble diagrams discussed around (4.12) is restored
when taking the limit ET → ∞,10 the counterterms in (2.2)
can be set to zero in this case. Extrapolating the values of
the vacuum energy and the mass gap obtained from the
diagonalization to ET → ∞ the exact analytic results
should be recovered.
In Fig. 2 left we plot the vacuum energy density obtained

from HT calculations as a function of ET for a theory with
g2 ¼ 1 and L ¼ 4. For such a box the winding corrections
to the exact vacuum energy are significant, and we show
the analytic result both for an infinitely large box and
including finite volume effects. The direct result from the
truncation calculation is shown in orange [labeled “without

10A proof of this statement at all orders in perturbation theory
will be presented in Sec. VA and Appendix B 2.
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subleading”]. Although this appears to be approaching the
analytic result, at the accessible values of ET it is not yet
fully converged.
The convergence of the vacuum energy as a function of

ET can be improved by adding corrections to the truncated
Hamiltonians. These account for the leading effects of
states with E > ET that are missing from the computation,
and vanish in the ET → ∞ limit. Such corrections have
been studied extensively, starting with [23–25], continuing
with the full systematic calculation in [9,16], while further
developments and the state of the art perspective can be
found in [11,13,15,17]. For our purposes we simply include
the first correction, which scales as 1=ET and arises due to
the integral corresponding to the left diagram of (4.5) being
cut off at ET . The contribution “missing" from such a
diagram due to the truncation is a shift in all of the energy
levels of [11]

ΔH2¼
−g22
4

Z
∞

ET

dE
2π

Φ2ðEÞ
E

¼−
g22

16πET
þOð1=E2

TÞ; ð4:29Þ

which is easily incorporated as an additional diagonal term
in the Hamiltonian matrix. The results with the subleading
correction included are also plotted in Fig. 3, and they
converge much faster to the analytic result.
In Fig. 2 right we show the mass gap in the same theory.

The results obtained are unaffected by whether the diagonal
correction (4.29) is included. Instead the leading correction
to the mass gap is higher order in g2 and ET , and is not
needed for our present purposes. We have also confirmed
that the energies of the next few excited states quickly
converge to their expected values.
In Fig. 3 we plot the vacuum energy density and mass

gap obtained in the limit ET → ∞ as the coupling g2 is
varied; the results are shown along with the analytic
predictions at finite and infinite volumes.11 The perturbative

FIG. 2. The vacuum energy density [left] and mass gap [right] of the theory defined by Eq. (4.1) deformed by Eq. (4.28) with g2 ¼ 1 as
a function of the cutoff energy ET. The analytic predictions both in the infinite volume limit and at finite volume are also indicated. The
results for the vacuum energy are shown with and without including the subleading correction (4.29), which improves the convergence.

FIG. 3. The vacuum energy density [left] and mass gap [right] as a function of g2 obtained from Hamiltonian truncation calculations
after extrapolation to ET → ∞. We also show the exact analytic results [for the vacuum energy density with and without including
winding corrections, solid and dashed respectively] and the prediction from perturbation theory [labeled PT] at order g22 and g42.

11In particular we fit the finite ET data with a function of the
form α0 þ α1=ET , where αi are constants. Adding an extra
αi=ET logET or α2=E2

T freedom in the fit does not affect the
value of α0 in any significant way.
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prediction at orders g22 and g42 is also plotted. We find
good agreement between HPT and HT for perturbative
values g2 ∈ ð−1=2; 1Þ, while HT agrees precisely
with the exact calculation (4.4) for the entire range of
couplings. Additionally we see that the truncation calcu-
lation is correctly capturing the winding corrections. It is
encouraging that the truncation calculation is sensitive
to high order diagrams of HPT, and that it gives precise
results.

V. HAMILTONIAN TRUNCATION FOR A UV
DIVERGENT PERTURBATION

Now we turn to our main concern: developing a
formalism to apply HT to UV divergent relevant perturba-
tions that require renormalization. To do so, we analyze
HPT with an ET cutoff for the ϕ4 perturbation in detail.
A straightforward inspection of the HPT Feynman

diagrams reveals the presence of two primitive UV diver-
gencies associated to the vacuum

ð5:1Þ

and one to the computation of the first excited energy level
at Oðg2Þ,

ð5:2Þ

we call the latter the sunset diagram.12 Thus we must add
counterterms to define a theory with a finite ET → ∞ limit.
Tentatively, one may consider the following potential as a
perturbation of the free massive theory

V¼? V4 − c0ðETÞ − d0ðETÞ − c2ðETÞV2; ð5:3Þ

as one would do in a covariant calculation of correlation
functions or scattering amplitudes. However, this theory
does not have a finite ET → ∞ limit. Next we will prove
this claim and we will identify the problems in doing a
perturbative calculation with an ET cutoff regulator.
We start by explaining in detail the calculation of the

vacuum energy up to Oðg4Þ in Sec. VA. This analysis

parallels the explanation in Sec. IV B 1 for the ϕ2 perturba-
tion, but with some key differences that will be stressed
below. Subsequently, in Sec. V Bwe generalize this analysis
to arbitrary order in perturbation theory. Following this, in
Sec. V C we will solve the problems with perturbation
theory, which will enable us to formulate Hamiltonian
truncation in Sec. V D.

A. Problems with naive perturbation theory

The calculation of the vacuum at Oðg2Þ and Oðg3Þ is
straightforward. There are only two connected diagrams,
given in (5.1). In the theory of (5.3), the UV divergences
associated to these diagrams are readily subtracted by lower
order diagrams involving the counterterms c0 and d0.
AtOðg4Þ, the calculation gets much more interesting. We

discuss the disconnected diagrams first and then the
connected diagrams. We have two disconnected pieces.

The first piece, arising from the first term of Eð4Þ
0 in (3.2), is

given by

ð5:4Þ

and formally cancels against the fully disconnected piece [i.e., second term of Eð4Þ
0 in (3.2)]:

−Eð2Þ
0 × V0kE−2

k Vk0 ¼
ðgLÞ2
24

Z
4

dE
2π

Φ4ðEÞ
E

×
ðgLÞ2
24

Z
4

dE
2π

Φ4ðEÞ
E2

: ð5:5Þ

Indeed, the diagrams in (5.4) are given by

ð5:6Þ
12Note that c0 and d0 are taken to be equal to the diagrams, while for c2 we take the leading log. See Appendix C for further details on

the calculation of (5.1) and (5.2).
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and upon adding them the integrals in (5.4) neatly factorize
as in (5.5). Note however that both (5.4) and (5.5) are UV
divergent in d ¼ 2þ 1 dimensions because

Φ4ðxÞ ¼
x

128π2
þOðx0Þ: ð5:7Þ

Therefore, the former expressions require regularization. If
we proceed with a covariant regulator, e.g., cutting the

momenta circulating in the loops, the cancellation of
ð5.4Þ þ ð5.5Þ ¼ 0 still takes place [alternatively we can
perform dimensional regularization in position space (3.4),

DðxμÞ ¼ ð2πÞ−d=2ðm=
ffiffiffiffiffi
x2μ

q
Þd−2Kðd−2Þ=2ðm

ffiffiffiffiffi
x2μ

q
Þ]. The

problem arises if we insist on regularizing the theory by
restricting the Hilbert space to the states with a maximal
H0-energy ET. Then, we must replace (5.5) and (5.6) with

−Eð2Þ
0 × V0kE−2

k Vk0 ¼
ðgLÞ2
24

Z
ET

4

dE
2π

Φ4ðEÞ
E

×
ðgLÞ2
24

Z
ET

4

dE
2π

Φ4ðEÞ
E2

; ð5:8Þ

ð5:9Þ

Now, when we add the previous two expressions we get

ð5.8Þ þ ð5.9Þ ¼ ðgLÞ4 ET − 8 logET

144ð8πÞ6 þOðE0
TÞ; ð5:10Þ

namely, disconnected diagrams do not cancel at finite ET , and most importantly the effect does not decouple and diverges
when the cutoff is removed.
In the connected sector there are three diagrams plus all their possible vertex orderings:

ð5:11Þ

Only the first diagram and its vertex reorderings can be
divergent. Indeed, the first diagram contains a UV diver-
gent subsunset diagram [painted in red] for energies
El ∼ ET . Note that the lower sunset sub-diagram propa-
gating a state of energy Eext is rendered convergent by the
two vertex insertions [from the upper red sunset] in
between its ends. The divergence in the upper sunset
subdiagram is taken care of by the counterterm c2 at lower
order in perturbation theory, and the divergences in the
vertex reordered diagrams are similarly cancelled. More
generally, the connected vacuum diagrams are finite for the
theory (5.3) at all orders in perturbation theory: the only
divergent subdiagrams are sunset diagrams and these are
subtracted by c2.
To sum up, the vacuum energy is equal to the sum

of all connected vacuum Feynman diagrams. In HPT
this is true because of delicate cancelations of the
type ð5.4Þ þ ð5.5Þ ¼ 0. We have found that this cancela-
tion is spoiled when we introduce the noncovariant
regulator ET.

Note that the problem of UV divergences due to
disconnected bubbles discussed in this section is not
present in ϕ4 in d ¼ 1þ 1 dimensions. Equations (5.8)
and (5.9) are formally valid in any spacetime dimension,
provided we use the appropriate phase space function,

Φd¼1þ1
4 ðxÞ ¼ H1ð4x−2Þ − iH2ð4x−2Þ þ 3H3ð4x−2Þ

8π2

¼ 3

2π2
1

x2
½log2ðxÞ − π2=12� þOðx−4Þ; ð5:12Þ

where the functions are Hi are given in terms of the Bessel
function K.13 We find

ð5.8Þ þ ð5.9Þ ¼d¼1þ1OðE−1
T Þ: ð5:13Þ

13One finds H1 ¼ KðtþðxÞÞKðt−ðxÞÞ, H2¼KðtþðxÞÞKð1−
t−ðxÞÞ, H3 ¼ −Kð1 − tþðxÞÞKð1 − t−ðxÞÞ=3 and t�ðxÞ ¼
1=ð4xÞð2xþ ð1 − 2xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − 1Þ=xp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4x − 1Þ=xp Þ.
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Therefore in previous ϕ4
2 Hamiltonian truncation studies [9]

the problem in (5.10) did not arise.

B. The general case

The problem found in (5.10) is ubiquitous to all orders
OðgnÞ in perturbation theory for n ≥ 4. To identify all the
diagrams that, as a result of the ET cutoff, diverge in the

ET → ∞ extrapolation we generalise the two separate UV
divergent contributions in (5.9). In Sec. V B 1, we discuss
the generalization of the second diagram in (5.4). Then, in
Sec. V B 2 we will deal with the generalization of the first
diagram in (5.4).14

The perturbative correction to the Ei state at OðgnÞ is
given by

EðnÞ
i ¼ Vik1Vk1k2 � � �Vkni

Eik1Eik2 � � �Eikn−1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st contribution

− Eð2Þ
0

Vik1Vk1k2 � � �Vkn−2i

Eik1Eik2 � � �Eikn−3

Xn−3
s¼1

1

Eiks

− Eðn−2Þ
i VikE−2

ik Vki

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd contribution

þ… ð5:14Þ

where a sum over k ≠ i is implicit. In (5.14) … denotes further corrections that are irrelevant for the current discussion—

these are terms proportional to either Vnn or E
ðsÞ
i with 3 ≤ s ≤ n − 3. The diagrams that we are presently interested in are

obtained from the first contribution in (5.14) by considering eachOðgn−2Þ diagram [either connected or disconnected] with i
external lines on each side of the diagram and dressing such diagram with two-point bubbles. We denote a generic diagram
by , where the thick red lines represent any number of regular black lines.
The diagrams with a two-point bubble inserted in between every two consecutive vertices are represented by

ð5:15Þ

and the corresponding expression is given by

Z Yn−3
a¼1

dxa
xia

gEi
ðx⃗Þ

Xn−3
s¼1

1

xis

ðgLÞ2
24

Z
∞

4

dE
ð2πÞ

Φ4ðEÞ
Ei − ðEþ xsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

two-point bubbleþa free jxsi state

; ð5:16Þ

where xs is the energy of the state being propagated in between any two consecutive vertices of the lower diagrams, and
xis ≡ Ei − xs. There are ðn − 2Þ − 1 such variables for a diagram with n − 2 vertices. The function gEn

ðx⃗Þ depends on the
specific lower diagram and includes a symmetry factor that is the same for each of the diagrams in (5.15). Equation (5.16) is
UV divergent because Φ4ðxÞ ∼ x=ð128π2Þ, thus we are assuming that (5.16) is properly regulated with e.g., a momentum
cutoff.
Next we should add all the diagrams with the bubble’s vertices in every other possible location. For instance, we must add

diagrams such as

ð5:17Þ

After we add up all such diagrams, i.e., after dressing with a two-point bubble in all possible ways, we
find the following expression

ðgLÞ2
24

Z
∞

4

dE
ð2πÞ

Φ4ðEÞ
Ei − E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

two-point bubble

×
Xn−3
s¼1

Z Yn−3
a¼1

dxia
xia

gEi
ðx⃗Þ

�Xn−1
s¼1

1

xis
þ 1

Ei − E

�
; ð5:18Þ

14Most of the formulas of this section are valid in either finite or infinite volume (and d dimensions), provided the correct phase-space
function Φ4 is used.
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i.e., the two-point vacuum bubble factors out. Therefore,
the sum of all the dressings of each Oðgn−2Þ diagram by a
two point bubble cancels with the second contribution in
(5.14). In appendix B we show how the factorization
and cancelation of the disconnected bubble takes place
in detail. Although this is expected on general grounds,15

it is interesting to see how it happens in HPT and how it
fails to happen when we regulate our theory with the
ET cutoff.

1. Two-point bubbles I

When we regulate (5.16) with an ET cutoff we get

Z Yn−3
a¼1

dxa
xia

gEi
ðx⃗Þ

Xn−3
s¼1

1

xis

ðgLÞ2
24

Z
ET−Xs

4

dE
ð2πÞ

Φ4ðEÞ
Ei − ðEþ xsÞ

;

ð5:19Þ

where Xs ¼ xs. It is useful to keep Xs and xs as indepen-
dent variables because, while the Xs dependence is due to
the ET regularization, the xs dependence is physical. Then,
Xs will allow us to track by howmuch (5.19), once added to
the rest of the two-point bubble dressings (5.17), fails to
cancel against the fully disconnected second contribution
of (5.14).
The important question however is by how much the

former expression spoils the cancelation of disconnected
two point bubbles as ET → ∞. To answer this, we can
focus on a particular diagram contribution to (5.19) where
the bubble is inserted on top of the sth propagating state.
Then expanding at large ET , we get

Z Yn−3
a¼1

dxa
xia

gEi
ðx⃗Þ
xis

ðgLÞ2
24

×

�
Xs − ET

256π3|fflfflfflffl{zfflfflfflffl}
first term

þ α0 þ
Xsð−4 − α−1Þ þ α2−1

256π3ET|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second term

þOðE−2
T Þ

�
;

ð5:20Þ

where α0 and α−1 are functions of xis and are readily
computed using the phase-space formula (3.10).16

Therefore we are led to analyze which diagrams
, when dressed with two-point bubbles in

between two consecutive vertices, are sensitive to Xs.
Nicely, in light of (5.20), the list of such type of diagrams
is rather short. Indeed, only those diagrams D that are UV
divergent—when the energy of one of the propagating
states Xs ∼ ET—will probe the Xs dependence in (5.20)

when dressed with a two-point bubble in between two
consecutive vertices. The noncancellation of such diagrams
against the subtraction terms leads to UV divergences not
accounted by the counterterms in (5.1)–(5.2). This is clear
because, having identified the parts of (5.19) that are
sensitive to the ET regulator, we can restore Xs ¼ xs,
and the dependence cancels off as

ð5.20Þ¼
Z Yn−3

a¼1

dxa
xia

gEi
ðx⃗Þ

�
x−1is Xs

256π3
ðgLÞ2
24

þOðX0
s ;Xs=ETÞ

�
;

ð5:21Þ

and we are left with the diagram D without the two-point
bubble dressing, i.e.,

R Q
n−3
a¼1 dxax

−1
ia gEi

ðx⃗Þ.
For instance the following diagram probes the first term

in (5.20),

ð5:22Þ

Indeed, the sunset diagram involves gEi
ðx⃗Þ ∼Oðx0sÞ

because Φ3ðxÞ ∼Oðx0Þ. Following the same logic, all
those diagrams D that produce gEi

ðx⃗Þ ∼Oðx1sÞ will be
sensitive to the second term, as well as the first term, in
(5.20). For instance,

ð5:23Þ

produces gEi
ðx⃗Þ ∼Oðx1sÞ because of the phase space

growth Φ4ðxÞ ∼ x=ð128π2Þ at large x. The instance in
(5.23) is a straightforward generalization of the right hand
diagram in (5.6).17

So far we have analyzed all the extra UV divergent terms
that are produced when we regulate diagrams that contain a
two-point vacuum bubble in between two given vertices
with the ET cutoff. To conclude the analysis we need to
analyze the cases where the disconnected vacuum bubble
spans one or more vertices as in for instance the diagrams in
(5.17). This is the topic of the next section.

2. Two-point bubbles II

We continue by analyzing all diagrams consisting of a
bubble crossing a single vertex,

15See e.g., Chapter 16 of Weinberg vol. II [26].
16We get α−1 ¼ 4 − Ei þ xs and α0 ¼

4−α−1−4 log 4þð4−α2−1=4Þ logETþ½α2−1=4� logα−1
ð4πÞ3ð4−α−1Þ .

17Note that since c0 ∼ ET − 8m logET , the second term in
(5.20) spoils the cancelation of disconnected bubbles by finite
OðE0

TÞ pieces.
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ð5:24Þ

This expression is given by

Z Yn−3
a¼1

dxa
xia

gEi
ðx⃗Þ

Xn−3
s¼1

ðgLÞ2
24

×
Z

ET−Xs

4

dE
ð2πÞ

Φ4ðEÞ
½Ei− ðEþxs−1Þ�½Ei− ðEþxsÞ�

; ð5:25Þ

where x0 ¼ 0 and Xs ¼ maxfxs−1; xsg, and we have
regulated the divergent dE integral with the ET cutoff.
Again, we analyze the spurious divergences that are
introduced with this regularization by expanding at
large ET .

ð5.25Þ ¼
Z Yn−3

a¼1

dxa
xia

gEi
ðx⃗Þ

×
Xn−3
s¼1

g2

24

�
β0 þ

ðβ−1 − XsÞ
256π3ET

þOðE−2
T Þ

�
; ð5:26Þ

where βi are functions of ET and xs but independent of Xs.
In order to probe the coefficient of Xs in (5.26) and generate
a UV divergence, the lower diagram must diverge as ∼Eα

T
with α ≥ 1, i.e., we need gEi

ðx⃗Þ≳ xs. This for instance can
be achieved if the vertex below the bubble in (5.24) is part
of another two point bubble,

ð5:27Þ

More generally iterated bubble diagrams also generates a
linear divergence

ð5:28Þ

where vertical lines are drawn to guide the eye to the
propagating states. Iterated bubble diagrams of the form
(5.28) are the only type of diagrams that diverge as ∼Eα

T
with α ≥ 1, in particular they have α ¼ 1. This completes
the generalization of the left hand diagram in (5.6).
Note that two-point bubbles spanning more than one

vertex do not introduce new UV divergences. In such case,
the bubble is rendered log divergent at most. Then, the
difference between cutting the integrals at ET or ET − Xs is
suppressed by ET.

Thus, we have concluded the identification of all those
diagrams for which the ET regulator leads to extra UV
divergences, which would not be present in a covariant
scheme. All in all, these are diagrams of the form (5.15)
and (5.28).18

3. Further comments

From the previous discussion it is clear that there are
further diagrams that have a sensitivity to the noncovariant
cutoff that scales as E0

T , i.e., remains finite, in the large ET
limit. Such finite pieces are potentially problematic since
they will make it challenging to match a Hamiltonian
truncation calculation with a covariant calculation.
Consequently, we now examine some examples of dia-
grams that do and do not lead to finite corrections.
For instance, a source of finite OðE0

TÞ terms comes from
the correction to the energy of an n-particle state [with
unperturbed energy En] by the disconnected g2 bubble of
(5.1), i.e.,

ð5:29Þ

where the diagram shifts the energy level by ΔEn ¼
ðgLÞ2
24

R ET−En
4 dEΦ4ðEÞ=ð2πEÞ. The UV divergence is can-

celed by Vnn ¼ c0ðETÞL2, leaving a finite piece

ΔEn − c0L2 ¼
�
−

log 2
384π3

þ 1

6144π3
En

�
g2L2: ð5:30Þ

This is due to the linear divergence present in the two-point
bubble. Such a finite piece is not expected if a covariant
scheme is used, namely a regulator that cuts the loop in
(5.29) independently of the state flowing below.
Note that the sunset diagram does not lead to an

analogous effect because it is only log divergent. For
example, consider the diagrams

ð5:31Þ

18Strictly speaking we have only discussed those diagrams
arising from the first contribution of (5.14). Note however that
those diagrams arising form the subtraction terms in (3.1) have
either equal or softer UV properties due to the extra factors
½Ei − Ej þ iϵ�−1.
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which are given by

1

6

Z
ET−X

3

dE
2π

Φ3ðEÞ
En − ðEþ xÞ

þ 1

6

Z
ET−2−X

3

dE
2π

Φ3ðEÞ
En − ðEþ 2þ xÞ ; ð5:32Þ

where x is the energy of the state below the loop, and
X ¼ x, but it is useful to treat them as independent
variables. We are led to

ð5.32Þ − c2ðETÞ ¼ −
logðET=½3 − En þ x�Þ

96π2

−
logð½3 − En þ x�=3Þ

32π2ðEn − xÞ
þOðXE−1

T ; E−1
T Þ; ð5:33Þ

namely there is no dependence on X ×OðE0
TÞ. This is in

accord with covariant regularization. For instance, we
may regulate the integrals in dimensional regularization,
or simply by dE → dEðμ=EÞϵ with ϵ > 0.19 Then, the c2
counterterm is given by c2ðϵÞ ¼ −1=ð96π2ϵÞ, such that the
calculation of

ð5:34Þ

is matched in either the ET cutoff or dEðμ=EÞϵ scheme with
μ ¼ m [and using respectively c2ðETÞ or c2ðϵÞ]. But, the
point is that once we fix the c2 counterterm such that (5.34)
matches in the ET and ϵ schemes, other diagrams like the
ones in (5.31) automatically match in the two schemes.
Indeed, upon performing the following integrals

1

6

Z
∞

3

dE
2π

μϵ

Eϵ

Φ3ðEÞ
En − ðEþ xÞ�

þ 1

6

Z
∞

3

dE
2π

μϵ

Eϵ

Φ3ðEÞ
En − ðEþ 2þ xÞ − c2ðϵÞ; ð5:35Þ

we find limET→∞ð5.33Þ ¼ limϵ→0ð5.35Þjμ¼m.
We note however, that the sunset diagram can lead to

finiteOðE0
TÞ pieces when a two-point vacuum bubble spans

one of or both its vertices. For example, consider embed-
ding the sunset diagram in a diagram [either connected or
disconnected] such that its two vertices are consecutive in
time. These type of diagrams are given by

Z Yn−3
i¼1

dxi
xi

gEn
ðx⃗Þ 1

xs

g2

6

Z
ET−Xs

3

dE
2π

Φ3ðEÞ
Ee − ðEþ xsÞ

; ð5:36Þ

where again Xs ¼ xs but it is again useful to keep them
independent to distinguish the scheme dependent pieces.
The sensitivity to Xs for large ET is

Δs ¼
Z Yn−3

i¼1

dxi
xi

gEn
ðx⃗Þ 1

xs

g2

192π2

�
Xs

ET
þOðE−2

T Þ
�
: ð5:37Þ

If a disconnected two-point bubble with energy xs spans the
sunset diagram gEn

ðxsÞ ∼ xs, which leads to a finite piece in
the large ET limit. Meanwhile if, with the sunset bubble
removed, the diagram is convergent or log divergent Δs
vanishes in the large ET limit.
If the vertices that comprise the sunset diagram are not

consecutive in time, the degree of divergence is lowered.
No such diagrams lead to new UV divergences, although
those in which a two-point disconnected bubble spans
one of the sunset vertices give a finite regulator depen-
dent piece.
By virtue of the fairly weak divergences in our chosen

theory there are only a handful of types of diagrams where
an OðE0

TÞ piece, not present in covariant regularization, is
generated after removing the cutoff ET → ∞. Further
details are provided in Appendix F.

C. Patching up perturbation theory
with ET regularization

At this point we have nailed down the problems with
perturbation theory in the ET regularization scheme pre-
cisely. All of the issues have a common origin: the problem
of missing states. Namely, if a loop of energy El appears as
a subdiagram of HPT, then it belongs to a state propagating
between two vertices that contains other particles of
total energy Eext. The ET cutoff restricts the energy of
the propagating state to El þ Eext ≤ ET . Therefore El
explores energies strictly below ET, which does not
coincide with the energy being probed by the primitive
UV divergencies that we identified in (5.1) and (5.2).
Instead, if all loops were democratically cut at energy ET
the counterterms (5.1) and (5.2) would be sufficient to a
obtain a finite theory in the ET → ∞ limit.
We will now fix all these problems. We will do so by

ensuring that all loop diagrams that have a UV divergent
sensitivity to the regulator are effectively cut equally at ET .
Such diagrams involve the two point bubble inserted with
its vertices sequential in time (5.15) and towers of the two
point bubbles (5.28). As we argued above, if the loops of
the disconnected two point bubbles are cut at ET , the
cancellation of such disconnected diagrams against the
subtraction terms in (3.1) is automatic.

1. Patch I

First, we show how the effects of the states that are
missing from the two point bubble diagram with vertices

19After finishing the paper we learned that this regularization
scheme is commonly used in SCET calculations [27].

JOAN ELIAS-MIRÓ and EDWARD HARDY PHYS. REV. D 102, 065001 (2020)

065001-16



that are consecutive in time can be accounted for.
We introduce a state dependent counterterm that is given by

ð5:38Þ

Note that, due to the appearance of Ei, the counterterm
depends on which energy level is being calculated.
Considering the 1st contribution at each order in

perturbation theory in (5.14): For any diagram involving

a two point bubble we can immediately write a diagram at
the next order down in perturbation theory where the two
vertices that make up the bubble are replaced by a single
insertion of Vnn:

ð5:39Þ

The former two diagrams replace (5.19) by

ð5.39Þ ¼
Z Yn−3

a¼1

dxa
xia

gEi
ðx⃗Þ

Xn−3
s¼1

�
1

xis

ðgLÞ2
24

Z
ET−Xs

4

dE
ð2πÞ

Φ4ðEÞ
Ei − ðEþ xsÞ

þ 1

xis
δVI

ss

�
: ð5:40Þ

The role of δVI
nn is to account for the states that are missing

due to the noncovariant regulator, so that the Xs depend-
ence in (5.40) is removed. Note that V00 ¼ 0 since no states
are missing in this case.
The counterterm (5.38) also patches up the same

problem in the 2nd contribution of (5.14), i.e., the sub-
traction terms in (3.1). At order n in perturbation theory this
includes expressions of the form

EðjÞ
0

Vik1Vk1k2 � � �Vkn−j−1i

Eik1Eik2 � � �Eikn−j−1

Xn−j−1
s¼1

1

Eiks

: ð5:41Þ

States missing from two-point bubbles inside EðjÞ
0 are

corrected for by a similar term at order n − 1 that has a

prefactor Eðj−1Þ
0 containing δVI

nn. For example, for j ¼ 2

this amounts to simply replacing Eð2Þ
0 with δVI

nn. Two-
point bubbles appearing in the second factor in (5.41),
i.e., the part involving Vik1 � � �Vkn−j−1i, are only dangerous
if they do not have the extra propagator on them. These
are patched up by insertions of δVI

nn in the second factor
of terms at the next order down.20 At high order there are
subtraction terms similar to (5.41) involving multiple
factors of Ek

0, but these are still patched up in the
same way.
This exhausts all of the places that a two point bubble

[with vertices consecutive in time] can be missing states in
the perturbation theory, and also all of the places that the
counterterm (5.38) can be inserted. Hence, (5.38) is
sufficient to completely fix the problem we laid down in
V B 1.

2. Patch II

The second issue to address is how to obtain a theory
without a UV divergent sensitivity to the missing states
of diagrams involving towers of overlapping two point
bubbles (5.28),

ð5:42Þ

As we argued above, these diagrams are problematic if we
regulate with an ET cutoff. The bubble integrals of former
diagram are schematically given by

Z
ET−xs

4

dE1

Z
ET−xs−E1

4

dE2

Z
ET−xs−E1−E2

4

dE3

×
Φ4ðE1Þ
E1

1

E1 þ E2

Φ4ðE2Þ
E2

1

E2 þ E3

Φ4ðE3Þ
E3

� � � ; ð5:43Þ

where xs is the energy of the state below the iterated
bubbles, and we have dropped the dependence on the
eigenstate Ei and xs on the energy denominators.
A moment of thought reveals that this problem is hard to

solve with a simple counterterm that can be written in
closed form.21 We instead offer a pragmatic solution,
while we look forward to more elegant solutions in the
future. We proceed in a similar fashion as we did in
the previous section, i.e., we introduce a further state-
dependent vacuum counterterm, to account for the missing
states in (5.42)

20Two point bubbles with an extra propagator on are not
patched, but these are logarithmically divergent so only lead to
finite corrections due to the ET regulator.

21For instance, one may be tempted to correct the quartic
coupling in a way that modifies all of its a4, ða†Þ4 etc.
components, but we have found this not to work.

EXPLORING HAMILTONIAN TRUNCATION IN d ¼ 2þ 1 PHYS. REV. D 102, 065001 (2020)

065001-17



δVII
nn ¼

ðgLÞ4
242

�Z
ET

4

dE1

Z
ET

4

dE2 −
Z

ET−xs

4

dE1

Z
ET−E1−xs

4

dE2

�
IðE1; E2Þ þ � � � ð5:44Þ

where we have only explicitly written the expression corresponding to two iterated bubbles, and the integrand is given by

IðE1; E2Þ ¼
Φ4ðE1ÞΦ4ðE2Þ

½Ei − ðE1 þ xsÞ�½Ei − ðE1 þ E2 þ xsÞ�½Ei − ðE2 þ xsÞ�
: ð5:45Þ

It is straightforward to write down the integral expression
for a tower containing n iterated bubbles, denoted by the
dots in (5.44).
The counterterm in (5.44) can be computed in a

numerical code up to arbitrarily large numbers of bubbles.
In our implementation below we patch up diagrams
involving up to five overlapping bubbles, i.e., order g10.
The results that we obtain are not sensitive to including
corrections corresponding to patching up larger numbers of
bubbles. This indicates that the remaining cutoff depend-
ence is not dominating our results.

3. Comment on off-diagonal counterterms [17]

Reference [17] stressed a potential problem with off-
diagonal counterterms. The main point is the following. Let
us divide our potential as V → V þ Cð2Þ þ Cð3Þ, where CðnÞ
is a counterterm operator of OðgnÞ and V ¼ OðgÞ. On one
hand, the order Oðg2Þ correction to the energy levels is

VikE−1
ik Vkj þ Cð2Þ

ij ; with i ¼ j; ð5:46Þ

where recall that a sum over k ≠ i is implicit. The off-
diagonal terms of Cð2Þ are not fixed by demanding that
(5.46) is finite when the regulator is removed. On the other
hand the third order correction to the energy levels reads

VikE−1
ik Vkk0Eik0Vk0i þ Cð2Þ

ik E
−1
ik Vkj þ VikE−1

ik C
ð2Þ
kj þ Cð3Þ

ii

− subtraction terms: ð5:47Þ

Thus the Oðg3Þ correction to the energy levels is sensitive
to the off-diagonal terms of Cð2Þ. Now, a natural question
arises about whether we should take care about the off-

diagonal terms of Cð2Þ
ij . Or more generally, what is the

structure of UV divergences in (5.47).22

Let us rephrase the problem from the perspective of
our detailed diagrammatic understanding. We consider
the g2ϕ2 þ g4ϕ4 theory in d dimensions as an instance,
although similar comments apply more generally. As we
have argued above if a hard cutoff in the Hilbert space is
used [like ET], divergent loops embedded in larger

diagrams are cut at energies strictly below the cutoff [for
instance see the first diagram in (5.11)]. Now it is not hard
to imagine a subdivergence arising from an off-diagonal
term of Cð2Þ. For instance, consider the following Oðg2g24Þ
correction to the one particle state’s mass

ð5:48Þ

where ⊗ denotes the counterterm. Indeed, Cð2Þ involves a
diagonal correction to cancel the divergence from diagrams
like

ð5:49Þ

correcting the one particle state at Oðg24Þ.
We see the problem of off-diagonal counterterms as an

instance of the problem of missing states. Namely if the
energy being propagated in between two consecutive
vertices is cut at ET , then the energy of the state being
propagated in a loop depends on where the lines external to
the loop end [these external lines are either or not attached
to the loop].
For instance, returning to the example above, the loop in

(5.48) is cut at El ≤ ET − Eext with Eext ¼ 2m, while the
loop in (5.49) is cut at El ≤ ET . At this order this difference
amounts to a finite scheme piece. However, after embed-
ding these diagrams in higher order ones, Eext may belong
to an energy of another loop. Then, if d ≥ 7=2 the sunset
diagram is power like divergent; and the remaining Eext that
is left uncancelled probes ET energies and introduces new
UV divergences. In this case, one must define a counter-
term that captures this effect, i.e., that adds up the missing
chunk of states Eext to the loop in (5.48). For the theory we
study in this paper [ϕ4 in d ¼ 3], the sunset is logarithmi-
cally divergent, thus the differences between El≤ET−Eext
and El ≤ ET are Oð1=ETÞ; while the vacuum diagrams do
generally suffer from the problem of missing states
[although not necessarily due to off-diagonal contributions
of Cð2Þ] as was carefully analysed in the sections above.
Finally, we stress that if a regulator cuts all the loops

22The subtraction terms in (5.47) are independent of CðnÞ and
thus irrelevant for our main point.
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equally [like covariant regulators do] the problem of
missing states does not arise.

D. Hamiltonian truncation formulation

Having understood perturbation theory with ET cutoff
regularization and its large ET extrapolation, we are now
finally in the position to uplift the perturbative formulation
into Hamiltonian truncation. Thus, we will perturb the free
massive theory by

V ¼ V4 − c2ðETÞV2 −ΩðETÞ with

ΩðETÞ ¼ c0 þ d0 − δVI − δVII: ð5:50Þ

The counterterms c0, d0 and c2 were given in (5.1)–(5.2),
for reference:

c0ðETÞ ∼
−g2L2

96ð4πÞ3
�
ET − 8m log

ET

m

�
;

d0ðETÞ ∼
g3L2

3072ð4πÞ2 log
ET

m
;

c2ðETÞ ¼
−g2

6ð4πÞ2 log
ET

m
:

The c0 and d0 counterterm includes 1=ET pieces to improve
the convergence, the exact form is given in the Appendix C.
We will denote the vacuum and mass counterterms vertices
by⊗. The corrections δVI and δVII are given in (5.38) and
(5.44), respectively. Their role is to add back missing states
that are cut away by the ET regulator. We denote both such
corrections by ⊕.
One difference compared to the ϕ2

3 test in Sec. IV is that
the counterterms that add back missing states depend on the
unperturbed external energy. For example, (5.38) depends
on Ei. Therefore, a separate diagonalization must be carried
out to determine each energy level in the perturbed theory.
We have only shown that the interaction in (5.50) leads

to a finite spectrum as ET → ∞ in perturbation theory.
However, having reached this point we will press on and
implement (5.50) in a numerical routine. We will find that
the method gives sensible results for both perturbative and
also moderately strong couplings.

VI. RESULTS FROM TRUNCATIONS

Next we implement the theory described in Sec. V D in a
numerical code. First we study the dependence of the
results from HT calculations on ET , then we compare the
results for the mass gap extrapolated to ET → ∞ with
the perturbative prediction.

A. ET dependence

In Fig. 4 we show the results obtained for the vacuum
energy and the energies of the first three excited states as a

function of ET , for the theory with g ¼ 18m and L ¼ 4=m.
It is clear that without counterterms the energy levels of the
theory do not converge, and once the counterterms are
included they are well converged. There are small fluctua-
tions in the data, and these are only significant at
ET ≲ 15m.
Notably the vacuum energy only deviates slightly from

zero in Fig. 4. This happens because the theory is fairly
perturbative. We estimate the coupling g� above which the

theory is strongly coupled by demanding that Eð3Þ
0 ¼ Eð2Þ

0 at
this value, leading to g� ¼ 8.3 [see below for further
details]. Since g is comparable to g� and we subtract the
exact vacuum diagrams up to order g3, including their ET
dependence, we have E0 ≃ 0.
The higher energy levels are also extremely flat as a

function of ET , although they differ significantly from their
classical values [i.e., from their values at order g0]. Such
behavior can be understood from the evaluation of the g2

correction to the mass gap at finite ET [this is plotted in
Fig. 9 left of Appendix G]. There is a finite correction at
order g2 as ET → ∞, and at ET ≃ 10 this is within 10% of
its asymptotic value. The correction to the mass gap at g3

converges much more slowly, but for g ¼ 18m it is a factor
of 6 smaller than the g2 piece. In Sec. VII we will show data
that indicates that the mass gap also converges at strong
coupling, albeit more slowly.

B. Comparison with perturbation theory

As a cross check of the truncation calculations we
compare the results obtained at weak coupling to the
perturbative prediction. To do so we compute the mass
gap up to order g3 in perturbation theory. The diagrams that
contribute to the vacuum energy at order g2 are

FIG. 4. The vacuum and low lying energy levels of ϕ4
3 obtained

from a HT calculation as a function of the cutoff ET , for a theory
with g ¼ 18m in a box of size L ¼ 4=m. We show the results with
the compete set of counterterms needed to render the theory finite
[“with C.T.s”], and those obtained when no counterterms are
included [“without C.T.s”].
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ð6:1Þ

and the first excited level gets corrections from

ð6:2Þ

where ⊕ represents the counterterm that adds back in the missing states to the 2-point bubble divergence. Note that due to
adding these states back in, the diagrams in the first bracket of (6.2) are equal to the shift in the vacuum energy of (6.1).
Consequently the g2 correction to the mass gap comes solely from the diagrams in the second bracket of (6.2).
Meanwhile at g3 in perturbation theory the mass gap gets corrections from the diagrams

ð6:3Þ

ð6:4Þ

We evaluate the preceding diagrams with Monte Carlo
integration for a box length L ¼ 4=m. The mass gap is
given by

E1 − E0 ¼ mþ 0.62½g=ð4!mÞ�2mþ 0.11½g=ð4!mÞ�3m
þOðg4m−3Þ: ð6:5Þ

Further details of the perturbative calculation may be found
in Appendix D.
We now compare the perturbative prediction with results

from HT. To do so we extract the mass gap as a function of
ET from truncation calculations for different values of g.
Our numerical power limits us to ET ≤ 33m. At each g we
select data in the range 17m < ET and extrapolate this to
ET → ∞ using a fit of the form

E1 − E0 ¼ α0 þ
α1
ET

þ α2
ET

log

�
ET

m

�
; ð6:6Þ

where α0, α1 and α2 are free parameters. This choice of
functional form is motivated by naive power counting.
Further, in Appendix G we show that this form gives
precise extrapolations for diagrams at low order in pertur-
bation theory.
We estimate the error σ on the ET → ∞ extrapolated

mass gap Δ ¼ E1 − E0 by defining

σ ¼ max ðσfit; jΔ − Δhighj; jΔ − ΔlowjÞ: ð6:7Þ

Here σfit is the uncertainty on the fit of the full data set with
17m < ET ≤ 33m; Δlow is the extrapolated mass gap

obtained when only data up to ET ¼ 30m is used in the
fit, which gives an estimate of the error from our limited
numerical power; and Δhigh is the extrapolated mass gap
obtained when the fit uses only data starting at ET ¼ 20m.
Typically the error from the fit is subdominant relative to
one of the other uncertainties in (6.7).
The extrapolated results for the mass gap are plotted as a

function of g in Fig. 5, where the perturbative prediction at
order g3 is also shown. It can be seen that, as expected, the
truncation calculation asymptotes to the g3 prediction as

FIG. 5. A comparison between the mass gap Δ as a function of
g calculated from HT calculations and the perturbative prediction.
We plot mðΔ −mÞ=ðg=24Þ2 so that the perturbative prediction at
Oðg2Þ is a horizontal line and the Oðg3Þ prediction is the straight
line indicated. Details of the extrapolation of the HT data to ET →
∞ and the error estimates are given in the main text.
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g → 0. The deviation as g increases is consistent with a g4

correction that has a relatively large coefficient.
As a further test, we have repeated the truncation

calculation with different combinations of the counterterms
to cure the primitive divergence and those to add back in
missing states missing. In all cases the results obtained do
not match the perturbative prediction and appear to be
diverging as a function of ET [albeit slowly for sufficiently
small g].

VII. CROSS-CHECK THROUGH
A WEAK/STRONG SELF-DUALITY

In this section we test the numerical power of HT at
strong coupling using a weak/strong duality of the ϕ4

theory, the Magruder duality [28]. We start by deriving the
theory and then we present our numerical results.
For the ϕ4 theory in d ¼ 2 spacetime dimensions there is

a similar weak/strong duality [29] relating the broken and
unbroken phases. The duality has been recently probed
using Hamiltonian Truncation [10] and Borel summation
[30] techniques. Additionally, Ref. [31] studied the strongly
coupled phase of ϕ4 in ½0; T� × S2 manifold and the
Magruder duality using Monte Carlo techniques [working
in the basis of the SOð3Þ harmonics, cutting on spin and
sampling randomly over the Fock space states].

A. Theory

The basic idea is the following, consider the
Hamiltonians23

H¼
Z

L

0

d2xNm

�
1

2
_ϕ2þ1

2
ϕ02þm2

2
ϕ2þ g

4!
ϕ4−

cðΛ;mÞ
2

ϕ2

�

þΩ ð7:1Þ

H0 ¼
Z

L

0

d2xNM

�
1

2
_ϕ2þ1

2
ϕ02−

M2

4
ϕ2þ g

4!
ϕ4−

cðΛ;MÞ
2

ϕ2

�

þΩ0 ð7:2Þ

where Nx corresponds to normal ordering with respect to
mass x and Ω, Ω0 are vacuum counterterms.24 The theory is
regulated with a momentum cutoff Λ, but other sensible
regulators are also possible. The mass counterterm operator
is given by

cðΛ; xÞ ¼ −
g2

6ð4πÞ2 log
Λ
x
; ð7:3Þ

The Hamiltonians H and H0 act on the infinite dimensional
Hilbert space spanned by the free Fock states jEii and the
counterterms ensure that the spectrum of both Hamiltonians
is finite in the limit Λ → ∞. Both theories have the same
value for the volume L · g. At weak coupling, g=m ≪ 1 and
g=M ≪ 1, the theory described byH0 presents spontaneous
symmetry breaking of the Z2 symmetry, while the theory
described by H is in the symmetric phase.
Next we want to relate H to H0. To do so, we need to

express the normal-ordered operators in terms of not-
normal-ordered ones,

Nxðϕ4Þ¼ϕ4−6zxϕ2þ3z2x;

Nxðϕ2Þ¼ϕ2−zx; Nxð _ϕ2þϕ02Þ¼ _ϕ2þϕ02−yx: ð7:4Þ
The functions zx, yx are readily computed taking expect-
ation values of the former expressions—leading to zm ¼
1=L

P
k⃗

1
ωk⃗

and ym ¼ 1=L
P

k⃗
2k⃗2þm2

2ωk⃗
, properly regulated.

Then from (7.4), it follows

Nmðϕ4Þ ¼ NMðϕ4Þ þ 6ZLϕ
2 þ vL ð7:5Þ

where vL and ZL are functions of the volume. We will need

ZL ¼
X
i;j∈Z

ΔðLs⃗ij;m;MÞ

¼m−M
4π

þe−Lm−e−LM

Lπ
þOðe−

ffiffi
2

p
Lm;e−

ffiffi
2

p
LmÞ ð7:6Þ

where ΔðLs⃗ij;m;MÞ≡DðLs⃗ij;mÞ −DðLs⃗ij;MÞ with
Dðr⃗;mÞ ¼ e−jrjm=ð4πjrjÞ, the infinite volume propagator;
while the value of vL is unimportant for our current specific
purposes. Using the matching condition (7.5), we find that
the two Hamiltonians are equivalent when

−
M2

4
−
cðΛ;MÞ

2
¼ m2

2
−
cðΛ; mÞ

2
þ 6

g
4!
ZL: ð7:7Þ

The regulator Λ drops out in the former expression and thus
the duality is maintained when the regulator is removed
Λ → ∞. Let us stress that we have not been careful to match
the cosmological constant of both theories, i.e., Ω ¼
pðΩ0; zx; yxÞ. Therefore when (7.7) is satisfied only the mass
gap and spectra Δi ≡ Ei − E0 of the two theories coincide.
For convenience we define

fg·LðxÞ ¼
1

x2
þ 6

π2
log xþ 3

πx

�
1 −

4x
Lg=4!

e−Lg=ð4!xÞ þ � � �
�

ð7:8Þ

Fg·LðxÞ ¼ −
1

2X2
þ 6

π2
logX

þ 3

πX

�
1 −

4X
Lg=4!

e−Lg=ð4!XÞ þ � � �
�
; ð7:9Þ

23Originally [28] derived the duality at infinite volume and
using a Lagrangian formulation. For our purposes we need to re-
derive it in the Hamiltonian description and at finite volume.

24We normalizeM2=4ϕ2 in order to getM2 mass-square in the
tree-level vacuum.
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where x≡ g
24m and X ≡ g

24M and � � � denote further winding
modes. Many more winding corrections ½expð−Lg=xÞ�n are
easily computed from the definition of ZL, and in our
numerical explorations below we add a large number of
winding modes, safely beyond those needed for the values
of Lg that we will consider. Now,

Fg·LðXÞ ¼ fg·LðxÞ; ð7:10Þ

is equivalent to (7.7). The graph of this functions is shown
in Fig. 6 for various choices of the volume.
Let us discuss the infinite volume limit first, i.e., the left

plot of Fig. 6. We define f∞ ≡ f and F∞ ≡ F. The function
f has a “V” shape, and for X ≳ 4.43 [and L → ∞]
Eq. (7.10) has solutions. For X ≫ 1, the two solutions
are X ≈ x [following the right branch of f] and x ≈
π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 logðXÞp

[on the left branch]. For the first solution
both H and H0 are strongly coupled with x, X ≫ 1; while
for the other branch H0 at strong coupling is dual to a
weakly coupled H theory. Further, the two H theories dual
toH0 are also dual to each other. For example, the red filled
markers in Fig. 6 [left plot] indicated the H theories with
x ¼ 1.8 and x ≈ 4.8 are equivalent, and both are dual to the
H0 theory at X ≈ 5.5, marked with a red circle. Due to the
“V” shape of f there is an infinite continuum of pairs of H
theories that are self-dual. We will exploit this effect by
using relatively large values of f, so that such self-dual
pairs are weak/strong dualities. We will do so at finite
volume, which we describe next.
In Figure 6 right, we show the graph of fg·LðxÞ and

Fg·LðXÞ for ðgLÞ=4! ≈ f13; 18g. For gL ≫ X, x the sol-
utions of (7.7) have a similar two branch “V” shape graph
as the infinite volume result. Therefore, when gL ≫ X, x,
the analysis resembles the infinite volume one, and fg·L
reaches large enough values that horizontal lines in the right
handed plots of Fig. 6 cut the solid curve at x ≪ 1 and
x ≫ 1, showing the existence of weak/strong self-dual H
theories. As gL≳ X, x the solutions of (7.7) have a more
intricate structure than the infinite volume counterpart

duality. In the present work we will not make use of those
further strongly coupled theories.
In the next section we are going to exploit the weak/

strong self-duality of the H theory to crosscheck our HT
results at strong coupling. Namely, we will compute the
spectrum of two self-dual theories and check whether
compatible results are obtained. Despite the two self-dual
Hamiltonians being equivalent it is nontrivial that the two
calculations agree. In the more weakly coupled theory the
Hamiltonian matrix is close to diagonal. Meanwhile in the
more strongly coupled theory there are large off diagonal
terms from the ϕ4 operator and the ϕ2 counterterm. These
off diagonal pieces must combine with the effects of normal
ordering and winding corrections to reproduce the dynam-
ics of a weakly coupled theory. Indeed, given that the
dimensions of the Hamiltonian are different for the two
dual theories at any finite ET the duality only holds in the
ET → ∞ limit. We are therefore also testing the accuracy of
our extrapolations.
In the future it would be interesting to study the duality

between a theory with a positive mass squared parameter
and one with a negative mass squared parameter. It may
also be interesting to compare the vacuum energies or the
energies of the higher excited states in the two theories.

B. Numerical results

Rather than simply comparing a particular pair of dual
theories, we consider the family of theories withm ¼ 1 and
varying g. As before we fix L ¼ 4, and for this value a dual
theory exists for any g≳ 54.25 We denote the mass in the
dual theory by m̃ and its coupling strength is characterized
by g=m̃. The self dual point is at g ¼ 68.7. For g smaller
than this m̃ < 1, so the dual theory is more strongly
coupled than the original. For larger g the dual theory is
more weakly coupled, and for g → ∞, m̃ → ∞ so the dual

FIG. 6. Left: solutions of the duality equation (7.10) are infinite volume. Red dots correspond to two symmetric theories that are dual
to each other and to the H0 theory signaled with a red circle. Right: solutions of the duality equation (7.10) for ðgLÞ=4! ¼ f13; 18g.

25Note that this is a finite volume effect due to the turn over of
the right branch in Figure 6 right, and in the infinite volume limit
the dual theory exist for any g.
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theory reaches the perturbative regime. In this limit, the
mass gap of the theory can be found by replacingm with m̃
in (6.5).
For each value of g we calculate the mass gap up to the

limit of our numerical power ET ¼ 33m. As in section VI,
we select data with ET > 17m, and extrapolate to ET → ∞
with a fit of the form (6.6).26 We use the same fit form in the
dual theories, however the growth of the Fock space with
ET changes with m̃. As a result, we adjust the lower limit on
the range of ET used for the fit, so that data with significant
fluctuations is excluded. The maximum accessible ET=m̃
also changes, and it is largest for the smallest m̃. We
estimate the uncertainty on the extrapolated mass gaps as
in (6.7).27

For very large m̃ it becomes numerically inefficient to
carry out the truncation calculation, since ET ≫ 4m̃ cannot
be reached. Instead, by dimensional analysis we relate a
theory with large m̃ to a theory with m̃ ¼ 1 in a box of size
L0 ¼ 4m̃ with coupling g=m̃. For L0 > 10 we assume that
this theory is close to the infinite volume limit. Its spectrum
can be approximated by that of the same theory except with
the box size shrunk to L0 ¼ 10, for which HT is computa-
tionally easier. Finally, the results are related back to the
large m̃ theory. This trick caps the numerical difficulty as g
grows. Choosing the maximum L0 ¼ 10 it applies to the
dual theories with g≳ 110.
The results for the extrapolated mass gap in the original

and dual theories are plotted as a function of g in Fig. 7. The
same data, shown zoomed in, is plotted in Fig. 8 left. When
the original theory is weakly coupled enough that it
matches the perturbation theory prediction there is no dual
theory. In the range from g ¼ 54, when the dual theory first
exists, up to g ¼ 100 there is good agreement between the
two theories. For g > 100 the dual theory approaches its
perturbative prediction, but the original theory deviates. We
note that even at g ≃ 300 in the dual theory g=m̃ ≃ 30 is not
tiny. The relative difference between the HT calculation of
the mass gap in the dual theory and the perturbative
prediction is comparable to the deviation from the pertur-
bative predictions in the original theory at small g=m.
The agreement between the two theories is best, and the

uncertainty on the result from the dual theory is smallest,
when g=m̃ is largest. This is because m̃ is minimized at this
point, and large values of ET=m̃ can be reached computa-
tionally. As a result, the extrapolation to ET → ∞ is more
precise, despite the relatively strong coupling. In the region
g=m̃ ≃ 50 the results from the dual theory have large
uncertainties. Such theories are both strongly coupled
and also have a large m̃ so only small values of ET=m̃

can be accessed. At even larger g≳ 110, the trick discussed
keeps the maximum accessible ET=m̃ constant. Since the
dual theory becomes gradually more weakly coupled the
uncertainty becomes gradually smaller as g increases.
At large g=m the estimated errors on the results from the

original theory are not big enough to include the HT results
in the dual theory [and at large enough g, the perturbation
theory in the dual theory]. This indicates that our approach
to estimating the errors breaks down. The reason is that at
such large coupling the mass gap is not close to converged
for the accessible ET . Instead we are simply fitting a
downward slope, and adjusting the range of the fit does not
capture the qualitative change that must happen at ET
beyond our numerical reach.
In Fig. 8 right we show the mass gap at finite ET , and the

extrapolation to ET → ∞, for the original and dual theories
at the particular value g ¼ 94. The data in the dual theory
has less variation with ET than the original theory, which is
expected since the dual is more weakly coupled. However,
both are converging toward the same finite value in the
large ET limit. The extrapolations from the reduced datasets
that are used to estimate the uncertainties are also plotted.
We note that if this calculation is attempted without

including the counterterms to fill in the missing states there
is no finite range of g over which the dual theories agree.
The deviation of the original theory at g=m≳ 100 [in
Fig. 7] could be a result of our limited numerical reach in
ET . Alternatively, it could be a scheme dependent effect,
which we comment on in appendix F.
The agreement between the original and dual theories

over a substantial range of g is an encouraging sign for the
power of the truncation method. Indeed, the agreement
persists until the original theory is fairly strongly coupled

FIG. 7. The mass gap in the original [m ¼ 1] and dual theories
as a function of g, calculated using HT. The strength of the
coupling in the dual theory g=m̃ is also indicated. There is a
substantial range of couplings where the two calculations agree.
The perturbation theory prediction at order g3 in the original and
dual theories is also shown. The same data, zoomed in to the
dashed black box, is plotted in Fig. 8 left.

26Fitting the data with a function α0 þ α1=ET þ α2=E2
T , with

α0,α1,α2 free parameters leads to results that are sometimes
outside the error bars that we quote. However, the CM duality
works less well for this choice of extrapolation.

27In the dual theory we adjust the definition of Δhigh and Δlow
to account for the different growth of the basis size with ET .
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with g=m ≃ 100 while the dual theory has g=m̃ ≃ 50 at this
point. It is also interesting that there is a small dip around
g ¼ 90 in both theories. Preliminary investigation indicates
that for larger box sizes this dip may be deeper. This could
signal the infinite volume theory having a phase transition
to the broken phase at some intermediate coupling.

VIII. SUMMARY AND OUTLOOK

In the present work we have analyzed Hamiltonian
truncation with UV divergent interactions, focusing our
attention on the ϕ4

3 perturbation in d ¼ 2þ 1.
We began by analysing Hamiltonian perturbation theory

in detail. In particular, we have found that disconnected
vacuum diagrams should cancel in an intricate manner
but that such cancelation is spoiled if the HT regulator is
used, introducing new UV divergences. We proposed a
solution that consists of adding back the states that the ET
regulator cuts away, so that all loops are cut at the same
energy. Then, we proceeded to formulate HT and we
devoted the rest of the paper to inspecting the spectrum
of the ϕ4 theory at weak and strong coupling. We have
cross-checked the strongly coupled spectra through a weak/
strong self-duality. The strategy and techniques that we
have developed will be useful for many other relevant
perturbation in d > 2 spacetime dimensions.
Given the good quality of our numerical results, we think

it is worthwhile to press on and further develop the theory
underlying the HT idea. Our Patch II may be seen as
temporary fix and thus we look forward to more elegant
solutions.
Another possible avenue consists of introducing an

auxiliary momentum cutoff. Namely, consider introducing
amomentum cutoffΛ such thatm ≪ Λ ≪ ET .When taking
the limit ET → ∞ with Λ kept fixed, the theory is regulated

with a single momentum cutoff Λ, all loops are cut equally,
and thusmany of the problemswe discussed associated with
the noncovariant regulator are not present. Then, the idea
would be to perform the two extrapolations one after the
other: ET → ∞ first and Λ → ∞ second. We have done
some preliminary study of this idea, and even using high
performance computing resources it appears computation-
ally challenging, because for each fixed Λ we must reach
ET ≫ Λ. Additionally, the maximum values of ET that can
be reached vary dramatically withΛ, which has the potential
to lead to substantial systematic errors in the Λ → ∞
extrapolation. Moreover, at any finite ET there will always
be diagrams of the form (5.15) in which the upper bubble is
cut by ET rather than Λ and will consequently fail to cancel
with the corresponding counter term diagram. Dedicated
careful analysis would be essential to determine if the two
extrapolation procedure is well defined at strong coupling,
or if state dependent counterterms remain necessary.
Next we comment on other directions that we think are

worth pursuing.
A key issue for future work will be developing further the

theory of improvement terms in d ≥ 2þ 1. The state of the
art analysis is [13]. In our present work, we have shown
the power of such improvement terms in d ¼ 2þ 1 in the
context of the ϕ2 perturbation—see e.g., the blue line of
Fig. 2 left.
It will be fascinating to analyze conformal perturbation

theory with a TCSA like cutoff at high order. In view of
our results, starting at fourth order the effect of missing
states should kick in for a vanishing diagonal interaction.
Meanwhile for a nonvanishing diagonal interaction, the
effect arises at third order. We look forward to developing
this in the near future. Interesting work on conformal
perturbation theory with a TCSA-like cutoff has been
carried out in [17].

FIG. 8. Left: The same data as Figure 7 focusing on the region where the original and dual theories overlap. Right: the results at finite
ET obtained from HT calculations in the original and dual theories for g ¼ 94, corresponding to the red dot in the left figure. The
extrapolation to ET → ∞ is also shown, and the data used for this is plotted with solid points. The partially transparent points at small ET
have large fluctuations and are not used for the fit. The extrapolations using data with a smaller maximum ET or with a larger minimum
ET are plotted with dashed lines. As discussed below (6.7) these are used to estimate the uncertainty on the ET → ∞ mass gap.
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Similar comments apply to the conformal truncation
framework [5]. However, in the light cone, diagrams in
which particles are created out of the vacuum are removed
[21]. Thus, we expect that in the conformal truncation
framework some of the problems that we have found will
be ameliorated.
A tangential but interesting avenue is the one pursued in

[32]. There, precise results for the ϕ4
2 perturbation were

reproduced using Borel series summation techniques. It
would be worthwhile to carry out this analysis in d ¼ 3

exploiting that the ϕ4
3 perturbation is Borel summable (for a

recent reassessment see [33]), and to compare with our
findings. In practice however, this may require a further
development on the HT side that we comment on next.
Finally, but not the least, an important aspect that requires

a dedicated study is the large volume extrapolation. As the
coupling of the V ¼ g

R∞ ϕ4 perturbation is increased, a
phase transition where the symmetry Z2∶ϕ → −ϕ is spon-
taneously broken can be reached. At the critical point, the
theory belongs to the universality class of the 3D Ising
model. Therefore, it would be interesting to measure
observables of the critical theory using HT. We warn the
reader of the orthogonality catastrophe of the states as the
volume is sent to infinity. Recently such effects have been
studied in the HT context for d ¼ 2 spacetime [15].
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APPENDIX A: BASIS OF STATES ON
A SQUARE TORUS

The symmetry of a square torus is a non-Abelian finite
group G of Oð2Þ. There are 8 elements in this group that
can be represented as

G ¼ fI; X; Y; S; S2; S3; XS; YSg ðA1Þ

where S is a rotations by π
2
, X, Y are reflection with respect

to horizontal (vertical) axis, and XS, YS are reflections with
respect to the diagonals.
The group multiplication table can be compactly sum-

marized by

X2 ¼ I; S4 ¼ I; S−1XS ¼ Y: ðA2Þ

The maximal Abelian subgroups are Z2 × Z2 and Z4,

Z2 × Z2∶fI; X; Y; S2g ðA3Þ

Z2 × Z2∶fI; XS; YS; S2g ðA4Þ

Z4∶fI; S; S2; S3g ðA5Þ

G is the semidirect product of two Abelian subgroups,
G ¼ N⋊H, where N is a normal subgroup (invariant under
conjugation). Those can be chosen as

N ¼ Z4 ¼ fI; S; S2; S3g ðA6Þ

H ¼ Z2 ¼ fI; Xg: ðA7Þ

Therefore, the singlets of the full group can be found by
choosing states such that Xjψi ¼ Sjψi ¼ jψi. It is likely
that the ground state and low energy states are singlets ofG,
since in perturbation theory the ground states, and the
lowest one-particle and two-particles states are all singlets.
The three lowest energy states obtained when diagonal-

izing the complete Fock space are all singlets up these
symmetries. The energy of these states can be obtained
efficiently by considering a reduced Fock space.
Given the most general noncovariant Fock-space state

jψi, a singlet can be simply constructed as

jψSi¼ 1ffiffiffi
8

p ðIþXþYþSþS2þS3þX ·SþY ·SÞjψi: ðA8Þ

However, the normalization is obviously wrong when the
Fock-space state is invariant under some (or all) of the
symmetries. There are four distinct cases we must consider:

(i) jψi is already invariant under S, but not invariant
under X. In that case, the right normalization is

jψSi ¼ 1ffiffiffi
2

p ðI þ XÞjψi ðA9Þ

(ii) jψi is only invariant under A ¼ X; Y; XS; YS. Then
the invariant state is

jψSi ¼ 1ffiffiffi
4

p ðI þ Sþ S2 þ S3Þjψi ðA10Þ

(iii) If jψi is invariant under both A ¼ X; Y; XS; YS and
S2 then

jψSi ¼ 1ffiffiffi
2

p ðI þ SÞjψi ðA11Þ

(iv) If jψi is invariant only under S2 then

jψSi ¼ 1ffiffiffi
4

p ðI þ X þ Sþ XSÞjψi ðA12Þ
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APPENDIX B: PERTURBATION THEORY

1. Principal equations

In this appendix we give a simple derivation of (3.2). To
do so we need to derive an exact effective Hamiltonian. We
separate the Hilbert space asH ¼ H1 ⊕ H2. The states are
projected as P1jyi¼jy1i∈H1 and ðI−P1Þjyi¼jy2i∈H2.
Operators are projected as usual Oij ≡ PiOPj with
i; j ∈ f1; 2g. Then, projecting the eigenvalue equation
HjEi ¼ EjEi into the two subspaces we get

H11jE1i þH12jE2i ¼ EjE1i;
H21jE1i þH22jE2i ¼ EjE2i: ðB1Þ

Next we substitute jE2i ¼ ðE −H22Þ−1H21jE1i from the
second equation into the first one and we are led to

�
H11 þ V12

1

E −H022 − V22

V21

�
jE1i ¼ EjE1i: ðB2Þ

Now, restricting the H1 Hilbert space to a single state
jEii, the generalized eigenvalue equation in (B2) simplifies
into the following equation

½H0 þ V�ii þ Vik½E −H0 − V�−1kk Vki − E ¼ 0; ðB3Þ

where the sum over k ≠ i is implicit.28 All the roots E of the
former equation are the eigenvalues of H0 þ V. Then upon

plugging in the perturbative ansatz Ei ¼
P

n g
nEðnÞ

i in (B3)

and solving for EðnÞ
i , by consistently equating powers of V,

Eq. (3.2) follows. Thus in generalwe have the form (3.1), i.e.,

EðnÞ
i ¼ hEijVð½Ei −H0�−1VÞn−1jEii − subtraction terms.

For instance, the first few terms read

EðnÞ
i ¼ Vik1Vk1k2 � � �Vkni

Eik1Eik2 � � �Eikn−1

− Eð2Þ
i

Vik1Vk1k2 � � �Vkn−2i

Eik1Eik2 � � �Eikn−3

Xn−3
s¼1

1

Eiks

− Eðn−2Þ
i VikE−2

ik Vki þ � � �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

subtraction terms

: ðB4Þ

2. Cancellation of disconnected two-point bubbles

Next wewant to prove a claim that we made in Sec. V B 1:
namely that disconnected two point bubble diagrams cancel.
The proof is based on a recursive argument. First we
consider a general nth order diagram contributing to
the first term in (B4). Thus, this diagram can have any
external number of lines and can be either connected or
disconnected—including possibly containing further two-
point bubbles. Next we dress the diagram with a two point
bubble in every possible way, i.e., the disconnected two-
point bubble spanning from zero to any number of vertices.
Finally, we need to show that the sum of all such dressings
imply that the two-point bubble factors out and cancels
against the second and third term in (B4). Then, it will follow
that no diagrams with disconnected two point bubbles
survive after doing the sum of the subtraction terms in
(B4) at any order n.
The dressing of a diagram by a two-point bubble in any

possible way is done as follows. First we can dress the
diagram by inserting the bubble in between any two
consecutive vertices

Xn−1
j¼1

1

xj

1

xj þ E

Yn−1
i¼1

1

xi
; ðB5Þ

where x0 ¼ xn ¼ 0 and where E is the energy propagating
in the bubble while xk is the energy of the other states being
propagated in between the vertices. For instance, diagra-
matically a fixed j ¼ j� contribution in (B5) looks like

ðB6Þ

Next the two-point bubble can span p vertices in all the
following possible ways

fðpÞ ¼
Xn−p
j¼0

Yp
s¼0

1

xjþs þ E

Yj
i¼1

1

xi

Yn
i¼jþp

1

xi
: ðB7Þ

Finally, upon adding ðB.5Þ þP
n
p¼1 fðpÞ we are led to

1

E

Yn−1
j¼1

1

xj

Xn−1
i¼1

1

xi
þ
Yn−1
j¼1

1

xj

1

E2
: ðB8Þ

The former equation has precisely the form of the sub-
traction terms in (B4). Indeed, the first term of the former
equation should be interpreted as the first term of the
subtraction terms in (B4)—with 1=E signifying the two-

point bubble contribution to Eð2Þ
i While the second term of

the former equation is identified with the second term of the
subtraction terms. Thus we have established that diagrams

28Note that indices in (B3) denote matrix elements, while the
indices in (B2) denote the projectors.
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containing disconnected two point bubbles do not contrib-

ute to EðnÞ
i .29 This is of course expected from a covariant

Lagrangian calculation, but it is fun to see the intricate way
in which it is realized in noncovariant Hamiltonian per-
turbation theory. Following a similar logic, our proof could
be extended to show that all disconnected vacuum diagrams
cancel.

APPENDIX C: CALCULATION
OF COUNTERTERMS

In this appendix we provide details on the calculation of
the counterterms in (5.1) and (5.2). The Oðg2Þ vacuum
diagram is given by

ðC1Þ

where we are using the notation introduced immediately
after (3.16). Namely, all the sums include relativistic
normalization, they are performed over all the momenta
and are restricted such that the propagating states have
energies smaller or equal than ET .

30 Since the frequencies
are restricted to ωk1 þ ωk2 þ ωk3 þ ωk4 ≤ ET , we can
introduce the factor 1 ¼ R

ET
m dEδðE − ΣiωkiÞ in the inte-

grand. Then, after switching the order of integration, we are

led to ðC1Þ ¼ − g2L2

24

R ET
4m

dE
2π

Φ4ðEÞ
E , where Φ4 is the four-

particle phase space, given in (3.9). Note that the vacuum
energy (C1) is UV divergent in the limit ET → ∞. The UV
divergence of the vacuum energy density can be evaluated
at infinite volume. The infinite volume phase space is given
by (3.10). Therefore, we get

ðC1Þ ¼ −ðgLÞ2 ET þ 8m log ðm=ETÞ
96ð4πÞ3 þOðE0

TÞ: ðC2Þ

The d0 counterterm calculation proceeds as follows.

ðC3Þ

where the symmetry factor is given by the m¼n¼p¼2 of s4mnp=4!3¼1=½ð4−m−nÞ!ð4−m−pÞ!ð4−n−pÞ!m!n!p!�.
Equation (C3) leads to a logarithmicUVdivergence asET → ∞. Different regularization schemes likemomentumcutoff, short
distance cutoff or ET cutoff differ by OðE0

TÞ. The coefficient of the log divergent piece of (C3) can be computed at infinite
volume [up to the overall extensiveL2 factor] by introducing the phase-space functionsΦn. In covariant perturbation theory the
Oðg3Þ correction to the vacuum is given by

g3

3! · 8

Z
∞

−∞
dτ1dτ2

Z
∞

−∞
d2y1d2y2Δ2ðy⃗1; τ1ÞΔ2ðy⃗2; τ2ÞΔ2ðy⃗1 þ y⃗2; τ1 þ τ2Þ: ðC4Þ

The former expression can be written as ðC.4Þ¼ g3

8

R∞
−∞

d3k
ð2πÞ3ρ

3ðkÞ where we have defined ρðkÞ¼ 1
3!

R∞
−∞dτ

R∞
−∞Δ2ðzÞeik·z⃗d2z.

Given ΔðzÞ ¼ e−mjzj=ð4πjzjÞ, we get ρðkÞ ¼ 1
3!

1
8k þ � � �. Therefore,31

ðC.3Þ ¼ 1

3!

g3L2

29ð4πÞ2 logðET=mÞ þOðE0
TÞ: ðC5Þ

Finally, the mass gap Eð2Þ
1 − Eð2Þ

0 at Oðg2Þ is given by

ðC6Þ

30In the case at hand the notation means
P ¼ P

kis:t: Ein≤ET
1=

Q
j 2L

2ωkj where Ein ¼ ωk1 þ ωk2 þ ωk3 þ ωk4 .

29Clearly, (B5) and (B7) should be multiplied by kinematical factors to get the proper diagrams. But such factors are common to (B5)
and (B7) and thus they are irrelevant for our main point.

31This result agrees with dimensional regularization or momentum cutoff regularization, which can be found elsewhere in the
literature, see for instance Eq. (C7) of Ref. [34].
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where, as drawn in the former twodiagrams,weneed to take into account that there are twopossiblevertex orderings.Again,we
can evaluate theUVdivergence of the former expression by introducing the phase spaceΦ3 at infinitevolume.Then, in the limit
m ≪ ET we get

ðC.6Þ ¼
�
−

g2

96π2
logðET=mÞ þOðE0

TÞ
�
· hmjV2jmi: ðC7Þ

APPENDIX D: PERTURBATIVE MASS

In this appendix we give details on the computation of the mass gap and vacuum energy in Hamiltonian perturbation
theory with the ET regulator. We do the calculation up to Oðg3Þ. Note that Vnn × VnkðEn − EkÞ−2Vkn ¼ Oðg4Þ, since the
only nonvanishing terms are hnjCjni ¼ Oðg2Þ. Thus we are left to compute the zero, one, two and three point functions. The
vacuum and first excited states are given by

ðD1Þ

ðD2Þ

Where the diagrams are given by the following expressions:

ðD3Þ

ðD4Þ

ðD5Þ

ðD6Þ

ðD7Þ

ðD8Þ
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ðD9Þ

ðD10Þ

ðD11Þ

ðD12Þ

ðD13Þ

ðD14Þ

ðD15Þ

ðD16Þ

ðD17Þ

ðD18Þ

The sums in the previous expressions are over all momenta and involve relativistic measures, namely
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X≡ X
all ki

s:t: Ein≤ET

1

2L2ωki

; ðD19Þ

where Ein is the energy of the sate propagating between any
to given consecutive vertices. Many of this expression can
be computed analytically while other can be easily evalu-
ated numerically with your favourite package. We used
VEGAS, a PYTHON package that implements Monte Carlo
integration. Combined, the results lead to Eq. (6.5) in the
main text.
Note that the diagrams in (D17) are logarithmically UV

divergent. Indeed, in the limit ET ∼ ki ≫ q, p ∼m, they
combine into

ðD.17Þ ¼ g3

6

XL2δqþp;0

ωp þ ωq

X L2δk1þk2þk3þp;0

ωk1 þ ωk2 þ ωk3 þ ωp

þOð1=ETÞ

¼ −
gc2
4

XL2δqþp;0

ωp þ ωq
þOð1=ETÞ;

and, unsurprisingly the UV divergence cancels against
diagram (D11).

APPENDIX E: ALGORITHMIC
IMPLEMENTATION

Our implementation of the truncation calculation largely
follows that described in [15], with some additional
complications due to having one extra dimension and from
the counterterms needed to patch up for missing states.
We first construct a basis of all states with momenta

purely in the first quadrant. A zero momentum state is then
represented in terms of these states rotated into each of the
quadrants [along with zero momentum quanta]. When
computing the Hamiltonian matrix, the vast majority of
the overlaps between states vanish, i.e., the matrix is
extremely sparse. The key algorithmic requirement is that
excessive time is not spent computing matrix elements that
turn out to be zero. To avoid this we initially compute the
states that can be produced from each basis element when
n ¼ 1, 2, 3, 4 creation or annihilation operators applied.
The results of this are stored as maps [or dictionaries] with
the momentum change as the keys. Many of the numerical
quantities involved in the matrix elements can also be
computed in advance and stored in maps. Used together
these allow only nonzero matrix elements to be computed,
and such computations amount to simply multiplying a
handful of previously saved numbers.
The counterterms that correct for missing states can be

straightforwardly calculated in the code. We replace inte-
grals with sums over states so that finite volume corrections
are captured. Then the counterterm fixing a single two-
point bubble with vertices consecutive in time, (5.38), is
given by

δVI
nn ¼

X
4

V04V40

Eiðnþ4Þ
; ðE1Þ

where 4 represents a 4-particle state, and the sum is
restricted to states such that ET − En < E4 ≤ ET . The
counterterm corresponding to towers of overlapping two-
point bubbles can be calculated via matrix products. For
example, the part of (5.44) that corresponds to two iterated
bubbles is given by

δVII
nn ⊃

X
4;40

V04V4ð4þ40ÞVð4þ40Þ40V400

Eiðnþ4ÞEiðnþ4þ40ÞEiðnþ40Þ
; ðE2Þ

where 4 and 40 represent the four particle states that make up
to the two bubbles. The sum is restricted to 4 and 40 such that
at least one ofE4>ET−En andE40 > ET − En is satisfied.

32

In our numerical calculations we also include a counter-
term δVIII

nn that accounts for the missing states in the three-
point vacuum bubble diagram. This is not needed for a UV
finite theory, and in practice only leads to extremely minor
change to the numerical results, but it does slightly simplify
the Monte Carlo integration in Appendix G. We have
checked and find that adding further corrections to account
for other classes of missing states [scaling either as E0

T or as
1=En

T with n > 1] also does not significantly change the
numerical results that we show in Secs. VI and VII.
Efficient algorithms for finding the smallest few eigen-

values of sparse matrices are well known, and we simply
use the library Eigen. In our implementation the majority of
the computational time is spent obtaining the eigenvalues
themselves from the Hamiltonian matrix, although calcu-
lating the state dependent counterterm corresponding to the
towers of vacuum bubbles is also expensive. On a personal
computer we reach basis sizes of order 106, and using a
single node of a high performance cluster we are limited to
basis sizes ≲107. At the maximum basis size the lowest
eigenvalues can be computed in approximately an hour. We
are unable to access larger basis sizes due to memory
limitations on the size of the Hamiltonian matrix itself
[despite being stored in sparse form].

APPENDIX F: FINITE MISMATCH PIECES

In the main text we focused on, and corrected for, new
UV divergences due to an ET regulator. In this appendix,
we consider effects introduced by such a regulator that
remain finite as ET → ∞. First in Appendix F 1 we identify
the types of diagram that lead to such corrections. Then, in

32The counterterms δVI
nn and δVII

nn are computationally ex-
pensive to implement since they must be calculated for each
energy En individually. In practice we compute the counterterms
once for state energies En ¼ 0; m=10; 2m=10;…; ET and store
the results. Then when inserting the counterterms into the matrix,
for a state En we simply use the nearest saved value. We have
checked this makes no difference to the numerical results.
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Appendix F 2 we argue that the weak/strong duality tests
how important such finite corrections are for our numerical
results from HT.

1. Sources of finite regulator dependence

The sources of finite corrections can be identified by
continuing the analysis in Sec. V B. Only diagrams with at
least one UV divergent subdiagram can be sensitive to the
regulator, so the possibilities are limited.
All classes of diagrams analysed in V C that give extra

UV divergent pieces also give finite corrections. Our
patches in Sec. V C account for the missing states in the
divergent parts of such diagrams, for example the upper
bubble of (5.23). So there is no finite correction from the
ET regulator on this loop.
However, there can be finite corrections from the other,

unpatched, loops, e.g., the lower bubble in (5.23). This can
be seen by considering a simplified version of the diagram
with just an state of energy xs below

ðF1Þ

where the second diagram corresponds to the counterterm
adding back in states to the upper bubble. Regulating the
lower loop by ET − Xs

ðF.1Þ ¼ −sym
Z

ET−Xs

4

dx1
Φ4ðx1Þ
x21

Z
ET

4

dx2
Φ4ðx1Þ
x1 þ x2

; ðF2Þ

where sym is the symmetry factor, and x1 and x2 are the
energies in the lower and upper bubbles, and the x2 integral
extends to ET due to the patch up. Carrying out the integrals
and expanding at large ET we find a finite sensitivity to Xs.
On the other hand, there is no finite piece from the un-
patched sunset bubble in (5.22), due to the faster con-
vergence of the lower loop in this case.
There are also diagrams that do not result in UV

divergent contributions but do give finite pieces. For
example, this happens when a two-point vacuum bubble
with its vertices consecutive in time is inserted above a
convergent diagram. Indeed, we have already seen this in
(5.29). Such diagrams are automatically fixed by (5.38).
Meanwhile in (5.31) the sunset diagram and the three-point
vacuum bubble do not give such finite pieces.
Finite pieces also arise when the two-point vacuum

bubble crosses one of the vertices of a logarithmically
divergent diagram. For example,

ðF3Þ

gives gEi
ðxsÞ ∼ x0s in (5.26) [where xs is the energy in the

sunset loop]. Extracting the part of (F3) that depends on Xs,

and setting Xs ¼ xs, the finite correction is evident. Further,
a tower of two point bubbles crossing a vertex of the sunset
diagram gives a similar correction. The same happens when
a two-point bubble, or a tower of these, crosses one of the
vertices of the vacuum three-point bubble [calculating the
correction analogously to (5.25), we see that this could
either be one of the outer vertices or the central one]. Such
effects are not corrected by our patches.
Finally, finite pieces are produced when a sunset diagram

has both vertices spanned by a two-point vacuum bubble,

ðF4Þ

given by

ðF.4Þ¼−sym
Z

ET

4

dx4
Φ4ðx4Þ
x24

Z
ET−X4

3

dx3
Φ3ðx3Þ
ðx3þx4Þ

; ðF5Þ

where x3 and x4 are the energies in the sunset and two-point
bubble respectively. Then the dependence on the regulator
can be extracted from the leading term proportional to X4.
Dropping order 1 factors for clarity, this scales as

∼
Z

ET

4

dx4
Φ4ðx4Þ
x24

�
X4

ET

�
; ðF6Þ

so after setting x4 ¼ X4 a finite piece remains.33

Carrying out a similar analysis for the subtraction terms
shows that these also generate extra finite piecesOðE0

TÞ that
are sensitive to the ET cutoff regulator.
Although finite corrections in themselves do not prevent

the theory being well defined as ET → ∞, it might be
wondered what happens once they are embedded in more
complex diagrams. We have checked these effects in
diagrams of up to Oðg8Þ and we have not identified any
such structures in the perturbation theory that are danger-
ous. An all orders proof and general understanding of this
would be very desirable in the future.

2. Finite pieces and the weak/strong self-duality

As mentioned in Sec. VII, as well as testing the
numerical power of HT, the weak strong duality plays a
second important role: it tests how large the effect of finite
corrections due to the ET regulator is. The duality does so
because the regulator dependent corrections to the mass gap
of a theory depends on the particle’s unperturbed mass.
Consequently, the values of the finite corrections will differ
between the original and dual theories.
For example, consider the diagram (F1) but with the state

below the bubbles simply a single particle state. Then the

33An analogous calculation shows that a two-point vacuum
bubble spanning two, or all three, of the vertices of a three-point
vacuum bubble does not give a finite contribution.
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lower bubble is cut by ET − Xs where due to the ET
regulator Xs. Once the corresponding integrals are evalu-
ated and the Xs dependence is extracted, it can be seen that
the finite correction is proportional to the particle’s unper-
turbed mass.
Since we find that the original and dual theories give

results that agree well over an extended range of couplings,
we conclude that finite pieces are not playing a major role.
Consequently, at least up to g ≃ 100, we are working in a
scheme that could be reproduced in a calculation with a
covariant regulator to reasonable accuracy.

APPENDIX G: MONTE CARLO INTEGRATION
OF LOW ORDER DIAGRAMS

In this appendix we evaluate diagrams at low order in
perturbation theory in ϕ4 in 2þ 1 dimensions using
Monte Carlo integration. By doing so we confirm that
HT results at relatively small ET can be accurately
extrapolated to the ET → ∞ limit. We also find that form
(6.5) leads to a more precise extrapolation than possible
alternative choices.
In the Monte Carlo integrals we implement exactly the

same ET cutoff as occurs in a truncation calculation, and we
study the dependence of the diagrams on ET . Unlike
truncation calculations, Monte Carlo integration can reach
large values of ET , although each diagram must be
calculated individually.34 The counterterms to remove the
primitive divergences, and to add back in missing states in
these integrations, are taken to be identical to those that we
use in truncation calculations.
The diagrams that contribute to the mass gap at order g2

and g3 are given in equations (6.1)–(6.4). Although not
necessary to obtain a finite UV theory, we add back in the
contribution from the missing states to the disconnected
3-point bubble. As a result such a diagram cancels between

Eð3Þ
1 and Eð3Þ

0 in the calculation of the mass gap at finite ET
as well as in the large ET limit.
We calculate all of the preceding diagrams with

Monte Carlo integration for a box length L ¼ 4=m. The
results are shown as a function of ET in Fig. 9. The
prediction for the mass gap in the limit ET → ∞, (6.5), is
obtained by extrapolating the data including all values of
ET . The Monte Carlo results obtained are relatively smooth
once ET is not too small, which is compatible with the HT
results shown in Fig. 4.
To test the potential power of the truncation method, we

select only those Monte Carlo data points that can be
reached in our truncation code. For L ¼ 4=m this corre-
sponds to those with ET < 34m. We also exclude points
with ET < 17m since these have large fluctuations. We fit
such data points with a function of the form of (6.6). The
results of these fits and their extrapolation to large ET are
shown in Fig. 9.
At the values of ET that are accessible in truncation

calculations the g2 correction reaches within 5% of its
asymptotic value. The extrapolation of this to ET → ∞
gives a prediction that coincides with the full result to
better than 0.1% accuracy. In contrast, at the accessible ET

the g3 correction is not only far from its asymptotic
value but even of opposite sign. Despite this, the
extrapolation of the g3 correction from the small ET
data matches that of the full data set to within 3%. The
results obtained for the vacuum energy are qualitatively
and quantitatively similar. For both the mass gap
and the vacuum energy calculations, we find that the
functional form (6.6) gives a more accurate extrapolation
than if the α2 part is excluded, or if this is replaced by a
piece α2=E2

T .
As discussed in Sec. VI, we estimate the coupling g�

above which the theory is strongly coupled by demanding

that Eð3Þ
0 ¼ Eð2Þ

0 at this value, which gives g� ¼ 8.3. The g3

correction to the mass gap is suppressed relative to the g2

correction at this value. However, most of this suppression

FIG. 9. Data from Monte Carlo integration of perturbation theory diagrams showing the convergence of the g2 (left) and g3 (right)
corrections to the mass gap Δ ¼ E1 − E0 as a function of the energy cutoff ET in ϕ4 theory in 2þ 1 dimensions for a box size L ¼ 4=m.
We indicate values of ET that are accessible and not accessible in HT calculations, and the extrapolation of the former.

34We use the PYTHON package VEGAS for our Monte Carlo
results.
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is due to an accidental (one in four) cancellation between
convergent subsets of diagrams. Taking each convergent
subset individually, our estimate of strong coupling based
on the mass gap would be g� ∼ 30.

Unlike Monte Carlo integration of diagrams, a trunca-
tion calculation is not perturbative in g. Nevertheless, the
MonteCarlodata is apositive indication thatprecisenumerical
results can be obtained from truncation calculations.
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