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In this paper, we explore the test particle motion around black hole in Einstein-Maxwell-scalar (EMS)
theory using three different black hole solutions within this theory. We have first analyzed the spacetime
curvature structure of these solutions and shown the existence of two singularities and the first one is at the
center » = 0. In black hole spacetime, there are two regions divided by the critical value of the cosmological
parameter . The photon sphere around black hole in EMS theory has also been studied and found that it
does not depend on cosmological parameter .. We have analyzed the innermost stable circular orbits
(ISCO) around black hole and shown that for all solutions ISCO radius for neutral particle decreases with
the increase of black hole charge. We have also studied the charged particle motion around the black hole
where charged particle motion is considered in the presence of gravitational field and the Coulomb
potential. It is shown that ISCO radius for charged particles increases depending on the selected value of the
coupling parameter which is in contradiction with observations of the inner edge of the accretion disks of
the astrophysical black holes and can be used as powerful tool to rule out the EMS theory from
consideration for the gravitational field theory. It also studied the fundamental frequencies governed by test
particle orbiting around black hole in EMS theory. Finally, as test of black hole solution in EMS theory
ISCO radii is compared with that in Kerr black hole and found that the spin parameter of Kerr can be mimic

up to a/M ~0.936.

DOI: 10.1103/PhysRevD.102.064052

I. INTRODUCTION

In the low energy limit of string theory, one may
introduce the dilaton scalar field which is appearing as
additional supplement term to the Einstein action in the
form of axion, gauge fields, and other nontrivial coupling
of dilaton to fields. The causal structures and thermody-
namic properties of black hole solution with dilaton have
been explored in [1-9].

Other interesting feature comes from study of the black
hole solutions with cosmological constant. The correspon-
dence of anti—de Sitter solution with conformal field theory
maybe used to unify quantum fields and gravitons. Theories
containing negative cosmological constants may be con-
sidered as a part of supergravity theories defined in higher
dimensional spacetime. The study of these type theories and
solutions can be found in Refs. [10-15].

“bturimov @astrin.uz
“javlon @astrin.uz
ahmadjon@astrin.uz
?ahmedov @astrin.uz
'zdenek.stuchlik @fpf.slu.cz

2470-0010/2020/102(6)/064052(14)

064052-1

In heterotic string theory, the scalar dilaton field is
coupled to higher order terms of module of electromagnetic
field tensor. Consequently, for nonzero electromagnetic
field tensor, one may have nonconstant dilaton term and in
the Reissner-Nordstrom limit the solution is not the
approximate solution of the string theory [2]. In
Refs. [16,17], the black hole merger estimation and thin
accretion model within framework of Einstein- Maxwell-
dilaton gravity has been investigated.

Existing black hole solutions can be tested using test
particle motion around gravitational compact objects in
the strong gravity regime. Standard solutions such as
Schwarzschild and Kerr black hole ones within general
relativity have been successfully tested in both weak (using
solar system tests) [18-21] and strong field regime (obser-
vation of gravitational waves, shadow of black holes, and
stars motion around the supermassive black hole Sagittarius
A* (SgrA*) at the center of Milky Way galaxy) [22-24] and
GRAVITY instrument. However, in these observations,
there are still open window for testing other theories of
gravity, including the black hole solution with dilaton
scalar field with cosmological constant. Particularly, the
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x-ray observation data from astrophysical compact objects
have been used to test alternative and modified theories of
gravity in Refs. [25-27].

It is widely believed that the quasiperiodic oscillations
(QPOs) observed around gravitational compact objects
are one of the promising tools to test the phenomena
occurring in the strong gravitational field of the black hole
candidates observed as x-ray microquasars. One of the
developed models to explain such observational pheno-
mena is the epicyclic frequencies governed by neutral test
particle motion orbiting around black hole, for example,
[28-32], by the charged particle motion in Refs. [33,34].

The circular orbits of test particles, particularly inner-
most stable circular orbits (ISCOs), are the subject of
special interest. The observation of accretion disc may be
used to get estimation and constraints on parameters of
black hole [35-38]. Particularly, the presence of magnetic
field around black holes changes the structure of the
dynamics of charged particles [39-45]. The studies of
spacetime structure and particle motion around black holes
may be found in Refs. [46-57].

Other possible way of study of the particle dynamics is
connected with magnetized particles motion around black
hole in external magnetic field [58,59]. Recently, the
magnetized particle motion around non-Schwarzschild
black hole has been studied in [60]. Similar study in the
presence of quintessence parameter has been carried out in
[61]. Magnetized particle motion as a test of spacetime
structure and gravity theories have been explored in
Refs. [62-68]. The electromagnetic field structure and
charged particle dynamics around black hole have been
widely studied in the literature [69-97].

In this paper, we are interested in studying test particle
motion in the spacetime of the Einstein-Maxwell-scalar
theory. The paper is organized in the following way. In
Sec. II, we provide in very detailed form the exact analytical
solutions of the Einstein-Maxwell-scalar (EMS) field equa-
tions. Section III is devoted to the derivation of test particle
motion. Finally, in Sec. VI, we summarize obtained results
and give future outlook related to the present work.

Throughout the paper, we use a spacelike signature
(=, +,+,+), a system of units in which G=c=h=1
and restore the Newtonian constant, speed of light, and
Plank constant when we need to compare the results with
the observational data. Greek indices are taken to run from
0 to 3 and Latin indices from 1 to 3.

II. SPACETIME METRIC

In this section, we plan to incorporate into the Einstein-
Maxwell-scalar field equations. The action for such a
system can be described by [1,2,98]

S= [ dxyaR=29.49 = K@D F P V(P
(1)

where V,, stands as covariant derivative, ¢ is the determi-
nant of the metric tensor g,,, R is the Ricci scalar of the
curvature and ¢ is the massless scalar field, F,; is the
electromagnetic field tensor, and K(¢) is the coupling
function between the dilaton and the electromagnetic fields.
V(¢) is the scalar potential.

Varying the action (1) with respect to the metric g,
vector potential A,, and dilaton (scalar) ¢ fields, respec-
tively, we obtain equation of motion of EMS system,
namely [98],

1 1
R(lﬁ B 2va¢vﬂ¢ * Egaﬂv 2K <F(17F}; - Zga/}FleﬂD> s

(2)
Vo(KF?) =0, 3)
%N%—%W¢+Kﬂﬁﬂﬂza (4)

where , denotes derivative with respect to the dilaton field,
R, 1s the Ricci tensor.

One can see that the Egs. (2)—-(4) are coupled with
differential equations and it is difficult to find exact
solutions of such system of coupled nonlinear equations.
Nevertheless, it one can find exact analytical solutions for
the complex systems under some assumptions. The general
form of exterior metric for the spherically symmetric and
static black hole can be written as [98]

dr?

ds> = =U(r)df* + o)

+ f(r)(d6? + sin? Odg?), (5)

where U(r) and f(r) are the unknown radial metric
functions. Assume the time component of the vector and
the dilaton fields depend on the radial coordinate only, i.e.,
A, = A,(r) and ¢ = §(r).

In the present paper, we will not look for the new
solutions of EMS equations; however, we will test some
exact solutions obtained by other authors. In the paper,
we will consider three different black hole solutions. The
first one is Garry-Maeda-Garfinkle-Horowitz-Strominger
(GMGHS) solution [1,2],

K = e%, V=0, (6)

the second one is Gao-Zhang (GZ) solution [99],

K = e,

A
V==
3

(X + 4+ e72), (7)

and finally last one is Yu-Qiu-Gao (YQG) solution [98],
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TABLE I. List of radial functions for three different solutions of EMS theory are presented.

Solutions f(r) Ul(r) A, #(r)

GMGHS [1,2] P(1-2) | —2M -2 —3In(f/r?)

GZ [99] 21— 2) 1 —2M_if -2 —3In(f/r?)

YQG (98] P +19) -2 _2f 00 2l =50+ —3In(f/r%)
e ur 2-2rU'-3U0 U 2U

V:

W >

K=o (@ ate). (8)

The unknown radial functions f(r), U(r), ¢(r), and
A,(r) corresponding to the three different solutions are
listed in Table I. One can see that among them YQG
solution is more general and characterized by five
independent free parameters: black hole mass M and
charge Q, cosmological parameter 4, and additional two
y and f parameters arisen from modification of K(¢)
function as shown in Eq. (8). It covers the other two
solutions, for example, in the case when y = —1 and
p =0, YQG solution reduces to GZ solution and then
switching off A parameter we obtain the well-known
GMGHS solution.

Using the standard procedure, the dilaton charge D, the
electric charge Q, and the anti—de Sitter mass M of the
black hole can be calculated by [98]

1
D:E/%@ﬁ, (9)
1
Q :E/K(d’)vaAt*dS s (10)
L.
M = — lim g‘“’(aﬂgﬂa - 8ﬂgaﬂ)*dsa, (ll)

47f §— 0

where ,dS? is dual element of the hypersurface dS*#7, i* is
the spacetlike infinity, and 0, stands for partial derivative
with respect to coordinate x“.

In order to better understand the structure of the
spacetime geometry in Eq. (5), we determine the curvature
invariants such as Ricci scalar R, Ricci square Ra/,R“ﬁ , and
the Kretschmann K = R,,/,WR“W” scalar. Before starting to
calculate them, we use the following fact that structure of
f(r) function is the same in all three solutions which
satisfies to the following relations:

r=r+l2 pe=2 @)
r
Taking into account Eq. (12) and hereafter performing
simple algebraic calculations, the curvature invariants
for the general form of spacetime metric (5) can be

expressed as

R=——5+4+—""— = v,
2f? * f T
g U PUGU +2U) A B
RopRY =~ = 573 372 T3y
f f foo2rf
v uvu 2*-uvU" 1, UU
T T 2r? +§U LA
30 rPU(rU +U+2)
’C: 4f4 - f3
PU2+U(rU' —4) + 2% 1 4
+ 7
2r2U" + rUU = U(U +2)
f
U UU U”
W_T+7+ U//z, (13)
where

A=4+70?-U(r*U" = 5rU +8) +2rU'(rU' - 2)
B =2rU'(rPU" +2rU’' = 2) + rU(2rU" + 5U") = 2U>.

Here we do not show the explicit form of the expressions
for the curvature invariants for all three black hole
solutions; however, without losing generality, our analyses
show that in each black hole solution all the curvature
infuriates in (13) have two singularities, one is r = 0 and
other one appears at f = 0 which corresponds to a naked
singularity.

In the case, when Q = 0, the curvature invariants in (13)
take the form

limR = 44,
0-0
limR 4RY = 4)2,
£y

48 M?
Iim/C = 86 —I—g.
0-0 r 3

(14)

From the expression (14), one can see that despite the
absence of the black hole charge, Ricci scalar and Ricci
square are nonzero for YQG solution. An interesting fact is
that in the case when Q = 0, the curvature invariants are
independent from y and f parameters. Here one should
emphasize that the results presented in (14) will also be the
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for the different values of 1 parameter.

same in GZ solution. Finally, in the case when Q = 0 and
A = 0, the curvature invariants reduce to the Schwarzschild
case as R = R3R” =0 and K = 48M?/r".

The radius of the horizon is a quite common phenome-
non in spacetime structure and it can be found from U = 0
for all three black hole solutions. For GMGHS metric, it
coincides with the Schwarzschild radius, i.e., r, = 2M,
while for GZ metric, horizon radius can be found as a
solution of the following polynomial equation:

2M 2 2
1——r2<1—Q) ~o. (15)
r 3 Mr

The introduced spacetime metric is interesting generaliza-
tion of the Schwarzschild—de Sitter one governing a black
hole in the spacetime with dark vacuum energy represented
by a cosmological constant. The detailed physical proper-
ties of such spacetimes have been treated in a series of
works [100—111]. Here we are not interested in the explicit
form of the solution for Eq. (15); however, we can see that
the radius of horizon depends on two parameters, black
hole charge QO and A parameter and in the case when 4 = 0
horizon of the black hole will become r;, = 2M; however,
for nonzero value of A parameter, the situation will be quite
complicated. Figure 1 draws dependence of horizon radii
from black hole charge for the different values of 4
parameter for GZ as well Reissner—Nordstrom—de Sitter
metrics. From Fig. 1, one can see that there exists such
critical value of A parameter, i.e., A = A, that compensates
the gravitating and antigravitating fields. On the other hand,

5t |Reissner - Nordstrom - de Sitter metric|
31
21
1t

L 1

-0.5 0.0 0.5 1.0
QM

-1.0

Radius of the horizon for GZ metric (left) and Reissner—Nordstrom—de Sitter metric (right) are functions of black hole charges

the critical value A, separates physical and nonphysical
space. In the region A < 4, the gravitational field domi-
nates and in this region we observe physical space, while in
A > Ay, the antigravitational field dominates which corre-
sponds to nonphysical spacetime. In order to find the
critical values of radius and A parameter, we use the
following conditions U = 0 and U’ = 0, and for GZ metric,
we obtain

_6M 4+ 0* + /(0% - 2M?)(Q* - 18M?)

ro aM ) (16)
3(108M* — 36M>Q? — Q%)
Ao = 160°
2 _ 2 2 _ 2 2 _ 2
L 3(Q* - 18M7)/(Q° - 2M%)(Q® - 18M°) (17)

160° ’

while for Reissner—Nordstrom—de Sitter metric, one gets

r0:%(3Mj: oM? —307), (18)
P 3(27M4—36M2Q2+8Q4)i3M (OM? —80?)*
0o 3206 320°
(19)

In the case, when Q = 0, one gets r, = 3M and 4, = 1/9.
An interesting fact is the expressions for the critical
value of radii in (16) and (18) provide the same expressions
for the radii of photonsphere for both GZ and pure
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FIG. 2. Left: dependence of the radius of the horizon from the black hole charge for different values of § parameter. Right: dependence
of the radius of the horizon from the black hole charge for different values of y parameter.

Reissner—Nordstrom—de Sitter spacetime metrics. In the
next section, we will show detailed calculations of photon-
sphere radii.

From now, we focus on calculation of horizon radii in
YQG solution and the exact form of the lapse function is
given in Table I. In order to calculate the radii of the
horizon, we again recall definition, U = 0, which allows
to write

2
1_2_M_%r2<1+£> +ﬁ7Q2
r r2(

=0.
2
3 Mr 1+%)

(20)

From Eq. (20), as we can see that the horizon’s radius
should depend on five different parameters, black hole
mass M, charge Q, 4, y, and f parameters. Figure 2 shows
the dependence of the horizon radius from the black hole
charge at A < A, region for the different values of y and f
parameters. Note that in 4 < 4 there are two different radii
of horizon, the first one is cosmological horizon which is
not interesting and the second one is physical horizon as
shown in Fig. 2. One can also see that for various values of
y and f parameters the maximum value of the black hole
charge decreases.

III. GEODESIC MOTION

In this section, we study test particle motion around the
black hole in the Einstein-Maxwell-scalar theory. Since the
spacetime metric (5) is independent from coordinates t and
¢, then corresponding momentum to these coordinates, p,
and p, should be conserved, which are related to the energy

and the angular momentum of a test particle at infinity.
It is well known that the four-velocity of test particle,
ie., u® = x* = dx*/d}, where 1 is an affine parameter,
is satisfied to the following normalization condition:
gaﬂu”uﬂ = —1 which allows to write equation of motion
in background geometry (5) in the form

’:2 + U(r>f<r)92 - 52 - Veff(r’ 9)7 (21)
where the effective potential V (7, 0) is defined as
L2
Vee(r,0) =U l4+——7—. 22
a0 =v0) (14 @)

here £ and L are, respectively, the specific energy and the
specific angular momentum of a test particle at infinity.
Notice that these quantities satisfy the following relations:
E=U(ru', L = f(r)sin?Qu®. (23)
Now we focus on analysis of test particles motion
by investigating of the effective potential. The standard
analysis shows that particle motion is limited by the
energetic boundary conditions given by # =0 and § =0
which leads to
Vet (r. 0) = 0. (24)
On the other hand, the stationary points of the effective
potential (22) can be found from the following conditions:
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FIG. 3.

Left panel: dependence of the radius of photonsphere from black hole charge for both GMGHS and GZ solutions. Central and

right panels: dependence of the radius of photonsphere from black hole charge for YQG metric for different values of f parameter for the
fixed value of y and the same plot for different values of y parameter at the fixed values of § parameter. Solid (blue) line represents radius
of photonsphere, while dashed line is responsible for radius of horizon at 2 = 1/10.

aer:ff(r’ 9) =0, aﬁvcff(r’ 9) =0, (25)
which allow to find extrema (r(, 6,) of the function. From
the second expression in (25), one can easily find that one
of the extremum points of the effective potential is located
at 8y = z/2 which corresponds to an equatorial plane and
other extremum point r, of the effective potential can be
found from the first expression in (25). Using the Eq. (24)
and the first expression in (25), the radial dependence of the
specific energy and the specific angular momentum at
circular orbit can be found as

U2 /
® =g 1 @s)
2U/

One of the interesting features of black holes is related to
characteristic radii around them, from these point of view
we are now interested in determination of the characteristic
radii around rotating black holes, namely, photonsphere,
marginally bound, and ISCO radii. We first focus on the
determination of radius of the photonsphere. In fact that
photon is massless, i.e., m = 0, which means its specific
energy tends to infinity (i.e., £ - o0). In order to find the
radii of photonphere, we use the fact that denominator of
the expression (26) be zero, ie., Uf' — fU =0. Our
calculations show that the expression for the radius of
photonsphere in GMGHS and GZ solutions is exactly the
same and has a form

e 6M> + Q> + /(0% — 2M?)(Q* - 18M?)
ph 4M ’

(28)

which is independent of A parameter and r, is the respon-
sible to the radius of the photonsphere in GMGHS and GZ

solutions. In order to calculate the radius of photonsphere for
YQG metric, one has to solve the following cubic equation:

X+ px+qg=0, (29)
where
2

x:%—l—l-;—AQﬁ, (30)

2(r-p)2* _ro
PES TR T (3D

_ 2 24
q__2_2(7 P’ ret (32)

The cubic equation has three different solutions as

1 3 -3 2k
X =24 /—%cos [3arccos (2;]7 p) —;[] (33)

where k = 0, 1, 2. Then the radius of the photonsphere can
be expressed as ry = M(x; + 1 +yQ?/2M?). In Fig. 3, the
various dependence of the radius of the photon sphere is
illustrated. From Fig. 3, one can see that with increasing Q
parameter the radius of the photonsphere decreases. Other
interesting fact is that the critical value of the black hole
charge decreases with various values of y and f parameters
of the black hole and they also independent of A parameter.

There exists other radius of massive particle, the so-
called innermost stable circular orbit (ISCO), which can be
found using the following conditions 92V (r, 7/2) = 0
along with Egs. (24) and (25). Hereafter simple algebraic
calculation, one can get
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FIG. 4. Left panel: dependence of ISCO radius from black hole charge for GZ solution. Shaded region represents ISCO radii for any
value of A parameter. Upper solid (blue) line represents ISCO radius in GMGHS spacetime. Central and right panels: dependence of
ISCO radii from black hole charge in YQG metric for the different values of f# parameter for fixed value y and the same plot is for
different values of y parameters at the fixed values of § parameter. The lower limit of ISCO radii equals to r/M = 15/4.

2Uf/U/ B Uf/lU/
f f

The ISCO radius for test particle can be found as the
solution of Eq. (34) being all three black hole solutions.
One has to emphasize that hereafter making normalizing
the radial coordinate with the black hole mass, i.e., r/M,
the ISCO radius will be dependent on the black hole charge
Q, cosmological parameter 4, and also S, y parameters.
Figure 4 draws dependence of ISCO radius of the test
particle from black hole charge for different set of f and y
parameters. The left panel of Fig. 4 shows dependence of
ISCO radius from the black hole charge in GZ metric for
arbitrary values of the cosmological parameter A. It is
interesting to mention that for zero value of the cosmo-
logical parameter ISCO radius represents the upper limit
given with blue solid line in Fig. 4. The lower limit of ISCO
curve (dashed red line) is not changed after some value of
the cosmological parameter. We have found that for any
value of the cosmological parameter the ISCO radius will
be r/M = 15/4 at Q = 0. One can see that both upper and
lower ISCO radii decrease up to horizon radius. In the
central and right panels of Fig. 4, same plots together with
left one are presented for different set of the other  and y
parameters in YQG metric.

+UU" -2U” =0. (34)

A. Black holes in EMS theory versus rotating
Kerr black holes

It is well known that astrophysical black holes can be
described by few parameters as mass, spin, and/or (electric
and magnetic) charge. However, it is difficult to measure
these parameters directly in the astrophysical observations
except the total mass which can be used by the Newtonian
dynamics. One way is to estimate the values of the
black hole parameters through measurements of indirect

observations (for example, dynamics of photons and
massive particles). On the other words, one can measure
and/or compare their effects on the particle dynamics by
considering two-parameters model for the central black
hole: mass spin and mass charge. On the other hand, in fact
that the effect of spin of rotating Kerr black hole and
electric charge of static black hole is similar on ISCO
radius. The question arises from this degeneracy on how
one can distinguish the effects of spin and charge param-
eters based on the observational data from dynamics of
particle around a black hole? Moreover, even in charged
static black hole model, it is important to know the type of
charge. In this subsection, we will try to show the cases in
which values of spin and charge parameters ISCO radius of
test particles around rotating Kerr and charged GZ/YQG
static black holes will be exactly the same.

The expression for ISCO radius of test particles corre-
sponding to retrograde and prograde orbits around rotating
Kerr black hole can be found in [112]

Fico =3+ 2, £/ (3-2))3+Z, +27,), (35)

where
Zy =1+ (1+a+V1-a)V1-d2,

Z, =/3a* + Z3.

Here we will provide analysis of degeneracy values of spin
parameter and charge of black holes in EMS theories using
Egs. (34) and (35).

One can see from Fig. 5 that GZ black hole charge can
mimic up to a/M = 0.925877 providing the same value for
ISCO radius of test particles for the case when A = 0, while
at 4 — oo the charge can mimic the spin parameter in the
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the same ISCO radius.

range of a/M € (0.544736,0.925877) (see the red dashed
line). Moreover, the same mimic values for YQG black
hole charge, but in this case maximum value for the charge
is Q/M ~ 0.81. In realistic astrophysical applications, one
may estimate the charge of the supermassive GZ black hole
Sgr A* (M87) as Q/M = 1.203 (Q/M = 1.41392) when
the parameter 4 = 0, while charge of the SMBH YQG Sgr
A*is Q/M = 0.694553 (Q/M = 0.848621) when param-
eters A =0 and f = -3.

IV. FUNDAMENTAL FREQUENCIES

In this section, we will show in detail the derivation of
expression for the fundamental frequencies governed by
test particle orbiting around the black hole in Einstein-
Maxwell-scalar theory which is one of the simple models
to explain quasiperiodic oscillations (QPO) observable
around compact astrophysical objects. The angular velocity
measured by a distant observer can be found as

o— |- 0,91 _ U'(r)

01990 f(r)

However, there might exist other type of oscillations
characterized by the radial and vertical frequencies.
These radial and vertical fundamental frequencies can be
calculated by considering small perturbation around cir-
cular orbit, respectively, along the radial r — ry + dr and
azimuthal 6 — 6y + 60 directions. Then the effective

potential can be expanded in terms of r and € coordinates
in the form

(36)

Ve (7,0) = Vg (r9.00) + 610,V e (r.0)

|r0,6’0

1
+6009V et (7,0) 1, 0, +§5”233Veff("’9) [ 1o.06

1
+§5€28§Veﬁ~(i’, 9) |r0,90 +5r598,89Veff(r, 9)

|r0,90

+0O(5r,86%). (37)

YQG metric: y=-3

0.0 0.2 0.4 0.6 0.8
QM

Relations of degeneracy values of charge of GZ (left panel) and YQG (right panel) black holes and spin of Kerr black hole for

The careful analysis of this expansion shows that the first
term of (37) vanishes due to the condition (24); on the other
hand, using the stability conditions of the effective potential
in Eq. (25), one can remove the second, third, and last terms
of the expression (37), which means the only two terms
remain which are proportional to the second order derivatives
from the effective potential with respect to r and 0. This is
standard way of derivation of equation of motion for
harmonic oscillator. Now we focus on equation of motion
once again and before continuing our calculations we replace
a derivation with respect to affine parameter in Eq. (21) into
the time derivation (i.e., dt/dA = u"); the main idea of this
replacement is to express all equations in terms of physical
quantities measured by a distant observer. Now substituting
the expression (37) into (21) and following the above
statements, we obtain harmonic oscillator equations (Euler-
Lagrange equations) for displacements 6r and 60 in the form

d?50
ot Q260 = 0,

d*5r
dr?

+Q25r =0, (38)
where Q, and Q are, respectively, the radial and azimuthal
angular frequencies measured by a distant observer,
defined as

1
;= W(%Veff(r, 0)lg=z/2- (39)
2 1 2
% = 35y O0Verr (1 Olo—sy (40)

Finally, expressions for the fundamental frequencies in the
spacetime of the black hole in EMS theory governed by test
particle take the form

B f/U// f/2 .
Q,_Q\/U<2U,+7—1>—fU, (41)

[U/
QBZQ: 77

(42)
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FIG. 6. The radial dependence of the fundamental frequencies governed by test particle motion around the black hole.

U’ the expressions (41)—(43) represent the angular frequencies;
Q,=Q= ; (43)  however, the fundamental frequencies can be expressed as
f v; = Q/(2x), then the Keplerian frequency takes a form
Here we can see that the expressions for both vertical and
. L. . 1 03 GM)\ 3/2
azimuthal angular velocities are same which means we v=—— |5 Hz. (44)
cannot distinguish them when we observe them. Notice that 2rGM \ c°r
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In order to have an idea to understand the theoretical
expressions for fundamental frequencies, one can write
the expression for the Keplerian frequency for the stellar
black hole in the Schwarzschild spacetime in the form

M -1 /6GM\ 3/2
~ 220 Hz. 45
v (10 Mo) < ctr ) g (43)

Notice that the fundamental frequencies are observed only
outside the region of the ISCO radii of the test particle.
Similarly, the expressions for the fundamental frequencies
can be obtained around black holes in EMS theory. The radial
dependence of the fundamental frequencies governed by test
particle motion around the black hole for the different set of
the black hole parameters is illustrated in Fig. 6. Most of the
observations show that fractional frequencies to be order of
vy'v, =312, 191, = 3:2 or these ratios might be combi-
nations of fundamental frequencies. Of course, here in Fig. 6,
it is difficult to analyze these results for full set of the black
hole parameters and compare them with observational data.
However, we can see (the second row of Fig. 6) that due to
cosmological parameter ratio of the frequencies gets larger
which disagree with observations. The vy 4:v, = 3:2 ratio
can obtained with playing of all other black hole parameters.

V. CHARGED PARTICLE MOTION

In this section, we study charged particle motion around
a charged black hole in EMS theory. The equation for the
radial motion for the charged particle is
£2
£ g

f(r)

where e is charge of particle. The radial functions f(r),
U(r), and A,(r) are shown in Table I for given parameters.
The effective potential Vg (r) for charged particle can be
found from the following conditions 7 = 0 and & = V(r)
in the form

P =€+ ea (P +U0)(1+

Veir(r) = \/U(r) (1 +j%> —eA(r),  (47)

where the first term of the effective potential is responsible
to pure neutral particle case, while the second one repre-
sents the Coulomb interaction of charged particle with
charged black hole. In the absence of particle charge, i.e.,
e = 0, the effective potential reduces to the one for neutral
particle.

Now we concentrate on finding ISCO radius for charged
particle around charged black hole in EMS theory. We
have already analyzed behavior of ISCO radii for neutral
particle in EMS theory. A more precise way of showing this
argument is to follow again to the standard procedure,
in which Vg = &%, V.(r) =0 which allows to find

expressions for the extrema of the specific angular momen-
tum and the specific energy. For the moment, we focus on
the specific angular momentum of charged particle,

oo U 2f3U(eA))?

+ = Uf/ —fU/ (Uf/ _fU/)z
e AR O A CTES U ™

vy - 1)

which reduces £ = f2U’'/(Uf' — fU’) for neutral particle
as shown in Eq. (27). From Eq. (48), one can see that the
specific angular momentum of the charged particle £
satisfies the following symmetry:

L,(eQ)=L_(-eQ) or L, (—eQ)=L_(eQ). (49)
Now one can find the minimum of £, in Eq. (48) which

corresponds to ISCO radius of charged particle and see how
it changes for different values of the coupling parameter

| GMGHS : QZ;O, eQ=0.1] '

13.14500000

13.14495000
+ 13.14490000 |
LV

13.14485000

13.14480000

5.980 5.990 6.000 6.010 6.020

GMGHS : @?=0, eQ=0

12.00012500 ¢

12.00010000 |

< 12.00007500 |
Q

12.00005000 |

12.00002500 |

12.00000000 ¢

5.980 5.990 6.000 6.010 6.020

GMGHS : P=0, eQ=0.1]

10.88205000 -
10.88200000
!

10.88195000

10.88190000

5.980 5.990 6.000 6.010 6.020
/M

FIG. 7. Radial dependence of the specific angular momentum
L, (top and bottom panels) of test particle for the fixed values
of the coupling parameter eQ and (central panel) for neutral
particle L.

064052-10



TEST PARTICLE MOTION AROUND A BLACK HOLE IN ...

PHYS. REV. D 102, 064052 (2020)

— 7T T—T— 77—

GMGHS: @*=0] 1

circular orbits £=0

ISCO region

12

/M

FIG. 8. ISCO radius for charged particle is a function of the
coupling parameter eQ.

eQ. In order to make qualitative analysis of the dependence
of ISCO radius rigcq for charged particle from the coupling
parameter eQ, we assume that square of the black hole
charge is negligible small (i.e., Q> — 0) to change space-
time geometry and keeping the interaction term in Eq. (48)
one can check the radial dependence of the specific angular
momentum £ of charged particle. Figure 7 shows radial
dependence of specific angular momentum of charged
particle in GMGHS for the fixed values of the coupling
parameter. Here one has to emphasize that extremum of the
specific angular momentum is responsible to ISCO radius.
As one can see from Fig. 7 the minimum of the specific
angular momentum for charged particle cases shifts into
large values of the radial coordinate, which concludes that
ISCO radius increases for both positively and negatively
charged particles. The ISCO radius increases for charged
particles even when Q = 0.

Now we focus on definition of ISCO radius for charged
particle and see how it depends on the coupling parameter.
In order to obtain ISCO radius for charged particle, we use
V% (r) = 0 and eliminating £, by using (48) we obtain
long equation for radial coordinate. Hereafter making
careful numerical analysis on obtained equation, we present
dependence of ISCO radius for charged particle for differ-
ent values of the black hole charge Q and coupling
parameter eQ. Figure 8 illustrates the dependence of
ISCO radius from the coupling parameter eQ. The light
blue region corresponds to the stable circular orbits, one
can see that the lower limit of the blue line is 6M for
zero value of the coupling parameter and with increasing
the coupling parameter gQ. ISCO radius increases in
both positively and negatively charged particles. The black

line in Fig. 8 is responsible for circular orbit of a
charged particle when angular momentum to be taken a
zero, while the gray region represents negative energy of
the charged particle.

As we have already mentioned above, our aim is to
investigate the charged particle motion around the charged
black hole to see the significance of the coupling parameter
in ISCO radius for a charged particle in the following
approximation, 0? — 0. So far, we have studied this issue
in GMGHS metric only, and our calculations show that
ISCO radii increase due to only the coupling parameter in
all three different black hole solutions. However, it
decreases due to the black holes parameters such as black
hole charge Q, 4, 5, and y parameters as we have shown in
the case of neutral particle motion in the previous section.
For nonzero values of black hole parameters, we will have
very similar results as shown in Fig. 8, and the only
difference is that the (blue) ISCO region will shift into the
left side depending on type of the black hole parameters
variation.

VI. CONCLUSION

In the present paper, we have tested three different
GMGHS, GZ, and YQG black hole solutions which belong
to EMS theory by considering test neutral and charged
particle motion around black hole. Obtained results can be
summarized as follows:

(1) In order to investigate the spacetime properties of
three different black hole solutions, we first deter-
mined the curvature invariants such as Ricci scalar,
Ricci square, and the Kretschmann scalar. Our
calculations have shown that all three metrics are
characterized by two singularities, the first one is
at r = 0 being similar to other spherical-symmetric
solutions such as in Schwarzschild, Reissner-
Nordstrom, etc., and other one arises at r = Q*/M
(r = —yQ?/M in YQG spacetime metric) which
corresponds to naked singularity.

(i) We have investigated the structure of the horizon of
the black hole in three different solutions. It has been
shown that there are two different regions which can
be divided by the critical value of the cosmological
parameter 4y. In the region A < 4, horizon exist,
while when A > 4, horizon cannot be observed. It
has been found that the maximal value of the black

hole charge is Q. < V2M.

(iii) The photonsphere around black hole in EMS
theory has also been investigated. It is found that
in all three solutions the radius of the photonsphere
does not depend on the cosmological parameter A
and equal to 3M when Q = 0 like in Schwarzschild
spacetime. It decreases when black hole charge gets
larger and reaches up to 2M at maximum value of
the black hole where horizon’s radius takes the
same value.
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(iv) We have studied ISCO radius for neutral particle
orbiting around black hole in EMS theory. It is
shown that in all solutions ISCO radius for neutral
particle decreases when the black hole charge gets
large value. In the absence of the black hole charge
and cosmological constant (i.e., Q =0, A =0) in
GZ solution, ISCO radius will become rigco = 6M,
while in the case when Q = 0, A # 0, ISCO radius
takes the form rigco/M = 15/4. Minimal value of
the stable orbit takes 2M for maximum value of the
black hole charge.

(v) We have also studied charged particle motion around
the black hole in EMS theory. In this case, charged
particle is considered in the presence of gravitational
field and the Coulomb potential, which can be either
attractive or repulsive depending on the interaction
parameter eQ > 0 or eQ < 0. It is shown that in
both cases, ISCO radius for charged particles
increases depending on the selected values of the
coupling parameter.

(vi) We have determined the fundamental frequencies
governed by test particle orbiting around the black
hole in EMS theory. We have presented the general
form of the exact expressions for the fundamental
frequencies in all three solutions. We have shown
that the expressions for the angular part of frequen-
cies to be equal each other vy = v, Finally, we have
produced radial dependence of the fundamental
frequencies that can be useful to fit with observa-
tional data. We have shown that it is impossible to

get vy v, = 3:2 fractional frequencies in the pres-
ence of the cosmological parameter.

(vii) Finally, we have studied the mimic values of
charge of GZ/YQG static black hole the spin of
rotating Kerr black hole proving the same value
for ISCO radius of test particles and shown that
the charge of GZ (YQG) black hole can mimic
the spin of Kerr black hole up to a/M = 0.925877
when A=0, while at 4 - oo the charge can
mimic the spin parameter in the range of a/M €
(0.544736,0.925877). Moreover, the same mimic
values for YQG black hole charge, but in this
case of maximum value for the charge is Q/M ~
0.81. In order to make astrophysical applications,
we have rough estimation on the charge of the
GZ black hole Sgr A* (M87) as Q/M = 1.203
(Q/M = 1.41392) when the parameter A = 0, while
charge of the SMBH YQG Sgr A* is Q/M =
0.694553 (Q/M = 0.848621) when parameters
A=0and g = -3.
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