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The interior volume of black holes, as defined by Christodoulou and Rovelli, exhibits many surprising
features. For example, it increases with time, even under Hawking evaporation. For some black holes, the
interior volume is not even a monotonic increasing function of its area, which means one cannot infer how
large a black hole is by just looking from the outside. Such a notion of volume, however, turns out to be
useful in the context of holography, as it seems to be dual to the complexity of the boundary field theory. In
this study, we investigate the properties of the interior volume of four-dimensional Kerr-AdS black holes,
fixing either the mass parameter M or the physical mass E, whilst varying the values of the cosmological
constant. We found that the volume as a function of the radial coordinate features a “double lobe” while
fixingM, whereas fixing E yields behaviors that are qualitatively similar to the asymptotically flat case. We
briefly comment on the holographic complexity of Kerr-AdS black holes.
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I. INTRODUCTION: BLACK HOLE
INTERIOR VOLUME

Black holes are remarkable objects that continue to
surprise us even after a century of general relativity. The
defining feature of a black hole is that nothing that enters its
event horizon can escape from its interior. Therefore, an
exterior observer remains ignorant about just how the
interior spacetime looks like. In particular, how big is a
black hole from the inside? Take a spherical surface of
area 4πR2 in Euclidean space R3; it bounds a space of
volume 4πR3=3. However, this is not the case for black
holes, which, after all, have a nontrivial spacetime curva-
ture, which allows a fixed area to bound a larger than
expected volume. Indeed, the first challenge is to define
just what we mean by (spatial) “volume” (see [1] for
some options). Unlike the event horizon, which is uni-
quely defined in Lorentzian geometry, there is a plethora
of ways to define volume of a black hole. In this work,
our subject of study is the Christodoulou-Rovelli volume
[2]. Hereinafter, by volume, we always mean the
Christodoulou-Rovelli volume.
The idea of Christodoulou and Rovelli is to look for

the volume of the largest spacelike spherically sym-
metric surface bounded by the event horizon of the black
hole, which is a geometrical property that is coordinate

independent. For a four-dimensional asymptotically flat
Schwarzschild black hole, the volume is

Vol: ¼
Z

v
Z
S2
max

�
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r

− 1

r �
sin θdθ dϕ dv0; ð1Þ

in which v is the usual advanced time in the Eddington-
Finkelstein coordinates. (Note that v is a spacelike direction
while r is a timelike one inside the black hole.) The lower
limit of the integral is ignored because it only gives
subleading, negligible, contribution to the total volume
at late time. The function r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=r − 1

p
is maximized at

r ¼ 3M=2, which gives, when v is large,

Vol: ¼ 3
ffiffiffi
3

p
πM2v: ð2Þ

We see that the interior volume grows linearly in time v.
This result is entirely classical and is in no way contro-
versial. If we accept that black holes are solutions to the
Einstein field equations, then we should accept that the
volume defined in this manner inside a black hole continues
to grow linearly with time, although its area stays fixed (the
volume continues to increase even if the area is decreasing
under Hawking evaporation [3,4]). This is not so surprising
if we recall that the interior spacetime of a static solution
like Schwarzschild is nevertheless not static.
Assuming the Schwarzschild geometry, Christodoulou

and Rovelli estimated that Sagittarius A�, the supermassive
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black hole at the center of our Milky Way, contains enough
volume to fit a million solar systems. Its areal radius, on
the other hand, is only about 10 times larger than the Earth-
Moon distance [2]. Generalization of the Christodoulou-
Rovelli volume to the case of asymptotically flat Kerr
black hole does not change this result by much [5], despite
the rotation rate of Sagittarius A� is about 90% of the
extremal limit.
Generalizations to topological black holes in locally

asymptotically anti–de Sitter (AdS) spacetimes further
reveal surprising features of the interior volume: for some
black holes, the volume is not a monotonic function of the
area, which means that one cannot judge from the outside
how large the volume is even if the time v is known [6]. In
fact, the AdS generalizations are important, for there is
evidence that the interior volume is holographically dual to
the (quantum) complexity of the boundary field theory in
the context of gauge/gravity correspondence [7–11], which
also grows linearly in time (Christodoulou-Rovelli volume
can be defined for maximally extended “two-sided” black
holes as well) at least for a time proportional to the
exponential of the black hole entropy [12]. This is now
referred to as the “complexity-volume” (CV) conjecture.
Another proposal is that complexity is dual to the action of
a certain spacetime region referred to as the “Wheeler-
DeWitt patch”; this is known as the “complexity-action”
(CA) conjecture [13,14]. Subsequently, many properties of
both interior volumes and Wheeler-DeWitt action had been
studied, the similarities and differences between CV and
CA conjectures investigated (see, e.g., [15–23]).
In this work, we study the interior volume of four-

dimensional Kerr-AdS black holes. We shall fix the mass of
the black hole (either the physical mass E or the “geometric
mass parameter” M—see next section). In view of the
recent interests in “black hole chemistry” [24]—in which
the negative cosmological constant in AdS bulk is treated as
thermodynamical pressure [25–27], and holographically
dual to the number of colors (Nc) of the boundary field
theory via the relation jΛj ∼ N−4=3

c [28]—we consider the
effect of varying cosmological constant on the geometry of
the interior volume. We find that fixing the physical mass
gives rise to a “double lobe” feature in the plot of the
volume as function of coordinate radius, which is absent if
we fix instead the geometric mass. Our work is purely
focusing on the black hole properties, though we hope that
our study might be helpful for holography in the future. We
will work in the Planck units so that ℏ ¼ c ¼ G ¼ kB ¼ 1.
In the Appendixes, we attach two plots which are Figs. 9
and 10 of the interior volume of Kerr-AdS black hole with
mass M and the physical mass E in the unit of L.

II. SOME PROPERTIES OF KERR-ADS
BLACK HOLE

The metric of Kerr-AdS black hole in Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ in four dimensions is given by [29]

ds2 ¼ −
Δr

Σ

�
dt −

a
Ξ
sin2θdϕ

�
2

þ Σ
�
dr2

Δr
þ dθ2

Δθ

�

þ Δθsin2θ
Σ

�
adt −

Σ
Ξ
dϕ

�
2

; ð3Þ

where

Σ ≔ r2 þ a2cos2θ; Δr ≔ ðr2 þ a2Þ
�
1 −

Λr2

3

�
− 2Mr;

Δθ ≔ 1þ a2Λ
3

cos2θ; Ξ ≔ 1þ a2Λ
3

: ð4Þ

The cosmological constant Λ is related to L, the
asymptotic curvature radius of anti–de Sitter spacetime
in four dimensions, via Λ ¼ −3=L2. Note that the
metric has Ξ in the denominator, which puts a bound
on the rotation parameter: a < L. This bound is distinct
from the cosmic censorship bound. See [30] for more
discussions.1

Note that the parameter M is not the physical mass of
Kerr-AdS. The physical mass E of Kerr-AdS is related toM
by [33]

E ¼ M
Ξ2

: ð5Þ

The physical mass, also known as the Abbott-Deser mass
[34], is the conserved quantity that corresponds to the
timelike Killing vector of the geometry. Naturally, it plays
crucial roles in physical processes. Crucially, it is this mass
that enters the second law of thermodynamics of black
holes; working with M instead of E might give misleading
results that the second law could be violated under physical
processes [29].
On the other hand, the mass parameter M is not

without advantages. It is a “geometric parameter” that
gives better intuition regarding the underlying spacetime
geometry of the black hole. To illustrate this, an
example was given in [29]: consider an AdS-Kerr black
hole with a very large physical mass, say E ¼ 2 × 206

(in the units such that L ¼ 1) and large angular
momentum such that a2 ¼ 0.99. The black hole horizon
is located at r ≈ 1.0004998. One might expect that such
a large mass concentrated at such a small value of the
radial coordinate would distort the geometry by a large

1The case a > L for AdS-Kerr black hole in five dimensions is
discussed in [31,32]. Since the geometry for a > L is quite
different from the a < L case (for example, there are closed
causal curves for sufficiently small θ), and furthermore, starting
with a < L, one cannot cross the a ¼ L divide to reach a > L
branch of the solution, we shall restrict our investigation to the
a < L case.
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amount. However, it turns out that the Gaussian curva-
ture of the horizon is only of order unity (as a function
of θ, it ranges between −π=2 and π=2). However, the
mass parameter is only M ¼ 2 in this example. Thus, M
can give a better indication of the geometry than the
physical mass (although we are not being very precise
here). In other words, depending on one’s purpose, E
and M can both be useful parameters.
The horizons of Kerr-AdS black holes can be obtained

by solving Δr ¼ 0. Since the function Δr is a fourth order
polynomial, it has either four real roots or two real roots in
principle. Here, we exhibit the behavior of Δr in Fig. 1 with
a ¼ 0.7 by fixing M ¼ 1 and E ¼ 1, respectively. The
values are chosen for simplicity only. Indeed, the qualita-
tive features of our results remain the same if we change the
values of M or E.
When M ¼ 1, the function Δr only has two real roots

(in fact, this is true for all Kerr-AdS black holes). The
largest root represents the outer horizon, rþ while the
smallest root represents the inner (Cauchy) horizon, r−.
Of course, if we fixed E ¼ 1 instead, the Kerr-AdS
black hole also has outer and inner horizons, which is
similar to the case with M ¼ 1. When a ¼ 0, the Kerr-
AdS black hole reduces to Schwarzschild-AdS black hole
which only has a single horizon. Furthermore, a Kerr-
AdS black hole also possesses a coordinate singularity on
the rotation axis, which is determined from the con-
dition Δθ ¼ 0.
The extremality of Kerr-AdS black hole can be deter-

mined by the condition [35],

Δr ¼
d
dr

Δr ¼ 0: ð6Þ

When the above condition is satisfied, the outer and inner
horizons of Kerr-AdS black hole coincide, and its Hawking
temperature vanishes.

A. The domain of existence

Kerr-AdS black holes are determined by three param-
eters, namely the cosmological constant Λ, the rotation
parameter a, and the mass parameter (either M or E). For
convenience, we fix the mass of black hole by setting either
M ¼ 1 or E ¼ 1.2

We then study the domain of existence for Kerr-AdS
black holes by fixing the value of a and varying Λ to
calculate the outer and inner horizon of a Kerr-AdS
black hole. We exhibit the domain of existence of a
Kerr-AdS black hole for M ¼ 1 in Fig. 2 and for E ¼ 1
in Fig. 3.
In Fig. 2, the outer horizon attains its maximum

value when a ¼ 0, i.e., when the black hole is the static
AdS-Schwarzschild black hole. When we decrease Λ
from zero with a staying fixed, the coordinate value of
the outer horizon decreases but the inner horizon
increases, and at the end, both horizons meet, and the
black hole becomes extremal. We also observe that all
else being equal, Kerr-AdS black holes become extremal
at a smaller value of jΛj, for a larger value of the rotation
parameter a. Note that the bound a < L translates to
a <

ffiffiffiffiffiffiffiffiffiffiffiffi
−3=Λ

p
. That is, with jΛj large, the allowed values

of a becomes smaller. This explains the gap in the plot
between the outer and inner horizons. Indeed, for fixed
M ¼ 1, the curve will be gapless for any a⪆ 0.64952.
(This value of course changes if M ¼ const ≠ 1.)
In Fig. 3, analogous to the case M ¼ 1, the Kerr-AdS

black holes with E ¼ 1 also show the same qualitative
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FIG. 1. The plots for the function Δr with a ¼ 0.7 for (a) M ¼ 1 and (b) E ¼ 1.

2Equation (6) and the volume (15) have the following scaling
symmetry: r → κr, a → κa, Λ → κ−2Λ, and M → κM. Since
Λ ¼ −3=L2, we see that L can be scaled as L → κL. In our
case, we fix the value of Λ and scale the remaining para-
meters by M; thus, the parameters r, a, and Λ are in the
unit of mass. Furthermore, if we fix the mass and scale
the remaining parameters by L, then r, a, and M are in the unit
of L.
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behavior, that is the outer horizon increases but the
inner horizon decreases, and then both horizons meet
to form extremal black hole. Again, the black holes attain
extremality at a smaller value of jΛj for a larger value of
a. However, it turns out the curves are always gapless.
We emphasize that the properties discussed in this
subsection hold also for other values of M and E.

B. Thermodynamical properties

Although our result is classical, for the sake of com-
pleteness, we shall give a short summary of the entropy

and temperature of AdS-Kerr black holes. The Bekenstein-
Hawking entropy of a Kerr-AdS black hole is given by the
usual formula,

S≡ SH ¼ AH

4
; ð7Þ

in which AH is the area of the event horizon, given
by [29]

AH ¼ 4πðr2þ þ a2Þ
Ξ

: ð8Þ

The Hawking temperature is given by

TH ¼
rþð1 − a2Λ

3
− Λr2þ − a2

r2þ
Þ

4πðr2þ þ a2Þ : ð9Þ

Figures 4(a) and 4(b) show that the area of horizon
decreases when Λ decreases from 0 downwards, at least
initially. The area of horizon AH for Kerr-AdS black holes
with M ¼ 1 steadily decreases to a minimum value for
a⪆ 0.64952. However, AH turns around and eventually
diverges for a ⪅ 0.64952 when the black holes approaches
the bound a < L. This turnover behavior is not present in
the case E ¼ 1; the area of the black hole simply decreases
to a minimal value when Λ decreases. Eventually, the black
hole becomes extremal.
Figures 4(c) and 4(d) show that as Λ decreases, the

Hawking temperature TH of Kerr-AdS black holes with
E ¼ 1 increases to a maximum value, and then decreases to
zero, corresponding to an extremal black hole state. Note
that the maximum of TH shifts to a larger value of Λ (i.e.,
smaller jΛj) when a increases. The Kerr-AdS black holes
withM ¼ 1 also exhibit the similar qualitative behavior for
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FIG. 3. The domain of existence for Kerr-AdS black holes for several values of a with E ¼ 1. The black curves denote the outer
horizon, and the red curves denote the inner horizon. The two curves meet at a particular value of the cosmological constant, Λmaximal,
which corresponds to the extremal Kerr-AdS black hole. The curves are all gapless, c.f. Fig. 2.
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FIG. 2. The domain of existence for a Kerr-AdS black hole with
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The two curves meet when black hole is extremal. The curves will
be gapless for any a⪆ 0.64952 but otherwise features a gap
between the outer and inner horizon.
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the Hawking temperature, although for a ⪅ 0.64952 the
extremal state is never reached.

III. INTERIOR VOLUME OF
ADS-KERR BLACK HOLES

Here, we follow the approach of [5] to calculate the
interior volume of Kerr-AdS black holes. In order to cal-
culate the interior volume of Kerr-AdS, we first transform
the Boyer-Lindquist coordinates into the Eddington-
Finkelstein coordinates ðν; r; θ; ϕ̃Þ by introducing the
following coordinate transformation:

ν ¼ tþHðrÞ; ϕ̃ ¼ ϕþ GðrÞ; ð10Þ

where HðrÞ and GðrÞ are arbitrary real-valued functions.
We can obtain the expressions of HðrÞ and GðrÞ by
substituting the differential,

dν ¼ dtþH0ðrÞdr; dϕ̃ ¼ dϕþ G0ðrÞdr; ð11Þ
into the metric of Kerr-AdS in Boyer-Lindquist form, with
the condition that grr ¼ 0 and grν ¼ 2 being imposed. This
yields the following expressions for HðrÞ and GðrÞ:

HðrÞ ¼ r2 þ a2

Δr
; GðrÞ ¼ aΞ

Δr
: ð12Þ

Therefore, the metric of Kerr-AdS spacetime in
Eddington-Finkelstein coordinates is

ds2 ¼ −
Δr − a2sin2θΔθ

Σ
dν2 þ 2drdνþ Σ

Δθ
dθ2 −

2asin2θ
Ξ

drdϕ̃ −
2asin2θ½ðr2 þ a2ÞΔθ − Δr�

ΣΞ
dνdϕ̃

−
sin2θ½a2sin2Δr − ðr2 þ a2Þ2Δθ�

ΣΞ2
dϕ̃2: ð13Þ
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FIG. 4. The area of horizon AH of Kerr-AdS black holes for several values of a with (a) M ¼ 1 and (b) E ¼ 1; The Hawking
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The interior volume with constant hypersurface r for Kerr-AdS black hole can now be calculated as follows3:
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FIG. 5. The interior volume of Kerr-AdS black hole with E ¼ 1 for (a) a ¼ 0.2, (b) a ¼ 0.5, (c) a ¼ 0.7, (d) a ¼ 0.9, and
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3Although this is a direct generalization of the Christodoulou-Rovelli volume to the rotating case, as emphasized in [5], there is a
difference. In fact, the hypersurface r ¼ 3M=2 that maximizes the volume of an asymptotically flat Schwarzschild black hole has a special
property: it is the solution of the polynomial fðM; rÞ ¼ 0 obtained by setting the trace of the second fundamental form to zero [36]. For an
asymptotically flat Kerr black hole, the vanishing trace condition yields fðM; a; θ; rÞ ¼ 0, which is a polynomial in r of degree 7. There
does not exist r ¼ rðM;aÞ such that f vanishes. So in this sense, what we computed here is not strictly the maximal volume, though it is
arguably close to one [5]. Again, the defining volume is a tricky business in general; see [37] for a recent rigorous attempt.
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Vol:ðrÞ ¼
Z

v
sin θ

ffiffiffiffiffiffiffiffiffiffiffijΔrjΣ
p

Ξ
dv dθdϕ̃ ð14Þ

¼ π
ffiffiffiffiffiffiffiffijΔrj

p
aΞ

�
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
þ r2 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

− a

��
v:

ð15Þ

Henceforth, we ignore v, since v only governs the linear
growth of the volume. We are interested in the coefficient,
which are nontrivial.
This is not yet the Christodoulou-Rovelli volume since

that requires maximizing the expression. This is neither
analytically realistic nor illuminating; therefore, we shall
follow the approach of [5] and plot Eq. (15)—its peak then
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FIG. 6. The interior volume of Kerr-AdS black hole with M ¼ 1 for (a) a ¼ 0.2, (b) a ¼ 0.5, (c) a ¼ 0.7, (d) a ¼ 0.9, and
(e) a ¼ 0.99. For black holes with a ⪅ 0.64952, namely (a) and (b), we observe that there is a “double lobe”.
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corresponds to the Christodoulou-Rovelli volume. The
volume of a Kerr-AdS black hole is shown in Fig. 5 for
several values of a with E ¼ 1. For all values of a, we can
see that an asymptotically flat Kerr black hole (Λ ¼ 0) has
the largest volume. The volume starts to shrink when Λ
decreases for fixed a and eventually, becomes zero when the
black holes become extremal.4 The peak of the volume tends
to smaller values of the radial coordinate when Λ decreases
for fixed a. In addition, the curves do not intersect. If
Λi < Λj, then the curve for Λj encloses that of Λi.
As shown in Fig. 6, the rapidly rotating Kerr-AdS black

holes with M ¼ 1 exhibit similar qualitative behavior for
the interior volume as the case of E ¼ 1 if a is large.
However, for the slowly rotating (a ⪅ 0.64952) Kerr-AdS
black holes, the interior volume exhibits some interesting
features as Λ is varied. The curves form a “double lobe”
structure: starting with Λ ¼ 0 and decreasing Λ, the curve
moves towards smaller value of r, shortening in length, and
subsequently, start to grow in height as it enters the other
lobe. For example, for a ¼ 0.5, the transition happens at
around Λ ¼ −8. This feature is due to the gap between rþ
and r− for sufficiently slow rotating fixed M black holes.
The curves in the case of M ¼ 1 also typically intersect
each other except for large values of a. The interior volume
diverges when Λ approaches the bound a < L.
We can also express the interior volume of a Kerr-AdS

black hole in the unit of L ¼ 1.5 As shown in the

Appendixes, the interior volume only exhibits a single
lobe structure. For a fixed a, the extremal Kerr-AdS black
hole possesses the lowest mass M (and also the physical
mass E) and has almost zero gap between outer and inner
horizons; thus, they have the smallest interior volume. As
M (as well as E) increases, the interior volume of Kerr-AdS
also increases, since the gap increases. Note that the gap
always closes.
Another method to approximate the peak of the volume

function vol:ðrÞ can be found in [19], in which the authors
compute the maximum of the integral, rpeak, for an arbitrary
angle θ via (their case is for asymptotically flat Kerr, so
Ξ≡ 1),

∂
∂r

� ffiffiffiffiffiffiffiffiffiffiffijΔrjΣ
p

Ξ

�����
θ¼fixed

¼ 0: ð16Þ

The hypersurface obtained in this manner has a special
mathematical property: it is in some sense a maximal slice
with minimal distortion. The details are described in [38].
From Fig. 7, we see that the peak of the interior volume
obtained by this approach is very close to the one obtained
by the first method regardless of the value of θ: the relative
error is less than 5% for the case E ¼ 1.

IV. HOLOGRAPHIC COMPLEXITY

As we have briefly mentioned in Sec. I, the notion of
interior volume is not only interesting for its own sake, but
also has applications in the holographic setting, specifically
in the so-called “complexity-volume” conjecture: namely
that the interior volume is dual to the quantum complexity
of the dual field system. It has been argued that there are
some ambiguities regarding how this duality is supposed
to be defined, since for large black holes (i.e., large com-
pared to the AdS curvature radius L), complexity seems to
behave as

C ∼
V

ℏGL
: ð17Þ

However, for small black holes with an horizon rþ,
complexity goes like

C ∼
V

ℏGrþ
: ð18Þ

Such a seemingly ad hoc rule is one of the reasons why,
subsequently, the “complexity-action” conjecture was pro-
posed, in which “action” refers to the Hilbert-Einstein
action restricted to a certain “Wheeler-DeWitt patch.”
However, as pointed out in [19], the two seemingly
different relations above can be understood rather naturally
simply as
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FIG. 7. The relative error for the approximation of the location
of the peak for Kerr-AdS black hole volume function with E ¼ 1,
as per Eq. (16).

4This does not mean that extremal black holes have zero
volume. The reason for an nonextremal black hole to have a large
growing volume is because the r coordinate becomes timelike
direction inside the black hole. For extremal black holes, this does
not happen, and so the volume is the “usual” volume, much like a
sphere in Euclidean space.

5See footnote 2.
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C ∼
V

ℏGτf
; ð19Þ

where τf is the maximal time to fall from the horizon to the
(final) maximal slice. Indeed, the infalling time scales
like L for large black holes but scales like rþ for small
black holes. Specifically, the infalling time is [19], with
dt ¼ dθ ¼ dϕ ¼ 0, given by

τf ¼
Z

rþ

rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

jΔrj

s
dr: ð20Þ

We will assume that the maximum value is evaluated at
θ ¼ 0, with the volume formula given by Eq. (16).
As we can see in Fig. (8), the quantity,

Q ≔
1

THSHτf

dV
dt

; ð21Þ

for any fixed angular momentum parameter does not vary
too much as the physical mass E is varied. Alternatively, for
a fixed E, increasing a would lower the value of Q, but the
value is of the same order of magnitude. This behavior is
similar to the asymptotically flat case discussed in [19]. See
Fig. (11) therein. That is, the growth rate of the black hole
volume scales approximately as THSHτf. So this matches
the complexity growth rate of the entropy ∼THSH [7] if one
identifies complexity with V=Gℏτf.

V. CONCLUSION

Rotating black holes in anti–de Sitter spacetimes
play important roles in holography (see, e.g., [39,40]).

Motivated by the complexity-volume conjecture in holog-
raphy, as well as the recent interests in black hole
chemistry, which treats the cosmological constant as a
thermodynamic pressure that is dual to the number of
colors in the boundary field theory, we take a closer look at
the interior volume of Kerr-AdS black holes and the effect
of varying the cosmological constant on the volume
(though the actual implications for holography is beyond
the scope of the current work).
While varying the cosmological constant, we have

either fixed the physical mass to E ¼ 1 or the “geo-
metric mass” to M ¼ 1 for simplicity and convenience.
Our results remain qualitatively similar for other fixed
values of E and M. The physical mass is the mass that
enters the laws of thermodynamics, while the “geo-
metric mass” gives a better measure for the underly-
ing spacetime geometry. That is, they are good for
different purposes. We found that setting E fixed gives
qualitatively the same features for the interior volume,
compared to the asymptotically flat case. The curves
become more symmetric as the rotation parameter a
increases. Setting M fixed, however, gives rise to a
“double lobe” feature in the plot of volume as a function
of the coordinate radius r. Recall that the peak of any
given curve in the vol:ðrÞ plot corresponds to the
Christodoulou-Rovelli volume; the physical interpreta-
tion is that the volume decreases monotonically as we
decreases Λ while holding M fixed. On the other hand,
holding E fixed allows the volume to first decrease and
then increase as Λ is decreased, provided the rotation
parameter a is sufficiently small.
Using the notion of volume discussed in this work,

we also evaluated the holographic complexity according
to the “complexity-volume” conjecture as interpreted in
[19]. The result is that the growth rate of volume is
indeed proportional to τfTHSH, where τf is the infalling
time from the event horizon to the “final” maximal
volume hypersurface. This agrees with the expectation
that the complexity in the dual field theory should go
like THSH if volume is indeed holographically dual to
quantum complexity via C ∼ V=Gℏτf.
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APPENDIX A: INTERIOR OF KERR-ADS WITH M (IN THE UNIT OF L)
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APPENDIX B: INTERIOR OF KERR-ADS WITH E (IN THE UNIT OF L)
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