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If time travel is possible, it seems to inevitably lead to paradoxes. These include consistency paradoxes,
such as the famous grandfather paradox, and bootstrap paradoxes, where something is created out of
nothing. One proposed class of resolutions to these paradoxes allows for multiple histories (or timelines)
such that any changes to the past occur in a new history, independent of the one where the time traveler
originated. We introduce a simple mathematical model for a spacetime with a time machine and suggest
two possible multiple-histories models, making use of branching spacetimes and covering spaces,
respectively. We use these models to construct novel and concrete examples of multiple-histories
resolutions to time travel paradoxes, and we explore questions such as whether one can ever come back
to a previously visited history and whether a finite or infinite number of histories is required. Interestingly,
we find that the histories may be finite and cyclic under certain assumptions, in a way which extends the
Novikov self-consistency conjecture to multiple histories and exhibits hybrid behavior combining the two.
Investigating these cyclic histories, we rigorously determine how many histories are needed to fully resolve
time travel paradoxes for particular laws of physics. Finally, we discuss how observers may experimentally
distinguish between multiple histories and the Hawking and Novikov conjectures.
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I. INTRODUCTION

The theory of general relativity, which describes the
curvature of spacetime and how it interacts with matter, has
been verified to very high precision over the last 100 years.
As far as we can tell, general relativity seems to be the
correct theory of gravity, at least in the regimes we can test.
However, within this theory there exist certain spacetime
geometries which feature closed timelike curves (CTCs)
or, more generally, closed causal1 curves (CCCs), thus
allowing the violation of causality [1–4]. The fact that these
geometries are valid solutions to Einstein’s equations of
general relativity indicates crucial gaps in our understand-
ing of gravity, spacetime, and causality.
Wormhole spacetimes and cosmological models admit-

ting CTCs were first explored in the decades following the
discovery of general relativity [5–7]. Although these
spacetimes were clearly unphysical—the wormholes were
nontraversable and the cosmologies unrealistic—they were
followed, several decades later, by traversable wormholes,
warp drives, and other spacetimes potentially supporting
time travel [8–13].

These exotic geometries which allow violations of
causality almost always violate the energy conditions
[14], a set of assumptions imposed by hand and thought
to ensure that matter sources in general relativity are
“physically reasonable.” However, it is unclear whether
or not these conditions themselves are justified, as many
realistic physical models—notably, quantum fields—also
violate some or all of the energy conditions.
In this paper, we consider two types of causality

violations: consistency paradoxes and bootstrap para-
doxes. A familiar example of a consistency paradox is
the grandfather paradox, where a time traveler prevents
their own birth by going to the past and killing their
grandfather before he met their grandmother. This then
means that the time traveler, having never been born, could
not have gone back in time to prevent their own birth in the
first place.
More precisely, we define a consistency paradox as the

absence of a consistent evolution for appropriate initial
conditions under appropriate laws of physics. Following
Krasnikov [15], “appropriate initial conditions” are those
defined on a spacelike hypersurface in a causal region of
spacetime—that is, a region containing no CTCs—and
“appropriate laws of physics” are those which respect
locality and which allow consistent evolutions for all initial
conditions in entirely causal spacetimes.
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1Here by “causal” we mean either timelike or null.
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Bootstrap paradoxes arise when certain information or
objects exist only along CTCs and thus appear to be created
from nothing. These are classified by some as pseudopar-
adoxes because, unlike consistency paradoxes, they do not
indicate any physical contradictions arising from reason-
able assumptions [3]. Nevertheless, they might make one
feel slightly uncomfortable. Information in a bootstrap
paradox has no clear origin and does not appear to be
conserved, and events can occur which are impossible to
predict from data in a causal region of spacetime.2

Therefore, we explore these pseudoparadoxes as well,
identifying the situations in which they do or do not occur
in our models.
There exist several paths for addressing the potential

causality violations arising from such spacetimes [2]. Two
of these rely on quantum effects to resolve time travel
paradoxes. The Hawking chronology protection conjecture
simply suggests that “the laws of physics do not allow the
appearance of [CTCs]” [17]. Under this conjecture, quan-
tum effects or other laws of physics ensure that the
geometry of spacetime cannot be manipulated to allow
CTCs. Deutsch’s quantum time travel model resolves
paradoxes by modifying quantum mechanics such that
the equation of motion is no longer unitary or linear in the
presence of CTCs [18].
Two other approaches address causality violations with-

out necessarily appealing to quantum effects. The Novikov
self-consistency conjecture holds that “the only solutions to
the laws of physics that can occur locally in the real
Universe are those which are globally self-consistent” [19].
Thus, whether or not CTCs are physically allowed, they can
never cause valid initial conditions to evolve in a causality-
violating fashion. The multiple-histories (or multiple–
timelines) approach encompasses models which resolve
time travel paradoxes by allowing events to occur along
different distinct histories.
In this paper, we seek to understand and resolve causality

violations classically, so the latter two approaches are of
particular interest. In the context of the Novikov conjecture,
many systems which at first glance appear to contain
consistency paradoxes have in fact been shown to support
consistent solutions for all initial conditions [20,21].
Nevertheless, clear paradoxes have been formulated which
are incompatible with the Novikov conjecture. In particular,
Krasnikov used a toy model with a specific set of physical
laws in a causality-violating spacetime to develop such a
paradox in [15]. As one of very few concrete examples of
true time travel paradoxes in the literature, Krasnikov’s

model is a natural environment for us to explore the
multiple-histories approach.
This exploration serves two purposes. First, the multiple-

histories approach has traditionally been presented as a
branching spacetime model, utilizing non-Hausdorff3 (or
perhaps non-locally-Euclidean [22]) manifolds to allow
distinct futures with shared pasts [23,24]. However, the
actual mechanics of resolving paradoxes using a branching
spacetime has been underdeveloped in the literature, and
such constructions present considerable mathematical chal-
lenges. Therefore, by constructing two explicit multiple-
histories models—one mimicking a branching spacetime
and the other utilizing covering spaces—we provide
concrete examples of the multiple-histories approach.
Second, by demonstrating that these multiple-histories

models can prevent the appearance of consistency para-
doxes entirely, we show that a Novikov-like conjecture may
hold over multiple histories, reconciling the incompatibility
between Krasnikov’s model and Novikov’s conjecture. In
particular, this extended Novikov conjecture holds for
certain multiple-histories resolutions containing CTCs
spanning a finite number of histories. From this perspec-
tive, the traditional Novikov conjecture is preserved when
paradoxes are absent using only one history.
This paper is organized as follows. First, in Sec. II, we

describe the twisted Deutsch-Politzer time machine and
Krasnikov’s paradox model. Then, in Sec. III, we general-
ize this model by allowing for additional histories, addi-
tional particles, and additional particle “colors.”
In Sec. IV we describe our two models of multiple

histories, branching spacetimes and covering spaces, in
more detail. We show how they both prevent the appear-
ance of consistency and bootstrap paradoxes for any
number of particles and colors when an unlimited number
of histories is allowed, such that every instance of time
travel leads to a new history and a time traveler may never
return to a previous history.
In Sec. V we further leverage the covering space model

to determine whether a finite number of histories could be
sufficient to resolve time travel paradoxes, and if so, how
many histories are needed. We prove several useful
mathematical results and find a condition on the number
of histories required to resolve paradoxes given the number
of colors—that the number of histories must be divisible by
the number of colors. We also show that, although con-
sistency paradoxes are resolved, bootstrap paradoxes still
exist if the histories are cyclic—but they can be avoided by
reinterpreting the particle interactions in our model.
In Sec. VI we analyze several aspects of our multiple-

histories models. We discuss how, even if the histories are2Even in the absence of consistency paradoxes, CTCs occur in
causality-violating regions and thus behind a Cauchy horizon
[16]. Consider a wormhole whose mouths are surrounded by
vacuum and separated more in time than in space. Then an object
may, at any time, emerge from the earlier mouth and travel to the
later mouth along a CTC, in a way unpredictable from outside the
causality-violating region.

3A topology satisfies the Hausdorff condition (or “is Haus-
dorff”) if and only if for any two distinct points x1 ≠ x2 there exist
two open neighborhoods O1 ∋ x1 and O2 ∋ x2 such that
O1 ∩ O2 ¼ ∅.
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cyclic, an extended Novikov conjecture can still hold over a
closed causal curve connecting all of the histories together,
resulting in physical observations combining those ex-
pected from the Novikov conjecture with those found in
multiple-histories resolutions. Furthermore, we explore
how it might be possible to experimentally distinguish—
at least in principle—between the Hawking, Novikov,
branching, and covering space scenarios.
Finally, in Sec. VII we summarize our results and

suggest avenues for future exploration.

II. KRASNIKOV’S PARADOX MODEL

A. The Deutsch-Politzer time machine

An early attempt at formalizing a consistency paradox
was proposed by Polchinski: perhaps a billiard ball
traversing a wormhole time machine might emerge in
the past and collide with its past self, ensuring that it
cannot enter the wormhole in the first place. However,
Echeverria et al. found an infinite set of consistent solutions
for many reasonable initial conditions, thus showing that
this system in fact possesses no paradoxes [20].
Furthermore, it has been shown that no paradoxes exist
even when considering more general physical possibil-
ities [25].
A similar construction was attempted using the Deutsch-

Politzer (DP) space [18,26] in [27], and although this
construction was shown to be flawed in [28], a modification
of this construction known as the twisted Deutsch-Politzer
(TDP) space was used in [3,15] to construct a more
compelling paradox.
In 1þ 1 spacetime dimensions with coordinates ðt; xÞ,

the DP space is constructed by associating the line ð1; xÞ

with ð−1; xÞ for −1 < x < 1 in Minkowski space. The TDP
space is constructed in an analogous way by instead
associating the line ð1; xÞ with ð−1;−xÞ for −1 < x < 1.
This means that particles entering the line at t ¼ 1 will
emerge at t ¼ −1 “twisted,” that is, with their spatial
orientation inverted. In both cases, the associated lines
act as mouths of a wormhole. The DP and TDP spaces are
illustrated in Figs. 1 and 2.
In both spacetimes, there must be singularities at

ðt; xÞ ¼ ð�1;�1Þ, as these points cannot be included
without violating the Hausdorff condition [3]. At all other
points, the spacetimes are flat, and we can use the same
coordinates we used in the original Minkowski space, as
long as we recognize that ð1; xÞ and ð−1;�xÞ (with plus in
the case of DP and minus in the case of TDP) refer to the
same points for −1 < x < 1 [26]. In this paper, we will

FIG. 1. In the DP space, the line ð1; xÞ is associated with
ð−1; xÞ for −1 < x < 1 in Minkowski space. This is a simplified
model for a wormhole time machine [2]. After traversing the
wormhole, the particle emerges at an earlier value of t and travels
in the same direction in x.

FIG. 2. In the TDP space, ð1; xÞ is instead associated with
ð−1;−xÞ for −1 < x < 1. After emerging from the wormhole, the
particle will travel in the opposite direction in x.

FIG. 3. The causality-violating region J0ðMÞ for the TDP
space M is contained between the two associated lines in x. The
gray spacelike line indicates a choice of a reasonable surface on
which to define initial conditions. We also see particles of two
different colors, blue and green, emerging from the right and left;
the meaning of these colors is explained in Sec. II B.
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ignore the presence of the singularities for the sake of
simplicity, motivated by the fact that traversable wormholes
in 3þ 1 dimensions, for which the DP and TDP spaces are
a toy model, do not in general possess singularities.
The causality-violating region, denoted J0ðMÞ, where

M is the spacetime manifold, is the set of all points p
which are connected to themselves by a closed causal
curve. Each such point is in its own future and past. This is
depicted for the TDP space in Fig. 3.

B. Particles and interaction vertices

Krasnikov [3,15] constructs a paradox in the TDP space
by introducing point particles accompanied by a set of
physical laws:
(1) The particles are massless and thus follow null

geodesics.4

(2) Whenever two particle worldlines intersect, the two
particles interact. This interaction can be interpreted
as an elastic collision, with each particle flipping its
direction of movement. Later we will see that this
can lead to bootstrap paradoxes and suggest a
different interpretation, where particles instead go
through each other, continuing in the same direction
they were going.

(3) Each particle has one of two colors.5 In every
interaction, each particle flips its color (independ-
ently of the color of the other particle), as illustrated
in Fig. 4.

The first law considerably simplifies the discussion by
allowing us to ignore timelike paths, and the second follows
the spirit of Polchinski’s paradox. However, these two laws
alone still permit consistent solutions analogous to those
that have been found for the Polchinski paradox, so the

third law is introduced to prevent this.6 These physical laws
respect locality and allow consistent evolution for all initial
conditions in entirely causal spacetimes. Importantly, one
must also assume that the particles are all test particles and
do not influence the geometry of spacetime via Einstein’s
equation.
We can unite all four possible vertices into a more

readily generalizable form by enumerating the two colors
as 0; 1 ∈ Z2 so that a particle’s color increases by 1 (mod 2)

(a) (b) (c) (d)

FIG. 4. The four possible distinct vertices for particle collisions in Krasnikov’s model. Time is the vertical axis, so the particles always
come from the bottom. Note how each blue particle changes into a green particle, and vice versa, in every collision.

FIG. 5. An illustration of the consistency and bootstrap para-
doxes in Krasnikov’s model. The blue and green lines represent
the two possible particle colors, as above. The gray lines indicate
a particle which cannot be assigned a consistent color.

4Note that this means that we should discuss CCCs (closed
causal curves, where here “causal” means either timelike or null)
and not CTCs (closed timelike curves), although both types exist
in the TDP space.

5This property is named “flavor” in [15] and “charge” in [3].
Here we adopt the name “color” in order to make the visualization
clearer, and also to avoid the impression that this quantity is
conserved.

6Krasnikov also considers that particles appearing from the
singular points ðt; xÞ ¼ ð−1;�1Þ may allow for consistent
solutions, and introduces a fourth law to prevent this. This law
adds another property—named “color” in both [15,3], but not to
be confused with the property we call “color” here—such that
particles interact only with other particles of the same color, and
the color itself never changes. Having three such colors is
sufficient for the purpose of preventing consistent solutions since
there are two singularities, so they can produce consistent
solutions for at most two of the colors. In this paper, we will
ignore the singularities for the sake of simplicity, and thus the
only property we will need is the one defined in law number 3.
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after each collision. Using these physical laws, both types
of paradoxes—consistency and bootstrap—are illustrated
in Fig. 5.
First, the particle emerging from the time machine (in

gray) ends up falling into the time machine again, so it
appears out of nowhere and exists only within the CCC—
causing a bootstrap paradox. Second, when it collides with
the particle coming from the causal region (in blue), both
must flip color. For the blue particle, this is not a problem—
it simply changes into a green particle. However, if the gray
particle were initially blue, then it would have to change
into green, but this means it would enter the time machine
as a green particle and exit as a blue particle—which is an
inconsistency. Of course, the same inconsistency also
applies if the gray particle is initially green. Therefore,
there is no choice of color which is consistent along the
particle’s entire path—thus, we have a consistency paradox.

III. GENERALIZING THE MODEL

We now generalize Krasnikov’s model in three ways.
First, in order to resolve the paradoxes, we introduce the
possibility of multiple histories. Next, to make sure we are
considering all possible initial conditions in this model, we
introduce an arbitrary number of incoming particles.
Finally, to draw broader conclusions regarding multiple-
histories resolutions, we extend the model to include
additional particle colors.

A. Additional histories

In order to resolve the paradoxes demonstrated in Sec. II B,
we seek to extend our spacetime to a larger space where
consistent solutions exist. In particular, we seek to extend
the TDP space to allow for multiple, connected histories. For
such an extension to be reasonable, each history should
resemble the TDP space, and all of the histories should be
identical outside the causal future of the causality-violating
region, where we expect results might differ.
With this assumption, the time traveler can go back in

time to any point in the past, and the world they will arrive
at will indeed be the same world from which they left, up
until the moment of arrival. However, as soon as they
arrive, they inadvertently change history—even just by
their mere presence, whether they want to or not.
Additional histories ensure that these changes can occur
independently of the time traveler’s original history.
Initially, it may seem that only one additional history is

sufficient to resolve paradoxes—but because each addi-
tional history should resemble the TDP space, each
introduces a new wormhole, which may then be used to
travel back in time once more. Thus, resolving paradoxes
over the entire space may require a larger number of
histories—perhaps infinitely many. We will discuss the
different possibilities in the next sections.

Here we consider two interesting ways to extend the
TDP space. We can depict both cases in a similar fashion,
using multiple side-by-side copies of illustrations as in
Figs. 1, 2, and 5 but associating different regions of
spacetime.
First, seeking to mimic the behavior of branching

spacetime models, we can associate the line at t ¼ 1 in
one history with the line at t ¼ −1 in the next history. If the
events in the two histories differ only after the wormhole
mouths, then traversing the wormhole would have the
appearance of traversing a branching spacetime. An
observer would, upon traversing the time machine, appear
in a new “branch” of the Universe. The past of this branch
would match the observer’s expectations, but the future
could be changed without causing an inconsistency.
A drawback of this approach is that the first history no

longer resembles the original TDP space since it has only
one wormhole mouth instead of two—there cannot be an
exit to the time machine in the first history since there is no
previous history for the time traveler to come from. This
motivates the use of covering spaces7 as multiple-histories
extensions.
Definition 3.1.—Let B be a topological space. A

topological space E is a covering space of B if there exists
a continuous surjection (or onto map) p∶E → B such that
every b ∈ B has an open neighborhood U whose preimage
p−1ðUÞ is a union of disjoint sets fVαg in E, where each Vα

is homeomorphic to U under p; see p. 336 of [29].
This method of extending the TDP space ensures that

each history remains faithful to the original topology of the
space. In each history, there is a wormhole entering the
space and a wormhole exiting the space. To accomplish
this, the line at t ¼ 1 in one history is associated with the
line at t ¼ −1 in the next history, as above, but the lines at
t ¼ −1 in the first history and at t ¼ 1 in the second also act
as wormholes.
More rigorous constructions of specific covering spaces

will follow in Secs. IV and V.

B. Additional particles

We also expand the physical system under consideration
by considering an arbitrary number of particles. We will
explore the general case of m particles approaching from
the −x direction and n particles approaching from the þx
direction for m; n ∈ N, assuming that m ≤ n (without loss
of generality since our spacetime is symmetric under parity
transformations x ↦ −x). Considering this general case
will allow us to not only demonstrate paradoxes but also
prove the absence of paradoxes in certain systems, moti-
vating the utility of the multiple-histories approach.

7We thank the anonymous referee for suggesting that we
formalize this notion in terms of covering spaces.
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C. Additional colors

In the previous section, we expressed the two possible
particle colors as elements of Z2 and phrased Krasnikov’s
rule for color evolution as an increase by 1 (mod 2) to the
color of each particle after a collision. We can use the same
rule for an arbitrary number of colors.
Let C ∈ N; then particle colors are elements of the cyclic

group ZC ¼ f0;…; C − 1g and follow the same color
evolution rule, increasing by 1 (mod C) after a collision.
When C ¼ 2, we have Krasnikov’s original model. For
C > 2, we describe a more general system that will be
useful for exploring causality violations in a variety of
cases. As long as C ≠ 1, a single incoming particle leads to
the same paradoxes as in Fig. 5.

When C > 2, particle interactions are no longer time
reversible. However, our system has not completely lost its
symmetry. In particular, if we define color conjugation as
mapping a color c to−c ðmod CÞ inZC, thenCT symmetry
is satisfied (with C representing color, not charge). In fact,
our interactions are symmetric under parity transforma-
tions, so the system also satisfies CPT symmetry, as
depicted in Fig. 6. Although the colors in each leg of
the resulting vertices will in general be different, the system
as a whole is invariant under these symmetries.

IV. THE CASE OF UNLIMITED HISTORIES

In the previous sections, we introduced a model, con-
sisting of a particular spacetime with specific physical laws,

(a) (b)

FIG. 6. (a) Given the identification between colors and elements ofZC, this single general vertex captures all four vertices of Fig. 4 for
C ¼ 2, as well as those for any other values of C. For illustration, the four colors in the figure—blue, green, orange, and magenta—
represent any of the C possible colors for the case C ≥ 4. (b) This vertex is the result of reversing time and parity and conjugating color
with respect to the vertex in (a). Since each particle still leaves with a color one greater than it starts with, the result is a valid vertex. In
fact, performing CT or P transformations independently also yields a valid vertex. In this example, we took blue ¼ 0, orange ¼ 1,
green ¼ 2, magenta ¼ 3, c ¼ 0, c0 ¼ 2, and C ¼ 4 in both (a) and (b).

FIG. 7. In the branching model, when the blue particle enters the time machine at h ¼ 1, it comes out twisted (since we are in a TDP
space) at h ¼ 2. The new history has an identical copy of the initial blue particle, but this time it encounters itself (or more precisely, its
copy from h ¼ 1) and the two particles change their colors. A green particle then enters the time machine and continues to h ¼ 3, and so
on. Thus, we have avoided both consistency and bootstrap paradoxes.
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which admits initial conditions for C ≥ 2 for which there is
no consistent evolution, generating a paradox. However, we
also introduced the possibility of multiple histories in some
extended space. In what follows, we label these histories
with a new parameter h ∈ H so that points in the extended
space can be described by a triplet ðt; x; hÞ. Such a
parameter certainly makes sense for branched extensions
of the TDP space, where the first space is unique and each
subsequent history can be assigned a new label. It also
makes sense for a covering space extension since the
cardinality of8 fVαg ¼ p−1ðUÞ is well defined and con-
stant, as the TDP space is connected; see p. 56 of [30].
In this section, we assume that a particle in a given

history may never return to the same history after leaving it.
As before, letM be the TDP spacetime manifold. Since the
branching model has a unique first history, it is appropriate
to define H ¼ N and build an extended space M0 com-
posed of a countably infinite number of copies of
Minkowski space where ðþ1; x; hÞ is associated with
ð−1;−x; hþ 1Þ for all h ∈ N and −1 < x < 1. This space-
time behaves as in Fig. 7.
In contrast, the covering space model does not result in a

unique first history. Consequently, it is appropriate to
define H ¼ Z and to build an extended space M0 com-
posed of a countably infinite number of copies of
Minkowski space where ðþ1; x; hÞ is associated with
ð−1;−x; hþ 1Þ for all h ∈ Z and −1 < x < 1. This space-
time behaves as in Fig. 8.
Having constructed this space, we must prove that it is

indeed a covering space of M.

Proposition 4.1.—The extended space M0 is a covering
space of M.
Proof.—Let M denote our base TDP space and let M0

denote our extended space with a countably infinite number
of histories. Furthermore, let p∶M0 → M be a covering
map (or projection), defined by pðt; x; hÞ ¼ ðt; xÞ for
ðt; x; hÞ ∈ M0. In order to show that M0 is a covering
space of M, we need to show that p is both surjective
(onto) and continuous, and that each m ∈ M is contained
in a neighborhood U whose preimage p−1ðUÞ satisfies

FIG. 8. Unlike the branching model, the covering space model has no unique first history. Therefore, we depict two consecutive
histories k and kþ 1. Without loss of generality, a green particle emerges from the time machine in history k, where it collides with the
incoming blue particle; here we are using the color convention of Fig. 6. Both particles increase their colors as in Fig. 6: blue ¼ 0 to
orange ¼ 1 and green ¼ 2 to magenta ¼ 3. In history kþ 1, the same process occurs with a magenta particle emerging from the time
machine instead of a green particle, and the magenta particle increases its color to blue ¼ 4 (mod 4). Since there is a countably infinite
number of time machines, the particle traversing the time machines never completes a CCC, nor does any copy of the incoming blue
particle. Thus, we have again avoided both consistency and bootstrap paradoxes.

FIG. 9. Sincem is a point along the associated wormhole line, it
appears twice in our representation of the TDP space—once at
t ¼ −1 and once at t ¼ þ1. Therefore, our ball U around m is
actually U ¼ Uþ ∪ U−, the union of balls around each wormhole
mouth. It is always possible to select such a ball which does not
intersect a singularity: if m is a distance ε > 0 away from a
singularity, then the ball can be chosen to have radius ε=2.8Using the notation of Sec. III A.
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certain constraints. The map p is certainly surjective: for
every ðt; xÞ ∈ M, each ðt; x; hÞ for the various histories h is
mapped to ðt; xÞ under p. The map is also continuous, as it
projects M0 onto M without ripping or tearing it.
For the remainder of this proof, we consider two cases:

points along the associated wormhole lines and points in
the rest of the spacetime.9 First, let m ¼ ðt; xÞ ∈ M
be a point along an associated wormhole line, so t ¼ �1
and −1 < x < 1. Then, let U be a ball around m, small
enough that it does not intersect the singularities at
ðt; xÞ ¼ ð�1;�1Þ. Since m is part of the TDP wormhole,
U contains points near both wormhole mouths, as depicted
in Fig. 9.
The topology of U is that of the union of two open balls

which intersect at a line. p−1ðUÞ is composed of a
countably infinite number of such sets, now containing
points from adjacent histories h and hþ 1, as in Fig. 10.
Since the number of histories is infinite so that no particle in
a given history may ever return to that same history, the sets
in p−1ðUÞ continue in this pattern for all h. These sets are
clearly disjoint, and each is composed of two open balls
intersecting at a line, so p restricted to each is not only a
bijection (since, once p has been restricted, the history data
can be ignored, rendering p the identity) but also a
homeomorphism (since the topology of each Uþ

k ∪ U−
kþ1

is preserved under p).
Second, let m ¼ ðt; xÞ ∈ M be a point that is not on a

wormhole mouth, and let U be a ball around m, small
enough that it intersects neither the singularities nor the
wormhole mouths. Then, U has the topology of a normal
ball in flat space. Again, p−1ðUÞ is composed of a
countably infinite number of such sets, which are clearly
disjoint. Also, p restricted to each set acts as the identity

map and is thus a homeomorphism. Consequently, M0 is a
covering space of M. ▪
This framework allows consistent solutions to our

previously paradoxical initial conditions. In both the
branching model and the covering space model, particles
which would have followed CCCs in one history now
traverse multiple histories—and since they may never
return to a previous history, they can never complete a
closed loop. Consistency paradoxes arise from conditions
enforced along closed causal curves, and bootstrap para-
doxes arise from particles existing only inside these closed
curves; neither situation is possible in the unlimited
histories case, and thus both paradoxes are avoided. In
other words, we have avoided paradoxes created due to
CCCs by simply avoiding any actual CCCs.10

V. THE CASE OF FINITE CYCLIC HISTORIES

Above we assumed that h increases monotonically so
that the time traveler may never return to a previous history.
If there is no limit on how many times time travel can occur
—and, indeed, there is no reason for such a limit to exist—
then this results in an infinite number of histories. Since
returning to a previous history is impossible and thus CCCs
never form, it is straightforward to demonstrate the absence
of paradoxes.

FIG. 10. In our extension of the TDP space, wormhole points are now associated between adjacent histories. As a result, the ball
around the point mkþ1 (the point overlapping histories k and kþ 1, which projects down to m under the map p) is equal to Uþ

k ∪ U−
kþ1.

The preimage p−1ðUÞ ¼ ⋃kðUþ
k ∪ U−

kþ1Þ is composed of a countably infinite number of such balls, each of which is homeomorphic to
Uþ ∪ U− from Fig. 9.

9Recall that the singularities at ðt; xÞ ¼ ð�1;�1Þ have been
removed.

10Although CCCs are no longer present, this model still gives
observers the appearance of time travel. Adjacent histories are,
by definition, precisely the same up until the point in time when
the time traveler exits the time machine. Therefore, the time
traveler observes a universe identical to their initial history, but at
an earlier point in time—which is, colloquially, the definition of
time travel. However, at the moment the time traveler exits the
time machine, they have already ensured that this will be a new
history simply by existing at a point in spacetime where they did
not exist in their previous history.
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However, we will now show that, at least within the
covering space model, it is in fact possible for a time
traveler to return to a previous history. Specifically, the
covering space model provides a framework for histories
which are cyclic—one can go from the last history back to
the first one. If M again denotes the TDP spacetime
manifold, then we construct an extended space M0 com-
posed of H ∈ N copies of Minkowski space where points
are identified in the following way:

ðþ1; x; hÞ ↔
� ð−1;−x; hþ 1Þ if 1 ≤ h ≤ H − 1;

ð−1;−x; 1Þ if h ¼ H:
ð1Þ

Proposition 5.1.—The extended space M0 is a covering
space of M.
Proof.—This proof is almost identical to the one in

Sec. IV. There are only two differences. First, adopting the
same notation, fVαg ¼ p−1ðUÞ is composed of only H
disjoint sets. Second, sets in p−1ðUÞ still contain points
from histories h and hþ 1 when U intersects a wormhole,
but in this case one such set contains points from histories
H and 1. As expected, this set is still homeomorphic to U
under p. ▪
Unlike the case of unlimited histories, this model does

admit CCCs, with those CCCs spanning all H histories. On
the other hand, although there are only a finite number of
histories, not an infinity of them, there nevertheless exist
consistent solutions to otherwise paradoxical scenarios, as
illustrated in Fig. 11. In fact, we will prove in Theorem 5.9

that, with C colors and H histories, paradoxes are com-
pletely avoided in this scenario if and only if C jH.
In Sec. VA, we analyze our model and determine exactly

when it resolves time travel paradoxes. In Sec. V B, we
discuss a way to resolve bootstrap paradoxes, and in
Sec. VI A we explore the general tendency of causality-
violating spacetimes to support multiple consistent
solutions.

A. How many histories are required to resolve
paradoxes?

In this section, we will examine the TDP space in more
detail in order to lay the groundwork for the proof of
Theorem 5.9. Although initial conditions defined outside
the causality-violating region J0ðM0Þ cannot uniquely
determine the physics inside this region (as will be
demonstrated in Sec. VI A), we will show that they do
determine the trajectories of all the particles in this region.11

Since all particles follow null trajectories and change
direction only in elastic collisions, we can instead think
of a set of particle trajectories as straight null lines
intersecting at vertices corresponding to collisions. For
example, in Fig. 11, the blue path in h ¼ 1 is considered to
be one path whether the original blue particle continues in

FIG. 11. When C ¼ 2, the consistency paradox can be solved with two cyclic histories. The blue particle entering the time machine in
h ¼ 1 comes out of the time machine in h ¼ 2, and the green particle entering the time machine in h ¼ 2 comes out of the time machine
back in h ¼ 1. Since we interpret the vertices as elastic collisions, we now have a bootstrap paradox: the particle traveling along the CCC
only exists within the CCC itself. We will discuss how to resolve this in Sec. V B. Unlike in the scenario of Fig. 7, here there is no first
history where nothing has come out of the time machine yet (in fact, in Fig. 7 the past exit of the time machine does not even exist
for h ¼ 1).

11Other than those originating at singular points, as considered
by Krasnikov—but as noted above, we will ignore this subtlety
here.
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the same direction or not after the interaction at the vertex;
this path then continues to h ¼ 2 and exits to infinity.
Definition 5.2.—A particle path is a straight null line in

M0 composed of segments from the trajectories of one or
more particles.
Using this notion, we seek to connect particle trajectories

throughout M0 to appropriate initial conditions, and to
show that we need not worry about trajectories varying
across different histories or leading to inconsistencies.
Lemma 5.3.—Particle paths in all histories of M0 are

completely determined by initial conditions in the causal
past of the causality-violating region J0ðM0Þ.
Proof.—First, we show that all paths are extendible to

t ¼ �∞ in some history. This is certainly true for paths
which do not enter the time machine. As for other paths,
they may traverse the wormhole only once. Indeed, suppose
that a path enters the wormhole at ðt; xÞ ¼ ð1; x0Þ in one
history and exits at ðt; xÞ ¼ ð−1;−x0Þ in the next. Without
loss of generality, we assume that the path then moves
along the þx direction. Then the path, parametrized by
λ ∈ R, will be such that

ðt; xÞ ¼ ðλ − 1; λ − x0Þ: ð2Þ

The path will reach t ¼ 1, where the time machine is
located, at λ ¼ 2. However, at this point it will be at
x ¼ 2 − x0. The wormhole is located at x ∈ ð−1; 1Þ, so x0
must be in that range, and in particular x0 < 1. Hence, we
see that we must have x > 1, and the point of intersection
with t ¼ 1 is outside of the wormhole. Therefore, a path can
never intersect the wormhole twice.
We conclude that all null lines entering the time machine

[including the paths of all particles inside J0ðM0Þ] must
originate at t ¼ −∞ in some history and, upon traversing
the wormhole once, must terminate at t ¼ þ∞ in another
history. As a consequence, all particles paths in M0 are
determined by initial data in the causal past of the causality-
violating region J0ðM0Þ in some history. ▪
Corollary 5.4.—Particle paths, and the numbers of

collisions the particles on these paths experience, are the
same in all histories of M0.
Proof.—By assumption, all histories have the same

initial data in the causal past of the causality-violating
region J0ðM0Þ. In Lemma 5.3 we saw that all particle paths
in a history are determined by the initial conditions in that
history and the previous history. Since all such initial
conditions are the same, the particle paths in each history
must also be the same. Furthermore, since these paths fully
determine the vertices denoting particle collisions, the
number of collisions the particles on these paths experience
is the same in each history. ▪
Corollary 5.5.—The positions of all particles along

CCCs are consistent.
Proof.—Since all particle paths are extendible to t ¼ �∞

in some history, no particles appear or disappear in a

paradoxical way. Furthermore, since only two null paths
can meet at each vertex, there are no particle interactions
inconsistent with the laws of physics in this system. ▪
All that remains in order to prove the absence of

paradoxes is to demonstrate that the colors of particles
along CCCs are consistent as well. To do that, we first
prove the following lemma.
Lemma 5.6.—The color evolution of particles in J0ðM0Þ

is determined entirely by the choice ofm and n [the number
of particles entering from the left (−x) and the right (þx),
respectively].
Proof.—Initially, mþ n particles of various colors

approach J0ðM0Þ along various trajectories. To show that
only m and n affect the color evolution of particles in this
region, we must show that neither the positions of the
trajectories nor the initial colors impact this evolution.
The initial positions of the particles impact the positions

of particles in J0ðM0Þ, but not the ordering of vertices—
which completely determine how colors change since
colors are constant outside of the vertices. Since each null
path approaching J0ðM0Þ traverses the wormhole and then
leaves in the same direction that it came from (due to the
twist at the wormhole), it is apparent that m particles must
leave J0ðM0Þ in the −x direction and n particles must leave
in the þx direction.
Since we are considering a spacetime with one spatial

dimension, the spatial ordering of a set of particles or paths
cannot change over time, except when it is flipped passing
through the wormhole. Thus, the particles which leave
J0ðM0Þmust be the same particles as those which enter it in
the first place. Consequently, the remaining particles are
confined to J0ðM0Þ, and their colors are impacted only by
the number of collisions they have with the incoming
particles, not by the incoming particles’ colors. ▪
Lastly, we build some machinery for analyzing the

collisions of arbitrary numbers of particles.
Definition 5.7.—A ðp; qÞ particle group collision is a set

of individual particle collisions arising from the scattering
of p particles approaching from the left (−x) and q particles
from the right (þx), as in Fig. 12.
Lemma 5.8.—Let xk be the color of particle number k

counting from the left in a ðp; qÞ particle group collision
where p < q. Then, after the collision, the particles’ colors
are given by

x0k ¼ xk þ

8>><
>>:

2ðk − 1Þ þ 1 k ≤ p;

2p p < k ≤ q;

2ðpþ q − kÞ þ 1 k > q:

ð3Þ

Proof.—Since p lines cross with q lines in one of these
collisions, p × q vertices arise, as illustrated in Fig. 12. If
we assign each line a number, as in the figure, then it is
straightforward to label the vertices with tuples of these
numbers. Since the spatial ordering of the particles is
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constant, we can determine the first and last collisions that
each particle will participate in.
In order to determine how particle colors change in one

group collision, we assign each particle nonunique initial
and final vertices corresponding to the first and last
collisions that they participate in. As particles traverse
the group collision between their initial and final vertices,
they always travel from some vertex ða; bÞ to one of two
adjacent vertices: ðaþ 1; bÞ or ða; bþ 1Þ. Thus, if a
particle enters the group collision at ðai; biÞ and leaves
at ðaf; bfÞ, the total number of collisions that it participates
in is ðaf − aiÞ þ ðbf − biÞ þ 1, where the þ1 accounts for
the initial vertex.
Particle number k first collides at ðp − kþ 1; 1Þ if k ≤ p

or at ð1; k − pÞ if k > p, and it last collides at ðp; kÞ if
k ≤ q or at ðpþ q − kþ 1; qÞ if k > q. Thus, over the
course of a group collision,

x0k ¼ xk þ

8>><
>>:

2ðk − 1Þ þ 1; k ≤ p;

2p; p < k ≤ q

2ðpþ q − kÞ þ 1; k > q:

; ð4Þ

Note the special case where p ¼ q and

x0k ¼ xk þ
�
2ðk − 1Þ þ 1; k ≤ p;

2ð2p − kÞ þ 1; k > p:
ð5Þ

Now, having built this machinery, we proceed to the main
result of this section. ▪

Theorem 5.9.—No paradoxes arise in a cyclic history
extension of the TDP space with C colors andH histories if
and only if C jH.
Proof.—To show the absence of paradoxes for all initial

conditions, we must fully characterize how these initial
conditions evolve in order to derive consistency constraints
for particles traveling along CCCs. The absence of a
paradox is equivalent to the particles traveling along
CCCs satisfying these constraints.
According to Corollary 5.5, positions along all particle

trajectories are consistent. Thus, we need only show that
the colors along these trajectories are consistent as well.
This analysis is greatly simplified by Lemma 5.6, which
ensures that the only variables we need to consider when
analyzing the color evolution of particles in J0ðM0Þ are m
and n, the number of particles entering from the left (−x)
and the right (þx), respectively. As noted in the proof
of Lemma 5.6, the only particles traversing the time
machine—and thus the only particles traveling along
CCCs—are confined exclusively to J0ðM0Þ, so the relevant
initial conditions for deriving consistency constraints are
entirely specified by m and n.
We can more easily determine how the colors of these

particles evolve over the course of one history by identify-
ing three zones in J0ðM0Þ where there are group collisions.
These zones are illustrated in Fig. 13. According to
Corollary 5.4, the structure of the collisions is the same
in each history, so characterizing the evolution of particle
colors in one history allows us to determine this more
broadly over J0ðM0Þ.
Since all the incoming particles collide such that they

scatter away from J0ðM0Þ without ever traversing the
wormhole, particles approaching from −x may participate
in collisions only in zone I and particles approaching from
þx may participate in collisions only in zone II. Thus, m
particles leave zone III going in the−x direction, participate
in a group collision in zone I, and are scattered back into
zone III; similarly, n particles leave zone III going in

FIG. 12. A collision of p particles from the left and q particles
from the right.

FIG. 13. A single history’s causality-violating region can be
partitioned into three zones, each of which contains a group
collision of particles.
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the þx direction, participate in a group collision in zone II,
and are scattered back into zone III. These mþ n particles
are those which follow CCCs, imposing consistency con-
straints that must be satisfied to produce a legitimate
solution to a given set of initial conditions.
The particles following CCCs collide in a group collision

in zone III. However, it is not initially clear that the
structure of this collision is the same as that of those in
zones I and II: the group collision is interrupted by a
wormhole that flips the spatial ordering of the particles.
Nevertheless, we can treat this collision in the same way as
the others. This can be visualized by stacking a copy of a
single history’s time machine region, flipped in x, on top of
itself, as shown in Fig. 14. This construction illustrates that
the zone III collision takes the same form as the others, and
we do not have to account for the wormhole’s spatial flip
until after the collision if we consider first the group
collisions in zones I and II, and then the zone III collision
overlapping one history and the next.
We are interested in whether there exists an assignment

of colors to the mþ n particles following CCCs that
remains consistent after the particles have traversed
J0ðM0Þ through all H histories. We begin by determining

how these particle colors evolve over one history, applying
Lemma 5.8 to each group collision.
Let yk be the color of particle number k, counting from

the left among those following CCCs, after the zone III
collision has taken place but before entering zone I or II.
We first determine how these values of k relate to those
used in Eqs. (4) and (5). For k ≤ m, particle yk corresponds
to particle xmþk in an ðm;mÞ particle collision in zone I, and
then to particle xk in an ðm; nÞ particle collision in zone III.
For k > m, particle yk corresponds to particle xk−m in an
ðn; nÞ particle collision in zone II, and then to particle xk in
an ðm; nÞ particle collision in zone III. Thus, evolving
through one history,

y0k ¼ yk þ

0
BB@
8>><
>>:

2ð2m − ðmþ kÞÞ þ 1; k ≤ m;

2ððk −mÞ − 1Þ þ 1; m < k ≤ n;

2ððk −mÞ − 1Þ þ 1; k > n;

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
zone I and II collisions

þ

0
BB@
8>><
>>:

2ðk − 1Þ þ 1; k ≤ m;

2m; m < k ≤ n;

2ðmþ n − kÞ þ 1; k > n;

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
zone III collision

¼ yk þ

8>><
>>:

2m; k ≤ m;

2k − 1; m < k ≤ n;

2n; k > n:

ð6Þ

After passing through the wormhole, the spatial ordering
of the particles is reversed. Thus, particle number k in one
history becomes particle number mþ n − kþ 1 in the
next. Particles previously satisfying k ≤ m now satisfy
k > n, so these particles all increase in color by 2ðmþ nÞ
after two histories. Also, since

ð2k − 1Þ þ ð2ðmþ n − kþ 1Þ − 1Þ ¼ 2ðmþ nÞ; ð7Þ

particles satisfying m < k ≤ n also increase in color by
2ðmþ nÞ. Thus, if H is even, the consistency constraint
after traversing these histories is

yk ≡ yk þHðmþ nÞ mod C: ð8Þ

WhenH ¼ 1, the evolution of particle colors has already
been given by Eq. (6). If H is odd and H > 1, we can
determine the evolution of particle colors by breaking the
evolution into that over H − 1 histories (an even number)
and that over the last history. After traversing an odd
number of histories, y0k must equal ymþn−kþ1 for consis-
tency. Thus, after H traversals for odd H, the consistency
constraint is

FIG. 14. Here, a reflected version of the h ¼ 2 causality-
violating region is stacked on top of the h ¼ 1 causality-violating
region. These two regions lie in different spaces, as indicated by
the separate coordinate axes. However, this representation makes
it easy to see how particles evolve over multiple histories, and
what the consistency constraints are: that particles on the last
wormhole surface match those on the first one.
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ymþn−kþ1

≡

0
BB@ykþ

8>><
>>:
ðHþ1ÞmþðH−1Þn; k≤m;

2k−1þðH−1ÞðmþnÞ; m<k≤n

ðH−1ÞmþðHþ1Þn; k>n;

1
CCA modC:

ð9Þ

Note that both of these consistency requirements are in
the group ZC. When k ≠ mþnþ1

2
(that is, for all particles

except the middle particle when mþ n is odd), it implies
that 2Hðmþ nÞ≡ 0 mod C and is satisfied for allmþ n if
and only if C j 2H (i.e., C divides 2H or 2H is a multiple of
C). However, when mþ n is odd, the k ¼ mþnþ1

2
condition

implies that Hðmþ nÞ≡ 0, and is satisfied for all mþ n if
and only if C jH. The requirement for evenH is satisfied if
and only if Hðmþ nÞ≡ 0 mod C; since all values of mþ
n are possible, this requires that C jH.
Thus, in general, C jH is equivalent to the nonexistence

of paradoxes for this system since we can find a consistent
solution for the particle colors. When C ∤H, setting m ¼ 0
and n ¼ 1 (corresponding to the natural extension of the
paradox in Fig. 5) provides a paradox since the consistency
constraints for both even and odd H cannot be satisfied in
this case. ▪

B. Avoiding bootstrap paradoxes

Although we have found conditions under which con-
sistency paradoxes can be avoided using a finite number of
histories, these solutions still have bootstrap paradoxes.

This is because the particles in this system are now of two
separate types:
(1) Particles that come from infinity also exit to infinity,

never entering the time machine.
(2) Particles that emerge from the time machine in the

past also enter the time machine in the future, never
leaving the causality-violating region.

The particles of the second type have no existence outside
of the causality-violating region (or outside CCCs), and
therefore they are “created from nothing,” which implies a
bootstrap paradox. However, we can avoid these bootstrap
paradoxes by changing our interpretation of the vertices.
In [15] it is suggested for the case of C ¼ 2 that, instead

of as elastic collisions, the vertices can be interpreted as
intersections of penetrable particles, which simply flip
colors when they cross each other’s paths. We can extend
this interpretation to our system for general C, where it
involves a slightly more complicated interaction: particles
which pass through each other adopt the other particle’s
color plus 1. This reinterpretation is sufficient to remove all
bootstrap paradoxes, as depicted in Fig. 15.
The blue particle coming in from infinity in h ¼ 1 passes

through the green particle which came out of the time
machine. To distinguish the two particles, the first is
indicated by a solid line while the second is indicated
by a dashed line. The particles interact using vertex (c) in
Fig. 4—which now means that, instead of the particles
changing both their directions and colors, they change
neither. The blue particle then goes through the time
machine and exits in h ¼ 2, where it meets its copy, which
is also blue (recall that the initial conditions are the same in

FIG. 15. In this illustration, with C ¼ 2 and H ¼ 2, one particle is solid and the other is dashed. The illustration demonstrates an
interpretation in which the particles do not collide; instead, they pass through each other. This allows us to avoid a bootstrap paradox.
However, the same vertices in Fig. 4 still apply.
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each history). The copy is indicated by a dashed line.12 The
particle and its copy pass through each other, and they interact
using vertex (a) of Fig. 4. The solid particle changes its color
to green and goes out to infinity. The dashed particle also
changes its color to green and goes into the time machine—
exiting from the past time machine in h ¼ 1 since the
histories are cyclic.
Neither of the particles actually follows a CCC, and both

of them have a clear start and end outside of the causality-
violating region: the solid particle enters from the right in
h ¼ 1 and exits to the right in h ¼ 2, while the dashed
particle enters from the right in h ¼ 2 and exits to the right
in h ¼ 1. Thus, we avoid a bootstrap paradox. This readily
generalizes to larger values of C and H.

VI. ANALYSIS OF OUR MODEL

A. Multiple consistent solutions

Even in the base TDP space without multiple histories,
not every set of initial conditions necessarily causes a
paradox. However, even initial conditions which have
consistent solutions still exhibit unusual properties.
Consider, for examples, the two solutions presented in
Figs. 16 and 17, where the same initial conditions—two
blue particles coming in, one from the left and one from
the right—lead to two consistent color configurations.
Thus, the evolution inside the causality-violating region
cannot necessarily be predicted from the initial conditions.
This situation does not usually appear in the absence of
CCCs, as classical physics is in general deterministic.13

How will the Universe “decide” which evolution to use?
Choosing a specific one would require additional assump-
tions to explain what is special about that particular
evolution.
The same situation also occurs generically in covering

spaces of the TDP space. Referring back to the systems of
equations required to ensure consistency in Sec. VA, we
can determine the number of free color variables, and
consequently the number of distinct consistent solutions.
When H is even, the relevant constraint is Eq. (8), where
each particle color is independent of the rest. Thus, whenH
is even, there are Cmþn possible solutions. When H is odd,
the relevant constraint is Eq. (9), where most equations are
coupled in pairs, giving C⌈mþn

2
⌉ solutions.

Thus, the notion of multiple histories seems to arise from
causality-violating spacetimes in two distinct ways: first,
when we extend the spacetime to resolve paradoxes, and

second when multiple outcomes are compatible with the
same initial conditions. This second case seems more akin
to the “worlds” of the Everett interpretation than to the
histories solving time travel paradoxes, as these worlds
represent distinct possible outcomes for the same physical
process rather than an outside intervention due to the
presence of a time machine. Confronted with similar
phenomena in a different spacetime, Echeverria et al.
suggested in [20] the possibility of resolving the situation
using a quantum mechanical sum-over-histories method.

FIG. 16. One of the two consistent solutions obtained by sending
particles toward the causality-violating region from both sides.

FIG. 17. The second of the two consistent solutions obtained by
sending particles toward the causality-violating region from both
sides. Note that the initial conditions and final outcomes are the
same as in Fig. 16—two blue particles coming in and two green
particles coming out—but the evolution inside the causality-
violating region is different. Thus, evolution in this region cannot
be predicted.

12The solid or dashed lines have no physical meaning, and they
are not properties of the particles themselves; they are just used in
the figure to distinguish one particle from the other in each vertex.
The actual physical property of the particle coming in from
infinity is that it is blue; the fact that it is solid in h ¼ 1 and
dashed in h ¼ 2 is simply for the purpose of distinguishing the
particle from its copy.

13However, see [31].
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B. Revisiting previous histories
and the Novikov conjecture

In Sec. V, we found that, assuming the number of colors
C is finite, it is sufficient to have C different cyclic histories
in order to resolve every possible paradox, both consistency
and bootstrap. In other words, contrary to popular opinion,
one does not need to prevent going back to previously
visited histories in order to avoid paradoxes.
Note that, since we allowed one to go back to the very

first history, the time machine will always emit particles
from the future as soon as it is created, which is what one
would expect if the Novikov conjecture is true, but not
from a traditional multiple-histories scenario, where the
first history should, by definition, be the one where no
one has yet traveled back in time. However, while the
Novikov conjecture was originally applied to only a
single history, it can be applied more generally, in
principle, to larger spacetimes—even to those containing
multiple histories.
The scenario where travel to the first history is possible

therefore extends the Novikov self-consistency conjecture
to multiple histories. Indeed, under the traditional Novikov
conjecture, since there is only one history, when we open
the time machine at t ¼ −1, particles must come out since
they went (or will go) into the time machine at t ¼ þ1. This
is similar to how, in the traditional Novikov conjecture
scenario, a time traveler who goes back in time to kill
themselves has, in fact, already gone back and already
failed. There is no history where the time traveler did not go
back in time yet since there is only one history.
To illustrate this more precisely, consider a scenario

where Alice wants to travel back in time from 2020 to
1950 and kill her grandfather, Bob, before he met her
grandmother. Let us first assume that the Novikov
conjecture is correct, but there is only one history.
Then in this one history, in chronological order, Bob
is born in 1930, Alice emerges from a time machine in
1950 and tries to kill Bob—but fails, Alice is born in
1990, and Alice goes into a time machine in 2020. This is
a completely consistent chain of events, and there is no
other universe or history where Alice did not travel back
to 1950.
Next, let us assume that there are multiple histories and

that they are cyclic all the way back to the first history.
Then, again, there is a completely self-consistent chain of
events—however, now it encompasses more than one
history. We will denote the year 2020 in history A as
2020A, and so on, and we will similarly denote Alice from
history A as Alice A, and so on.
In history A, Bob A is born in 1930A, Alice B emerges

from a time machine in 1950A and tries to kill Bob A by
releasing a crocodile—but fails, Alice A is born in 1990A,
Bob A tells Alice A in 2010A a story about a woman who
looked remarkably like an older version of her who tried to
kill him back in 1950A by releasing a crocodile, and Alice

A goes into a time machine in 2020A determined to kill her
grandfather using another, more efficient method: dropping
a piano on him.
In history B, Bob B is born in 1930B, Alice A emerges

from a time machine in 1950B and tries to kill Bob B by
dropping a piano on him—but fails, Alice B is born in
1990B, Bob B tells Alice B in 2010B a story about a
woman who looked remarkably like an older version of her
who tried to kill him back in 1950B by dropping a piano on
him, and Alice B goes into a time machine in 2020B
determined to kill her grandfather using another, more
efficient method: releasing a crocodile.
This is a Novikov-like scenario, but with two distinct

histories which are not self-consistent individually since
the murder attempts in each history are different; when
Alice B tries to kill Bob A by releasing a crocodile,
she is deliberately doing something that she knows not
to be consistent with her own history (B), as she is
trying to change history. Although she does manage to
change history from her perspective (into history A),
Novikov’s conjecture still conspires to prevent her from
changing it in an inconsistent way; the combination of
histories A and B together represents a completely self-
consistent chain of events, spanning two distinct
histories.
These examples illustrate how paradox resolution using

finite cyclic histories leads to a novel hybrid scenario, with
outcomes characteristic of both one-history spacetimes
satisfying the Novikov conjecture and multiple-histories
models with unlimited histories. With the Novikov con-
jecture over only one history, there are closed causal
curves, and paradoxes are avoided when consistency can
be enforced along these curves. The price we have to pay
is that the actions time travelers take after they travel to the
past must be predetermined, making time travel essentially
trivial. You can never go back in time to kill Hitler,
because there is only one history, and in this history Hitler
existed.14

On the other hand, with an infinite number of histories,
paradoxes are resolved by simply eliminating closed causal
curves in the first place. The price we have to pay is that,
since CCCs do not exist, this is not “true” time travel
anymore.15

Extending the Novikov conjecture to finite cyclic histor-
ies provides a new middle ground for solving time travel
paradoxes. The first case occurs when H ¼ 1, and the
second whenH is infinite. In between, whenH is finite and
greater than 1, we may have the existence of closed causal
curves over multiple histories while still satisfying the

14Or maybe you go back in time to kill Hitler—but fail, and
this near-death experience turns out to be what caused Hitler to
become an evil dictator in the first place.

15But see footnote 10.
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Novikov conjecture, enabling true time travel along with
the ability to change history.16

C. Observable consequences

We now have four different ways in which our Universe
might resolve time travel paradoxes.
(1) The Hawking conjecture: Time travel is simply

impossible.
(2) The Novikov conjecture: There is only one history,

and it can never be changed.
(3) Branching spacetime scenario: Observers who travel

back in time find themselves in a new history and
unable to go back to a previous history. Furthermore,
there is a unique first history.

(4) Covering space scenario: There is no unique first
history and it is possible to return to a previous
history when the number of histories is finite—as
long as the Novikov conjecture applies to the long
closed causal curves which traverse all of the
histories (as opposed to each history individually).

How may we experimentally determine which approach, if
any, is realized in our Universe? First, if we successfully
build a time machine, then we have disproved the Hawking
conjecture.17 Let us thus assume that it is indeed possible to
build a time machine and discuss how to distinguish among
options 2, 3, and 4. Consider a simple experiment where
Alice builds the time machine described by the TDP space,
which connects t ¼ þ1 to t ¼ −1.

First, let us assume that Alice notices that another Alice
did not emerge from the time machine at t ¼ −1. She then
enters the time machine at t ¼ þ1 and meets a copy of
herself, who confirms that the time is now t ¼ −1. Both
Alices now know that there are at least two independent
histories: the one where Alice did not exit the time machine
at t ¼ −1, and the one where she did. Among the four
models we examine in this section, the Alices conclude that
the branching spacetime scenario must be the correct one
since Alice necessarily came from the first history, h ¼ 1,
and arrived at another history, h ¼ 2.
Alternatively, let us assume that Alice (we shall now call

her Alice A) notices that another Alice (Alice B) did
emerge from the time machine at t ¼ −1. Then the Alices
can try to change something that Alice B remembers
happening, which should be trivial assuming that Alice
B remembers everything that happened between t ¼ −1
and t ¼ þ1 in her history. For example, if Alice B
remembers that she said “1” then Alice A can try to say
“2” instead.
(a) If they succeed in changing something, then they can

conclude that they live in a covering space scenario—
since there is no first Alice, but also more than one
history.

(b) If they fail to do so, then they can suspect that they are
in a Novikov conjecture scenario.

VII. SUMMARY AND FUTURE PLANS

In this paper, we introduced a (1þ 1)-dimensional
model for a spacetime with a time machine and multiple
histories, and we showed how time travel paradoxes within
this model are inevitable unless one allows for sufficiently
many histories. An infinite number of histories is certainly
sufficient; however, we also showed that a finite number of
cyclic histories is sufficient within our particular model,
producing a variation of Novikov’s conjecture which spans
multiple histories. This scenario contains closed causal
curves, unlike traditional multiple-histories resolutions,
while also allowing time travelers to actually change the
past, unlike Novikov’s conjecture over only one history.
Therefore, it provides a good middle ground between the
two. We also suggested how to experimentally determine,
at least in principle, whether our Universe is described by
the Hawking conjecture, the Novikov conjecture, a branch-
ing spacetime model, or a covering space model.
There are several important issues that we did not discuss

here, including the following:
(a) We did not provide an actual physical mechanism for

creating new histories; we merely assumed them, as is
usually done in the literature.

(b) We asserted that, in the TDP space, a time traveler
moves from one history to another while traversing the
wormhole. However, we did not develop a prescription
for determining at which point along a closed timelike
or causal curve this transition between histories

16Furthermore, the traditional Novikov scenario, with only one
history, does not leave any room for “free will” since Alice cannot
make any choice that will change the past; if Alice already knows
how her future self attempted to kill Bob in the past, then she will
simply not be able to choose to try killing him in another way.
However, with finite cyclic histories, Alice does, in fact, have the
capacity to change history—as Alice A and B did in the example
above. If she ever succeeds, then the chain of histories is simply
terminated; however, it is also possible that she fails every time, in
which case the histories can (but do not necessarily have to) be
cyclic. Thus, this scenario provides at least the illusion of free
will. It is important to note that since different Alices exit the time
machine in each history, Alice B does not have a memory of what
happened in history A, so as far as she is concerned, she has the
free will to do whatever she wants. More generally, there is never
a situation where Alice knows what is supposed to happen and
finds out that she simply does not have the ability to change it,
which is the main issue with Novikov’s conjecture. Each history
is a completely new history, from Alice’s perspective, with
endless possibilities and nothing predetermined.

17As is usually the case, finding a counterexample to the
conjecture is much easier than proving that it is true in all cases.
To prove the Hawking conjecture, it is not enough to simply not
succeed in building a time machine, since it is always possible
that a time machine could be built, but we are just not skillful
enough to build it. The proof must therefore be a theoretical one;
we must have access to the most fundamental theory of physics
(if such a theory exists) and use that theory to mathematically
prove that a time machine cannot be built, even in principle.
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happens in more general spacetimes. This question is
of particular concern in the case of more “realistic”
time travel models, such as those using warp drives or
wormholes with nonzero throat length. As time travel
in this case involves traversing a nonzero distance, it is
unclear where exactly along this journey the new
history should be created. This problem becomes even
more complicated when one considers that closed
curves, by definition, do not have a beginning or
end.

We hope to address these issues in future work. Other
intriguing avenues of future research include generalizing
our model in different ways, such as the following:
(a) Formulating the model in 2þ 1 and 3þ 1 spacetime

dimensions.
(b) Employing realistic physical laws, ideally given by a

well-defined Lagrangian.
(c) Allowing particles to travel along timelike paths in

addition to null paths.
(d) Allowing additional time machines.
(e) Allowing time machines to be turned on and off.
Multiple histories are, in our opinion, the most compelling
of the existing approaches for resolving time travel para-
dox. Hawking’s conjecture simply prevents time travel
from happening in the first place, while Novikov’s con-
jecture allows time travel, but in an extremely limited way,
where the past cannot be changed and the time traveler
cannot exercise their free will. If either conjecture is true, it
would make life much less interesting.
In contrast, the multiple-histories approach allows one to

change the past and at least the illusion of free will—thus

making the Universe considerably more exciting. In addi-
tion, it challenges many fundamental notions in mathemat-
ics, physics, and philosophy and opens up stimulating new
avenues of research. Yet, there is surprisingly little liter-
ature about it. Furthermore, our presentation in this paper of
a novel approach—the cyclic multiple-histories approach,
which extends the Novikov conjecture to multiple histories
and exhibits hybrid behavior characteristic of both the
Novikov conjecture and multiple histories—may provide
new and interesting ways in which time travel paradoxes
can be discussed and analyzed.
We hope that this paper will inspire mathematicians,

physicists, and philosophers to work on the formulation of
a consistent and well-defined framework for physics with
multiple histories, both in relation to time travel paradoxes
and in other contexts, such as the Everett interpretation of
quantum mechanics.
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