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This paper deals with a detailed study of horizons during the gravitational collapse of dust and viscous
fluids, under the assumptions of spherical symmetry. The formation and time evolution of collapsing shells,
spherically symmetric marginally trapped tubes, as well as the event horizon are determined and compared
through analytical and numerical techniques. Using different density profiles of matter, we analyze how the
nature of these marginally trapped surfaces modify as we change the energy-momentum tensor. These
studies reveal that depending on the mass function and the mass profile, it is possible to envisage situations
where dynamical horizons, timelike tubes, or isolated horizons arise.
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I. INTRODUCTION

The study of collapse of a self-gravitating isolated
system is of great importance in general relativity. Not
only is this a problem of physical importance, particularly
in understanding the formation of black holes and large-
scale structures in the Universe, but also raises fundamental
queries related to formation of horizons, spacetime singu-
larities, and the cosmic censorship conjecture [1–6]. The
study of gravitational collapse began with the independent
work of Datt [7] and Oppenheimer and Snyder [8] (OSD).
Although the OSD model is limited to the collapse of a dust
cloud of homogeneous density, it shows that within a finite
proper time, a spherical ball of matter collapses into a
proper radius smaller than its Schwarzschild radius, and
eventually, the entire self-gravitating matter collapses into
the spacetime singularity. Once the matter crosses the
Schwarzschild horizon, no light is able to escape to
observers at asymptotic infinity, and hence, the singularity
remains hidden to the outside world [1–3]. This is the well-
known scenario of black hole formation. Though this
model is simple, it is useful for more complicated examples
of the collapse of massive astrophysical systems where the
matter may have inhomogeneous density, internal pressure,
and even possess properties generic to fluids, like viscosity

and pressure anisotropies. For example, the well-known
Lemaître-Tolman-Bondi (LTB) model of collapse describes
the inhomogeneous, pressureless gravitational collapse
[9–11]. To understand this large variety of situations, a
general formalism to study the dynamical evolution of
collapse has been developed. In this method, under various
regularity and energy conditions, the initial data are
provided in terms of the initial density, pressures, and
velocity profiles, and the dynamical evolution is studied
using the Einstein equations [4,12,13]. It has been argued
that under a large number of fairly regular initial data, both
black holes and naked singularities may evolve. A naked
singularity is interesting since an observer at infinity may
communicate with it. There is much literature on naked
singularities, and a comprehensive review and further
references on these may be found in [4,14,15]. Another
class of singularity which remains visible to observers at
infinity is called the shell-crossing singularity [16]. These
singularities arise when nearby matter shells create momen-
tary density singularities as a result of which curvature
scalars blow up. These are generally not regarded as
genuine spacetime singularities because they can be
removed from the spacetime to extend the manifold.
Shell-crossing singularities are gravitationally weak [17],
but care must be taken to avoid them.
It is well known that any general relativistic collapse of

isolated gravitating matter satisfying regular initial data
always results in a spacetime singularity in the form of
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geodesic incompleteness if a trapped surface forms, and
certain reasonable energy conditions on matter and causal
structure of the spacetime hold [1,2]. Additionally, the
censorship conjecture rules that the gravitational collapse
of matter fields under generic conditions results in the
formation of spacetime singularity which remains clothed
from the outside world by a horizon. So, if the censorship
conjecture is assumed correct, collapse must be followed by
a horizon. The most natural description of horizons is the
event horizon (EH). However, one fundamental objection
against the EH formalism is that it is too global. Indeed, for
this definition to work, one must have access to the global
development of the spacetime, which may not be possible
in all cases. For example, in the numerical simulation of
black hole spacetimes, the location of the EH is impossible
since the entire evolution of the spacetime cannot be
obtained. Such inconsistencies have led to many local
definitions of horizon (a detailed overview is in [18–21).
The local notions of horizons are based on trapped regions
[5]. In these regions, null rays orthogonal to closed
2-surfaces have negative expansion. More precisely, la

and na are, respectively, the outgoing and the ingoing null
vectors orthogonal to a two-sphere. The two-sphere is
called untrapped, trapped, or marginally trapped depending
on whether θðlÞ is greater, less, or equal to zero, respec-
tively. Using the marginally trapped surfaces (MTS), one
may formulate a definition of horizons. Indeed, several
such definitions exist. The notion of the trapping horizon
(TH) was introduced in [22] and has found important
applications in black hole physics [22,23]. The formula-
tions of isolated horizons (IHs) [24,25] and dynamical
horizons (DHs) [26,27], which are closely related to THs,
have led to crucial insights into understanding the classical
and quantum behavior of black hole horizons [24,25,28].
The DH is a useful tool to describe the smooth dynamical
evolution of black hole horizons. The first law (in terms of
fluxes) for such a dynamical evolution provides a useful
theoretical framework to model black holes evolution
[26,27]. Further developments in these directions have
been in the development of quasispherical and perturbative
approximations of the IH and DH formalisms which are
null but admit a well-defined differential version of the first
law of black hole mechanics arising due to the influx of
(scalar) matter terms [29,30].
The formulation of a marginally trapped tube (MTT)

foliated by MTS is a unifying approach to horizons [31].
MTT does not have any particular signature associated with
it, and can be null, spacelike, or timelike. Indeed, a null
MTT is an IH and hence describes a black hole horizon in
equilibrium. When the MTT is spacelike, it is a DH and
describes a growing black hole. If the MTT has a timelike
signature, it is called a timelike tube, through which matter
may cross in either direction. Thus, MTTs provide a unified
framework to study time evolution of black holes through
different phases. The nature of MTTs and their behavior

due to some dust models of collapse like the LTB have been
studied in [32] and very recently in [33,34]. Our study
provides the evolution of spherical MTTs (which we
compare with the collapsing matter shells) for a general
class of energy-momentum tensors including viscous effects.
The main motive of this paper is to discuss methods

which will be useful to (i) construct spherically symmetric
models of spacetime for fluids with general energy-
momentum tensors, (ii) study the collapse end state with
special emphasis on the formation of horizons, and in
particular, track the spherical MTT in each case, and
(iii) identify, for the mass profiles considered here, the
regions of the parameter space where the spherical MTT
evolves as a DH (when matter falls through it), where it
might be timelike, and when it becomes an IH. In each
example, the exterior geometry will be assumed to be the
Schwarzschild spacetime. The study will include brief
discussions of the OSD/LTB models and the ones obtained
by dropping the assumptions of homogeneity and local
anisotropy in the fluid energy-momentum tensor. Interest in
these generalities arise because there is a growing attempt
in astrophysics to understand the phenomenon of gravita-
tional collapse for different energy-momentum tensors and
equations of state [35–39]. As particular examples, the
energy-momentum tensors we consider below shall include
locally anisotropic fluids, without heat flux, but with shear
and bulk viscosity. Local anisotropy in the interior fluid has
been argued to arise due to various causes including
viscosity or local anisotropic velocity distributions. Such
anisotropies would naturally break the conditions of fluid
isotropy, and hence, in the presence of viscosity, radial and
transverse pressures must be different (in Sec. V, we present
a proof). Furthermore, it has been shown that the shear-free
condition, particularly in the presence of anisotropy of the
pressure and dissipation, leads to instability. These kinds of
inhomogeneities and anisotropies in the matter fields are
expected to occur quite naturally in the astrophysical
systems, particularly during the gravitational collapse,
and are expected to play a major role in deciding the
spacetime structure. In particular, it has been argued that
shear may be responsible for the violation the cosmic
censorship leading to a naked singularity in spacetime
[4,40]. Thus, it is important that a detailed study of these
aspects must be made, and indeed similar kind of models
have received attention in the past (see, for example,
[41,42]). However, most of the metric configurations are
either static or with restricted time dependence. On the
other hand, we expect that, in the presence of heat flux,
viscosity, or pressure terms, the interior spacetime would be
highly dynamical and respond to any fluctuations in the
energy-momentum tensor. To incorporate these attributes,
in this paper, we relax the assumptions of staticity and
generalize these geometries to include time dependence,
making these models closer to realistic dynamical systems.
More specifically, including anisotropic pressure and the
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shear and bulk viscosity terms, we construct explicitly
dynamical metric functions.
The paper is arranged as follows. In Sec. II, we briefly set

up the definitions and formula for the MTT formalism. In
Sec. III, we set up our conventions and the mathematical
framework for the Einstein equations and also spell out
conditions to ensure that there are no shell-crossing
singularities and that the initial spacelike surface does
not have any trapped region. Section IV briefly discusses
simple collapse models including the marginally bound
OSD and the LTB models (we skip the unbounded collapse
model since it may be dealt with in a similar fashion).
While these models are quite well known (the marginally
bounded OSD models are described in [43,44] using the
Painleve- Gullstrand coordinates, and the bounded model
in [3,37] using the standard coordinates), we present an
analytical formula for the (i) collapse of the shells, (ii) time
development of the event horizon, and (iii) time develop-
ment of the spherical MTT (or sometimes called the
apparent horizon). These are followed up with examples
using specific models of matter profiles to compare with the
results well known in the literature. We consider several
density profiles and, in each case, determine the evolution
of spherically symmetric MTTs and the event horizon.
Section V studies models of spacetimes due to viscous
fluids. We begin with some generic properties these space-
times must be endowed with. We show that if the fluid has
shear and bulk viscosity, as well as pressure anisotropy,
then generically the spacetime metric will not be isotropic
or have conformal flatness or admit spatially uniform
expansion scalar. We also take various density profiles
of collapsing matter to show the effects of viscosity on the
formation of the spherical MTT. In particular, we show
that viscous effects may delay or advance the formation of
MTT depending on the coefficients of viscosity. These
effects of viscosity are exemplified through various choices
of viscosity parameters and mass functions. These studies
reveal that it is possible to clearly identify situations where
dynamical horizons, timelike tubes, or isolated horizons
may arise. We conclude in Sec. VI.

II. HORIZONS AND MARGINALLY
TRAPPED TUBES

Let ðM; gabÞ be a four-dimensional spacetime with
signature ð−;þ;þ;þÞ. We shall use the Newmann-
Penrose null basis ðla; na; ma; m̄aÞ, where l · n ¼ −1,
m · m̄ ¼ 1, while all other dot products vanish. Let Δ be
a hypersurface in M. In the following, we shall not restrict
the signature ofΔ, and hence, it may be spacelike, timelike,
or even null. Let us assume that Δ is topologically S2 ×R.
Let la and na be, respectively, the outgoing and the ingoing
vector fields orthogonal to the two-sphere cross sections
of Δ. If ta is a vector field tangential to Δ and normal to
foliations, ta may be written in terms of the ingoing and the
outgoing null vector fields as ta ¼ la − Cna (the sign

of C is in accordance with the conventions in [32]).
Since t · t ¼ 2C, the constant C determines the signature
of Δ. The hypersurface Δ will be called a MTT if the
following conditions hold true on Δ [31]: (i) θðlÞ ¼ 0 and
(ii) θðnÞ < 0.
Several comments are in order regarding these boundary

conditions. First, the MTT may be viewed as a unified
formalism to describe black hole horizons since Δ has no
restriction on its signature. When the MTT is null, it
describes black holes in equilibrium (an IH), a growing
black hole (a DH) when it is spacelike, or simply a timelike
membrane (when Δ is timelike), allowing matter to cross it.
The advantage of the MTT formalism is that instead
of looking at the evolution of horizons through various
phases—dynamical horizons, isolated horizons, and time-
like membranes (each phase a multiple number of times)—
one may view the horizons as the time evolution of a
single MTT. Second, MTT admits a much weaker set of
conditions than either the IH or the DH formalism. For
example, no restriction on £nθðlÞ is assumed. If £nθðlÞ < 0,
the MTT is called a future outer trapping horizon [22].
Third, MTTs are foliated by marginally trapped two-
spheres. Since ta is orthogonal to the foliations and
tangential to Δ, it generates a foliation-preserving flow
so that the following condition holds on Δ:

£tθðlÞ≜0: ð1Þ

Fourth, the constant C also measures the evolution of the
MTT. To see this, note that if ma and m̄a are tangential to
the two-sphere cross sections, the area element is given by
2ϵ ¼ im ∧ m̄. Under the flow generated by ta, the area
element of MTT evolves as

£t2ϵ ¼ −CθðnÞ2ϵ: ð2Þ

Naturally, the timelike MTT (for whichC < 0) contracts and
the null MTT (C ¼ 0) does not grow, whereas the spacelike
MTT (for which C > 0) expands. Furthermore, note that no
condition on the energy-momentum tensor is assumed onΔ.
The Einstein equation Gab ≡ Rab − ð1=2ÞRgab ¼ Tab shall
be assumed to hold on Δ. We use the units of c ¼ 1 and
8πG ¼ 1, or equivalently, we scale the components of the
energy-momentum tensor by 8πG.
Several conclusions follow from these conditions.

From (1), the constant C is determined by the condition

C ¼ £lθðlÞ
£nθðlÞ

: ð3Þ

Using θðlÞ ¼ 0 and the Einstein equation Gab ¼ Tab, we
get the following two equations [45]:

£lθðlÞ ¼−Tablalb; £nθðlÞ ¼−ðR=2ÞþTablanb: ð4Þ
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Here,R is the scalar curvature of the round two-sphere and
may be rewritten as R ¼ ð8π=AÞ, where A is area of the
two-sphere. These equations imply that the constant C
which determines the nature of the MTT is given by

C ¼ Tablalb

ð4π=AÞ − Tablanb
: ð5Þ

The signature of Δ determined by C is a quantity of
utmost importance since it also decides the nature and
stability of the horizon [46,47]. From the above Eq. (5), this
value is controlled by the energy-momentum tensor and
area of the marginally trapped surfaces. In the following,
we shall use several energy-momentum tensors, including
dust models and viscous fluids, and evaluateC in each case.
However, as we shall see below, the form of Tab is not the
only criterion deciding the signature of the MTT, the mass
profile and the equations of collapse are also important
factors. Given these complicated constraints, the generic
behavior of the MTT is not known for arbitrary black hole
evolution. Consider, for example, Vaidya-type black holes
evolving under matter fields satisfying dominant energy
conditions, the evolution of the MTT is described by the
equation R ¼ 2mðvÞ, where v is the advanced Eddington-
Finkelstein coordinate. In this case, the MTT is spacelike
(more precisely, it is a DH) if _mðvÞ > 0, where the dot
indicates the derivative with respect to the advanced time
coordinate [26,27,48]. However, this conclusion does not
hold true for any arbitrary collapse scenario. Indeed, even
for simple situations like the OSD models of homogeneous
dust collapse, a timelike MTT (or a timelike membrane)
appears just as the matter cloud reaches the Schwarzschild
radius. This timelike membrane, together with the matter
cloud, eventually collapses into the singularity at exactly
the same time. Examples of trapped surfaces are also
discussed in [21,32,43,49–57]. In more realistic LTB
inhomogeneous collapse models, the matter cloud and
the MTT behave drastically different: The cloud shells
reach singularity at different times and the MTT is not
purely timelike. For a large number of cases, in which the
matter profile is smooth, the MTT begins as a spacelike
hypersurface from the center of the cloud and asymptotes to
the null event horizons as infall of matter is discontinued.
For mass profiles with more complicated functional forms,
the time evolution of the MTT shows strange behavior: for
example, turning timelike from being spacelike through
an intermediate (expanding) null region. These details are
studied with a large number of examples as well in the
following sections.

III. SPHERICALLY SYMMETRIC
COLLAPSE FORMALISM

Let us consider a general spherically symmetric ball of
fluid with the line element

ds2 ¼ −e2αðr;tÞdt2 þ e2βðr;tÞdr2 þ Rðr; tÞ2dθ2
þ Rðr; tÞ2 sin2 θdϕ2; ð6Þ

where αðr; tÞ and βðr; tÞ are spacetime-dependent func-
tions, θ and ϕ are the angular variables on the sphere, and
Rðr; tÞ is the radius of the sphere. This is the standard
frame, where the fluid velocity is ua ¼ e−αð∂=∂tÞa. This
frame allows for a simpler integration of the Einstein
equation and the Bianchi identities.
We envisage the solutions of the Einstein equation for the

energy-momentum tensor of the spherical ball given by the
following form:

Tab ¼ ðpt þ ρÞuaub þ ptgab þ ðpr − ptÞXaXb

− 2ησab − ζθhab; ð7Þ
where η and ζ are the coefficients of shear and bulk
viscosity, and Xa is a unit spacelike vector tangential to
the spacelike section orthogonal to ua, respectively, sat-
isfying XaXa ¼ 1. The quantities σab; θ, and hab are the
shear, expansion, and projection tensors and, ρ, pt, and pr
are the energy density and tangential and radial components
of pressure, respectively. The expressions for these quan-
tities are

θ ¼ ∇aua; hab ¼ ðδab þ uaubÞ; ð8Þ

σab ¼ 1

2
ðhac∇cub þ hbc∇cuaÞ −

1

3
θPab;

Xa ¼ e−βðr;tÞð∂=∂rÞa: ð9Þ

Their values for this metric are easily determined to be

θ ¼ e−αð _β þ 2 _R=RÞ;
hab ¼ e2βðr;tÞdr2 þ Rðr; tÞ2dθ2 þ Rðr; tÞ2sin2θdϕ2; ð10Þ

σ11 ¼ ð2=3Þð _β − _R=RÞe−α;
σ22 ¼ σ33 ¼ ð−1=3Þð _β − _R=RÞe−α: ð11Þ

Let us define a shear scalar σ̄2 ¼ σabσ
ab, and from the

above expressions, we get σ̄2 ¼ ð2=3Þe−2αð _β − _R=RÞ2. For
simplification, we shall get rid of the ð2=3Þ factor and
redefine σ ¼ e−αð_β − _R=RÞ. The nonzero components of
the energy-momentum tensor are given by the following
quantities:

T0
0 ¼ −ρ; T1

1 ¼ pr −
4

3
ησ − θζ;

T2
2 ¼ T3

3 ¼ pt þ
2

3
ησ − θζ: ð12Þ

Let us now collect the equations needed to solve our
problem of gravitational collapse. Defining the two

CHATTERJEE, GHOSH, and JARYAL PHYS. REV. D 102, 064048 (2020)

064048-4



functions,H¼e−2αðr;tÞ _R2 andG ¼ e−2βðr;tÞR02, the required
equations are

ρ ¼ F0

R2R0 ; ð13Þ

pr ¼ −
_F

R2 _R
þ 4

3
ησ þ ζθ; ð14Þ

α0 ¼ 2R0

R
pt − pr þ 2ησ

ρþ pr − 4
3
ησ − ζθ

−
ðpr − 4

3
ησ − ζθÞ0

ρþ pr − 4
3
ησ − ζθ

; ð15Þ

2 _R0 ¼ R0 _G
G
þ _R

H0

H
; ð16Þ

F ¼ Rð1 −GþHÞ: ð17Þ

The first two are the G00 and the G11 equations, the third is
the r component of the Bianchi identity, the fourth is the
G01 component of the Einstein equation, and the fifth is the
Misner-Sharp mass function for spherical symmetry. Note
from the first Eq. (13) that the density diverges for R ¼ 0 as
well as R0 ¼ 0. R ¼ 0 implies that the area radius vanishes,
which signifies shell focusing singularity at the center of
the matter cloud. On the other hand, R0 ¼ 0 indicates shell-
crossing singularities. As is well known, these are gravi-
tationally weak and point to the existence of coordinate
singularities. We shall not deal with shell-crossing singu-
larities here.
The number of unknowns in the above equations are

three metric variables αðr; tÞ, βðr; tÞ, and Rðr; tÞ and the
matter variables pt; pr; ρ; ησ, and ζθ. This gives us the
choice of three free functions and the mass function. In
the following sections, we shall consider several choices of
these free functions and show that these choices, given the
regular initial choice of collapse, determine the spacetime
uniquely. At the start of the collapse ti ¼ 0, we implicitly
consider only those profiles of the matter cloud which
satisfy the energy conditions and have regular and smooth
energy-momentum tensors. At ti ¼ 0, we use the gauge
freedom of the Rðr; tÞ to fix it, so that Rðr; tiÞ ¼ r. In
general, this gauge freedom is a scaling of the form
R ¼ raðr; tÞ, where the function aðr; tÞ will satisfy certain
conditions. First, at t ¼ ti, aðtiÞ ¼ 1, second, at the
singularity time ts, aðr; tsÞ ¼ 0, and third to maintain
the condition of collapse, _a < 0. It immediately follows
from Eq. (13) that, at the initial epoch, the density
ρ ¼ F0=r2, and hence, the regularity of F at r ¼ 0,
demands that the r dependence of the mass function take
the form Fðr; tÞ ¼ r3mðr; tÞ, where mðr; tÞ is a sufficiently
smooth and differentiable function inside the gravitating
system. Its t dependence is not determined from Eq. (14)
and requires the specification of the pr and other param-
eters of the energy-momentum tensor. Also, note that for

physical situations, the function mðr; tÞ must be a smooth
and decreasing function of r.

IV. PRESSURELESS COLLAPSE:
OSD AND LTB MODELS

For the dust collapse scenario, the viscosity coefficients η
and ζ may be taken to be zero. To qualify as dust, the fluid
must be pressureless. Furthermore, we impose pr¼pt¼0,
which implies that the radial and tangential pressures are
equal and vanishing. Equations (13)–(17) simplify to the
following equations:

F0 ¼ ρR2R0; _F ¼ 0; ð18Þ

α0 ¼ 0;
_R0

R0 ¼ _β: ð19Þ

It follows that Rðr; tÞ and the mass function FðrÞ are related
through a constant of integration kðrÞ [3]:

_R2 ¼ FðrÞ
R

− kðrÞ: ð20Þ

Note that the expression for _R will have two signatures,
þve for the expanding phase and −ve for the contracting
phase. The function kðrÞ determines the nature of the
gravitational collapse. If kðrÞ ¼ 0, we get the marginally
bound collapse, where the shells of the matter cloud are
assumed to have zero initial velocity at infinity or at the
beginning of the collapse, kðrÞ > 0 signifies bounded
collapse, where the matter shells have negative initial
velocity, whereas kðrÞ < 0 holds for unbounded collapse
where matter at the beginning of collapse is assumed to
have positive velocity. The metric for this spacetime
becomes

ds2 ¼ −dt2 þ R0ðr; tÞ2
1 − kðrÞ dr

2 þ Rðr; tÞ2ðdθ2 þ sin2 θdϕ2Þ:

ð21Þ

For later convenience, it is useful to rewrite the function
kðrÞ in a scaling form, kðrÞ ¼ r2KðrÞ. The general solution
of (20) is

t ¼ ts −
R

3
2ffiffiffiffi
F

p Y

�
RkðrÞ
F

�
; ð22Þ

where ts is the time for the collapsing shells to reach
the central singularity at R ¼ 0 and is given by
ts ¼ r3=2F−1=2Y½rkðrÞ=F�. The function YðyÞ is given by
the following form [3]:
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YðyÞ ¼ sin−1
ffiffiffi
y

p
y3=2

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

; 1 ≥ y > 0;

¼ ð2=3Þ; y ¼ 0;

¼ −
sinh−1

ffiffiffiffiffiffi−yp
ð−yÞ3=2 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
y

; 0 > y > −∞: ð23Þ

The quantity C given in (5) determines the signature of
the MTT formed during gravitational collapse. For the case
of dust, only the density appears in Tab. Using the Einstein
equation (13), the equation for C simplifies to

C ¼ 2FðrÞ0
2Rðr; tÞ0 − Fðr; tÞ0 : ð24Þ

This formula shall be used in the following sections to
determine the nature of the MTT.

A. Homogeneous collapse

For homogeneous collapse, the mass function may be
written as FðrÞ ¼ mr3, where the function mðrÞ is a
constant independent of r. The scaling variable aðr; tÞ is
also reduced to a function of t only, and the functionKðrÞ is
taken to be a constant. Incidentally, the values of K here
determine the nature of collapse, K ¼ 0 indicates the
marginally bound collapse, K ¼ 1 is for the bounded
collapse, and K ¼ −1 signifies the unbounded collapse.
We shall look into the marginally bound collapse case only
since the calculations are similar for the other two cases.
For K ¼ 0, the solution of the equation of motion (20) is
given by Eq. (22):

Rðr; tÞ ¼ r

�
1 −

3

2

ffiffiffiffi
F

p

r3=2
t

�2
3

: ð25Þ

Equation (25) gives the time curve for the collapsing shell.
Also note that here, _R < 0. The time for the shell to reach
singularity, denoted by ts, follows from Eq. (25) by putting
R ¼ 0. This gives us ts ¼ ð2=3 ffiffiffiffi

m
p Þ. Since m is a constant

here, it follows that all shells reach singularity at the
same time.
For simplification, we shall shift the singularity time

to ts ¼ 0. This essentially shifts the time coordinates
linearly without changing any physical content. The motion
of the collapsing shell after this shift in time coordinate
becomes

Rðr; tÞ ¼ ½ð3=2Þ
ffiffiffiffi
F

p
ð−tÞ�23: ð26Þ

This equation also gives us the time when the shell reaches
the Schwarzschild radius r ¼ rH. Also note that, on the
hypersurface, apart from the condition R ¼ 2M, one also
has the matching conditions at r ¼ rH given by FðrHÞ ¼
2M ¼ r3Hm [see Eq. (A9) in the Appendix]. To find the

time t2M for the shell to reach the Schwarzschild radius, we
put these conditions in Eq. (26) to get

t2M ¼ −
2

3
FðrHÞ ¼ −

4M
3

: ð27Þ

Let us now determine the time development of spherically
symmetric MTTs. The equation for the MTT in spherical
symmetry is given by the condition gab∇aR∇bR ¼ 0. For
the metric being studied here, this implies RAH ¼ FðrÞ.
The time curve of the symmetric MTT is obtained from
Eq. (26) by using R ¼ F and gives

RAHðrÞ ¼ −
3

2
t: ð28Þ

1Naturally, it follows from Eq. (28) that the MTT is formed
at R ¼ 2M, and shrinks with time and collapses to R ¼ 0 at
the time of singularity formation t ¼ ts. More precisely, it
starts at R ¼ 2M at time tH, shrinks at a constant rate
_RAH ¼ −3=2, and reaches the singularity r ¼ 0 at t ¼ 0.
The collapsing spacetime admits two MTTs. Outside the
collapsing region, the MTT matches the R ¼ 2M null
surface, whereas inside the collapsing star, the trajectory
of the surface follows Eq. (28). Since the MTT outside
matches the EH, it is null, whereas, the MTT inside is
timelike.
Let us now find the time development of the event

horizon. Using the metric, we evaluate the time evolution of
the radius along a radial null geodesic. The radial null
geodesic of the outgoing photons gives ðdr=dtÞNull¼1=R0.
Again, using dR=dt ¼ ½R0ðdr=dtÞNull þ _R�, the time evo-
lution of the event horizon reduces to dR=dt ¼ 1 −

ffiffiffiffiffiffiffiffiffi
F=R

p
.

Since RðtÞ3=2 ¼ ð3=2Þ ffiffiffiffi
m

p
r3=2ð−tÞ and FðrÞ ¼ mr3, the

previous equation gives

dR
dt

¼ 1þ 2

3

R
t
: ð29Þ

The solution of this equation gives the event horizon. The
general solution of this equation is obtained by integrating
with the integrating factor t−2=3 and gives

REHðtÞ ¼ 3tþ C0ð−tÞ2=3: ð30Þ

The constant C0 is fixed as follows: From Eq. (26), the
time taken by the shell to reach R ¼ 2M is t ¼ −4M=3.
Since the event horizon is the last null ray reaching
null infinity, we use this condition in Eq. (30) to obtain
C0 ¼ 3ð9M=2Þ1=3. So, from Eq. (30), it follows that the

1From Eq. (25), the time curve of the apparent horizon is given
by tAHðrÞ ¼ ð2=3Þ

ffiffiffiffiffiffiffiffiffiffi
r3=F

p
− ð2=3ÞRAH. This clearly shows that

the AH starts to form at exactly the same time when the shell
reaches the Schwarzschild radius, R ¼ 2M.
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event horizon begins to grow from the nonsingular center
just as the collapse process begins. The time of the
beginning of the event horizon is obtained from Eq. (30)
as follows: Let at t ¼ tiEH, REH ¼ 0. This gives the time of
formation of the event horizon tiEH ¼ −ð9M=2Þ. The rate of
growth of the event horizon is also obtained from (30):
_REH ¼ 3 − 2ð9M=2Þ1=3ð−tÞ−1=3. This clearly shows that
initially, at tiEH, _REH ¼ 1, whereas, at t ¼ −4M=3, just as
the shell reaches the Schwarzschild radius (or the null curve
of the event horizon reaches R ¼ 2M), the event horizon
stops growing _REH ¼ 0 and remains at the Schwarzschild
radius. To sum up, the event horizon begins to develop
just as the matter shells begin to fall, and then its rate of
growth slows down as the rate of fall of matter begins to
slow down, ultimately stopping at time t ¼ −4M=3 when
matter flow stops, and accordingly, it matches with the
Schwarzschild null horizon (see the following example).

1. Example

In the following, we consider an example of collapse
according to the formalism developed above. The Misner-
Sharp mass function is taken to be FðrÞ ¼ mr3, with
m ¼ ð1=2Þ. The t − Rðr; tÞ graph for the collapse is given
below in Fig. 1. We have taken care to exclude shell-
crossing singularities and have ensured that there are no
trapped surfaces on the initial slice. Several points need to
be noticed. First, all the shells collapse into the singularity
at the same time at t ¼ 0.94. Second, the shell which begins
at Rðr; tÞ ¼ 1 reaches its Schwarzschild radius at time
t ¼ 0.61, and exactly at that instant, the event horizon (or
the last null ray) beginning at the center of the cloud also
reaches that spacetime point. Third, the spherically sym-
metric MTT also forms at that point and eventually
collapses into singularity, along with the matter cloud.

Further, the signature of C establishes that the MTT is
timelike.

B. Inhomogeneous collapse

For the inhomogeneous collapse, α ¼ αðtÞ in the metric
and may again be absorbed through the redefinition of
the time coordinates; see Eq. (18). The mass function still
remains a function of r only and is taken to be of the form
Fðr; tÞ ¼ r3mðrÞ and the metric function is given by
kðrÞ ¼ KðrÞr2.

1. Marginally bounded collapse

The marginally bounded collapse corresponds to K ¼ 0.
The metric is given by

ds2 ¼ −dt2 þ R02ðr; tÞdr2 þ R2ðr; tÞðdθ2 þ sin2 θdϕ2Þ;
ð31Þ

where Rðr; tÞ is the radius of the shell. The equation of
motion of the shell is given by _R2 ¼ FðrÞ=R. The solution
of the equation of motion is given by the following form:

t ¼ ð2=3Þ
h ffiffiffiffiffiffiffiffiffiffi

r3=F
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr; tÞ3=F

q i
; ð32Þ

where the radius of the shell at the beginning of the collapse
at ti ¼ 0 is Rðr; tiÞ ¼ r. The shells will be labeled by the
value of the radius it assumes at the initial time t ¼ 0. For
example, for the shell being studied above, it shall be
labeled by the coordinate r. For this shell, the time taken for
it to reach the singularity is ts ¼ ð2=3Þr3=2= ffiffiffiffi

F
p

. Note that
since FðrÞ is inhomogeneous, all shells do not reach
the singularity at the same time. The equation of motion
given above for the shell may naturally be rewritten as
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FIG. 1. (a) gives the plot of Rðr; tÞ vs t for the mass profile discussed above. The MTT is timelike and is also confirmed through the
negative value of C in the graph of C − r in (b).
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t ¼ ts − ð2=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr; tÞ3=F

p
. If the time coordinate is

shifted to make ts ¼ 0, the time for the shell to reach
R ¼ 2M becomes t2M ¼ ð−4M=3Þ.
The equation of the spherically symmetric MTS is

obtained by using the condition Rðr; tÞ ¼ FðrÞ giving
the equation for the MTT to be RAHðr; tÞ ¼ −ð3=2Þt.
So, the MTT begins at R ¼ 2M, shrinks at a constant rate
of _RAH ¼ −ð3=2Þ, and goes to zero at the same time when
the singularity forms. The apparent horizon which is
outside the shell matches the Schwarzschild null event
horizon. Note that the slope of the RAHðr; tÞ − t graph is
negative. However, this does not mean that the MTT is
timelike. In the examples that follow, we shall show
that even if the MTT behaves as a timelike curve in the
Rðr; tÞ − t graph, it is the constant C which fixes the
signature of the MTT [32,46].
Let us now look at the formation of the event horizon, for

which we need to look at the radial null geodesic given by
the curve R½r; tnðrÞ�. The event horizon shall be obtained
by tracing the last radial null geodesic reaching null
infinity. Using techniques developed in the previous sub-
sections, the equation for the event horizon is given by
REH ¼ 3tþ 3ð9M=2Þ1=3ð−tÞ2=3. Note that just as in the
case for homogeneous collapse, the event horizon begins
just as the matter shells begin to fall, growing slowly to
smoothly match the Schwarzschild horizon at R ¼ 2M
at t ¼ −4M=3. At that time, the rate of growth of REH
vanishes, and for t ≥ −4M=3, the event horizon is the null
Schwarzschild horizon of radius 2M.

2. Examples

Here, we consider two examples, with the densities
having the following forms:

ρ1ðrÞ ¼ ð3M=2500Þð10 − rÞΘð10 − rÞ;
ρ2ðrÞ ¼ ð3M=40

ffiffiffiffiffi
10

p
Þð10 − r2ÞΘð10 − r2Þ; ð33Þ

where ΘðxÞ denotes the Heaviside theta function. The
factors have been chosen to get the isolated horizon at

Rðr; tÞ ¼ 2, and the corresponding masses have been
normalized with the choice M ¼ 1. In each case, the
spherically symmetric MTTs are spacelike, as indicated
by the values of C. Again, there are no shell-crossing
singularities and no trapped surfaces on the initial slice. The
R − t plots, however, are intricate in these two cases and are
markedly different (see Figs. 2 and 3). We give these two
cases since they show the nontrivial ways in which the
MTTs cross the foliation. For the density profile corre-
sponding to ρ1, the MTTs are spacelike. As seen from
the Rðr; tÞ − t graph, the MTT forms out of the central
singularity, evolves in a spacelike manner, and approaches
the isolated horizon phase at R ¼ 2. Although it may seem
from these graphs that timelike membranes arise here, the
graphs of C verify that it is not so. This bending of graphs
only indicates that the MTTs cross the foliation in intricate
ways [32,46].

3. Bounded collapse

For the case of bounded collapse kðrÞ > 0, the para-
metric solutions are given by

Rðr; tÞ ¼ FðrÞ
kðrÞ cos

2 ðη=2Þ ¼ r cos2 ðη=2Þ; ð34Þ

t ¼ FðrÞ
2kðrÞ3=2 ðηþ sin ηÞ ¼ r3=2ffiffiffiffi

F
p ðηþ sin ηÞ; ð35Þ

where we assume the function kðrÞ to be of the form
kðrÞ ¼ Fðr; tÞ=r, with Fðr; tÞ ¼ mðrÞr3. The collapse
of the cloud begins at η ¼ 0, where t ¼ ti ¼ 0 and
Rðr; tiÞ ¼ r and reaches the singularity at η ¼ π where
R ¼ 0. The time for collapsing shells labeled by r to reach
the central singularity R ¼ 0 is ts ¼ π=2mðrÞ1=2. So, shells
with different initial radius reach the central singularity
at different times. From Eq. (34), the proper time for the
shell to reach the Schwarzschild radius R ¼ 2M is given
by η2M ¼ 2 cos−1ð2M=rÞ1=2.
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FIG. 2. The graphs show the (a) density distribution ρ1, (b) values of C, and (c) formation of the MTTalong with the shells. The MTT
begins from the center of the cloud. The straight lines of the MTT in (c) after the shell r ¼ 10 has fallen represents the isolated horizon
phase. The value of C indicates that the spherical MTT is spacelike.
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Let us now locate the spherically symmetric MTTs.
From Eqs. (34) and (35), a simple calculation gives a
complicated-looking expression relating the change of the
shell radius of the MTS with respect to proper time η,

drAH
dη

¼ −
ðsin ηÞ=2þ ð1 − k=kÞ1=2 cos2ðη=2Þ

D
; ð36Þ

where the denominator D is given by the following form:

D ¼ ðkF0=FÞ − ½ðF0=FÞ − ðk0=kÞ� cos2 η=2
þ ½ð1 − kÞ=4k�1=2ðF0=F − 3k0=2kÞ½ηþ sinðηÞ�: ð37Þ

Using the solutions of (36) into (34) and (35) gives the
equation of spherical trapped surfaces. Also, from Eq. (35),
at this same time, the MTT should be at R ¼ 2M ¼ F. On
the other hand, the equation for the evolution of the event
horizon is given by

drEH
dη

¼ −
ðsin η=2Þ þ ð1 − k=kÞ1=2 cos2ðη=2Þ

D̄
; ð38Þ

where the denominator D̄ is given by the following form:

D̄ ¼ ½ðF0=FÞ − ðk0=kÞ� cos2 η=2
− ½ð1 − kÞ=4k�1=2ðF0=F − 3k0=2kÞ½ηþ sinðηÞ�: ð39Þ

We have considered ðrH; η2MÞ to be the point where the
outer event horizon forms. Thus, the equation of the event
horizon is given by

REH ¼ rEH cos

�
η

2

�
2

: ð40Þ

We have all the required equations to study the LTB
collapsing shells (34), apparent horizon [from (34)], and
event horizon (40). As a simple example, let us consider the
matching of the interior to the exterior at the hypersurface

when χH ¼ π=3, rH ¼ 0.866, andmðrÞ ¼ ðn0 þ rn1Þ, such
that the point where the even horizon formed is
ðη2M; R2MÞ ¼ ð2.1399; 2.0Þ. Thus, all the three curves, that
of collapsing shell, the apparent horizon, and the event
horizon should meet at R ¼ 2.0 when η2M ¼ 2.1399 for
n0 ¼ 1=11 and n1 ¼ 1=4.

4. Examples

(i) Let us consider a Gaussian profile with the density
given by the following form [32]:

ρðrÞ ¼ m0

π3=2r30
expð−r2=r20Þ; ð41Þ

wherem0 is the total mass of the matter cloud, and r0
is a parameter which indicates the distance where the
density of the cloud decreases to ½ρð0Þ=e�. In our
example, we have chosen r0 ¼ 100m0. As usual, the
symmetric MTT begins from the central singularity
and develops as a dynamical horizon until approx-
imately r ¼ 200, where it begins to resemble an
isolated horizon (see Fig. 4). This may also be
confirmed from the fact that the density at r ¼ 200 is
almost negligible. However, since the Gaussian
profile almost disappears at r ¼ 380, the R ¼ 2 is
also reached at that value of the shell coordinates.

(ii) Let us consider another density profile with the
following form:

ρðrÞ ¼ m0

8πr30
expð−r=r0Þ; ð42Þ

wherem0 is the total mass of the matter cloud, and r0
is a parameter which indicates the distance where
the density of the cloud decreases to ½ρð0Þ=e�. The
spherically symmetric MTT begins from the central
singularity and develops as a dynamical horizon
until approximately r ¼ 70, where it begins to
resemble an isolated horizon. This may also be
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FIG. 3. The graphs show the (a) density distribution ρ2, (b) values of C, and (c) formation of the MTT along with the shells. Note that
the MTT seems to begin at r ¼ 2.6 and then bifurcates in a timelike manner to the singularity, while another part proceeds toward the
isolated horizon. However, since the signature of C is always positive, the behavior of the MTT must be similar to Fig. 2. The timelike
feature is due to nontrivial intersection with the foliation [32,46].
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confirmed from the fact that the density at r ¼ 70 is
almost negligible. However, since the Gaussian
profile almost disappears at r ¼ 100, the R ¼ 2 is
also reached at that value of the shell coordinates.
This may be seen from Fig. 5.

(iii) Two shells falling consecutively on a black hole: Let
us assume that a black hole of mass M exists, upon
which a density profile of the following form falls:

ρðrÞ ¼ 8ðm0=r30Þ½ðr=r0Þ − ς�2
½2ςþ ð3þ 2ς2Þ ffiffiffi

π
p

eς
2f1þ ErfðςÞg�

× exp½ð2r=r0Þς − ðr=r0Þ2�; ð43Þ

where m0 ¼ M=2 is the mass of the shell, and 2r0
is the width of each shell. If we assume that the
initial black hole has the Schwarzschild radius
given by r̄ ¼ 2M, then the mass for each shell of
radius rðr > r̄Þ is then mðrÞ ¼ M þ R

r
r̄ ρðr̂Þr̂2dr̂.

The quantity σ is a parameter which denotes the
position where the density vanishes. Here, we have
usedM ¼ 1, r0 ¼ 10, and ς ¼ 10. At around r ¼ 65,
the MTT starts to grow in a spacelike fashion and
reaches approximately R ¼ 2.4 at approximately
t ¼ 1014 when the r ¼ 100th shell falls. Note that
at this time, the C vanishes making the MTT null.
This is expected since the density of the shell goes to
zero here (see Fig. 6). Again, just as the next shell
starts to fall, the MTT again begins to evolve in a
spacelike fashion to reach R ¼ 3 at t ¼ 1500 when
the shell denoted by r ¼ 140 has fallen in.

V. SPACETIMES ADMITTING
VISCOUS MATTER FIELDS

In this section, we shall consider spacetimes due to
collapse of matter whose energy-momentum tensor con-
tains viscous matter fields. The Einstein equations are
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FIG. 4. The graphs show the (a) density distribution, (b) values of C, and (c) formation of the MTT along with the shells. The MTT
begins from the center of the cloud. The straight lines of the MTT in (c) after the shell r ¼ 250 represent the isolated horizon phase.
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Eqs. (13)–(17). For simplification, we shall also assume
some form of equation-of-state-type relations between
some geometric scalar quantities and the density. First,
note that one may envisage some exact relations involving
the Newman-Penrose scalar ψ2 and the Misner-Sharp mass
function [58,59]. The quantity ψ2 for this spacetime is
given by

ψ2 ¼
e−2β

6
½α00 þ α02 − α0β0 þ R02=R2 − R00=R

þ ðR0β0Þ=R − ðR0α0Þ=R� − 1

6R2

−
e−2α

6
½β̈ þ _β2 − _α _βþ _R2=R2 − R̈=R

− ð _R _ψÞ=Rþ ð _R _αÞ=R�: ð44Þ

Using the Einstein equations, Eq. (44) can be written in
terms of the mass function Fðr; tÞ in Eq. (17):

Fðr; tÞ ¼ ðρþ p̄t − p̄r þ 2ησÞðR3=3Þ − ðψ2=2ÞR3; ð45Þ

where p̄r ¼ ðpr − ζθÞ and p̄t ¼ ðpt − ζθÞ. The quantity
F ðr; tÞ ¼ −ψ2R3 has a similar stature as the mass function
[58]. Its derivatives are given by

_F ¼ −ð1=6Þ½R3fρþ p̄t þ ð2=3Þησg�;t
− ðR3=6Þ½p̄r − ð4=3Þησ�;t; ð46Þ

F 0 ¼ −ð1=6ÞR3ρ0 − ð1=6Þ½R3ðp̄t − p̄r þ 2ησÞ�0: ð47Þ

These two equations may be combined to extract an
expression for the time derivative of the density _ρ:

_ρe−α þ ½ρþ p̄r − ð4=3Þησ�ðΘ − σÞ ¼ 0: ð48Þ

On the other hand, the expression for _ρ and p0
r may also be

derived from the Bianchi identities:
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FIG. 5. The graphs show the (a) density distribution, (b) values of C, and (c) formation of the MTT along with the shells. The MTT
begins from the center of the cloud. The straight lines of the MTT in (c) represent the isolated horizon phase.
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_ρ ¼ −_β½ρþ p̄r − ð4=3Þησ� − ð2 _R=RÞ½ρþ p̄t þ ð2=3Þησ�;
ð49Þ

p0
r ¼ fð4=3Þησg0 þ ð2R0=RÞðp̄t − p̄r þ 2ησÞ

− α0fρþ p̄r − ð4=3Þησg: ð50Þ

Using the Bianchi identity (49) into Eq. (48), we have a
relation involving the matter variables and the geometric
variables given by

ðρþ p̄rÞ ¼
8

3
ησ −

4

3
ηθ þ e−α

2 _R
Rσ

ðp̄t − p̄rÞ: ð51Þ

This equation gives some crucial input regarding the
pressure anisotropy ðp̄t − p̄rÞ and its relation to the shear
scalar σ. The pressure anisotropy must be interpreted as

the generator of the shear scalar and hence must be
proportional to it. Indeed, using Eq. (51) in (49), we have

_ρ ¼ 6 _R2

R2
e−α

�
2ηþ p̄t − p̄r

σ

�
; ð52Þ

which makes our claim, that pressure anisotropy must lead
to shear, explicit. We shall show below that the claim still
holds even if we assume the matter density to be spatially
uniform throughout the collapsing cloud. We must point
out that such an assumption is not contradictory to the
presence of shear or pressure anisotropy. We shall elaborate
on this issue below as well as in the following sections
when we take specific examples. To show this, we first
derive another expression for the time change of density
which involves the radial pressure only. If the density is
uniform, simple integration of Eqs. (47) implies that
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FIG. 6. The graphs show the (a) density distribution, (b) values of C, and (c) formation of the MTT along with the shells which fall
consecutively on a black hole. The MTT begins from R ¼ 2, where the previous EH is situated. The straight lines of the MTT in
(c) represent the isolated horizon phase.
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F ðr; tÞ ¼ −ðR3=6Þðp̄t − p̄r þ 2ησÞ. Using this in (46),
we have

_ρ ¼ −ð3 _R=RÞ½ρþ p̄r − ð4=3Þησ�: ð53Þ

Now, let us rewrite the Binachi identity (49) using
Eqs. (10), which gives us

ðρþ p̄rÞθ ¼ −_ρe−α −
2 _R
R

ðp̄t − p̄rÞe−α þ
4

3
ησ2; ð54Þ

which may also be written in the following form, equivalent
to (52):

_ρe−α ¼ ½ð4=3Þησ2 − ðρþ p̄rÞΘ�
�
1−

ð2=3Þðp̄t − p̄rÞ
ρþ p̄r − ð4=3Þησ

�
−1
:

ð55Þ

The radial derivative of Eq. (54) along with (55) gives the
following equation:

ðρþ p̄rÞθ0 þ ðρþ p̄rÞ0θ ¼ ð_ρe−αÞ0
�
1þ ð2=3Þðp̄t − p̄rÞ

ρþ p̄r − ð4=3Þησ
�
þ ½ð4=3Þησ2�0 − _ρe−α

� ð2=3Þðp̄t − p̄rÞ
ðρþ p̄r − ð4=3ÞησÞ

�0
; ð56Þ

which along with the radial part of Bianchi identity (50) gives the following elaborate form

ðρþ p̄rÞθ0 ¼ −½ð4=3Þησ0 − ð4=3Þησα0 þ ð2R0=RÞðp̄t − p̄r þ 2ησÞ�θ

þ
� ð2=3Þ
ðρþ p̄r − ð4=3ÞησÞ − 2

3
ðp̄t − p̄rÞ

��
α0ðρþ p̄rÞf2ησ2 − p̄tθðp̄t − p̄rÞg

þ fðρþ p̄rÞΘþ ð4=3Þησ2g
�
ðp̄t − p̄rÞ0 −

2ðp̄t − p̄rÞ2
ðρþ p̄r − 4=3 · ησÞ

−
4ησðp̄t − p̄rÞ

ðρþ p̄r − 4=3 · ησÞ
�
− 8=3 · α0η2σ3

�
þ fð4=3Þησ2g0: ð57Þ

Several results follow directly from Eq. (57). Let the
pressure anisotropy ðpt − prÞ and the viscosity parameters
η and ζ vanish. If we write pr ¼ pt ≡ p, then the above
equation reduces to

ðρþ pÞθ0 ¼ 0: ð58Þ

This implies that, during the gravitational collapse of
uniform density perfect fluid having irrotational motion,
the expansion scalar must remain spatially uniform. Fur-
thermore, the spacetime must be isotropic as well as
conformally flat [59–61]. These results hold true even if
the spacetime has bulk viscosity but negligible shear
viscosity [59]. However, if the fluid is dissipative, with
nonvanishing shear viscosity, these results do not hold and
expansion becomes a scalar function. The situation how-
ever alters significantly if the pressure anisotropy arising
through ðpt − prÞ is also taken into account. As may be
seen from Eq. (57), these anisotropies are in the same
footing as the shear terms. Indeed, then one may envisage
situations where the quantities arising from the dissipative
forces, like the shear and bulk viscosity, cancel those due to
anisotropy, leading to a spatially uniform expansion scalar,
just like for perfect fluids. Although that situation would be
highly fine-tuned, it is not unlikely. To summarize, we have
shown that if the fluid has shear and bulk viscosity, as well
as pressure anisotropy, then generically the spacetime will

not admit isotropy, conformal flatness, or a spatially uni-
form expansion scalar.
This brings into question whether the local anisotropy of

fluids may be identified as the source of viscous effects.
Given the form of these quantities in (51), (52), and (57),
this expectation holds ground. In the following, we shall
assume that a relation of this kind does exist, and to give
form to this expectation, we assume a simple linear relation
among these quantities, like ðpt − prÞ ∝ σ. To put it in
better perspective, they will be related to the density
function through the following constraints: pt ¼ ktρ,
σ ¼ kσρ, and θ ¼ kθρ. The values of the constants kt,
kσ , and kθ shall be chosen to observe the effects of
ðpt − prÞ on the time development of horizons.

A. Time-independent mass function

To study realistic collapse phenomena, the pressure and
viscosity contributions to the energy-momentum tensor of
the collapsing cloud must be included. To begin with, let
us assume that the collapsing cloud has a certain fixed
radial pressure given by pr ¼ ð4=3Þησ þ ζθ. This particu-
lar combination is chosen so that the viscosity terms in the
equation of motion cancel the effects of radial pressure
during the collapse. This choice also keeps continuity
with the study of pressureless collapse carried out in
the previous sections. However, to retain the physical
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importance of the model, we shall keep the combination
½pt þ ð2=3Þησ − ζθ� to be nonzero. This particular term
includes the tangential part of the pressure along with
certain viscosity terms. The reason for this choice is
only mathematical simplicity. Also, as we shall see, this
choice gives us a time-independent Misner-Sharp mass
function.
The set of Einstein equations for the gravitational

collapse of matter satisfying these conditions is given by

F0 ¼ ρR0R2; _F ¼ −ðR2 _RÞ
�
pr þ

4

3
ησ − ζθ

�
¼ 0;

ð59Þ

α0 ¼ð2R0=ρRÞ½pt þ ð2=3Þησ − ζθ�; ð60Þ

ð _G=GÞ ¼ 2α0ð _R=R0Þ; ð61Þ

Fðr; tÞ ¼ Rðr; tÞð1 −GþHÞ; ð62Þ

where Hðr; tÞ ¼ e−2αðr;tÞ _R2 and Gðr; tÞ ¼ e−2βðr;tÞR02. The
number of unknowns to be determined here are more than
the independent Einstein equations (59)–(62); we close the
system with the constraints pt ¼ ktρ, σ ¼ kσρ, and θ ¼ kθρ
given above. Using these equations of state, the solutions of
the Einstein equations (60) and (61) become

expð2αÞ ¼ R4a1 ; expð2βÞ ¼ R02

bðrÞR4a1
; ð63Þ

where we have introduced the constants a1 ¼ kt þ
ð2=3Þηkσ − ζkθ. Using these redefinitions, the line
element (6) may be rewritten as

ds2 ¼ −R4a1dt2 þ R02

bðrÞR4a1
dr2 þ Rðr; tÞ2dθ2

þ Rðr; tÞ2 sin2 θdϕ2: ð64Þ

The equation of motion (62) is also simplified to have the
following form:

_R ¼ −R2a

�
FðrÞ
R

− 1þ bðrÞR4a1

�
1=2

: ð65Þ

To study evolution of the horizon and the outgoing null
geodesics (and the event horizon), and to simplify the
solutions of the equation of motion (62), we choose the
parameter to be a1 ¼ −ð1=4Þ. This choice simplifies
the solution of the equation of motion (62), and the time
curve of the collapsing shell is given by

dt ¼ −
RdR

½FðrÞ þ bðrÞ − Rðr; tÞ�1=2 : ð66Þ

To solve the integral, we choose a parametric form to relate
the functions Rðr; tÞ, FðrÞ, and bðrÞ. A particular simple
choice is R ¼ ðF=bÞ cos2 ðη=2Þ. Using this form, the
equation of collapse simplifies, and the time curve is
obtained from the equation

dt ¼
�
F2

2b2

�
sin η cos2ðη=2Þ

½F þ b − ðF=bÞ cos2ðη=2Þ�1=2 dη: ð67Þ

The solution of this equation is the time curve of the
collapsing shell and is given by

t ¼ 4

3
½F þ b − ðF=bÞ cos2ðη=2Þ�1=2

× ½F þ bþ ðF=2bÞ cos2ðη=2Þ�
− ð4=3ÞfF þ b − ðF=bÞg1=2½F þ bþ ðF=2bÞ�: ð68Þ

The boundary conditions are chosen such that the collapse
begins at η ¼ 0 and reaches the central singularity at η ¼ π.
At the beginning of the collapse η ¼ 0, we have Rðti; rÞ ¼
½FðrÞ=bðrÞ� with ti ¼ 0. At the end state of the collapse
process when η ¼ π, we naturally have R ¼ 0. Note that
the time of formation of central singularity, or the time the
shell reaches singularity, is also obtained from the above
equation:

ts ¼
4

3
½ðFþ bÞ32 − fFþ b− ðF=bÞg1=2fFþ bþ ðF=2bÞg�:

ð69Þ

From these equations, it is also possible to track the
formation of spherical MTTs and determine the exact time
when the shell reaches its Schwarzschild radius.
The dynamics of the marginally trapped surfaces

(whether they are timelike, spacelike, or null) depends
upon the sign of the expansion parameter C defined in
Eq. (5). We take the timelike vector field to be uμ ¼
χlμ þ ð2χÞ−1nν and the spacelike vector field to be
xμ ¼ χlμ − ð2χÞ−1nν:

Tμνlμlν ¼ ð1=4χÞ½ρþ pt − ð4=3Þησ − ζθ þ ðpt − prÞ�;
ð70Þ

Tμνlμnν ¼ð1=2Þ½ρ − ðpt − ð4=3Þησ − ζθ þ ðpt − prÞÞ�:
ð71Þ

Using pr ¼ ð4=3Þησ þ ζθ, the equations lead to the fol-
lowing form of C:

C ¼ ð1=2χÞ
�

ρþ 2fpt − ð4=3Þησ − ζθg
4π=A − ð1=2Þ½ρ − 2fpt − ð4=3Þησ − ζθg�

�
:

ð72Þ
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1. Examples

(i) Let us consider a Gaussian density profile as before
given by ρðrÞ ¼ ½m0=π3=2r30� expð−r2=r20Þ, wherem0

is the total mass of the matter cloud, and r0 is a
parameter which indicates the distance where the
density of the cloud decreases to ½ρð0Þ=e�. Just as
before, we choose r0 ¼ 100m0. Here also, the
spherical MTT begins from the central singularity
and develops as a dynamical horizon until it ap-
proaches the isolated horizon at approximately
r ¼ 200. This may also be confirmed from the fact
that the density at r ¼ 200 is almost negligible. The
density profile almost disappears at r ¼ 380, and
beginning at that value of the shell coordinate, the
MTT remains at R ¼ 2. The nature of the formation
of singularity is identical to the LTB case discussed
in the previous sections. However the difference is
now with respect to the time at which the MTT
forms. For the LTB, the shell at r ¼ 200 forms the
MTT at t ¼ 3215 (see Fig. 4), whereas for the same

choice of the density parameters, but with the choice
of the parameter a1 ¼ −ð1=4Þ, the same shell forms
the MTT at t ¼ 1912. The reason is that for these
choices, the pr is now nonzero and hence contributes
to faster formation of theMTT (see Fig. 7). There also
exist contributions from the pt terms to the proper
time of the observer falling along the shell.

(ii) For the exponential density profile given by the fol-
lowing form ρðrÞ ¼ ½m0=8πr30� expð−r=r0Þ, the sit-
uation is identical to the above case for the Gaussian
profile. The time of formation of the MTT is lower
than that obtained for the LTB case. For the LTB
collapse, the MTT begins from the central singu-
larity and develops as a dynamical horizon until
approximately r ¼ 70, and begins to resemble an
isolated horizon (see Fig. 5). Here, the MTT for-
mation and its spacelike nature are retained,
although the time of formation of the isolated
horizon are lowered at t ¼ 406 (see Fig. 8) from
that in the LTB case, which happens at t ¼ 660.
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FIG. 7. The graphs show the (a) formation of the MTTalong with the shells and (b) values ofC. The MTT begins from the center of the
cloud and remains spacelike. The straight lines of the MTT in (a), after the shell at r ¼ 250, represent the isolated horizon phase.
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FIG. 8. The formation of the MTT (a), and (b) values of C.
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B. Time-dependent mass function

Let us consider the system in its full generality. The
Einstein equations shall have all the following terms:

ρ ¼ F0

R2R0 ; pr ¼ −
_F

R2 _R
þ ð4=3Þησ þ ζθ; ð73Þ

α0 ¼ 2R0

R
pt − pr þ 2ησ

ρþ pr − ð4=3Þησ − ζθ
−
p0
r − ð4=3Þησ0 − ζθ0

ρþ pr − 4
3
ησ − ζθ

;

ð74Þ

ð _G=GÞ ¼ð2α0Þð _R=R0Þ; Fðr; tÞ ¼ Rð1 −GþHÞ:
ð75Þ

Note that due to our generality, the Misner-Sharp mass
function shall acquire time dependence. To solve this set
of highly nonlinear coupled equations, we assume a set
of constraints on the dynamical quantities: pr ¼ krρ,
pt ¼ ktρ, σ ¼ kσρ, and θ ¼ kθρ. By using these conditions,
the solutions of the metric functions are

expð2αÞ ¼ R4a1

ρ2a2
; expð2βÞ ¼ R02

1þ r2Bðr; tÞ ; ð76Þ

where the parameters a1 and a2 are defined as a1 ¼
½kt − kr þ 2ηkσ�=½1þ kr − ð4=3Þηkσ − ζkθ� and a2 ¼
½kr − ð4=3Þηkσ − ζkθ�=½1þ kr − ð4=3Þηkσ − ζkθ�. The line
element for this spacetime may thus be written as

ds2 ¼ −
Rðr; tÞ4a1
ρðr; tÞ2a2 dt

2 þ Rðr; tÞ02
1þ r2Bðr; tÞ dr

2

þ Rðr; tÞ2½dθ2 þ sin2 θdϕ2�: ð77Þ

The equation of motion obtained from Eq. (75) is reduced
to the form

_R ¼ −R2a1ρ−a2
�
Fðr; tÞ
R

þ r2Bðr; tÞ
�
1=2

: ð78Þ

For an exact analytical solution, we introduce simplifi-
cations. Let us assume that the mass function Fðr; tÞ, the

metric function Bðr; tÞ, and the density ρðr; tÞ are of the
separable type,

Fðr; tÞ ¼ F1ðrÞF2ðtÞ; Bðr; tÞ ¼ B1ðrÞB2ðtÞ;
ρðr; tÞ ¼ ρ1ðrÞρ2ðtÞ; ð79Þ

where some of these functions are related, with the following
conditions: B1ðrÞ ¼ kðrÞ=r2, B2ðtÞ ¼ −F2ðtÞ ¼ −ρ2ðtÞ2a2 .
Now, with the choice of the parametric form of
Rðr; tÞ ¼ ½F1ðrÞ=kðrÞ� cos2ðη=2Þ, the equation of motion
of the collapsing cloud (78) gives the following time curve:

dt ¼ ½F1ðrÞ cos2ðη=2Þ�ð1−2a1Þρa21
kðrÞð3=2−2a1Þ dη: ð80Þ

The solution of this equation which determines the motion
of the collapsing cloud is given by complicated relations
involving the hypergeometric functions

t ¼ 2F1ðrÞ1−2a1ρ1ðrÞa2 cosðη=2Þ3−4a1
ð4a1 − 3ÞkðrÞ3=2−2a1

× 2F1

�
1

2
;
3

2
− 2a1;

5

2
− 2a1; cos2ðη=2Þ

�

−
2

ffiffiffi
π

p
F1ðrÞ1−2a1ρ1ðrÞa2

ð4a1 − 3ÞkðrÞ3=2−2a1
Γ½5=2 − 2a1�
Γ½2 − 2a1�

; ð81Þ

where 2F1ða; b; c; zÞ is the Gauss hypergeometric function,
and ΓðxÞ is the Gamma function. The boundary conditions
are chosen such that collapse starts at η ¼ 0, where
Rðti; rÞ ¼ ½FðrÞ=kðrÞ� and t ¼ 0. The cloud reaches the
central singularity at η ¼ π where R ¼ 0. In the t coor-
dinates, the time of formation of central singularity is

ts ¼
2

ffiffiffi
π

p
F1ðrÞ1−2a1ρ1ðrÞa2

ð3 − 4a1ÞkðrÞ3=2−2a1
Γ½5=2 − 2a1�
Γ½2 − 2a1�

: ð82Þ

The dynamics of the marginally trapped surfaces
(whether they are timelike, spacelike, or null) depends
upon the sign of the expansion parameter C and is given by

C ¼ 1

2χ

�
ρþ pt − ð4=3Þησ − ζθ þ ðpt − prÞ

ð4π=AÞ − ð1=2Þfρ − fpt − ð4=3Þησ − ζθ þ ðpt − prÞgg
�
: ð83Þ

1. Examples

(i) Gaussian: The density profile is the same as in
Eq. (41). The assumed choices of parameters are
kr¼ð1=2Þ, kt¼1=4, η¼1=16, kσ ¼1=4, ζ ¼ ð1=2Þ,
kθ ¼ ð3=2Þ giving a1 ¼ −0.3 and a2 ¼ −0.37. The

radial pressure has decreased, and hence, the time of
formation of singularity or the spherically symmetric
MTT is at a larger time compared to the LTB case
(see Fig. 9). The MTT is still spacelike. Notice
the shell labeled by r ¼ 200. For the LTB case, it
reached the isolated horizon at t ¼ 3215, but here it
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FIG. 10. The graphs show the (a) formation of MTT along with the shells, (b) values of C. The MTT is timelike. As seen from (c), it
first forms at t ¼ 3000 approximately, and bifurcates in one direction to reach the IH and in another direction to match the DH evolving
out of the previous black hole.
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FIG. 9. The graphs show the (a) formation of the MTTalong with the shells, and (b) values of C. Again, note that the MTT begins from
the center of the cloud and remains spacelike until it reaches the isolated horizon phase.
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happens at t ¼ 9 × 107, which is approximately a
103 factor higher. The reason is that with the choice
of a time-dependent Fðr; tÞ, the radial pressure
has decreased considerably, and hence, the time
of formation of the MTT for each shell also goes up.
The nature of the formation of the MTT however
remains identical.

(ii) Large shell: The nature of the formation of the
MTT here is drastically different in nature from that
described in the previous example. Here, we observe
the formation of timelike MTTs. Here, for this more
complicated collapse dynamics, the density profile
generates a timelike tube. The MTT forms at about
r ¼ 1800 and bifurcates to reach the initial black
holes. The timelike nature of the MTT is also
confirmed from the values of C (Fig. 10). Here
the choice of parameters is kr ¼ ð1=80Þ, kt ¼ 1=81,
η ¼ 1=16, kσ ¼ 1=20, ζ ¼ ð1=12Þ, kθ ¼ ð1=8Þ, giv-
ing a1 ¼ 0.006 and a2 ¼ −0.002.

However, if the following choice of parameters is
made, the MTT is spacelike: kr ¼ 1=2, kt ¼ 1=10,
η ¼ 1=8, kσ ¼ 1=4, ζ ¼ 1=2, kθ ¼ 3=2, with
a1 ¼ −0.48 and a2 ¼ −0.41 (see Fig. 11).

(iii) Two consecutive shells falling on a black hole:
The density profile is same as in Eq. (43). Here,
kr ¼ ð1=80Þ, kt ¼ 1=81, η ¼ 1=16, kσ ¼ 1=20,
ζ ¼ ð1=12Þ, kθ ¼ ð1=8Þ, giving a1 ¼ 0.006 and
a2 ¼ −0.002 (see Fig. 12). The nature of the
formation of the spherically symmetric MTT is
identical to that described for the LTB model,
although the time of formation of the MTT is not
drastically delayed for these choices of parameter
fields. Different choices of parameters change the
time development of the MTT.

This study of spherically symmetric gravitational col-
lapse of viscous matter using various mass profiles leads to
a general understanding that the effects of viscosity, if not
negligible, may lead to significant changes in the time of
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FIG. 12. The graphs show the (a) formation of the MTTalong with the shells, and (b) values of C. The MTT begins from the center of
the cloud and remains spacelike. The straight lines of the MTT in (a) represent the isolated horizon phase.
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FIG. 11. The graphs of (a) C and (b) MTT, for the same density profile as that of Fig. 10, but with different parameters. Here the MTT
is spacelike.
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the formation of horizons, as compared to the LTB models.
Although this is a general result, the nature of the mass
profile also plays a crucial role. Furthermore, the nature of
the spherical MTT is also dependent on these viscosity
parameters. Figures 10 and 11 show how the signature of
MTT reverses due to change in the viscosity parameters.
However, to classify these effects and to capture the
interplay of viscosity parameters and the mass profile in
this collapse process would require a much more
detailed study.

VI. DISCUSSION

In this paper, we have developed analytical and numeri-
cal techniques to study the gravitational collapse of a large
class of matter fields in Einstein’s theory. The main focus
has been to obtain the spherically symmetric trapped
regions and locate the spherical marginally trapped surfaces
for some general class of energy-momentum tensors,
including fluids admitting bulk and shear viscosity. For
the purpose of generality, we have included a brief
discussion of homogeneous as well as inhomogeneous
dust models. While the dust models have been studied
earlier [3], a detailed study of the formation and time
development of the EH and the spherical MTTs for a
generic class of energy-momentum tensors, through ana-
lytical as well as numerical means, to our knowledge, has
not been carried out in the literature. Our analytical
methods focus on two specific aspects. The first aspect
is to use the equations of gravitational collapse in the
Rðr; tÞ − t coordinate system to trace the formation of the
EH and the MTTs simultaneously with the collapse of
the matter cloud. The use of the Rðr; tÞ is especially
advantageous, since it is possible to track the horizons
as well as the collapsing sphere at each moment. The
second aspect is the development of numerical methods to
locate the spherical trapped regions and marginally trapped
surfaces for each of these matter fields. Through these
numerical techniques, we have ascertained the validity of
the analytical calculations as well as obtained a faithful
representation of the general expectations about horizons
during gravitational collapse. In particular, we have
obtained the signature of the spherical MTTs during each
of the collapse scenarios and a general conclusion may
have been reached: The spherical MTTs inside the OSD
matter cloud are timelike. The situation for LTB-like
collapse is more complicated. Here, generically for
_mðrÞ > 0, the MTTs are spacelike, and hence, all spherical
MTTs are dynamical horizons which reach the isolated
horizon phase in equilibrium. Thus, although the results are
valid for spherically symmetric spacetimes, some general
conclusions may possibly be drawn about the behavior of
MTTs during the collapse.
While dealing with the viscous fluid, we have made

some choices of viscosity parameters to restrict the values
of the coefficients arising in the energy-momentum tensor.

These parameters have been chosen because, for these
range of values, we do not encounter shell crossing during
gravitational collapse or have trapped surfaces at the
beginning of the process. The numerical study of the
evolution of spherical MTTs has been carried out for these
cases only. We observe that, within the set of assumptions
used here, it is possible to exploit the freedom of choice of
the equation of state and the parameters to manipulate the
nature as well as time of the formation of the MTT. Indeed,
in the previous section, we have shown through examples,
that alternate choices of initial data may lead to MTTs
which are either timelike or spacelike. Furthermore, these
choices also alter the time of formation of MTTs compared
to the dust models, in the sense that MTT formation may
be delayed or accelerated, compared to the dust models,
by suitable choices in the fluid parameters. We believe a
more extended study of these models may help in forming a
general outlook on the time development of spherical
MTSs during gravitational collapse.
In this paper, our attention has been on spherical MTTs,

although nonspherical MTTs are also important. An
important aspect of study of the MTTs or trapped surfaces
involves identifying the boundary of a black hole region.
The boundary of a trapped region is not known, although
the Eardley conjecture claims that the event horizon of a
black hole spacetime may be thought of as the boundary of
(marginally outer) trapped surfaces [62]. Indeed, it has been
shown that for Vaidya-type null collapse scenarios with
mass mðvÞ having upper bound, and accreting mass such
that _mðvÞ ≥ 0, the conjecture holds [63]. However, inter-
estingly, it has also been found that given a trapping
horizon, trapped surfaces (or parts of it) may extend outside
the horizon and into the initial flat region of the Vaidya
spacetime, and furthermore, nonspherically symmetric
trapped surfaces may also extend outside the standard
spherically symmetric trapping horizon [50,51,56,57].
So, the exact boundary of a trapped region is not clearly
specifiable as of now. A related question is then the
following: If the Eardley conjecture holds, does the event
horizon allow a local description? One should expect from
the global nature of the EH that this should not be so. Again
for Vaidya-type collapse processes, it has been shown that
trapped surfaces may be constructed which extend into
the future and hence acquire nonlocal nature. Thus, the
location and nature of the boundary of a strictly trapped
region remains unknown. It seems that the process of
further development needs numerical study of spherical
as well as nonspherical MTTs in general relativity and in
other alternate gravity theories to gain insight into the
properties of MTTs. These issues will be addressed in
future studies.
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APPENDIX: JUNCTION CONDITIONS

The Israel-Darmois junction conditions provide a set of
rules and boundary conditions which have been used in the
previous sections. These boundary conditions are summa-
rized below for some simple cases. In the following, we
provide the junction conditions for a simple model: a
K ¼ 0 OSD model as the interior spacetime joined to an
exterior Schwarzschild spacetime (denoted by M−)
of mass M (denoted by Mþ) along a spacelike hypersur-
face Σ. Let us denote the coordinates on this surface as
ðτ; θ;ϕÞ. From M−, we can write down the surface Σ
as f−ðr; tÞ ¼ r − rb ¼ 0, and hence, the induced metric on
Σ is

ds2− ¼ aðτÞ2ð−dτ2 þ r2bdΩ2Þ: ðA1Þ

Note that the coordinates t and τ are related through the
relation dt=dτ ¼ aðτÞ. From the point of view of the
exterior spacetime, the hypersurface may be described
by r ¼ RðτÞ and t ¼ TðτÞ, with no change in the angular
variables. The line element of the exterior manifold is then
given by

ds2þ ¼ −ðZ _T2 − Z−1 _R2Þdτ2 þ RðτÞ2ðdθ2 þ sin2 θdϕÞ;
ðA2Þ

where Z ¼ ð1 − 2M=RÞ. The matching of the metric
immediately implies that the following two conditions
hold:

RðτÞ ¼ rbaðτÞ; aðτÞ2 ¼ ½ZðdT=dτÞ2 − Z−1ðdR=dτÞ2�:
ðA3Þ

The normal vector field na for M− and the external
spacetime Mþ are given, respectively, by

na¼aðτÞðdrÞa; na¼−ðdR=dτÞðdτÞaþðdT=dτÞðdrÞa:
ðA4Þ

The velocity of observer on the cloud is also determined
for these two patches of spacetime separately and are
given by

dRðrb; τÞ
dτ

¼ −aðτÞ½FðrbÞ=R�1=2; ðA5Þ

where the −ve sign is chosen to signify the collapse. The
velocity as observed from the external coordinates is then
dR=dT ¼ −ð2M=RÞð1 − 2M=RÞ. Note also that the sec-
ond of the metric matching conditions along with Eq. (A5)
implies that ðdT=dτÞ ¼ a=ð1 − 2M=RÞ. Using the normal
vector fields, the extrinsic curvatures of the interior and the
exterior spacetime may also be determined, and they give

K−
ττ ¼ 0; ðA6Þ

Kþ
ττ ¼ −

ffiffiffiffiffiffiffi
2M
R

r �
1 −

2M
R

�
T̈ þ _a

ffiffiffiffiffiffiffi
2M
R

r
þ 4M2a2

ð1 − 2M
R Þr3s

;

ðA7Þ

K−
θθ ¼ R

�
1 −

F
R
þ 2M

R

�
1=2

; Kþ
θθ ¼ R: ðA8Þ

TheKττ matching also gives us ðdT=dτÞ ¼ a=ð1 − 2M=RÞ.
The Kθθ matching gives us the equation

FðrbÞ≡mr3b ¼ 2M: ðA9Þ

A similar exercise may also be carried out to join the
interior spacetime created due to viscous fluid collapse
given by Eq. (77), with the external Schwarzschild
spacetime. In that case, the matching gives the following
set of conditions. First, the Kθθ matching again gives
Fðrb; τÞ≡mðrb; τÞr3b ¼ 2M. This matching, along with
the mass function, leads to the equation pr ¼
ζθ þ ð4=3Þησ, involving the radial pressure and viscosity
terms at the boundary.
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