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We study the collision of two massive particles with nonzero intrinsic spin moving in the equatorial
plane in the background of a Schwarzschild black hole surrounded by quintessential matter field (SBHQ).
For the quintessential matter equation of state (EOS) parameter, we assume three different values. It is
shown that for collisions outside the event horizon, but very close to it, the centre-of-mass energy (ECM) can
grow without bound if exactly one of the colliding particles is what we call near-critical, i.e., if its constants
of motion are fine tuned such that the time component of its four-momentum becomes very small at the
horizon. In all other cases, ECM only diverges behind the horizon if we respect the Møller limit on the spin
of the particles. We also discuss radial turning points and constraints resulting from the requirement of
subluminal motion of the spinning particles.
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I. INTRODUCTION

The first simplest black hole (BH) solution of Einstein’s
field equations was obtained by Schwarzschild in 1916 [1]
immediately after the discovery of general relativity (GR)
by Einstein. The BH solution found by Schwarzschild is
the simplest in the sense that it has only one observable
parameter (i.e., mass). Black holes (BHs) are one of the
most interesting topics in gravity research, and it took
almost a century to confirm that these mysterious objects
do exist in our universe. Recently the LIGO and VIRGO
collaborations have detected the first ever gravitational
waves signals from BH merger [2]. Even more recently, the
first ever direct image of a BH observed by the Event
Horizon Telescope (EHT) suggests to us to strongly believe
in the presence of BHs in our universe [3].
The appearance of BHs is not only limited to GR or

alternative theories of gravity (ATG) like string theory [4],
but they have also played a crucial role in understanding
cosmology. There are two major classes of cosmological

models for dark energy. One of them is the cosmological
constant Λ [5] having an equation of state (EOS) parameter
ϵ ¼ −1. But in this model the fine tuning problem is yet to
be resolved [6]. The other class of cosmological model
mainly depends on a dynamical scalar field such as, but
not confined to, quintessence [7], chameleon fields [8],
K-essence [9], tachyons [10], phantom [11] and dilatons
[12]. In these models, the main difference is the EOS
parameter ϵ which varies from -1 to −1=3 for quintessence
like models and less than −1 for phantom like models.
A comprehensive study of various dark energy models is
presented in [13]. In this paper, we restrict to three different
equation of state parameters, including the cosmological
constant case and two quintessence like models. In par-
ticular, we focus on particle collisions in the background of
a static BH solution surrounded by quintessence like matter
obtained by Kiselev in [14]. The geodesic motion and
geodesic deviation around this BH spacetime is investi-
gated in detail in [15].
A rotating BH under some specific conditions can act as

a particle accelerator for two spinless particles which start
from rest at infinity and collide near the event horizon of a
rotating BH (Kerr BH) pointed out by Bañados, Silk, and
West (BSW) [16]. They showed that the collisional energy
(i.e., center-of-mass (CM) energies) of these spinless
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particles will be infinitely high if the BH is rotating in
addition to the condition that one of the particle must have
attained a critical value (a very fine-tuned value) of the
angular momentum. They also mentioned that if the BH is
nonrotating (i.e., Schwarzschild), it is not possible to obtain
an infinite amount of CM energy. After this pioneering work
by BSW [16], a number of studies have been performed on
the particle acceleration by all sorts of BHs in GR [17–56]
and in different ATG models [57–98]. These studies con-
clude in their individual works that the conditions obtained
by BSW to get infinite amount of high CM energy are
universal and these results were also generalized by Harada
in [99]. It is worth noting here that the conditions mentioned
by BSW such as the BH must be extremal and one of the
colliding particles should have a critical angular momentum
are very rare to observe in nature. In turn, the BSW process is
a very rare event to observe in nature which needs careful
attention in diverse context.
The BSW mechanism is so far mainly studied for

spinless test particles (i.e., particles that follow geodesics)
only. However, in general a particle moving in the vicinity
of a BH is an extended object having self interaction such
as the case of a spinning particle. It has been shown by
Matisson, Papapetrou and Dixon (MPD) [100–102] that the
trajectory followed by a spinning particle is non-geodesic
due to the coupling between the spin of the particle and
curvature of the spacetime around a massive central object
like a BH.
In 2016, it was shown by Armaza et al. [103] that it is

still possible to obtain an infinite amount of CM energy for
the Schwarzschild BH if one considers the collision of
spinning particles instead of a collision of spinless particles.
The study of BHs as a particle accelerator for spinning
particles is further extended to the case of charged and
spinning BHs in [104], where it was shown that it is
possible to obtain infinitely high CM energy outside the
event horizon of a nonextremal Reissner-Nordstrom (RN)
BH. Zhang et al. [104] also concluded that the area
belonging to the infinitely high CM energy in spin and
total orbital angular momentum (s, l) plane of the spinning
particles is very sensitive to the BH charge as it decreases as
the charge of the black hole increases. They further showed
that for a non-extremal Kerr BH case, we can also obtain
infinitely high CM away from the event horizon and the
corresponding area in the (s, l) plane increases with an
increase in the spin of the BH. Combining charge and
rotation in the Kerr-Newman background they finally
concluded that the spin parameter and the charge of the
BH affect the CM energy of the colliding particles in a
completely opposite way. Recently, the universality of
BSW mechanism for spinning particles, for a class of
stationary axisymmetric BH, is also discussed in [105].
However, in [105], the calculations of ECM in terms
of 4-momentum which is a conserved quantity are not
performed. Also, the timelike condition is not verified

explicitly for 4-velocity. Hence, the results are not con-
clusive for two spinning particles colliding in the vicinity of
a BH and it is therefore worthy to discuss the collision of
such particles in the vicinity of more BHs to draw the
definite conclusions in this regard.
In this work, we extent the study of BH spinning particle

acceleration processes and investigate two spinning par-
ticles colliding outside the event horizon of the nonextre-
mal Schwarzschild BH which is surrounded by the
quintessence like matter, which we will abbreviate as
SBHQ henceforth [15]. We have observed that the CM
energy of the colliding particles might be infinitely high for
the collisions of the spinning particles, but the collisions
must take place inside the cosmological horizon of the
SBHQ. The CM energy in our case is found to be very
sensitive to the value of normalization constant (λ) and the
EOS parameter (ϵ) which, for quintessential matter, varies
from −1 to −1=3.
Our paper is organized as follows. We start in Sec. II

with a brief overview of the equations of motion for
spinning particles in Einstein’s theory of general relativity
(GR). In Sec. III, we discuss the spacetime geometry of
the SBHQ and its event and cosmological horizons.
Following Refs. [106–108] we also derived the expres-
sions for the four-momentum of a spinning particle. In
Sec. IV, we obtain the expression for the CM energy of the
colliding spinning particles in the vicinity of SBHQs and
show that it reduces to the Schwarzschild black hole case
[103] if the normalization constant λ vanishes and the
energy e per unit mass becomes unity. We then discuss the
possible scenarios where arbitrarily high ECM is possible.
Section V is devoted to the study of the effective potential
(Veff ) and radial turning points for the trajectories of the
spinning particles. We have divided this section into two
parts: in the first part, we find the expression for Veff, as it
helps to characterize the path of the spinning particle
moving in the background of SBHQ. Based on this, in the
second part we classify the spinning particles and their
trajectories according to [109] into three subclasses: usual
particle, critical particle and near-critical particle, respec-
tively. In Sec. VI, we study the superluminal constraint
and the conditions to avoid the superluminal region for
the spinning particles. Finally, Sec. VII is devoted to the
summary and conclusions of our results and to future
prospects.
Throughout our work in this paper, we set the funda-

mental constants to unity (i.e., c ¼ G ¼ 1), the signature of
spacetime as ð−;þ;þ;þÞ, Greek indices (i.e., α, β,…) run
from 0 to 3 and Latin indices runs from 1 to 3 unless
otherwise stated. Also, in the following sections, we chose
the spin s per unit mass of the colliding particles within the
Mø ller limit (i.e., rp > s) [110,111], where rp is the size
of the spinning particle. It is important to note that size of
the spinning particle is very less than the size of the BH
(i.e., rp ≪ r0ð1Þ), therefore we have s ≪ M [112].
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II. EQUATIONS OF MOTION OF SPINNING
PARTICLES IN CURVED SPACETIME

The study of the chargeless spinning particles in GR
started with the pioneering work of MPD [100–102] on
spinning tops in curved spacetime. In their formulation,
they showed that the trajectories followed by the chargeless
spinning tops were not in accordance with the equivalence
principle i.e., the above massive particles follow the non-
geodesic paths. Further, Hojman [106,113] extensively
studied and extended the formulation by MPD. In this
section, we will present a brief overview of the equations
of motion developed by Hojman with the help of
Lagrangian formulation. The aforesaid equations of the
motion read as

dxα

dτ
¼ uα; ð1Þ

DPα

Dτ
¼ −

1

2
Rα
βγδu

βSγδ; ð2Þ

DSαβ

Dτ
¼ Sαγσβγ − σαγSβγ ¼ Pαuβ − Pβuα; ð3Þ

where τ, uα, Pα, Sαβ and σαβ are an affine parameter, the
4-velocity, the 4-momentum vector, the spin tensor, and
the antisymmetric angular velocity tensor, respectively. The
antisymmetric angular velocity tensor is in turn defined as

σαβ ≡ ηðγδÞeαðγÞ
DeβðδÞ
Dτ

¼ −σβα: ð4Þ

Here, eαðγÞ is an orthonormal tetrad which is used to

define the orientation of the top, DeβðδÞ=Dτ is the usual

covariant derivative of the orthonormal tetrad and
ηðγδÞ ≡ diagð−1; 1; 1; 1Þ ¼ ηðγδÞ.
As the Eqs. (1)–(3) does not form a closed set of

equations (i.e., they are insufficient to determine the
complete trajectory of spinning particles in a curved
spacetime) and hence, spin supplementary conditions are
needed. For simplicity purposes, we choose the Tulczyjew
spin supplementary condition (TSSC) SαβPβ ¼ 0 which
conserves the dynamical mass of the spinning particle and
choose a particular frame of the spinning particles for
which only 3-components of Sαβ are nonvanishing (i.e.,
S0i ¼ 0) [103].
Additionally, the 4-momentum Pα is not parallel to the

four velocity uα for the case of a spinning particle and a
relation between Pα and uα is essential and can be written
as [114]

uα ¼ κ

m

�
Pα þ 2SαβPγRβγρϵSρϵ

4m2 þ RμνκλSμνSκλ

�
: ð5Þ

Here, κ is a normalization constant. It is worth mentioning
here that the above condition on the spin tensor comes
naturally from the theory if one suitably chooses the
corresponding Lagrangian (for detailed analysis see [115]).
We now define the conserved quantities [115] related

to the spinning top and these are the mass (m) of the
spinning top

m2 ¼ −PαPα; ð6Þ

and its spin (S),

S2 ¼ 1

2
SαβSαβ: ð7Þ

In addition to the above-mentioned conserved quantities,
we have an extra conserved quantity Dξ defined as below,

Dξ ≡ Pαξα −
1

2
Sαβξα;β; ð8Þ

which is independent of the choice of the background
metric as shown in [102]. Here, ξα is a Killing vector
associated with the spacetime metric. The motion of the
tops in the background of SBHQ is presented in the next
section.

III. SPINNING PARTICLES IN SBHQ
BACKGROUND

The metric for SBHQ in the Schwarzschild coordinate
system (t; r; θ;ϕ) reads as

ds2 ¼ gαβdxαdxβ ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

2; ð9Þ

where

fðrÞ ¼
�
1 −

2M
r

−
λ

r3ϵþ1

�
; ð10Þ

dΩ2
2 ¼ dθ2 þ sin2 dϕ2: ð11Þ

Here, λ is a normalization constant whose physical inter-
pretation depends on the specific EOS parameter value ϵ.
The behavior of fðrÞ is shown in Fig. 1 for different
combinations of λ and ϵ.
In order to analyze the properties of SBHQ, we study the

structure of horizon which has a two-sphere topology
(except in the case ϵ ¼ −1=3 and 0 < λ < 1 which has
the topology of a two-sphere but a deficit solid angle
[116–117]) and is calculated by the equation grr ¼ 0 of the
above metric. Now, using Eqs. (9) and (10) and the above
definition, the horizon satisfies the following condition

Δ0 ≡ r3ϵþ1 − 2Mr3ϵ − λ ¼ 0: ð12Þ
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From Eq. (12), we find that the horizon of SBHQ depends
upon two extra parameters, i.e., λ and ϵ respectively,
besides the usual mass M of a static spherical BH as in
general relativity (i.e., SBH). We consider in this work
three different choices of the EOS parameter, namely
ϵ ¼ −1=3;−2=3;−1. For these choices, we now analyze
the possible horizons of the spacetime:

(i) When ϵ ¼ −1=3 and 0 < λ < 1, the Eq. (12) be-
comes linear in r and has only one root at
r ¼ r0ð1Þ ¼ 2M=ð1 − λÞ, known as event horizon.

(ii) For ϵ ¼ −2=3, the Eq. (12) becomes quadratic in r
and has two roots r0ð1Þ and r0ð2Þ, known as event and
cosmological horizons, located at

r ¼ r0ð1;2Þ ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8Mλ
p

2λ
: ð13Þ

It is clear from above equation that for λ ¼ 1=8M
both horizons coincide at the position r ¼ 4M.

(iii) For ϵ ¼ −1, Eq. (12) becomes a depressed cubic
equation in r whose discriminant and roots are as
follows:

□ ¼ 1

27λ3
ð−1þ 27M2λÞ; ð14Þ

r̃1 ¼ Y1 þ Y2; ð15Þ

r̃2;3 ¼ −
�
Y1 þ Y2

2

�
� i

ffiffiffi
3

p

2
ðY1 − Y2Þ; ð16Þ

where

Y1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M
λ

�
ffiffiffiffi
□

p
3

r
: ð17Þ

Depending on the values of λ we have following
three subcases:
(i) If λ ¼ 1=27M2 ⇒ □ ¼ 0, then all roots are

real, and at least two are equal (i.e., r̃1 < 0,
r̃2 ≡ r0ð2Þ ¼ 3M and r̃3 ≡ r0ð1Þ ¼ 3M). This
means both the event r0ð1Þ and the cosmological
r0ð2Þ horizons coincide.

(ii) If 0 < λ < 1=27M2 ⇒ □ < 0, then all roots
are real and unequal (i.e., r̃1 < 0, r̃2 ≡ r0ð2Þ > 0

and 0 < r̃3 ≡ r0ð1Þ < r0ð2Þ). This means the
event r0ð1Þ and the cosmological r0ð2Þ horizons
do not coincide.

(iii) If λ > 1=27M2 ⇒ □ > 0, then one root is
real and two are complex conjugates (i.e.,
r̃1 < 0, r̃2 ≡ r0ð2Þ ¼ imaginary and r̃3≡r0ð1Þ ¼
imaginary). This means for the case
λ>1=27M2, there are no horizons and hence
corresponds to no BH spacetime. In fact, it
corresponds to a naked singularity as evident
from the expression for Kretschmann scalar (K)
give below,

K ¼ 8

�
6M2r2 þ 12Mλrþ 7λ2

r8

�
: ð18Þ

Numerical values of horizon for different combination of
normalization constant λ and the EOS parameter ϵ are
shown in Table I.
Now, we study the motion of spinning particles in the

background of the spacetime defined by Eq. (9). We restrict
here to the case that the motion is planar. Due to spherical
symmetry, we may assume that the particle is initially in the
equatorial plane θ ¼ π=2. To ensure that Pθ ¼ 0, uθ ¼ 0
we then assume that the spin vector is perpendicular to the
equatorial plane [118]. We find the constants of motion
with the help of Eqs. (6)–(7) which in the equatorial plane
read as

m2 ¼ −
ðPrÞ2
fðrÞ þ fðrÞðPtÞ2 − r2ðPϕÞ2; ð19Þ

S2 ¼ −ðStrÞ2 þ r2ðSrϕÞ2
fðrÞ − fðrÞr2ðStϕÞ2: ð20Þ

By using the symmetries of the background metric (9) and
the Killing vectors, the energy (E) of the particles and the
total angular momentum (J) orthogonal to the plane of
motion as the conserved quantities are defined below,
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FIG. 1. The behavior of fðrÞ with r for different values of normalization constant λ, for fixed values of ϵ (M ¼ 1).
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E ¼ fðrÞPt −
fðrÞ0Str

2
; ð21Þ

J ¼ rðrPϕ þ SrϕÞ; ð22Þ

where the ( 0) denotes the derivative with respect to the
radial coordinate. Now, by using the Eqs. (19), (20) and the
TSSC SαβPβ ¼ 0, the components Stϕ and Srϕ come out as

Str ¼ srPϕ; Stϕ ¼ sPr

rfðrÞ and Srϕ ¼ sfðrÞPt

r
:

ð23Þ

It is worth to note here that s ¼ �S=m is the spin per unit
mass; the � signs are related to (anti) parallel spin of the
particle with respect to the total angular momentum,
respectively. The component of spin perpendicular to the
equatorial plane may then read as

Sz ¼ rSrϕ ¼ s

�
2er − jsfðrÞ0
2r − s2fðrÞ0

�
: ð24Þ

Further, all the nonzero components of the 4-momentum
vector Pα calculated with the help of Eqs. (19), (20), (21),
(22), (23), and (24) as follows,

Pt ¼ m

�
r3ϵþ1

Δ0

�
K; ð25Þ

Pϕ ¼ m
�
2

r

�
L; ð26Þ

ðPrÞ2 ¼ m2½K2 − fðrÞð1þ 4L2Þ�: ð27Þ

where

K ¼ 2er − jsfðrÞ0
2r − s2fðrÞ0 ;

L ¼ j − es
2r − s2fðrÞ0 : ð28Þ

Here, e ¼ E=m is energy per unit mass and j ¼ J=m is
the total angular momentum per unit mass. Hereafter, we
normalize m to unity for simplicity.
Finally, one can write the expression for _ϕ and _r as

follows:

_ϕ ¼ uϕ

ut
¼ ½2r − rs2fðrÞ00�Pϕ

½2r − s2fðrÞ0�Pt ; ð29Þ

_r ¼ ur

ut
¼ Pr

Pt : ð30Þ

It is worth mentioning here that the parameter correspond-
ing to the proper time (τ) has to be fixed in order to obtain
the velocity components ut, uϕ, and ur. However, for the
above discussed relativistic invariants, one does not need to
make any such specific choices.

IV. CENTER-OF-MASS ENERGY OF THE
SPINNING PARTICLES

Let us consider two spinning massive particles (m1 and
m2) colliding near to the horizon of the BH. The center-of-
mass energy (ECM) of these two particles can with the help
of the formula derived as in [16] be written as

E2
CM ¼ −gαβðPα

1 þ Pα
2ÞðPβ

1 þ Pβ
2Þ; ð31Þ

¼ m2
1 þm2

2 − 2gαβPα
1P

β
2: ð32Þ

Here, with a constraint m1 þm2 ¼ constant along with the
condition Rðr; e; l; sÞ > 1 which follow under the fixed
parameters ðe; j; sÞ, the and the condition Rðr; e; l; sÞ > 1
(see appendix for details including the definition of the
function R), the particles (spinning as well spinless) with
equal masses acquire the maximum ECM in comparison to
the particles with unequal masses. This ECM increases as
the BH spin increases and diverges for the extremal rotating
BH under specific conditions on the angular momentum of
one of the particles. Hence, to have the maximum colli-
sional energy, it is assumed that both the spinning particles
have the same mass (i.e., m1 ¼ m2 ¼ m) and for simplicity
we consider m ¼ 1. Therefore, the Eq. (32) with these
assumptions in the equatorial plane becomes

E2
CM ¼ 2½1 − ðgttPt

1P
t
2 þ grrPr

1P
r
2 þ gϕϕP

ϕ
1P

ϕ
2 Þ�; ð33Þ

which after substituting the values of Pt, Pr and Pϕ from
Eqs. (25), (26), and (27) respectively, reduces to

TABLE I. Numerical values of horizons for SBHQwithM ¼ 1.

ϵ ¼ −1=3 ϵ ¼ −2=3 ϵ ¼ −1

λ r0ð1Þ r0ð1Þ r0ð2Þ r0ð1Þ r0ð2Þ
0.0 2.0 2.0 2.0
0.00001 2.00002 2.00004 99997.99 2.00008 315.22
0.0001 2.0002 2.0004 9997.99 2.0008 98.98
0.001 2.002 2.004 997.99 2.008 30.57
0.01 2.02 2.04 97.96 2.09 8.78
0.1 2.22 2.76 7.23
0.2 2.50
0.3 2.85
0.4 3.33
0.5 4.0
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E2
CM ¼ 2

Δ0C1C2

�
r3ϵþ1D1D2 þ Δ0½C1C2

− 4r6ϵþ4ðj1 − e1s1Þðj2 − e2s2Þ�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ϵþ1D2

1 − Δ0½C2
1 þ 4r6ϵþ4ðj1 − e1s1Þ2�

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ϵþ1D2

2 − Δ0½C2
2 þ 4r6ϵþ4ðj2 − e2s2Þ2�

q �
;

ð34Þ

where

C1;2 ¼ 2rðr3ϵþ2Þ − s21;2½2Mr3ϵ þ λð3ϵþ 1Þ�;
D1;2 ¼ 2rðr3ϵþ2Þe1;2 − j1;2s1;2½2Mr3ϵ þ λð3ϵþ 1Þ�: ð35Þ

One can easily verify from Eq. (34) that ECM could
possibly diverge not only for Δ0 ¼ 0 but also for
C1;2 ¼ 0. In case one substitutes λ ¼ 0 and e ¼ 1 in
Eq. (34), the expression for ECM reduces to

E2
CM ¼ 2

ΔΔ1Δ2

�
rðr3 −Mj1s1Þðr3 −Mj2s2Þ

þ Δ½Δ1Δ2 − r4ðj1 − s1Þðj2 − s2Þ�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr3 −Mj1s1Þ2 − Δ½Δ2

1 þ r4ðj1 − s1Þ2�
q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr3 −Mj2s2Þ2 − Δ½Δ2

2 þ r4ðj2 − s2Þ2�
q �

:

ð36Þ

HereΔ ¼ r − 2M andΔ1;2 ¼ r3 −Ms21;2. Eq. (36) matches
with ECM of two spinning test particles colliding near the
Schwarzschild BH [103].
For Eq. (34), the case when Δ0 ¼ 0 is not of much

interest because both numerator and denominator vanish at
the horizon, and the energy in this limit becomes finite. It
can be generally shown from (33) that in the limit Δ0 ¼ 0
or, equivalently, f ¼ 0 we find

1

2
E2
CM ¼ 1þ 1

2

�
K1

K2

þK2

K1

�
þ 2

ðK1L2 −K2L1Þ2
K1K2

; ð37Þ

whereKi andLi refer to particle i. In the limit λ ¼ 0, s ¼ 0,
e ¼ 1 this reduces to the result in [16], and for λ ¼ 0, e ¼ 1
we recover the result in [103].
Also, the case C1;2 ¼ 0 is not of significant interest

in contrast with [103], because the radius rd, where the
divergence occurs, always is behind the horizon, when
the restriction on the particle’s spin is taken into consid-
eration. This can be seen as follows: Ci is zero exactly
if the denominator ð2r − s2i f

0Þ in (28) vanishes. Note
that this may only happen in the region where f0 > 0,
and then s2i ¼ 2r=f0. In that region, for all the cases

ϵ ¼ −1=3;−2=3;−1, the right-hand side 2r=f0 is a mono-
tonically increasing function of r and, if applicable, also
of λ. This implies that at or outside the horizon we have
2r=f0 ≥ ð2r=f0Þjðr¼rH;λ¼0Þ ¼ 8M2, where rH is the horizon.
As s is smaller than the particle radius due to the Møller
bound, and the particle radius is much smaller thanM, C1;2

can therefore not vanish at or outside the horizon. The
numerical values of the divergence radius rd are shown in
Tables II, III, and IV for different combinations of λ and ϵ.
Let us return to the case that the collision happens at or

close to the horizon f ¼ 0. Similar to the arguments in [22],
from Eq. (37) we observe that the center of mass energy
may still diverge if K1 or K2 vanishes, and that ECM may
become arbitrarily large if at least one of the Ki becomes
arbitrarily small. It might however turn out that particles
with small or vanishingKmay not be able to reach the near
horizon region. Therefore, we will now study particle
motion with a particular emphasize on particles that may
enable arbitrarily large center of mass energy.

TABLE II. Numerical values of divergence radius rd for SBHQ
with ϵ ¼ −1=3 and M ¼ 1.

s rd

0.2 0.341995
0.4 0.542884
0.6 0.711379
0.8 0.861774
0.99 0.993322

TABLE III. Numerical values of divergence radius rd for
SBHQ with ϵ ¼ −2=3 and M ¼ 1.

λ ¼ 0.00001 λ ¼ 0.0001 λ ¼ 0.001 λ ¼ 0.01

s rd rd rd rd

0.2 0.341995 0.341994 0.341989 0.341929
0.4 0.542883 0.542881 0.542857 0.542617
0.6 0.711378 0.711373 0.711319 0.710779
0.8 0.861773 0.861763 0.861667 0.860709
0.99 0.993321 0.993306 0.993159 0.991691

TABLE IV. Numerical values of divergence radius rd for
SBHQ with ϵ ¼ −1 and M ¼ 1.

λ ¼ 0.00001 λ ¼ 0.0001 λ ¼ 0.001 λ ¼ 0.01

s rd rd rd rd

0.2 0.341995 0.341994 0.341991 0.341949
0.4 0.542883 0.542881 0.542855 0.542594
0.6 0.711378 0.711370 0.711293 0.710527
0.8 0.861772 0.861755 0.861590 0.859943
0.99 0.993319 0.993289 0.992998 0.990098
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V. EFFECTIVE POTENTIAL AND RADIAL
TURNING POINTS

The study of the effective potential and the radial turning
points are very important as this help us to characterize the
different trajectories of the spinning particles moving
around the BHs.

A. Effective potential

The radial velocity ur is proportional to the radial
component of the conjugate momenta Pr and, therefore,
we can determine the radial turning points from Pr ¼ 0. We
rewrite Pr in the form of an effective potential,

�
Pr

m

�
2

¼ A

�
1 −

s2fðrÞ0
2r

�−2
ðe − VeffðþÞðrÞÞ

× ðe − Veffð−ÞðrÞÞ;

Veffð�ÞðrÞ ¼
B� C1=2

A
; ð38Þ

where

A ¼ 1 −
fðrÞs2
r2

;

B ¼ js
r2

�
fðrÞ0r
2

− fðrÞ
�
;

C ¼ fðrÞ
�
1 −

s2fðrÞ0
2r

�
2
�
1þ j2

r2
− fðrÞ s

2

r2

�
: ð39Þ

One needs to restrict the values of r such that e > VeffðþÞðrÞ
or e < Veffð−ÞðrÞ whenever A > 0, in order to have ur to be
real for the motion of the spinning particle. We can easily
check for the cases ϵ ¼ −1;− 1

3
;− 2

3
that A has some

minimum outside the event horizon. For ϵ ¼ −1 we find
a minimum at r ¼ 3M with A ¼ 1 − s2ð 1

27M2 þ λÞ implying
that A is positive between event and cosmological horizon

for s ≪ M. Analogously, for ϵ ¼ − 1
3
the minimum A ¼

1 − s2 ð1−λÞ3
27M2 is at r ¼ 3M

1−λ, so again A is positive for s ≪ M.
Finally, for ϵ ¼ − 2

3
we have a minimum between event and

cosmological horizon at r ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6Mλ

p Þ=λ, and A is
always positive for s ≪ M.
In the original paper by BSW [16] it is assumed that

the colliding particles start from rest at infinity. In our case
this is however not generally possible due to the presence
of a cosmological horizon. Let us discuss the cases
ϵ ¼ −1=3;−2=3;−1 separately: (i) If ϵ ¼ −1=3, we only
have an event horizon as explained in Sec. III. We can
therefore assume that the particle starts from rest at infinity.
In this case, the energy of the particle is given by e ¼ 1 − λ.
(ii) For ϵ ¼ −2=3, we have an event and a cosmological
horizon if we choose λ < 1=ð8MÞ, see Sec. III. Therefore, it
does not make sense to consider a particle starting from

infinity. Instead, we could choose to let the particle start from
rest from the static radius, see e.g., [119,120], representing
an equilibrium between gravitational attraction and cosmo-
logical expansion. A particle with Pr ¼ 0, Pϕ¼0 can sit
at radius r¼ ffiffiffiffiffiffiffi

2=λ
p

with energy e2 ¼ 1–2
ffiffiffiffiffi
2λ

p
. (iii) For

ϵ ¼ −1 we may again choose the static radius as starting
point, giving r ¼ λ−

1
3 and e2 ¼ 1–3λ

1
3.

In Fig. 2, the behavior of the positive component of the
effective potential VeffðþÞ is shown as a function of r for two
different values of the spin (s) and several different j. We
plotted here VeffðþÞ only for those values of the particle spin
s and the total angular momentum j for which the particle
starting from rest from infinity or the static radius, as
respectively explained above, will fall into the SBHQ and
does not meet the turning point first. It is shown in Fig. 2
that the maximum value of VeffðþÞ decreases with increase
in j for each value of s (i.e., s ¼ 0.2 and s ¼ 0.99)
corresponding to ϵ ¼ −1=3;−2=3 and −1, respectively.
We showed the behavior of the positive component of Pr

with r in Fig. 3 for different combinations of particle spin s,
total angular momentum j, λ and ϵ as it will help in
visualizing for which combinations of these parameters the
spinning particle will reach the event horizon r0ð1Þ first
before meeting the turning point. In the figure, we fixed the
normalization parameter λ ¼ 0.00001 and increase the
EOS parameter for quintessential matter ϵ from top to
bottom in each column. It is easy to conclude from the
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FIG. 2. Variation of the effective potential (VeffðþÞ) with respect
to r, for different values of spin (s) corresponding to the constant
value of EOS parameter (ϵ), normalization constant (λ) and total
angular momentum (j). Here, the solid (blue) vertical line
indicate the location of the horizon (M ¼ 1).
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Fig. 3 (see first column) that all the spinning particles fall
into the SBHQ if they obey s ≪ M, as implied by the
Møller limit, for j ¼ 0. In the second and third columns the
value of s is fixed to 0.2 and 0.99, respectively. It is found
from the second and third columns that for each ϵ value
the range of this total angular momentum j increases
with increase in s. However, the radial distance for which
Pr ¼ 0 decreases as s increases.

B. Classification of the spinning particles
and their trajectories

Let us return now to particles that might produce
arbitrarily high center of mass energies. According to
Eq. (37) this may happen for collisions near the horizon
if K of at least one of the colliding particles becomes
very small.
From now onward we denote the event horizon

r0ð1Þ ≡ r0 until and otherwise stated. We start by classifying
the spinning particles into three different classes: We call a

particle critical if Kjr¼r0 ¼ 0, near-critical if Kjr¼r0 ¼
Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc − r0
p Þ with the point of collision rc, and all other

particles usual.
Let us start with critical particles. The condition

Kjr¼r0 ¼ 0 implies

e ¼ jsfðr0Þ0
2r0

: ð40Þ

Then, the expression for K near the event horizon (in the
first approximation) reads

K ≈
3js
r0

�
2Mr3ϵ0 þ ðϵþ 1Þð3ϵþ 1Þλ

2r3ϵþ3
0 − s2ð2Mr3ϵ0 þ ð3ϵþ 1ÞλÞ

�
ðr − r0Þ: ð41Þ

Thus, the second term in Eq. (27) becomes larger than
K2 close to the horizon, where the collision should take
place. Hence ðPrÞ2 is negative there which in turn means
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FIG. 3. The variation of Pr with r for a Schwarzschild BH surrounded by quintessential matter. Left column: shows different
combinations of spin s, keeping j ¼ 0. Middle column: different combinations of j, keeping s ¼ 0.2. Right column: different
combinations of j, keeping s ¼ 0.99. In each of the rows the EOS parameter is fixed to ϵ ¼ −1=3;−2=3 and −1, respectively,
for the corresponding value of normalization constant (i.e., λ¼0.00001). Here, for the corresponding value of parameter
ϵð−1=3;−2=3and−1Þ, the value of particle energy per unit mass e is 0.9999, 0.995518 and 0.967144. The vertical (blue) solid
line represents the location of event horizon (M ¼ 1).
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that the spinning particle cannot reach the event horizon
and meets the turning point first.
For a near critical particle, to haveKjr¼r0 ¼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi

rc−r0
p Þ,

we may for instance choose the energy as

e ¼ jsf0ðr0Þ þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − r0

p ð2r0 − s2f0ðr0ÞÞ
2r0

; ð42Þ

where a is some positive constant. At the point of collision
rc we then find

Kjr¼rc ¼ Kjr¼r0 þK0jr¼r0ðrc − r0Þ þ…

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − r0

p þOðrc − r0Þ: ð43Þ

Now consider the case that one particle, say particle 1, is
usual and the other particle is near-critical. To calculate the
center of mass energy for this case we write f ¼ ðr − r0Þf̃
and derive from (33),

1

2
ECM ¼ 1 − 4L1L2 þ

1

f

�
K1K2 −

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p �
ð44Þ

where R ¼ K2 − fð1þ 4L2Þ. If we evaluate all quantities
at r ¼ rc we find

1

2
ECM ¼ 1 − 4L1L2 þ

K1a2
f̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − r0

p þOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − r0

p Þ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½K2

1 − ðrc − r0Þf̃ð1þ 4L2
1Þ�½a22 þOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc − r0
p Þ − f̃ð1þ 4L2

2Þ�
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc − r0
p

f̃ðrc − r0Þ
ð45Þ

¼ 1 − 4L1L2 þ
K1

�
a2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 − f̃ð1þ 4L2

2Þ
q �

f̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − r0

p þOð1Þ: ð46Þ

Here, it is important to note that in the limit λ → 0, the
Eq. (46) converges to the result found in [109]. We see that
this expression is only valid if a22 − f̃ð1þ 4L2

2Þ > 0. In the
limit s ¼ 0 this condition can be fulfilled, and by continuity
it should also hold for small s. If the point of collision rc
now approaches the horizon r0 the center of mass energy
(46) can grow without bound.
If both particles are near-critical, we can calculate the

center of mass energy analogously,

1

2
ECM ¼ 1 − 4L1L2 þ

a1a2
f̃

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a21 − f̃ð1þ 4L2

1Þ�½a22 − f̃ð1þ 4L2
2Þ�

q
f̃

þOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − r0

p Þ; ð47Þ

which will remain finite for rc → r0. Finally, if both
particles are usual, we can directly see that the diverging
parts will cancel and the center of mass energy remains
finite, too.

VI. AVOIDANCE OF SUPERLUMINAL REGION

It is shown in [103,115,121–123] that the four-
momentum satisfies the relation PαPα ¼ −1 and hence
is a conserved quantity, in contrast to the four-velocity uα,

which is not a conserved quantity for the spinning test
particles moving in the curved background. Therefore,
the Pα vector remains timelike throughout the motion of
spinning particle around the BH, whereas the uα vector
might change from the subluminal (timelike) to super-
luminal (spacelike) region depending upon the invariant
relation uαuα < 0 or uαuα > 0, respectively. As the four-
velocity uα of two colliding spinning test particles will not
always lie in the subluminal region, it becomes important to
examine closely the behavior of the square of the four-
velocity in the region where ECM diverges. The square of
the four velocity thus reads as

U2 ¼ uαuα
ðutÞ2 ¼ gtt þ grr

�
ur

ut

�
2

þ gϕϕ

�
uϕ

ut

�
2

: ð48Þ

Using Eqs. (25), (26), (27), (29), and (30) in Eq. (48)
leads to:

U2 ¼ −fðrÞ2
�
2r − s2fðrÞ0
2er − jsfðrÞ0

�
2

ð1 − ΣÞ; ð49Þ

Σ ¼ ð2ðj − esÞsÞ2ðη−Þð4r − s2ðηþÞÞ
ð2r − s2fðrÞ0Þ4 ; ð50Þ

where η� ¼ fðrÞ0 � rfðrÞ00.
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The ECM calculated in Eq. (34) diverges when either
C1 ¼ 0 or C2 ¼ 0 as mentioned in Sec. IV. We already
showed there that the point where Ci ¼ 0 always lies
behind the horizon and, therefore, is not of importance for
our analysis. We note here that, in addition, the condition
Ci ¼ 0 leads to a transition of U2 [i.e., Eq. (49)] of the
colliding spinning particle from the subluminal region
(physical) to the superluminal region (unphysical) as seen
in the Fig 4. We have also concluded earlier from Eq. (37)
that the center of mass energy remains finite when the
collision takes place at the event horizon. Hence, in this
work we are more interested in finding location outside the
event horizon where the square of the four-velocity lies in
subluminal region. This leads to the condition Σ < 1
according to Eq. (49).
We may rewrite the expression for Σ in Eq. (50) as

Σ ¼ 4L2ðG − 1Þ; ð51Þ

G ≔
�
2r − rs2fðrÞ00
2r − s2fðrÞ0

�
2

: ð52Þ

We first notice that both G and L2 are monotonically
decreasing functions, and that Σ > 0, for ϵ ¼ − 1

3
and

ϵ ¼ −1. For ϵ ¼ − 2
3
this only holds in the vicinity of

the horizon. We therefore find that Σ < 1 holds in the
vicinity of the horizon r0 if

Σr0 < 1: ð53Þ

In order to have an arbitrarily high collisional ECM outside
the event horizon, one of the colliding particles must be the
usual particle (i.e., a particle for which Kr0 ≠ 0) and the
other must be a near-critical one as shown in the previous
section.
For the usual particle with s ¼ 0, the condition (53) is

satisfied automatically. If s ≠ 0 we can always choose
ðj − esÞ2 such that (53) holds, for instance, one could
choose j ¼ es. For near-critical particles, we fixed an
energy e in (42). To achieve the inequality (53), we could
then for instance choose j ¼ es again. For near-critical
particles we can also explicitly solve Σ ¼ 1 for j, using the
energy e from Eq. (42). We find
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FIG. 4. Variation of U2 as a function of r with different values of ϵ, s and j. The vertical (darker cyan) solid line is the horizon r0
(M ¼ 1). Here, for the corresponding value of parameter ϵð−1=3;−2=3 and − 1Þ, the value of particle energy per unit mass e is 0.9999,
0.995518 and 0.967144.
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j ¼ as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc − r0

p � r0
s
Nϵ ð54Þ

with

N−1 ¼
Ms2 − r30ðλs2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3MðMs2 þ 2r30ðλs2 þ 1ÞÞ
q ; ð55Þ

N−1=3 ¼
Ms2 − r30ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3MðMs2 þ 2r30Þ
q ; ð56Þ

N−2=3 ¼
2Ms2 − r20ðλs2 − 2r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð6M − λr20Þð2Ms2 þ r20ðλs2 þ 4r0ÞÞ
p : ð57Þ

Hence, we may conclude that the collision of a near-
critical particle with a usual particle can produce arbitrarily
high center-of-mass energy ECM if we fine tune the
parameters. For instance, we could choose a usual particle
starting from rest from infinity or the static radius,
respectively, with vanishing total angular momentum
j ¼ es, and a near-critical particle with energy as given
in (42) and vanishing total angular momentum starting
from a radius close to the event horizon (but outside of it).

VII. SUMMARY, CONCLUSION
AND FUTURE PROSPECTS

We discussed the collision of spinning particles close to
the event horizon of a Schwarzschild black hole surrounded
by quintessential matter. In particular, we found that the
center of mass energy may grow without bound under
certain conditions.
After reviewing the equations of motion for spinning

particles (under the Tulczyjew spin supplementary con-
dition), we started with an analysis of the horizon structure
of the spacetime under discussion. For the equation of state
parameter we assumed in this work three different values,
ϵ ¼ −1=3, ϵ ¼ −2=3 and ϵ ¼ −1. In addition to the event
horizon, for ϵ ¼ −2=3 and ϵ ¼ −1=3 also a cosmological
horizon may be present. In the following, we restricted to
values of the normalization constant λ which allow for a
black hole solution.
We then focused on the center of mass energy of two

spinning particles colliding in the vicinity of the event
horizon. For generic particles, we showed that the center of
mass energy remains finite in the limit that the collision
takes place at the horizon. Moreover, potential additional
points of divergence given by C1;2 ¼ 0, see Eq. (34), are
shown to always being located behind the event horizon, if
we respect the Møller limit on the spin of the particles.
Therefore, these points are not of further interest.
In order to determine if fine-tuned particles, that might

produce unbound center of mass energies, can reach the

vicinity of the event horizon, we proceeded with a
discussion of the effective potential and radial turning
points. The behavior of Pr as a function of r, plotted in
Fig. 3, is used to analyze and distinguish between different
trajectories of the spinning particles. From this figure, it
seems that the maximum allowed range of total angular
momentum j, for which a spinning particle reaches the
event horizon of the SBHQ, increases with increase in
the value of particle’s spin s. However, it is also observed
that the radius at which Pr becomes zero, decreases with
increase in s.
We then identify three different types of spinning particle

trajectories dependent on their behavior close to the event
horizon: usual, critical, and near-critical particles. From
studying collisions between all different combinations of
these trajectory types, we concluded that only the collision
between a near-critical and a usual particle may produce
arbitrarily high center of mass energies.
As for spinning particles with Tulczyjew spin supple-

mentary condition uαuα is not conserved, where uα is the
four velocity, the motion may change from subluminal to
superluminal. For the combination of interest, namely usual
and near-critical particle, we showed that we can always
choose the angular momentum of the particles such that the
motion is subluminal in the vicinity of the horizon.
Collisions of spinning particles around the Schwarzschild

black hole (without surrounding quintessential matter) was
studied in [103]. In that work, mainly the points where
C1;2 ¼ 0, see Eq. (34), were analyzed. However, these points
are always behind the horizon if we take the Møller limit on
the spin into account. The divergence of the center of mass
energy discussed in the present work is of a different type.
A similar setup for geodesics around the Schwarzschild
black hole was shortly discussed in [44] and around general
static and spherically symmetric spacetimes, which includes
the present case of SBHQ, was studied recently by some
of us in [124]. The physical relevance of these setups,
meaning the question if the near-critical particle can be
created by a foregoing collision of particles, was studied for
the Schwarzschild and extremal Reissner-Nordström black
holes in [125]. It is an open question if the near-critical
particle becomes physically more relevant if we add spin to
the particles or quintessential matter to the spacetime.
Another obvious direction for further research is to include
the rotation of the black hole.
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APPENDIX

For two spinning particles with mass m1 and m2, the
center of mass energy of the collision of both can be written
as

E2
CM ¼ m2

1 þm2
2 þ 2

�
fðrÞPt

1P
t
2 −

1

fðrÞP
r
1P

r
2 − r2Pϕ

1P
ϕ
2

�
;

ðA1Þ

which, after substituting the values of Pt, Pr and Pϕ from
Eqs. (25), (26), and (27) for every particle respectively,
reduces to

E2
CM ¼ m2

1 þm2
2 þ 2m1m2Rðr; e; j; sÞ; ðA2Þ

where the function Rðr; e; j; sÞ is given as

Rðr; e; j; sÞ≡ fðrÞ
�
r3ϵþ1

Δ0

�
2

K1K2 − 4L1L2

−
1

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 − fðrÞð1þ 4L2
1Þ

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 − fðrÞð1þ 4L2
2Þ

q
: ðA3Þ

In order to obtain the maximum of the ECM as given by
Eq. (A2), we propose the following:
Statement: Assuming the constraint μ≡m1 þm2 ¼

constant with the fixed parameters ðe; j; sÞ, the maximum
of the center of mass energy given by (A2) can
obtained when both masses are equal m1 ¼ m2

and Rðr; e; j; sÞ > 1.
Proof:Once the parameterm2 is replaced in terms ofm1,

one can obtain the first and second derivatives of (A2) with
respect to the parameter m1. In order to find the critical
points and to obtain the maximum, one need to put them
zero and lesser than zero respectively as below,

dE2
CM

dm1

¼ 2ðm1 −m2Þ½1 − Rðr; e; j; sÞ� ¼ 0; ðA4Þ

d2E2
CM

dm2
1

¼ 4½1 − Rðr; e; j; sÞ� < 0; ðA5Þ

from the above Eqs. (A4) and (A5), it is clear that the
maximum of ECM is achievable while both masses are equal
and Rðr; e; j; sÞ > 1 (also see Figs. 5 and 6 for reference).
The case for spinless particles can be obtained setting the
spin parameter per unit mass s ¼ 0 in the function
Rðr; e; j; sÞ. Further Rðr; e; j; sÞ > 1 also holds which is
evident from Figs. 5 and 6.
One could also conclude the same result when introduce

μ ¼ m2=m1 ≤ 1 and then

E2
cm

m1m2

¼ μþ 1

μ
− 2gabva1v

b
2; ðA6Þ

where vai ¼ Pa
i =mi is independent of the mass. The left-

hand side of the above equation has a maximum
at μ ¼ 1, which in turn clearly implies the minimum of
Ecm at μ ¼ 1.
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FIG. 5. Variation of Rðr; e; j; sÞ as a function of r with different values of ϵ, s and j. Here, the vertical (red) solid line is the horizon r0
(M ¼ 1) and λ ¼ 0.00001.
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