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The Rezzolla-Zhidenko (RZ) framework provides an efficient approach to characterize spherically
symmetric black hole spacetimes in arbitrary metric theories of gravity using a small number of variables
[Rezzolla and Zhidenko, Phys. Rev. D 90, 084009 (2014)]. These variables can be obtained in principle
from near-horizon measurements of various astrophysical processes, thus potentially enabling efficient
tests of both black hole properties and the theory of general relativity in the strong-field regime. Here, we
extend this framework to allow for the parametrization of arbitrary asymptotically flat, spherically
symmetric metrics and introduce the notion of an 11-dimensional (11D) parametrization spaceΠ, on which
each solution can be visualized as a curve or surface. An L2 norm on this space is used to measure the
deviation of a particular compact object solution from the Schwarzschild black hole solution. We calculate
various observables, related to particle and photon orbits, within this framework and demonstrate that the
relative errors we obtain are low (about 10−6). In particular, we obtain the innermost stable circular orbit
(ISCO) frequency, the unstable photon-orbit impact parameter (shadow radius), the entire orbital angular
speed profile for circular Kepler observers, and the entire lensing deflection angle curve for various types of
compact objects, including nonsingular and singular black holes, boson stars, and naked singularities, from
various theories of gravity. Finally, we provide in a tabular form the first 11 coefficients of the fourth-order
RZ parametrization needed to describe a variety of commonly used black hole spacetimes. When
comparing with the first-order RZ parametrization of astrophysical observables such as the ISCO
frequency, the coefficients provided here increase the accuracy by 2 orders of magnitude or more.
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I. INTRODUCTION

The Dicke-Eötvös experiment established that the tra-
jectories of freely falling test bodies are independent of
their internal structures and compositions, thereby setting
the weak equivalence principle (WEP) on firm footing.
Truly remarkable tests of whether the speed of light is
isotropic and independent of the velocity of the source, and
tests of time dilation, conservation of four-momentum, and
the relativistic laws of kinematics in particle physics
experiments have all bolstered our confidence in the
principles of local Lorentz invariance (LLI) and local
positional invariance (LPI) as being fundamental features
of any serious physical theory. Therefore, the Einstein
equivalence principle (EEP), which requires LLI, LPI, and
WEP all to hold, is well supported by experiments to date.
For further details, we direct the reader to see the founda-
tional papers in experimental gravitation [1,2], and an
excellent modern review can be found in Ref. [3].
Assuming the exact validity of the EEP implies that

metric theories of gravity are the most viable candidates to
describe classical gravity, or possibly theories that are

metric apart from very weak or short-range nonmetric
couplings (as in string theory) [1–3]. Following Ref. [1], we
define a metric theory as one in which a metric tensor g
exists and is necessarily associated with gravity, while
matter and other nongravitational fields obey ∇ · T ¼ 0,
where∇ is defined with respect to the metric g, and T is the
energy-momentum-stress tensor for all matter and non-
gravitational fields [1]. The latter condition on T has the
important consequence that test bodies move on geodesics
of g, which is of central importance here [4]. Gravitational
redshift, bending of light due to spacetime curvature,
frame-dragging effects due to matter currents, and the
Shapiro delay are to be expected in any metric theory of
gravity, and one can test candidate theories quantitatively,
in the weak-field limit, for their agreement with such
observables within the parametrized post-Newtonian
(PPN) parametrization scheme proposed in Refs. [5,6],
in terms of ten variables.
General relativity (GR; see Ref. [7]), which is the

Occam’s razor theory of gravity, has withstood all classical
weak-field tests to date successfully [3,8], and an early
success of GR in the strong-field regime was the prediction
of the rate of energy loss due to gravitational wave radiation*kocherlakota@itp.uni-frankfurt.de
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in binary pulsar systems [9]. More recently, with major
large-scale astronomy missions such as the Laser
Interferometric Gravitational wave Observatory (LIGO)
and the Event Horizon Telescope (EHT; Refs. [10–15]),
it is becoming possible to observe astrophysical events that
are dominated by strong-gravity effects. Direct detections
of gravitational waves by LIGO from various compact
binary systems [16,17] and the recently obtained image of
the supermassive compact object M87⋆ by EHT [10–15]
can be interpreted consistently with the use of the black
hole (BH) solutions of GR. The recent observations by
GRAVITY of the gravitational redshift [18] and geodetic
orbit precession [19] of the star S2 near our Galaxy’s
central supermassive compact object Sgr A⋆ are other key
successes of GR in strong gravitational fields.
Various non-BH solutions, such as boson stars and naked

singularities, also exhibit many of the features that BH
solutions do, such as the presence of photon spheres
[20,21], and characterizing observable differences of such
“mimickers” from the BHs of GR is clearly important.
Attempting to address the question of the validity of the
cosmic censorship hypothesis from an observational point
of view is an attractive possibility: while general results like
the Birkhoff theorem [22], along with various other
analytical [23–31] and numerical studies [32–36], lend
weight to our expectation that BHs can, in fact, occur
frequently—or equivalently, that they do form generically
as end states of continual gravitational collapse—despite
significant effort [37–44], we have not been able to rule out
the formation of naked singularities in GR.
Of course, the very presence of spacetime singularities,

which are locations of arbitrarily large curvature, in the
various solutions of GR is a long-standing weakness of the
theory. Their existence is assuredly generic [45–48], and
their formation is independent of whether or not they are
sheathed behind event horizons (see, e.g., Refs. [49,50]).
Therefore, it is useful to study observables associated with
regular solutions for BH-like compact objects, both within
GR and in alternative theories of gravity, to check whether
they are consistent with recent strong-gravity measure-
ments of, e.g., the M87⋆ shadow size recently obtained by
the EHT, and to explore whether they are better models for
compact astrophysical objects.
Since the number of models for compact objects offered

by various candidate theories of gravity (sometimes when
coupled to other fields) is large, when attempting to test the
theory of general relativity using strong-field observables,
it is imperative that we have a unified-theory-agnostic
framework ready that characterizes arbitrary solutions
(BHs and non-BHs) efficiently—i.e., with as few param-
eters as possible. Toward this end, we extend here the
framework presented in Ref. [51], which can be used to test
properties of asymptotically flat, spherically symmetric BH
solutions from arbitrary metric theories of gravity, to
include non-BH solutions as well. Our parametrization

framework uses 11 parameters, and we are able to obtain
approximate values for the metrics and various observables
for a variety of compact objects at typical relative errors of
10−6. The observableswe choose to study here are the orbital
angular speeds of test bodies moving on circular geodesics,
the impact parameter of photons on unstable circular geo-
desics (shadow radius), and the angle of deflection due to
gravitational lensing; a study of these observables is impor-
tant when considering the construction of images of compact
objects from general-relativistic magnetohydrodynamic
(GRMHD) simulations. We also report here the deviations
of these observables from their corresponding values for the
Schwarzschild BH for easy comparison.
Finally, since EEP may only hold approximately—i.e.,

since it could be violated in the strong-field regime (see,
e.g., Refs. [52,53])—it is imperative that the framework we
use here to set up strong-field tests of theories of gravity be
able to characterize BH solutions from theories that break:
e.g., LLI (as in Einstein-aether theories [54]) or even
nonmetric theories in which, e.g., the electromagnetic
Lagrangian is modified to allow for nonlinear interactions
[55]. Therefore, the models for compact objects we con-
sider here are BHs from (a) GR (that are either singular
[56,57] or nonsingular [58–61]), (b) Einstein-aether theory
[62], (c) string theory [63–67], and (d) GR coupled to
nonlinear electrodynamics [68,69]. Additionally, we also
consider spacetimes of regular mini–boson stars [21] and
naked singularities [70] in GR.We argue that since the level
of errors in approximating their exact observables is
sufficiently low, it is possible to distinguish between these
objects extremely well whenever their exact variables differ
within the present framework.
The outline of the paper is as follows: In Sec. II, we

discuss a unified framework to parametrize and implement
strong- and weak-field tests of arbitrary spherically sym-
metric metrics in arbitrary metric theories of gravity (and
some that are nonmetric, as mentioned above). We note that
this is a smooth extension of the Rezzolla-Zhidenko para-
metrization scheme presented in Ref. [51]. In Sec. III, we
outline how various observables related to causal geodesics
may be computed within this parametrization scheme. In
Sec. IV, we introduce the notion of an 11D parametrization
space Π on which every metric solution can be uniquely
visualized, and provide brief descriptions of the various
compact objects under consideration here. We also dem-
onstrate the efficiency of our framework in obtaining the
metric functions (up to two derivatives) across the entire
region of interest. For example, for BHs, we are able to
approximate their entire exterior geometry to a maximum
relative error that is typically less than 10−6. We also show
how all of the associated observables considered here are
recovered at similar error levels. Section V presents a
summary of our results and discusses various advantages of
this framework. Our results have considerable overlap with
the analysis for BHs presented in Ref. [71], and we briefly
compare the two sets of results in Sec. V.
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II. AN EFFICIENT PARAMETRIZATION
FRAMEWORK FOR SPHERICALLY

SYMMETRIC SPACETIMES

The Rezzolla-Zhidenko (RZ) framework of parametriz-
ing asymptotically flat, spherically symmetric BH space-
times in arbitrary metric theories of gravity [51] effectively
rewrites a portion of the metric functions in terms of
continued fractions over a conformal radial coordinate.
A smooth extension of this scheme was proposed in
Ref. [72] to tackle the problem of parametrizing the broader
class of asymptotically flat, axially symmetric BH space-
times, when the metric is expressed in Boyer-Lindquist-like
coordinates (t; r; θ;ϕ). The existence of the two Killing
vector fields ∂t and ∂ϕ ensures that the four free metric
functions depend only on r and θ, and in the Konoplya-
Rezzolla-Zhidenko (KRZ) framework [72], a double
expansion in these variables is employed to parametrize
them. In particular, a Taylor expansion in y ¼ cos θ and a
mixed Taylor-Padé expansion in terms of a conformal
radial coordinate x, similar to the one used here, efficiently
parametrizes the exterior horizon geometry. We direct the
reader toward Ref. [73] for a demonstration of the effi-
ciency of the KRZ scheme in parametrizing various well-
known stationary BH metrics and their associated shadow
curves.
Restricting our focus to spherically symmetric space-

times, we now discuss an extension of the RZ scheme that
allows for arbitrary asymptotically flat, static spacetimes,
including non-BH ones, to also be similarly characterized.
The line element outside a spherically symmetric con-

figuration of matter can generally be expressed in arbitrary
spherical-polar coordinates ðt; ρ; θ;ϕÞ as

ds2 ¼ −fðρÞdt2 þ gðρÞdρ2 þ hðρÞdΩ2
2; ð1Þ

where dΩ2
2 is the standard line element of a two-sphere.

Since the aim of the current parametrization scheme is to
compare metrics across arbitrary metric theories of gravity,
it is useful to reexpress them in a standardized form, in the
same set of “areal-radial, polar” coordinates ðt; r; θ;ϕÞ, as

ds2 ¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ dr

2 þ r2dΩ2
2: ð2Þ

This radial coordinate r cleanly determines the proper area
of two-spheres A in the spacetime as A ¼ 4πr2. The
desired coordinate transformation ρ → r to achieve this
change in form can be obtained by solving for ρðrÞ from

hðρÞ ¼ r2; ð3Þ

with the other metric functions then being given asN2ðrÞ ¼
fðρðrÞÞ and B2ðrÞ ¼ fðρðrÞÞgðρðrÞÞð∂rρðrÞÞ2, where ∂r
represents a derivative with respect to r.

One can then compactify the radial coordinate by
introducing an interior cutoff for it at r ¼ r0 > 0 and
defining a conformal radial coordinate x as1

xðrÞ ¼ 1 −
r0
r
; ð4Þ

and the coordinate patch we will be interested in character-
izing here is r0 ≤ r < ∞. Clearly, xðr ¼ r0Þ ¼ 0, and as
r → ∞, xðrÞ → 1. Therefore, characterizing the metric
functions N2ðxÞ and B2ðxÞ over the range 0 ≤ x < 1 is
equivalent to fully characterizing the spacetime over this
radial range. It is useful to keep in mind the nature of this
scale—i.e., a radial range r0 < r < 2r0 takes up almost
half of the range of the conformal coordinate 0 < x < :5.
Also, the range 104r0 < r < 106r0 is packed into
1–10−4 < x < 1–10−6.
When a metric [Eq. (2)] describes the geometry outside a

BH, a natural choice for r0 exists: namely, the location of its
event horizon, since one is typically interested in studying
features of its exterior geometry. Indeed, this will be our
choice here.2

Similarly, if one is interested in studying the exterior
geometry of a star, one can set r0 to correspond to the
location of its surface. In the case of a spacetime containing
no such natural interior boundary, like that of a boson star
or a naked singularity, one can set r0 freely to a finite
nonzero value. Since the central objective of the present
study is to study differences of metric functions and
observables associated with various compact objects from
the Schwarzschild BH in particular, a convenient choice
for r0 here, for such objects, is r0 ¼ 2M, where M is the
Arnowitt-Deser-Misner (ADM; Ref. [74]) mass of the
spacetime. Since we will be considering asymptotically
flat spacetimes exclusively here, identifying M is typically
possible. This also reduces the number of requisite param-
eters from 12 to 11, as we will see below.
As noted above, a fundamental necessity to be able to

constrain deviations from GR is a unified-theory-agnostic
framework that characterizes both the strong and weak
gravitational field regimes of arbitrary solutions efficiently.
Since, by construction, the RZ parametrization scheme
handles both these regimes simultaneously and effectively
for spherically symmetric BH solutions [51], a natural
choice is to extend it to include non-BH solutions. This is
achieved by modifying the auxiliary function AðxÞ used in
Ref. [51] as

1Note that x is not a conformally flat coordinate. See the
Appendix A for a discussion on how x is related to the
conformally flat “tortoise” coordinate r�.

2To be precise, when various types of horizons for a BH
solution do not match (e.g., Einstein-aether BHs [62]), we will
always choose r0 to correspond to the outermost Killing horizon,
which is the location of the outermost zero of the null expansion,
and is given by the outermost root of g−1rr , i.e., N2ðr0Þ ¼ 0.
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N2ðxÞ ¼ n0 þ AðxÞx; ð5Þ

where n0 ¼ N2ðr ¼ r0Þ. In particular, when the metric (1)
describes a BH spacetime, we have n0 ¼ 0, and this
definition for AðxÞ reduces to the one used in Eq. (4)
of Ref. [51]. We have essentially modified the “inner”
boundary condition on the 1D box 0 ≤ x < 1 for the
gtt-metric function.
For the Killing vector ∂t to remain timelike [gð∂t · ∂tÞ ¼

gtt < 0] outside the outermost Killing horizon, clearly we
require

0 < AðxÞ; for 0 < x < 1: ð6Þ

If a non-BH spacetime admits a Killing surface at some
location (perhaps in aether theories), one must set r0 to
correspond to that location. The non-BH spacetimes
considered here do not admit such Killing surfaces,3 and
we will set r0 ¼ 2M for them in Sec. IV.
Equation (6) implies that a continued fraction approxi-

mation for AðxÞ is already a salient possibility. However, to
facilitate an easy comparison with the PPN form of the
metric [3,5], we first write out the asymptotic Taylor
expansions (to the first few orders) of the metric functions
A and B, and introduce two new auxiliary functions Ã and
B̃ as

AðxÞ¼1−n0−ϵð1−xÞþða0−ϵÞð1−xÞ2þ ÃðxÞð1−xÞ3;
ð7Þ

BðxÞ ¼ 1þ b0ð1 − xÞ þ B̃ðxÞð1 − xÞ2: ð8Þ

In the above, we have also introduced three new constants
ϵ, a0, and b0, which, along with n0, can be used to test
whether the spacetime in question satisfies the PPN
constraints that arise from weak-field tests of gravity, as
we will see in Sec. III A. This redefinition [Eqs. (7) and (8)]
of the auxiliary functions has the consequence that these
tilded auxiliary functions, Ã and B̃, do not influence the
values of the PPN parameters of the spacetime.
Thus far, we have roughly performed Taylor expansions

of the metric functions when rewritten in terms of x (a
variable that behaves as 1=r) about x ¼ 0 in Eq. (5) and
x ¼ 1 in Eqs. (7) and (8). At the core of the efficiency of the
current parametrization scheme is the choice to characterize
Ã and B̃ as Padé approximants in the form of continued
fractions as

ÃðxÞ ¼ a1
1þ a2x

1þ a3x
1þ���

; B̃ðxÞ ¼ b1
1þ b2x

1þ b3x
1þ���

: ð9Þ

Therefore, the set of PPN coefficients n0, ϵ, a0, and b0,
along with the Padé expansion coefficients, ai and bi
(i > 0), completely characterize arbitrary spherically sym-
metric spacetimes in arbitrary metric theories of gravity.
By definition, these coefficients [aiði > 0Þ] can be

obtained by Taylor-expanding the continued fractions in
Eq. (9), and matching the Padé expansion coefficients order
by order with the Taylor-expansion coefficients for ÃðxÞ,
which we write formally as

ÃðxÞ ¼
X∞
i¼0

ãiþ1xi: ð10Þ

Below, we show the first few Padé coefficients of a function
ÃðxÞ in terms of its Taylor coefficients,

a1 ¼ ã1; a2 ¼−
ã2
ã1

; a3 ¼−
ðã3ã1− ã22Þ

ã2ã1
;

a4 ¼−
ðã4ã2 − ã23Þã1
ðã3ã1 − ã22Þã2

;

a5 ¼−
ðã5ðã3ã1 − ã22Þ− ã24ã1þ 2ã4ã3ã2− ã33Þã2

ðã4ã2− ã23Þðã3ã1− ã22Þ
;

a6 ¼−
ðã6ðã4ã2 − ã23Þ− ã25ã2þ 2ã5ã4ã3− ã34Þðã3ã1− ã22Þ
ðã5ðã3ã1 − ã22Þ− ã24ã1þ 2ã4ã3ã2− ã33Þðã4ã2− ã23Þ

;

ð11Þ

to demonstrate that the map between two sets of expansion
coefficients for the same function is nonlinear. The reader
may have observed that the dependence of either type of
coefficient on the other of the same order is linear.
Henceforth, by an nth-order approximation, we will

mean that we have truncated the Padé approximants by
setting ai>n ¼ 0. The power of the present parametrization
scheme is primarily due to the well-known property of the
rapidity of the order-on-order convergence of Padé approx-
imants [Eq. (9)] to the exact value for a multitude of
functions [75,76], as compared to other approximation
schemes, such as Taylor expansions [Eq. (10)], for exam-
ple. That this well-known efficiency of Padé approximants
is carried into the RZ parametrization has been demon-
strated for the Einstein-dilaton spacetime [51], where the
rate of convergence of order-on-order truncated Padé
approximants was contrasted against the order-on-order
truncated Taylor approximations of the Johannsen-Psaltis
parametrization scheme in the Appendix of Ref. [51]. In
Appendix B below, we conduct a similar convergence test
against a recently proposed Taylor-expansion-based para-
metrization scheme [77] for the Bardeen-BH metric. See
also Appendix C.

3The absence of a Killing horizon implies that stationary
timelike Killing observers with four-velocities u ∝ ∂t þ Ω∂ϕ
exist all the way to the center of the spacetime; these move on
circular orbits. In the region where N > r∂rN > 0, equatorial
circular geodesics (∇uu ¼ 0) exist [see Eq. (31) below]. For the
non-BH spacetimes considered here, such equatorial Kepler
observers can exist all the way to the center.
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As we will see below in Sec. IV, already at the fourth
order (a5 ¼ b5 ¼ 0), we are able to recover both metric
functions for various spacetimes with a maximum relative
error of about 10−6 over the entire range 0 ≤ x < 1, and not
just close to the boundaries of the spacetime. In particular,
for BH spacetimes, the relative errors are typically far lower
at this order. In fact, it has recently been argued that already
at the second order, one can recover the unstable photon-
orbit radius, the orbital angular frequency of the innermost
Kepler observer, and the quasinormal frequency spectrum
for scalar perturbations to the desired accuracy for BH
solutions that are not close to extremality [71].
For (metric) functions that are fractions of two poly-

nomials, the associated continued fractions only have a
finite (and typically small) number of coefficients ai: i.e.,
for some n, all ai>n ¼ 0, and the nth-order Padé approx-
imant converges exactly to the exact function (see, for
example, the case of the Einstein-aether 1 BH in Sec. IV).
However, as can be seen from the cases of the Bronnikov
BH and the Janis-Newman-Winicour naked singularity
below, even for nonpolynomial functions, the Padé approx-
imant still converges fairly rapidly.
Note that it is not always possible to set a particular

coefficient anþ1 to zero in order to obtain the nth-order
truncated Padé approximant. One such instance is easily
seen when an < −1: in this case, setting anþ1 ¼ 0 creates a
pole at 0 ≤ x ¼ −1=an < 1 for the nth-order approximant.
To get around such an obstacle, following the discussion in
Sec. IVof Ref. [72], we may simply set anþ2 ¼ 0, anþ1 ¼ 1
and obtain then the approximation at the nth order.
It is now reasonable to ask how small a particular Padé

coefficient an needs to be in order for higher-order
coefficients to be neglected. One finds that such zeroes,
an → 0, are typically associated with poles at the next
order, anþ1 → �∞, and it is clear that the combined effect
of this zero-pole pair is to send 1þ anx=ð1þ anþ1xÞ → 1.
Therefore, we argue that when janj is appropriately small,
we can set ai≥n ¼ 0.
We turn finally to the inner-boundary behavior of the

metric functions in this parametrization scheme. The Taylor
expansion of the metric functions near x ¼ 0 is given as

N2 ¼ n0 þ ð1 − n0 − 2ϵþ a0 þ a1Þx
þð3ϵ − 2a0 − 3a1 − a1a2Þx2 þOðx3Þ; ð12Þ

B2

N2
¼ n0
ð1þb0þb1Þ2

þ
�ð1−n0−2ϵþa0þa1Þ

ð1þb0þb1Þ2
þ2n0ðb0þ2b1þb1b2Þ

ð1þb0þb1Þ3
�
x

þOðx2Þ: ð13Þ

In the case of a BH spacetime (n0 ¼ 0), x measures the
distance from the horizon, and therefore the above expres-
sions capture the near-horizon geometry of a BH.

We end by noting that the condition given in Eq. (6) has
the effect of setting nontrivial constraints on the allowed
ranges of the expansion parameters ϵ; ai for BH solutions—
i.e., when working at a particular order n, the expansion
parameters ϵ; ai≤n cannot be freely chosen. This is of
considerable importance when employing this parametri-
zation scheme to set up tests by solving inverse problems.

III. CHARACTERIZING OBSERVABLES IN THE
PARAMETRIZATION SCHEME

In this section, we outline how various observables
associated with spherically symmetric metrics can be
obtained within the current parametrization scheme. In
particular, we discuss how the PPN parameters, the orbital
angular frequency of Kepler observers, and the deflection
of light due to gravitational lensing can be calculated within
this framework. We show also the calculation for the impact
parameter of photons on unstable circular geodesics for
completeness [51]. In addition to these observables, the
method to obtain the quasinormal frequencies associated
with scalar perturbations of spherically symmetric space-
times within this parametrization scheme can also be found
in Ref. [51]. We find it useful to note here that of the
observables considered here, only the gravitational lensing
deflection angle depends on the metric function B. When
two spacetimes have identicalN2 functions, this observable
can be used to distinguish between the two spacetimes (see,
for example, the instances of the Hayward and modified
Hayward BHs in Sec. IV).

A. Testing PPN constraints

The metric functions corresponding to a generic asymp-
totically flat spacetime can be expanded around asymptotic
infinity, x ¼ 1, and expressed as

N2 ¼ 1 −
2M
r0

ð1 − xÞ

þ ðβ − γÞ 2M
2

r20
ð1 − xÞ2 þOðð1 − xÞ3Þ;

B2

N2
¼ 1þ γ

2M
r0

ð1 − xÞ þOðð1 − xÞ2Þ; ð14Þ

where β and γ are parameters that can be obtained from the
falloff features of the metric functions. For metric theories,
β and γ are called parametrized post-Newtonian (PPN)
parameters, and combinedly measure, e.g., the agreement
of their predictions for the perihelion shift of Mercury and
the time delay or light deflection due to the Sun; these
satisfy [3]

jβ − 1j≲ 2.3 × 10−4; jγ − 1j≲ 2.3 × 10−5: ð15Þ

The Taylor expansions of the metric functions around the
exterior boundary of the spacetime can be obtained as
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N2 ¼ 1 − ð1 − n0 þ ϵÞð1 − xÞ þ a0ð1 − xÞ2 þOðð1 − xÞ3Þ;
B2

N2
¼ 1þ ð1 − n0 þ ϵþ 2b0Þð1 − xÞ þOðð1 − xÞ2Þ;

ð16Þ

and upon comparing Eqs. (14) and (16), we can identify
that

ϵ ¼ 2M
r0

− ð1− n0Þ; a0 ¼
2M2

r20
ðβ − γÞ; b0 ¼

M
r0

ðγ − 1Þ:

ð17Þ

Therefore, the PPN constraints [Eq. (15)] then straightfor-
wardly translate into constraints on the four constants
introduced above (n0, ϵ, a0, and b0) as

P1 ¼
���� 2a0
ð1 − n0 þ ϵÞ2 þ

2b0
ð1 − n0 þ ϵÞ

����≲ 2.3 × 10−4;

P2 ¼
���� 2b0
ð1 − n0 þ ϵÞ

����≲ 2.3 × 10−5: ð18Þ

Note that a spacetime with vanishing zeroth-order param-
eters, a0 and b0, straightaway satisfies PPN constraints.
Furthermore, it is also clear that the functions Ã and B̃ do
not contribute in any capacity toward asymptotic PPN
constraints.
For non-BH spacetimes (n0 ≠ 0), if one sets r0 ¼ 2M,

then ϵ ¼ n0, and these constraints simplify to P1 ¼ j2a0 þ
2b0j and P2 ¼ j2b0j, respectively. Notice that for BH
spacetimes, since n0 ¼ 0, the parameter ϵ must satisfy ϵ >
−1 for the horizon to exist (r0 > 0).
We also use the PPN constraints above [Eq. (18)] for

all of the BH solutions coming from the nonmetric theories
of gravity used here, since (a) for the dilaton BHs, despite
the nonmetric coupling of the electrodynamics (ED)
Lagrangian, photons still move along null geodesics of
the metric [Eq. (2)]4; and (b) for the nonlinear ED BHs, the
Lagrangian reduces to Einstein-Hilbert-Maxwell in the
weak-field limit [55,68,69]. We think it useful to mention
here also that these BHs have the same asymptotic behavior
as the BHs of GR (up to the relevant orders for PPN
considerations). The Einstein-aether BHs considered here
have β ¼ γ ¼ 1 (see, e.g., Refs. [79,80]). Note that we have
made the rather strong assumption that even though these
theories might not satisfy the Birkhoff theorem, these
constraints are satisfied by astrophysical BHs.

B. Photon and particle orbits

Central to the comparison of images of compact objects
that the EHTwill obtain, such as Sgr A⋆, against GRMHD
simulations is the study of the flow of matter in accretion
disks near such objects, and of the motion of photons in the
associated spacetime. As a first approximation, if the
motion of accreting matter is modeled as being circularly
freely falling, then a study of timelike stable circular
geodesics becomes important. The radial infall speed of
matter on such orbits is negligible compared to the speed at
which it rotates around the compact object. In general,
circular Kepler geodesics do not extend all the way into the
black hole or up to the surface of a non-BH compact object,
and there exists an innermost stable circular orbit (ISCO) at
some radius r ¼ rISCO. Matter below this point, r < rISCO,
is pulled onto the compact object considerably more
quickly. Therefore, local features of the flow of matter
differ significantly depending on where the matter is
relative to the ISCO, and the angular speed of matter at
this location, ΩISCO, sets a dynamical free-fall timescale
and constitutes an important observable of the compact
object. Since this matter is typically a hot plasma, it emits
radiation which is lensed by the gravity of the compact
object before it reaches asymptotic observers present on
Earth, for example. Some of these photons are also trapped
by the compact object, depending on whether or not it
possesses a photon sphere, which can be characterized by
the impact parameter of the unstable circular photon orbit
ξps. Essentially, (radially in-going) photons with impact
parameter ξ < ξps are captured by the central object and are
on unstable orbits, as we will see below. Therefore, the
union of the direction of all unstable null geodesics, from
the point of view of an asymptotic observer, in a spacetime
geometry, constitutes its shadow region, whose boundary is
characterized by the photon sphere [81].
In this section, we will show how the Kepler orbital

angular frequency profile ΩKðrÞ, its ISCO value ΩISCO≡
ΩKðrISCOÞ, the light deflection angle due to gravitational
lensing ΔϕGL, and the impact parameter of the photon on a
circular unstable geodesic ξps can be obtained within the
present parametrization scheme. Toward this end, we begin
with a brief discussion on circular causal geodesics, with a
particular focus on unstable null and stable timelike ones.
Since we are concerned with spherically symmetric space-
times, a discussion of circular geodesics in the equatorial
plane suffices [81].
The Lagrangian describing geodesic motion in a static

spacetime [Eq. (1)] is given by

2L ¼ −N2ðrÞ_t2 þ B2ðrÞ
N2ðrÞ _r

2 þ r2 _θ2 þ r2sin2θ _ϕ2; ð19Þ

where the overdot represents a derivative with respect to the
affine parameter. Since the Lagrangian is independent of t
and ϕ, one obtains two constants of the motion, as

4The dilaton gravity Lagrangian used here violates WEP in
general due to a varying fine-structure constant (see, e.g.,
Ref. [78]), but not LLI or LPI.
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pt ≔
∂L
∂_t ¼ −N2_t ¼ −E; pϕ ≔

∂L
∂ _ϕ ¼ r2sin2θ _ϕ ¼ L;

ð20Þ

where E and L are, respectively, the energy and angular
momentum of the observer. We can rewrite Eq. (19) for
geodesics restricted to the equatorial plane (θ ¼ π=2,
_θ ¼ 0) as

B2

N2
_r2 þ

�
L2

r2
−
E2

N2
− 2L

�
¼ 0; ð21Þ

where 2L ¼ 0 for null geodesics and 2L ¼ −1 for timelike
geodesics. Let us define, for convenience, effective poten-
tials for equatorial null (V) and timelike (Ṽ) observers as

V ≔ E2

�
ξ2

r2
−

1

N2

�
; ð22Þ

Ṽ ≔ Ẽ2

�
ξ̃2

r2
−

1

N2
þ 1

Ẽ2

�
; ð23Þ

where in the above we have introduced the impact
parameter of a null observer as ξ ¼ L=E, and analogously
also the impact parameter ξ̃ of a timelike observer.
Equatorial circular null geodesics satisfy _r ¼ 0 and

̈r ¼ 0, or equivalently V ¼ 0 and ∂rV ¼ 0. The stability
of a circular null geodesic is governed by the sign of ∂2

rV (−
implies unstable). The expressions for the first and second
derivatives of the effective potential are provided below for
later use:

∂rV
E2

¼ −2
�
ξ2

r3
−
∂rN
N3

�
;

∂2
rV
E2

¼ 6

�
ξ2

r4
−
ð∂rNÞ2
N4

þ ∂2
rN

3N3

�
: ð24Þ

The stability of circular timelike geodesics can be similarly
determined and the relevant expressions for ∂rṼ and ∂2

rṼ
for them can be obtained simply by replacing all of the
quantities in Eq. (24) with their tilded counterparts.

1. Photon sphere impact factor

As discussed above, equatorial circular null geodesics
satisfy

0 ¼ ξ2

r2
−

1

N2
; 0 ¼ ξ2

r3
−
∂rN
N3

: ð25Þ

Equivalently, their radii r ¼ rc can be found by solving

r −
NðrÞ
∂rNðrÞ ¼ 0: ð26Þ

If ∂2
rVðr ¼ rcÞ < 0, the spacetime has an unstable circular

null geodesic at that location, and a stable circular null
geodesic otherwise. Of these locations, that which corre-
sponds to the absolute maximum of the null geodesic
potential V marks the boundary of the shadow.5

We will denote this location by rps. The corresponding
impact parameter ξps of a photon on such an orbit is
given as

ξps ¼
rps

NðrpsÞ
: ð27Þ

While the photon sphere marks the boundary of the shadow
region of a spacetime, when viewing the compact object
from asymptotic infinity, due to gravitational lensing, we
see it to be of size ξps [81], which the EHT has observed. In
terms of the conformal radial coordinate introduced above,
x ¼ 1 − r0=r, we can now find the location of all allowed
circular null geodesics by finding the solution x ¼ xc of the
equation [51]

ð1 − xÞ − NðxÞ
∂xNðxÞ ¼ 0; ð28Þ

where ∂x denotes a derivative with respect to x. We denote
by xps the location of the absolute maximum of the null
geodesic potential, and the corresponding impact factor of
this photon ξps is given as

ξps ¼
r0

ð1 − xpsÞNðxpsÞ
: ð29Þ

2. Orbital angular velocity on stable circular geodesics

The class of equatorial Kepler observers in a static
spacetime [Eq. (1)] correspond to stable circular timelike
geodesic motion, and they satisfy, as discussed above,

0 ¼ ξ̃2

r2
−

1

N2
þ 1

Ẽ2
; 0 ¼ ξ̃2

r3
−
∂rN
N3

: ð30Þ

From the above, we can straightforwardly obtain the
associated equatorial Kepler frequency at a given radius
ΩK ¼ _ϕ=_t as

ΩK ≔
ξ̃N2

r2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðrÞ∂rNðrÞ

r

r
: ð31Þ

Furthermore, since around sufficiently massive black holes,
pulsars (rotating neutron stars that spin around their axes

5It is to be noted that if there is no unstable circular null
geodesic that corresponds to the location of the global maximum
of the effective potential V, then such spacetimes do not cast
shadows. Tangibly, one can imagine a spacetime that satisfies
limr→0 VðrÞ ¼ ∞, such as the Reissner-Nordström naked singu-
larity spacetime, over a certain range of specific charge.
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and emit radiation) can be treated as test objects and are
visible to fixed asymptotic observers, measuring the rate at
which pulses from them are recorded on Earth can be useful
toward setting up strong-field tests of GR, since this rate
depends on the properties of its motion. From pulse profiles
of pulsars moving in the vicinity of static black holes, the
orbital angular frequency can potentially be extracted, and
since this frequency depends on the properties of the central
compact object like the mass and charge of the central
object, one could in principle extract these parameters for
the spacetime as well [82].
A particle moving on the ISCO corresponds to the

absolute minima of Ṽeff , and it satisfies additionally
∂2
rṼeff ¼ 0, i.e.,

ξ̃2

r4
−
ð∂rNÞ2
N4

þ ∂2
rN

3N3
¼ 0: ð32Þ

Clearly, the ISCO is also only marginally stable. The ISCO
radius, then, is the solution of [51,83]

3N∂rN − 3rð∂rNÞ2 þ rN∂2
rN ¼ 0; ð33Þ

and the corresponding orbital angular velocity is given as
ΩISCO ¼ ΩKðrISCOÞ. Kepler observers exist only outside
the ISCO—i.e., only for r ≥ rISCO.
In the current parametrization scheme, the Kepler orbital

angular velocity is given by

ΩK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ3NðxÞ∂xNðxÞ

p
r0

; ð34Þ

and the ISCO location is given as rISCO ¼ r0=ð1 − xISCOÞ,
where xISCO satisfies

N∂xN − 3ð1 − xÞð∂xNÞ2 þ ð1 − xÞN∂2
xN ¼ 0: ð35Þ

Finally, the ISCO angular velocity is obtained from
Eq. (34) by setting x ¼ xISCO.

3. Strong gravitational lensing

We study now the lensing properties of compact objects
within this parametrization framework. For equatorial null
geodesics, we can characterize the deflection due to gravity
via

dϕ
dr

¼
_ϕ

_r
¼ � L=r2

ðN=BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=N2 − L2=r2

p
¼ � 1

r2
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ξ2 − N2=r2
p ; ð36Þ

where the sign þ or − is determined by whether it is out-
going (_r > 0) or in-going (_r < 0). For a null geodesic
starting from and ending at asymptotic infinity, the point

where it is closest to the compact object—namely, its
turning point r ¼ rtp—is obtained from the condition that
_r ¼ 0 there, which gives

ξ ¼ rtp
NðrtpÞ

: ð37Þ

Then, the total deflection due to gravitational lensing
ΔϕGLðrtpÞ of such a null geodesic—i.e., its deviation from
a straight line—is given as [84]

ΔϕGLðrtpÞ ¼ 2

����
Z

∞

rtp

dr
r2

BðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2ðrtpÞ=r2tp − N2ðrÞ=r2

q
���� − π:

ð38Þ

Within the current parametrization scheme, this may be
rewritten as

ΔϕGLðxtpÞ

¼ 2

����
Z

1

xtp

dx
BðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − xtpÞ2N2ðxtpÞ − ð1 − xÞ2N2ðxÞ
q

���� − π;

ð39Þ

where xtp ≔ 1 − r0=rtp. This integral is finite only if
the turning point lies outside the photon sphere—
i.e., xps < xtp < 1.
In the next section, we display the parameters necessary

to parametrize various spacetimes based on the paramet-
rization scheme described in Sec. II, and then proceed to
demonstrate how efficiently metric functions and the
various observables discussed in this section are charac-
terized in this framework.

IV. CHARACTERIZING SPACETIMES
AND OBSERVABLES IN THE
PARAMETRIZATION SCHEME

We now discuss the conventions used here and the layout
of this section before we enter into a brief description of the
various BH, boson star, and naked singularity spacetimes
considered in this work.
We employ geometrized units throughout: 8πG¼ c¼ 1.

Deviations in the gravitational constant G or the Planck
length lp can be measured in scales of their canonical
values. Further, since the spacetimes considered here are all
asymptotically flat, the ADM mass M can be used to fix a
length scale for the Schwarzschild-like coordinate system
used in Eq. (2). If we switch to a mass-dimensionless radial
coordinate r̄ ¼ r=M, a direct comparison of various quan-
tities (observables and metric functions) associated with
various solutions becomes meaningful.
This also allows us to obtain the dependence of various

observables associated with the solutions considered here
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on the other relevant physical “charges,” like the scalar or
electric or magnetic charge, etc. In instances when the mass
of a compact object has been ascertained from observations
to requisite precision, one could then potentially look for
the dependence on other ADM charges of observational
data. The mass scaling of the various observables consid-
ered here is clear from Sec. III. The impact parameter of a
photon on an unstable circular orbit ξps, the orbital angular
frequency for Kepler observers ΩK, and the deflection
angle due to gravitational lensing ΔϕGL scale with mass as
M,M−1, andM0, respectively. Further, since the conformal
parameter x is scale invariant, the metric functions N2ðxÞ
and B2ðxÞ are unaffected; i.e., changing the units of the
radial coordinate does not affect the Padé expansion
coefficients. This is an important quality that makes the
definition of a parametrization space Π as in Sec. IVA
useful.
For easy access, the BH metric functions used here have

been compiled in Table I. We display in Table II the
parametrization coefficients up to fourth order (ϵ; ai; bi for
0 ≤ i ≤ 4) for all solutions considered here, BHs and
otherwise. As discussed above, n0 ¼ 0 for BH spacetimes
and n0 ¼ ϵ for non-BH spacetimes, since we set the inner

boundary in these cases to correspond to the Schwarzschild
radius, r̄0 ¼ 2.
In the columns under part I of Table III, we show the

relative error in obtaining ξps and ΩISCO for various
spacetimes, when using Padé approximants truncated at
the fourth order (a5 ¼ b5 ¼ 0), as an indicative quantitative
measure of the “goodness” of the current parametrization
scheme. For instance, for a Bardeen BH with specific
magnetic charge q̄m ¼ 0.75, we find j1 − ξph;a5¼0=ξph; exactj
to be 7.35 × 10−6. We also show the maximum relative
error in obtaining the metric functions N2ðxÞ and B2ðxÞ
over the entire range 0 ≤ x < 1. Finally, we display also the
maximum relative error in approximating the orbital
angular frequency of Kepler observers ΩK and the deflec-
tion angle due to gravitational lensing ΔϕGL over the entire
accretion disk xISCO < x < 1, where xISCO is defined
via Eq. (35).
To compare the goodness of the present approxima-

tion, we show the exact relative differences from the
Schwarzschild values of ξps and ΩISCO for various space-
times under part II of Table III. For example, under the
column for impact parameters, we report j1 − ξps; Spacetime=
ξps; Schwarzschildj. We also show the relative error in obtaining

TABLE I. Metric functions, N2ðr̄Þ and B2ðr̄Þ, of the BH spacetimes from arbitrary theories of gravity that we have considered. Here,
r̄ ¼ r=M, andM is the ADMmass. The location of the Killing horizon r̄0 is obtained by solving N2ðr̄0Þ ¼ 0, and is used in defining the
conformal radial coordinate x ¼ 1 − r̄0=r̄. The patch of the spacetime that we capture within this parametrization scheme is the entire
exterior horizon geometry, 0 ≤ x < 1. It is to be noted that for the Einstein-aether BHs, the Killing horizon is different from the actual
causal boundary of the BH region. Also, the term r̄− appearing in B2 for the modified Hayward BH is the smaller zero of its N2 metric
function. We also show below the PPN-allowed range of the relevant parameter for each spacetime. Finally, in the last column we
display the (rounded-up) maximum of the absolute values of all expansion coefficients for all PPN-allowed parameter values for a given
spacetime, L∞

max, with its order of magnitude given in square brackets. This number is meant to provide a rough sense of the size of the
region of this 11D parameter space on which a particular spacetime of astrophysical interest has support.

Spacetime Physical charge N2 ¼ −g00 B2 ¼ −g00g11 PPN constrained L∞
max

RN [57] 0 < q̄ ≤ 1 1 − 2
r̄ þ q̄2

r̄2
1 0 < q̄≲ 2.1 × 10−2 1 [−4]

E-ae 2 [62] 0 < c13 < 1, 1 − 2−c14
r̄ − ð2c13−c14Þð2−c14Þ2

8ð1−c13Þ
1
r̄2

1 0 < c13 < 1, 8 [−1]

0 ≤ c14 ≤ 2c13 < 2 0 ≤ c14 ≤ 2c13 < 2
E-ae 1 [62] 0 < c13 < 1 1 − 2

r̄ −
33c13

24ð1−c13Þ
1
r̄4

1 0 < c13 < 1 6 [−1]

Bardeen [58] 0 < q̄m ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
1 − 2r̄2

ðr̄2þq̄2mÞ3=2
1 0 < q̄m ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
1 [1]

Hayward [59,60] 0 < l̄ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
1 − 2r̄2

r̄3þ2l̄2
1 0 < l̄ ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
6 [0]

Bronnikov [68] 0 < q̄m ≲ 1.05 1 − 2
r̄ ð1 − tanh q̄2m

2r̄Þ 1 0 < q̄m ≲ 1.05 2 [0]

EEH [69] 0 < ᾱ, 1 − 2
r̄ þ q̄2m

r̄2 − ᾱ 2q̄4m
5r̄6

1 0 < ᾱ, 1 [0]

0 < q̄m 0 < q̄m ≲ 2.1 × 10−2

Frolov [61] 0 < l̄ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
, 1 − ð2r̄−q̄2Þr̄2

r̄4þð2r̄þq̄2Þl̄2
1 0 < l̄ ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
, 4 [0]

0 < q̄ ≤ 1 0 < q̄≲ 2.1 × 10−2

KS [63] 0 < ā − 2
r̄ þ

ffiffiffiffiffiffiffiffiffi
r̄2−ā2

p
r̄

1 0 < ā≲ 3.0 × 10−2 4 [−1]
CFM A [64] β < 1 1 − 2

r̄ ð1 − 3
2r̄Þð1 − 4β−1

2r̄ Þ−1 jβ − 1j ≲ 2.3 × 10−5 3 [0]

CFM B [64] 1 < β < 5=4 1 − 2
r̄ ð1 − 3

2r̄Þð1 − 4β−1
2r̄ Þ−1 jβ − 1j ≲ 2.3 × 10−5 3 [0]

Mod. Hayward [61] 0 < l̄ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
1 − 2r̄2

r̄3þ2l̄2
r̄6þr̄6−

r̄6þr̄4H r̄
2
−

0 < l̄ ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
6 [0]

EMd [65–67] 0 < q̄ ≤
ffiffiffi
2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffi
4r̄2þq̄4

p
−q̄2

r̄2
4r̄2

4r̄2þq̄4
0 < q̄≲ 2.1 × 10−2 2 [0]
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the deflection angle due to gravitational lensing at the ISCO
radius ΔϕGLðrISCOÞ there.
Since the relative error levels in obtaining the exact

observables within this parametrization scheme are signifi-
cantly lower when compared to the deviation of their exact
values from the Schwarzschild spacetime, setting up
precision tests is possible. Furthermore, since the number
of parameters to characterize the wide variety of compact

objects in use here is small (only 11), we conclude that this
parametrization scheme is a promising framework to test
theories of gravity and the quantum-field-theoretic effects
that may show up in astrophysical data related to compact
objects. It is remarkable that this parametrization method
performs quite well across the entire radial patch, and it
allows one to capture both weak and strong gravitational
field regimes simultaneously.

TABLE III. Under part I of this table, we demonstrate the efficiency of the current parametrization scheme by reporting the maximum
relative error, at fourth order, in approximating the metric functions of various metrics and the associated observables. Typically, the
relative error drops by more than an order of magnitude, order on order, due to the use of Padé approximants (see Table V below), and at
this order already the typical errors are at the level of 10−6. Since this parametrization scheme converges rapidly with increasing order of
approximation, those few entries that are of relatively low accuracy will be improved by adding a few higher-order coefficients. The
convention we use below is that if a number is smaller than 10−10, we set it to zero. For brevity, we display the order of magnitude within
square brackets. Furthermore, since one of the objectives of such a parametrization scheme is to test theories of gravity, we think it useful
to report the relative difference in the exact values of important observables for a particular spacetime from the corresponding values for
the Schwarzschild BH, under part II; i.e., we use the exact metric functions for part II.

I II

Maximum relative error Exact deviation from Schwarzschild

Physical
charge

jσj ¼ j1 −Oapprox=Oexactj δ ¼ 1 −Oexact=OSchw
exact

Spacetime N2½xÞ B2½xÞ ξps ΩISCO ΩK½xÞ ΔϕGL½xÞ ξps ΩISCO ΔϕGLðrISCOÞ
RN q̄ ¼ 0.5 0 0 0 0 0 2.37 [−7] 4.39 [−2] −8.21 [−2] −6.67 [−2]

q̄ ¼ 0.9 0 0 0 0 0 1.12 [−7] 1.69 [−1] −3.88 [−1] −3.28 [−1]
E-ae 2 [0.1, 0.1] 0 0 0 0 0 2.95 [−8] 4.13 [−2] −3.60 [−2] 1.27 [−2]
½c13; c14� [0.9, 0.1] 0 0 0 0 0 7.42 [−8] −6.71 [−1] 5.94 [−1] 4.87 [−1]

[0.9, 1.7] 0 0 0 0 0 1.09 [−7] 8.39 [−1] −4.86 [0] 9.61 [−2]
E-ae 1 c13 ¼ 0.5 0 0 0 0 0 8.58 [−8] −2.77 [−2] 4.98 [−2] 5.04 [−2]

c13 ¼ 0.9 0 0 0 0 0 1.49 [−7] −1.55 [−1] 2.50 [−1] 2.43 [−1]
Bardeen q̄m ¼ 0.25 0 0 0 1.49 [−9] 0 1.20 [−7] 1.06 [−2] −2.16 [−2] −2.10 [−2]

q̄m ¼ 0.75 1.78 [−5] 0 7.35 [−6] 2.21 [−5] 1.33 [−5] 3.18 [−5] 1.20 [−1] −2.86 [−1] −2.92 [−1]
Hayward l̄ ¼ 0.25 4.77 [−7] 0 1.20 [−7] 2.56 [−6] 6.53 [−7] 8.89 [−6] 4.71 [−3] −8.56 [−3] −8.76 [−3]

l̄ ¼ 0.75 2.88 [−4] 0 1.29 [−4] 2.26 [−4] 2.28 [−4] 6.86 [−4] 5.03 [−2] −9.25 [−2] −9.65 [−2]
Bronnikov q̄m ¼ 0.5 0 0 × 0 0 × × −8.20 [−2] ×

q̄m ¼ 1.05 2.58 [−7] 0 × 2.95 [−8] 1.31 [−7] × × −7.15 [−1] ×
EEH [1, 0.05] 1.74 [−5] 0 × 4.44 [−7] 9.66 [−6] × × −5.90 [−1] ×
½q̄m; ᾱ� [1, 1] 8.69 [−5] 0 × 2.22 [−4] 7.14 [−5] × × −5.76 [−1] ×
Frolov [0.5, 0.25] 1.01 [−6] 0 2.66 [−7] 4.37 [−6] 1.19 [−6] 2.54 [−6] 4.99 [−2] −9.42 [−2] −7.92 [−2]
½q̄; l̄� [0.5, 0.6] 1.82 [−4] 0 7.87 [−5] 1.59 [−4] 1.41 [−4] 2.02 [−3] 8.34 [−2] −1.63 [−1] −1.51 [−1]

[0.9, 0.25] 3.15 [−5] 0 1.47 [−5] 3.80 [−6] 1.94 [−5] 4.71 [−5] 1.83 [−1] −4.27 [−1] −3.70 [−1]
KS ā ¼ 1 2.74 [−7] 0 6.66 [−8] 1.45 [−6] 3.81 [−7] 8.68 [−7] −7.82 [−2] 1.23 [−1] 9.86 [−2]

ā ¼ 10 1.70 [−2] 0 8.62 [−3] 4.34 [−2] 1.53 [−2] 2.38 [−2] −2.59 [0] 8.81 [−1] 7.52 [−1]
CFM A β ¼ −0.9 0 1.16 [−3] 0 0 0 6.35 [−3] 0 0 7.28 [−1]

β ¼ 0.9 0 5.01 [−7] 0 0 0 3.38 [−7] 0 0 5.43 [−2]
CFM B β ¼ 1.1 0 5.40 [−6] 0 0 0 2.27 [−6] 0 0 −5.72 [−2]

β ¼ 1.2 0 1.87 [−3] 0 0 0 4.40 [−4] 0 0 −1.18 [−1]
Mod. Hayward l̄ ¼ 0.25 5.03 [−7] 2.93 [−4] 1.20 [−7] 2.56 [−6] 6.53 [−7] 2.78 [−4] 4.71 [−3] −8.56 [−3] −8.74 [−3]

l̄ ¼ 0.75 2.93 [−4] 4.73 [−3] 1.29 [−4] 2.26 [−4] 2.28 [−4] 2.60 [−3] 5.03 [−2] −9.25 [−2] −9.64 [−2]
EMd q̄ ¼ 0.7 0 9.69 [−9] 0 0 0 7.54 [−8] 8.67 [−2] −1.72 [−1] −1.37 [−1]

q̄ ¼ 1.4 1.76 [−2] 2.21 [−2] 7.22 [−3] 6.84 [−3] 4.71 [−3] 3.77 [−2] 5.36 [−1] −3.18 [0] −3.19 [0]
MBS A � � � 3.85 [−4] 2.01 [−2] × × 0 � � � × × ×
MBS B � � � 5.09 [−2] 5.95 [−2] × × 0 � � � × × ×
JNW ν ¼ 0.1 2.10 [−3] 4.30 [−2] × × 5.64 [−3] 1.57 [−2] × × ×

ν ¼ 0.5 2.00 [−3] 4.54 [−3] × 7.81 [−3] 9.53 [−4] 9.21 [−4] × 4.14 [−1] 1.80 [−1]
ν ¼ 0.9 1.40 [−3] 3.50 [−3] 6.95 [−4] 1.11 [−3] 6.65 [−4] 2.91 [−4] 1.18 [−2] 1.88 [−2] 7.72 [−3]
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A. Parametrization space Π
We now introduce the geometric notion of a paramet-

rization space. If we think of each set of PPN and Padé
expansion coefficients ðϵ; a0≤i≤4; b0≤i≤4Þ as being points of
some abstract “parametrization space” Π, then it is clear
that for each set of physical charges qj for a given
spacetime, we can associate a point πðqjÞ ∈ Π. As we
vary the physical parameters qj associated with that
particular spacetime over its entire range, we obtain a
curve or surface in Π, depending on the number of charges
q1; q2…qj. We can then use the usual Euclidean L2-norm
onΠ to measure distances between such curves or surfaces,
or equivalently between solutions. In particular, we define
the deviation of a solution from the Schwarzschild BH
spacetime, which sits at the origin of this space, as simply
being given by

L2
0 ≔ ðπ − 0Þ2 ¼

�
ϵ2 þ

X4
i¼0

ða2i þ b2i Þ
�1=2

: ð40Þ

Table II then lists the coordinates of various spacetimes in
this space. When two “solution curves” intersect, the
corresponding spacetimes match approximately at the
common point. It is to be noted that since we have used
only the first few (n ≤ 4) expansion coefficients to set upΠ,
various spacetimes are approximated at varying degrees of
accuracy. However, since a higher-order approximation
does not affect low-order PPN or Padé coefficients, we can
always compare spacetimes meaningfully on Π. For an
alternative prescription to measure differences between
solutions, one may see Ref. [85], where a superspace
approach was adopted.
Now, for each solution, we use a grid with 1000 points

for each physical charge, and we obtain the PPN and Padé
coefficients πðqÞ at each grid point q. For the Bardeen BH,
there is a single physical parameter q̄m, and we obtain
πðq̄mÞ for 1000 points within 0 ≤ q̄m ≲ :76. We then
ascertain whether the PPN constraints [Eq. (18)] are met
at each grid point and thus obtain the PPN-allowed
parameter values for each spacetime. This is reported in
Table I. We introduce another useful quantity, the L∞-
norm, which is defined as

L∞ ≔ max fjϵj; jaij; jbijð0 ≤ i ≤ 4Þg; ð41Þ

to characterize deviations from the Schwarzschild BH
solution and obtain its value at each grid point for a
particular spacetime. We can then find the maximum value
of L∞

max over all the (PPN allowed charge) grid points for a
particular spacetime, to obtain a measure of the extent of
the region in Π on which the spacetime has support. Since
all of these solutions become approximately Schwarzschild
in the limit of approach to a particular physical parameter
value, as can be seen from Table I, L∞

max gives a sense of the

maximal deviation from the Schwarzschild BH solution.
Essentially, if one samples this range of the parameter space
along all axes, one is sure to have characterized that
particular spacetime. We report L∞

max for each spacetime
in the last column of Table I for BHs. Note that for all of
the spacetimes considered here, this quantity L∞

max is
finite. That is, by sampling the region 0 < jϵj; jaij;
jbijð0 ≤ i ≤ 4Þ < 10, we have completely characterized
all of the BH spacetimes used in this work. Of course,
since the exact value of L∞

max depends on the resolution of
the grid, we report here a rounded-up value as an indicative
measure.
For the JNW naked singularity spacetime, we obtain

L∞
max ≈ 26. (We use a very coarse grid, ν ¼ 0.1; 0.2;…; 0.9,

for this spacetime.) For each of the boson star models
considered here, this number appears to be around
L∞
max ≈ 103. What this means is that all of the spherically

symmetric metrics used here lie in a compact region of Π
around the origin.
Note that we will not restrict our study to the PPN-

allowed ranges of the physical charges for the BH space-
times, reported in Table I, but explore their entire ranges
instead.

B. Black holes

Note that since the mass M is the ADM mass for all of
the solutions below, and is a free parameter, we will only
discuss the remaining charges in what follows.
The Reissner-Nordström (RN; Ref. [57]) BH describes a

charged BH in GR, with specific charge 0 < q̄ ≤ 1.
We consider two BH solutions reported in Ref. [62] that

are obtained from the Einstein-aether (E-ae) Lagrangian.
In an aether theory, LLI is violated due to the existence of
the aether vector field. The first of the two solutions, which
we call the E-ae 1 BH is a single-parameter solution,
0 < c13 < 1, and the E-ae 2 solution represents a two-
parameter family of BHs which take the values 0 < c13 < 1
and 0 ≤ c14 ≤ 2c13 < 2. Here, c13 and c14 are coupling
constants that control the aether Lagrangian. It is to be
noted that for these spacetimes, the causal horizons that
separate the BH interiors B≡M − J−ðIþÞ from their
exteriors, called the universal horizons in Ref. [62], are
different from Killing horizons, and we use the latter when
defining the conformal coordinate x.
The Einstein-gravity Lagrangian—when coupled to a

particular nonlinear electrodynamics (NLED) Lagrangian
LðFÞ, which reduces to Maxwell in the weak-field limit,
with F being the electromagnetic field strength scalar [see
Eq. (29) of Ref. [68]; see also Ref. [55] ]—yields regular,
magnetically charged BH solutions. These Bronnikov BH
solutions are given by Eqs. (3), (11), and (30) of Ref. [68],
with the specific magnetic charge 0 < q̄m ≲ 1.05 as the
only additional charge.
When considering the Einstein Lagrangian coupled to

the Euler-Heisenberg (EH) NLED Lagrangian, which is
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considered to be an effective action of a superstring theory
[86], one can obtain a magnetically charged BH solution
[69]. This Einstein-Euler-Heisenberg (EEH) BH depends
on two parameters, 0 < ᾱ and 0 < q̄m, the former of
which is the coupling constant of the F2 piece of the
EH Lagrangian and is expected to be determined by the
string tension α0 [69].
It is important to note that due to the self-interaction

introduced by the nonlinearity of the NLED Lagrangians in
the Bronnikov and the EEH BH solutions, photons do not
propagate along null geodesics of Eq. (2) (see, e.g., the
discussion in Ref. [87]). However, as was discussed in
Ref. [88], the event horizons are still determined by the
zeroes of the null expansions of Eq. (2). Therefore, our
definition of the conformal coordinate x is unchanged, and
we can still characterize these BH spacetimes within the
current parametrization scheme. However, other important
phenomena such as geometric redshift and light deflection
are modified by the NLED Lagrangian. While we are able
to show that these solutions are obtained within our
parametrization scheme to very high accuracy, and also
show that the errors in obtaining the ISCO frequency and
the Kepler frequency are also very small (matter is still
minimally coupled), we find studying the accuracy in
obtaining the photon sphere impact parameter or the
deflection of photons due to gravitational lensing for these
spacetimes to be beyond the scope of the current article.6

The Bardeen BH model, proposed in Ref. [58], is the
result of the collapse of charged matter, with the usual
central singularity replaced by a regular charged matter
core. The only relevant parameter in this solution takes
values 0 < q̄m ≲ 0.77. More recently, it was shown in
Ref. [91] that this BH can also be obtained as an exact
magnetically charged solution of an Einstein-NLED
Lagrangian.
The Hayward BH model [59] proposes a method to

resolve the central singularity in uncharged BHs in GR by
adding a region with positive cosmological constant Λ ¼
3=l2 (de Sitter) close to the center, where l is the Hubble
length. Such a model is expected to be justified by the
properties of matter [92,93] or the quantum theory of
gravity [94–97] close to the center of the BH. While l
provides a length scale for when such effects might set in,
and can therefore be related to the Planck length, larger
length scales are not strictly excluded. We will consider
here the entire range of the parameter for which BH
solutions are admitted, 0 < l̄≲ 0.77. Since we have intro-
duced the ADM mass into the definition of l̄, which can be

determined in terms of the canonical values of G and c,
fixing a particular length scale l can be thought of
equivalently as considering BHs within a certain mass
range.
The charged generalization of the Hayward model given

by Eq. (4.1) of Ref. [61] is referred to as the Frolov BH here
and has an additional parameter which takes values
0 < q̄ ≤ 1. Another generalization of the Hayward model
is also presented there, which modifies the redshift function
in Eqs. (2.47) and (2.50); this we refer to as the modified
Hayward model.
The effective dynamics of spherically symmetric fluc-

tuations of the 4D gravitational field can be shown to be
governed by a 2D dilaton gravity action [63]. By integrat-
ing out these fluctuations, one can obtain the (approximate)
Kazakov-Solodhukin (KS) BH metric, given in Eq. (3.18)
of Ref. [63]. The relevant parameter for this solution takes
values 0 < a and determines the area of the singular two-
sphere—i.e.,Asing ¼ 4πa2. While this parameter should be
roughly of the order of the Planck length, we allow it to take
all positive values here. While, more significantly, non-
singular solutions are also presented there, we do not
consider them here.
Projecting the 5D vacuum Einstein equations onto a

timelike manifold of codimension 1 (brane) yields the usual
ADM Hamiltonian and momentum constraints for spheri-
cally symmetric solutions. If one chooses the four-metric
on the brane to be given by Eq. (2) withN2ðr̄Þ ¼ ð1 − 2=r̄Þ,
this Hamiltonian constraint equation uniquely determines
the other metric function, and a one-parameter family of
Casadio-Fabbri-Mazzacurati (CFM) BH solutions are
obtained, given in Eq. (8) of Ref. [64]. For β < 1, these
are singular (CFM A), and for 1 < β < 5=4, these are
nonsingular (CFM B). The CFM B BHs in fact contain
traversable wormholes (the minimal sphere is behind the
horizon; see Fig. 2 of Ref. [64]). The parameter β here
corresponds exactly to the PPN β parameter.
Due to the coupling of the dilaton field to the electro-

magnetic field strength F in heterotic string theory, the
Einstein-Maxwell-dilaton (EMd) BH is the appropriate
electromagnetically charged BH solution in the low-energy
limit for this theory [65–67], as opposed to the RN BH.
The EMd BH is characterized by the boundary value of
the dilaton field ϕ0 and the specific electric or magnetic
charge q̄. For convenience, we consider here solutions
with ϕ0 ¼ 0. In this case, EMd BH solutions exist for
0 < q̄ ≤

ffiffiffi
2

p
.

All BH solutions (barring the NLED BHs, which we
have not studied here) cast shadows, and all BH solutions
admit ISCOs.

C. Boson stars

Spherically symmetric solutions of the Einstein-Klein-
Gordon Lagrangian with a quadratic potential can be used
to model mini–boson stars (MBSs; Ref. [98]). Since the

6In the case of the Bronnikov BH, while it has been discussed
that NLED photons propagate along the null geodesics of an
effective metric given in Eqs. (26) and (27) of Ref. [68] (see also
Refs. [89,90]), this supplementary “optical metric” is plagued by
coordinate and curvature singularities, and the causal structure of
this spacetime is unclear to us.
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matter (scalar field) constituting the MBSs, in principle,
extends all the way to infinity, albeit with the scalar field
density decaying rapidly, these objects lack a sharp
boundary or surface, and also permit stable circular orbits
all the way to the center of the spacetime. MBSs can be
extremely compact, with the 99% compactness parameter
C99 ¼ M99=R99 reaching values of about 0.08, where R99

is the radius within which 99% of the mass (M99) is
contained. This parameter is a good measure of how
compact an astrophysical object without a surface is; to
compare, for a Schwarzschild BH, this value is 0.5. Here,
we use the two MBS models, denoted A and B, that were
numerically obtained and studied in Ref. [21]. These have
compactnesses of 0.064 and 0.07, and they lie on the
unstable and stable boson star branches, respectively. Since
from about a few tens of Schwarzschild radii, these
spacetimes look identical to that of the Schwarzschild
BH, the associated PPN parameters β and γ are identical to
the Schwarzschild BH values. Also, these models lack
photon spheres and regions close to the center contribute to
the image of the boson star [21]. However, it is discussed
there that due to lower densities at the center in these
models, a relatively dark region may be discernible.

D. The Janis-Newman-Winicour naked singularity

The Janis-Newman-Winicour (JNW) spacetime is also
obtained as a solution of the Einstein-Klein-Gordon
Lagrangian [70] and can be expressed more simply, as
in Ref. [99]. The JNW solution, when written in the form
given in Eq. (1), has metric functions [99],

fðρÞ ¼ g−1ðρÞ ¼
�
1 −

2M
ρν

�
ν

; hðρÞ ¼ ρ2
�
1 −

2M
ρν

�
1−ν

:

ð42Þ

The parameter ν governs the strength of the scalar field and
is given in terms of the specific scalar charge Φ̄ as ν ¼
ð1þ Φ̄2Þ−1=2. Clearly, depending on the strength of the
scalar field, 0 < ν < 1. The JNW spacetime contains a
strong curvature singularity at ρ ¼ 2M=ν, which can
be seen by computing its Kretschmann scalar K ¼
RabcdRabcd, which diverges there.7

It can be straightforwardly seen that hðρÞ is a bijective
function (in fact, it is monotonically increasing) for all ν,
which allows us to recast the JNW metric into the presently
desired form [Eq. (2)]. In terms of the polar-areal radial
coordinate r, it can be verified that the curvature singularity
is now at r ¼ 0 and has zero proper area.

Since the coordinate transformation equation [Eq. (3)]
for the JNW spacetime,

ρ̄2
�
1 −

2

ρ̄ν

�
1−ν

¼ r̄2; ð43Þ

is typically transcendental in nature, we solve for ρ̄ðr̄Þ
numerically. In the above, we have switched to dimension-
less coordinates, ρ̄ ¼ ρ=M and r̄ ¼ r=M. For values of
ν ¼ 0.1; 0.3;…; 0.9, we use a uniform grid in log r̄, with
100 points per decade to solve Eq. (43). For these values,
Eq. (43) reduces essentially to finding the roots of a high-
degree polynomial. The grid extends from an outer radius
r̄max ¼ 107 down to an inner radius r̄min ¼ 10−2. The inner
grid point is sufficiently small for our purposes, since we
are interested in the radial range 2 ≤ r̄ < ∞.
It has been shown that this spacetime contains a photon

sphere for 0.5 < ν [101]. For 1=
ffiffiffi
5

p
≤ ν < 0.5, two

FIG. 1. We show here the metric functions gtt ¼ −N2ðr̄Þ and
grr ¼ M2B2ðr̄Þ=N2ðr̄Þ for the JNW naked singularity spacetime
for various values of the scalar field parameter, ν ¼ 0.1, 0.5, 0.9.
The strength of the scalar field grows with decreasing ν. We also
show these metric functions for the Schwarzschild BH for
comparison. For both spacetimes, we have set M ¼ 1.

7It is useful to check both the Ricci and Kretschmann scalars,
since the Ricci and Weyl scalars are known to remain finite for
several types of solutions containing curvature singularities. For
example, Ricci vanishes for electrovacuum solutions, and Weyl
vanishes for any conformally flat spacetime [100].
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timelike marginally outer/inner stable circular orbits exist at
r̄OSCO and r̄ISCO; stable circular orbits extend all the way from
the center to r̄ ¼ r̄OSCO and from r̄ ¼ r̄ISCO to infinity. For
0.5 ≤ ν < 1, a single marginally stable circular orbit
remains at r̄ ¼ r̄ISCO, and stable circular orbits exist only
outside this location. Using the results of Refs. [101,102],
we can find the locations of the photon sphere and the
timelike marginally stable circular orbits in polar-areal
radial coordinates to be

r̄ps ¼
�
1þ 2ν

ν

��
1 −

2

1þ 2ν

�1−ν
2

;

r̄ISCO=OSCO ¼
�
1þ 3ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ν2 − 1

p

ν

�

×

�
1 −

2

1þ 3ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ν2 − 1

p
�1−ν

2

: ð44Þ

In obtaining the above, we have simply used Eq. (43). We
are able to numerically recover r̄ps and r̄ISCO with a relative
error of about 10−6 from the exact values reported in
Eq. (44). Note, however, that we are unable to obtain the
photon sphere or ISCO radius when r̄ps; r̄ISCO < r̄min. This,
however, corresponds to a very small range of 0 < ν < 1.
Since the JNWmetric has not (commonly) been reported in
polar-areal coordinates, we think it useful to display its
metric functions for various values of the scalar field
parameter ν and M ¼ 1 in Fig. 1.
Once we obtain N2ðr̄Þ and B2ðr̄Þ, we make the final

change of coordinates to x ¼ 1–2=r̄ and obtain the para-
metrization coefficients, which we report in Table II.
Finally, it can be checked that the PPN parameters β
and γ for this spacetime vanish identically for all ν.

V. DISCUSSION AND SUMMARY

We have proposed here an extension to the RZ para-
metrization scheme to allow for the characterization of
arbitrary asymptotically flat, spherically symmetric space-
times, including those of stars and naked singularities.
Within this scheme, we obtain highly accurate values for
the metric functions for a variety of spacetimes: singular
and nonsingular BHs from general relativity, BHs from the
Einstein-aether theory, black holes from general relativity
coupled to nonlinear electrodynamics, string-inspired BH
and wormhole solutions, and mini–boson stars and naked
singularities in general relativity. Various other BH sol-
utions (including some here) have already been studied
within this parametrization scheme, and its efficiency in
obtaining various observables has been well established
[103–105] (see also Ref. [71] and references therein).
Recently, an extension of the RZ parametrization frame-
work to characterize spherically symmetric BHs in higher
dimensions has also been proposed [106].

The shadow radii ξph of compact objects and the Kepler
orbital angular velocitiesΩK of matter in the accretion disks
around them depend only on the gtt component of the
corresponding metric. Therefore, accurate measurements of
these observables could be translated into constraints on the
ϵ and a parameters considered here. Additionally, the
profile of the gravitational lensing angle ΔϕGLðrÞ for
photons emitted from the accretion disk region depends
also on the grr component, and when combined with the
other observables used here, could constrain the entire
metric of spherically symmetric (or slowly rotating) astro-
physical compact objects. Other observables, such as the
quasinormal frequencies associated with a compact object,
also depend on both metric functions (see Eq. 49 of
Ref. [51] for scalar perturbations), and combined con-
straints coming from all of these observables can be
simultaneously imposed in the present framework to
potentially test the underlying theories of gravity.
We have shown above that by sampling the region

0 < ϵ; jaij; jbijð0 ≤ i ≤ 4Þ < 10, we have completely char-
acterized all of the BH spacetimes used in this work (when
PPN constraints are met). This is useful when attempting to
solve the inverse problem of reconstructing a metric
function approximately given a set of observables that
can essentially be determined in terms of these variables, or
equivalently as functions over Π. Note, however, that these
parameters may not be chosen freely. For example, for BHs
the conditions ϵ > −1 and AðxÞ > 0 over 0 < x < 1 must
always be satisfied.
If the exact relative difference in an observable O for a

spacetime from its Schwarzschild BH value O0 is given as
δ ¼ 1 −O=O0, and the relative error in approximating the
value of O is given by σ ¼ 1 −Oapprox=O, then

δapprox ≡ 1 −
Oapprox

O0
¼ δþ σð1 − δÞ; ð45Þ

and so the absolute error in obtaining δ is

δapprox − δ ¼ σð1 − δÞ: ð46Þ

Note that δ need not be a small number; for spacetimes that
deviate significantly from the Schwarzschild BH, δ can be
large (see Table III). However, the absolute error in
obtaining δ due to approximation is clearly controlled by
σ. As we can see from Table III, where we display both jσj
and δ, for the spacetimes considered here, jσj is system-
atically low, about 10−6. For various spacetimes, it is
significantly lower. This means that the error in determin-
ing whether a particular spacetime is different, and how
different it is, from the Schwarzschild BH using EHT
observables within the present parametrization scheme is
appreciably low. Since this framework employs Padé
approximants, the typical order-on-order decrease in jσj
is about 10−1 − 10−2, as can be seen from Fig. 2 of
Appendix B below. Therefore, we are able to argue
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comfortably that the current framework is useful to visu-
alize and compare various spacetimes (in terms of the
parametrization space Π introduced above), to characterize
various strong-field observables associated with them, and
to enable efficient tests of both properties of BHs from
general relativity and GR itself.
Various BH solutions considered here [58,59,62–69]

were recently studied within the same framework [51] at
first and second order in Padé expansion [71]. It was
reported there that all of these solutions, for moderate
deviations from the Schwarzschild solution, are well
approximated already at second order. While our findings
are consistent with those of Ref. [71], since the aim of the
present study is to explore the entire parameter range for
these BH solutions, and errors within this parametrization
scheme typically grow with deviation from Schwarzschild
(as can be seen from Table III above and Table IV in
Appendix C below), it becomes imperative that we con-
sider higher-order approximations. As has been discussed
above, we find that at the fourth order, errors in approxi-
mating metric functions and observables are sufficiently
low across the entire parameter range for all BH solutions.
Furthermore, our PPN constraint study shows that many of
the BH spacetimes considered here (Bardeen, Hayward,
modified Hayward) satisfy the PPN constraints across their
entire parameter range (see Table I), and parametrizing BHs
that deviate significantly (close to their maximal deviation,
even) from the Schwarzschild solution becomes important
from an observational standpoint. Also, to bring the error in
approximating the deflection angle due to gravitational
lensingΔϕGLðrÞ across the entire accretion disk rISCO ≤ r to
sufficiently low levels, we find a fourth-order appro-
ximation to be typically necessary. A comparison of the
errors reported in Ref. [71] with those reported here
when approximating the ISCO orbital angular velocity
ΩISCO also demonstrates the rapidity of the convergence to
the true value by going to higher orders within the current
framework, due to its use of Padé approximants. The
relative error levels jσj reported here are typically a few
orders of magnitude smaller than the ones reported in
Ref. [71], as can be seen from Table V of Appendix C
below. For example, the errors in approximating ΩISCO

or the common BH solutions vary between 0.2%–10.5%
at first order and between 0.04%–7.95% at second
order [71], while the maximum percentage error at fourth
order is about 10−4% for moderate deviations from the
Schwarzschild solution. Finally, we think it useful to note
that while we have focused on approximating observables
that are associated with the construction of the image of a
compact object, a study of the quasinormal frequencies
associated with scalar perturbations of these BH space-
times, which could be indicative of their gravitational wave
frequency spectrum, is also presented in Ref. [71].
We note two limitations of this framework: First, space-

times that have identical metric functions on r̄0 ≤ r̄ < ∞

cannot be distinguished between. For example, thin-shelled
gravastars [107], whose exterior geometries are described
by the Schwarzschild metric, are hard to distinguish from a
Schwarzschild black hole in this parametrization scheme.
The second limitation is that if a metric is nonanalytic—i.e.,
if the metric functions or, as is more common, their
derivatives have discontinuities at some surface—then they
cannot be well characterized within this framework across
the entire range over which the metric is defined. Of course,
the patch outside the discontinuous surface can still be well
characterized. Note that a metric derivative discontinuity
does not imply that the spacetime is unphysical; this is a
common feature of various solutions that describe the
collapse of matter, and of the eventual limiting spherically
symmetric spacetimes they settle into. In these scenarios,
the spacetime is divided into two regions depending on the
extent of the matter, with the interior collapsing region
matched to an appropriate exterior metric. While the first
and second fundamentals of such a spacetime (induced
metric and extrinsic curvature) are smoothly matched, the
spacetime metric could still present discontinuities on the
matching surface (see, for example, Ref. [20]). In such
cases, it might be possible that a two-point or even a
multipoint Padé-approximant-based approach would yield
dividends (see, for example, Sec. 8.3 of Ref. [76] for a
discussion, and for related numerical results).
Finally, we note that the low level of errors in obtaining

the metric functions up to two derivatives (see Table IV
below) serves as a serious impetus to attempt a study of
hydrodynamics within this framework, and potentially
obtain full general-relativistic magnetohydrodynamic
(GRMHD) simulations of accretion flows around various
compact objects with state-of-the-art codes such as the
Black Hole Accretion Code (BHAC) [108,109], for instance.
In fact, for the Einstein-dilaton BH spacetime (discussed
here) GRMHD simulations have already been successfully
implemented [110], where it has been shown that there are
clear observational differences in its image from that of a
GR Kerr BH. Another potential application would be to
study tidal disruptions of stars and neutron stars close to
compact objects. While we do not display here the errors in
obtaining the curvature invariants R ¼ RabRab and the
Kretschmann scalar K ¼ RabcdRabcd, we find that these
are also typically approximated very well within this
parametrization scheme, as can be expected from the errors
in the values of the metric and its derivatives reported
here. This implies that one can calculate the Weyl scalar
efficiently as well and potentially characterize the radii of
tidal disruption events for various spacetimes by introduc-
ing a Frenet-Serret tetrad along static observers (see, for
example, Ref. [82] and references therein), to provide yet
another new observable to distinguish solutions. While the
spectrum of quasinormal modes of scalar [71,111] and
axial gravitational [112] perturbations of spacetimes within
this scheme has been studied and is somewhat
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representative of the spectrum of gravitational waves
(GWs), a study of the latter requires one to consider the
equations of motion of the theory of gravity that the
spacetime belongs to. Since we show that the error in
approximating up to second derivatives of the metric
function across the entire exterior geometry is small already
at the fourth order in our framework, it is possible that the
GW spectra of higher-derivative gravity theories can also
be obtained efficiently in this framework.
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APPENDIX A: TORTOISE COORDINATE FOR
BLACK HOLE SPACETIMES

If the metric g of a spacetime can be brought into the
form gðxÞ ¼ CðxÞη, then such a metric g is conformally
flat, and the coordinates xμ are called conformally flat
coordinates; here η is the Minkowski metric tensor. Such
coordinates are particularly useful when attempting to
study the global causal structure of a spacetime. Radial
null geodesics in the associated spacetime diagrams are
given by 45° lines, similar to flat-space spacetime diagrams.
Since all 2D geometries are conformally flat, we can find

them for the t − r plane of arbitrary BH (n0 ¼ 0) spheri-
cally symmetric metrics [Eq. (2)] as

ds2dθ¼dϕ¼0 ¼ −N2ðrÞ
�
dt2 þ B2ðrÞ

N4ðrÞ dr
2

�

¼ −N2ðrÞðdt2 þ dr2�Þ;

where the equation to achieve the coordinate transforma-
tion r → r� can be read off from above as

dr�
dr

¼ BðrÞ
N2ðrÞ : ðA1Þ

In terms of the function A defined in Eq. (5) above, this is
simply

dr�
dr

¼
�
1 −

r0
r

�
−1 BðrÞ

AðrÞ : ðA2Þ

For the Schwarzschild spacetime, since AðrÞ ¼ BðrÞ ¼ 1,
this coordinate −∞ < r� < ∞ is exactly the familiar
tortoise coordinate,

r� ¼ rþ r0 ln
���1 − r0

r

���: ðA3Þ

We can now relate the two conformal coordinates, x and r�,
for a generic BH spacetime, via

dr�
dx

¼ r0
xð1 − xÞ2

BðxÞ
AðxÞ : ðA4Þ

APPENDIX B: COMPARISON WITH THE
CARSON-YAGI PARAMETRIZATION SCHEME

The metric of a spherically symmetric (S ¼ 0) BH
spacetime in the Carson-Yagi (CY) parametrization scheme
[77] can be expressed as

ds2 ¼ −
�
1 −

2M
r

�
A−2
1 ðrÞdt2 þ

�
1 −

2M
r

�
−1
A−1
5 ðrÞdr2

þ r2dΩ2
2; ðB1Þ

where the functions A1ðrÞ and A5ðrÞ measure the deviation
of an arbitrary BH metric from Schwarzschild. An asymp-
totic Taylor expansion for these functions is then employed
to characterize them as

AiðrÞ ¼ 1þ
X∞
n¼1

αi0

�
M
r

�
n
: ðB2Þ

FIG. 2. We consider here the Bardeen BH [58], with specific
magnetic charge 0 < q̄m ≲ 0.77, and show the absolute relative
error in estimating the exact value of its unstable circular photon-
orbit impact parameter ξps; exact within the Carson-Yagi para-
metrization scheme (in dashed lines), which uses Taylor ex-
pansions to characterize metric functions, and in our scheme,
which uses expansions of Padé approximants. Considering α13 to
be the first nontrivial parameter of the CYapproximation scheme,
lines in the same color correspond to the same number of
approximation parameters. To be clear, dashed black and solid
black correspond to the α1i>13 ¼ 0 Carson-Yagi and ai>2 ¼ 0
Padé approximations, respectively. We also show in dashed cyan
the seventh-order CY relative error—i.e., for α1i>19 ¼ 0. It is
apparent that the Padé approximation does better already at first
order relative to the seventh-order Taylor expansion. Note also
that the rapidity of convergence is much higher when employing
Padé approximants.
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To compare the rapidity of the convergence of this scheme
against the one used in the current work, we study the
Bardeen-BH spacetime [58]. For this BH, we obtain the CY
functions, A1 and A5, from Table I as

A1ðr̄Þ ¼
�
1 −

2

r̄

�
1=2

�
1 −

2r̄2

ðr̄2 þ q̄2mÞ3=2
�−1=2

; ðB3Þ

A5ðr̄Þ ¼
�
1 −

2

r̄

�
−1
�
1 −

2r̄2

ðr̄2 þ q̄2mÞ3=2
�
; ðB4Þ

where in the above we have introduced r̄ ¼ r=M for
brevity. Also, the parameter q̄m corresponds to the param-
eter g=M of Ref. [77]. We obtain now the CY coefficients
αi0 up to fifth order for this spacetime as

α10¼ 1; α13¼−
3q̄2m
2

; α14¼−3q̄2m; α15¼−6q̄2mþ15q̄4m
8

;

α50¼ 1; α53¼ 3q̄2m; α54¼ 6q̄2m; α55¼ 12q̄2m−
15q̄4m
8

;

ðB5Þ

which can be verified to match the expressions in Table 1 of
Ref. [77]. From the form of the functions in Eq. (B3), it is
clear that for appreciable specific magnetic charges 0≲ q̄m,
close to the horizon, which lies between 1.23≲ r̄H ≲ 1.99,
arbitrarily high-order coefficients might become important
in this parametrization scheme. We demonstrate this by
showing in Fig. 2 how the impact parameter of a photon on
the unstable circular geodesic in this spacetime, which is a
near-horizon observable, is approximated within both the
CY parametrization scheme and in our scheme.

TABLE IV. Here we show the relative error in approximating the first and second derivatives of the metric
functions for all of the BH and non-BH spacetimes considered here.

Maximum relative error

Spacetime Physical charge dN=dx d2N=dx2 dB=dx d2B=dx2

RN q̄ ¼ 0.5 0 0 0 0
q̄ ¼ 0.9 0 0 0 0

E-ae 2 [0.1, 0.1] 0 0 0 0
½c13; c14� [0.1, 0.9] 0 0 0 0

[0.9, 1.7] 0 0 0 0
E-ae 1 c13 ¼ 0.5 0 0 0 0

c13 ¼ 0.9 0 0 0 0
Bardeen q̄m ¼ 0.25 0 3.04 [−9] 0 0

q̄m ¼ 0.75 2.10 [−5] 1.09 [−3] 0 0
Hayward l̄ ¼ 0.25 8.25 [−7] 5.35 [−6] 0 0

l̄ ¼ 0.75 3.39 [−4] 5.43 [−3] 0 0
Bronnikov q̄m ¼ 0.5 0 0 0 0

q̄m ¼ 1.05 2.74 [−7] 7.17 [−6] 0 0
EEH [1, 0.05] 1.96 [−5] 3.93 [−2] 0 0
½q̄m; ᾱ� [1, 1] 1.31 [−4] 4.75 [−2] 0 0
Frolov [0.5, 0.25] 1.60 [−6] 1.22 [−5] 0 0
½q̄; l̄� [0.5, 0.6] 2.16 [−4] 3.76 [−3] 0 0

[0.9, 0.25] 3.59 [−5] 9.83 [−4] 0 0
KS ā ¼ 1 4.60 [−7] 2.93 [−6] 0 0

ā ¼ 10 3.80 [−2] 6.93 [−2] 0 0
CFM A β ¼ −0.9 0 0 2.03 [−3] 2.01 [−2]

β ¼ 0.9 0 0 2.65 [−6] 1.74 [−5]
CFM B β ¼ 1.1 0 0 4.46 [−5] 7.7 [−5]

β ¼ 1.2 0 0 7.26 [−3] 4.04 [−3]
Mod. Hayward l̄ ¼ 0.25 8.25 [−7] 5.35 [−6] 9.96 [−2] 1.94 [−1]

l̄ ¼ 0.75 3.39 [−4] 5.43 [−3] 9.20 [−2] 1.69 [−1]
EMd q̄ ¼ 0.7 0 0 1.43 [−6] 1.32 [−6]

q̄ ¼ 1.4 1.74 [−2] 4.29 [−2] 3.09 [−2] 6.58 [−2]
MBS A � � � 4.79 [−2] 1.92 [−2] 8.06 [−2] 3.68 [−2]
MBS B � � � 1.88 [−1] 2.94 [−1] 2.22 [−1] 5.08 [−1]
JNW ν ¼ 0.1 1.45 [−2] 3.55 [−2] 4.04 [−1] 2.60 [−2]

ν ¼ 0.5 4.31 [−3] 2.51 [−1] 1.02 [−2] 2.91 [−3]
ν ¼ 0.9 1.61 [−3] 1.31 [−2] 5.27 [−2] 2.63 [−2]
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APPENDIX C: GOODNESS OF
APPROXIMATION AND
CONVERGENCE TESTS

The fourth-order approximations of the metric
functions for the various spacetimes under conside-
ration here are smooth throughout the range of the
conformal coordinate 0 ≤ x < 1. To demonstrate the
accuracy in obtaining the metric function up to two
derivatives, we report the relative errors in

approximating them in Table IV, which are typically
appreciably low.
We also demonstrate the rapidity of the order-on-order

convergence of our parametrization scheme by estimating
the relative error in obtaining the unstable circular null
geodesic impact factor ξps and ISCO frequency ΩISCO at the
second and fourth orders in Padé expansion. This is
reported in Table V. We gain about two orders of accuracy
by going two orders higher in the Padé expansion.
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