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In this paper we construct the Fermi coordinates along any arbitrary line in a simple analytical way
without use of orthogonal frames and their transport. In this manner we extend the Eddington approach to
the construction of the Fermi metric in terms of the Riemann tensor. In the second part of the present article
we show how the proposed approach works practically by applying it for deriving the Fermi coordinates for
the static observer in the Schwarzschild spacetime.
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I. INTRODUCTION

It is known that for any metric and any line exists a set of
Fermi coordinates [1] in which all Christoffel symbols are
zero at points of this line and this is the definition of Fermi
coordinates. However, the elimination of the Christoffel
symbols on a line does not fix completely the corresponding
coordinate transformations which means that there is an
infinity of the Fermi coordinates associated to a given line. To
make a concrete choice it is reasonable to search for some
additional coordinate restrictions (not violating the vanishing
of Christoffel symbols on line) appropriate from a physical
point of view. The natural physical support has been
proposed by Arthur Eddington [2] who also developed the
way for the corresponding analytical calculations. Eddington
did this for the case of the Riemann coordinates in the
neighborhood of a point in four-dimensional spacetime(by
definition inRiemann coordinates all Christoffel symbols are
zero at somepoint of spacetime andnot along a line).His idea
was to specify the coordinate transformations so as to
represent the quadratic terms of the expansion of the metric
near such point by the components of the Riemann tensor. It
turns out that the generalization of theEddington approach to
the case of Fermi coordinates in the neighborhood of an
arbitrary line is straightforward. Such extension is the target
of the first part of the present paper. It should be stressed that
it is done for any original metric and any given curve, no
matter what its geometric character (geodesic or not, time-
like, spacelike or null) and in a pure analytical way without
necessity to use orthogonal frames and their Fermi-Walker
transport. Such a simplified universal method has some
value, because the majority of papers in the literature have
been dedicated only to some specific type of the line and have
been essentially based on the use of transported frames (for
example, Manasse and Misner [3] did this for timelike
geodesics and Blau, Frank and Weiss [4] extended their
results for a null geodesic curve).

In the second part of the present article we show
the proposed approach in practical action by applying it
for construction of the Fermi coordinates for the static
observer in the Schwarzschild spacetime. This result is
new since the known analogous constructions (for example,
see [5] and references therein) have been restricted to
a quasi-Fermi system defined by Synge [6] when not
all Christoffel symbols on the world line of interest
disappear.
It is worth remarking that since the work of Synge some

terminological muddle has been widely spread in the
literature. Synge introduced coordinates which he named
“Fermi coordinates” in spite of the fact that in general this
contradicts the generally accepted understanding of what
Fermi coordinates are (which disparity was noted by Synge
himself in his publication). The Synge and Fermi coor-
dinates coincide only for geodesic world lines but for
nongeodesics no Fermi coordinates can be constructed by
the Synge prescription. In general this prescription lead to
the nonzero values of Christoffel symbols Γ0

0α and Γα
00 at

points of a line and this is the reason to attribute to the
Synge approach the aforementioned “quasi-Fermi” appel-
lation [7].
The problem is that for a nongeodesic line the Synge

coordinate system is essentially different from the Fermi
coordinates and no article is known where the Fermi
coordinates would be constructed along the nongeodesic
line. The present paper set aside to remove this shortage of
traditional activity in this field.

II. CONSTRUCTION OF FERMI COORDINATES
IN GENERAL

It is known that for any metric gikðxÞ (by symbol x we
denote the set of four coordinates x0, x1, x2, x3) in four-
dimensional spacetime [9] and any line
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xα ¼ fαðx0Þ ð1Þ

exists a set of Fermi coordinates x́ (that is x́0; x́1; x́2; x́3) in
which all Christoffel Γ́ symbols are zero at points of this
line. For the corresponding coordinates transformation x́i ¼
x́iðx0; x1; x2; x3Þ we denote the Jacobi matrix by Ai

k:

Ai
kðxÞ ¼

∂x́i
∂xk : ð2Þ

The transformation of Γ symbols can be written as

Γi
klA

q
i ¼ Γ́q

nmAn
kA

m
l þ Aq

k;l: ð3Þ

From the last formula follows that Γ́q
nm in Fermi coordinates

vanish on the line (1) if matrix Ai
k satisfies the differential

equation:

½Ai
k;l�L ¼ ½Γm

klA
i
m�L; ð4Þ

where ½F�L means the value of any function F on the line
(1), that is

½Fðx0; x1; x2; x3Þ�L ¼ F½x0; f1ðx0Þ; f2ðx0Þ; f3ðx0Þ�Þ: ð5Þ

It is easy to see that Eq. (4) represents the set of ordinary
differential equations with respect to the variable x0.
Indeed, in the vicinity of the line (1) the transformation
between Fermi and original coordinates can be represented
in the form of an expansion with respect to the three small
deviations xα − fαðx0Þ from the line,

x́m ¼ Xmðx0Þ þ Ym
α ðx0Þ½xα − fαðx0Þ�

þ Zm
αβðx0Þ½xα − fαðx0Þ�½xβ − fβðx0Þ� þOð3Þ; ð6Þ

where OðnÞ means collection of terms of the order n and
higher with respect to the small functional parameters
xα − fαðx0Þ. From (6) and definition (2) follows expansion
for the components of matrix Am

k :

Am
0 ¼ dXm

dx0
− Ym

α
dfα

dx0
þ
�
dYm

β

dx0
− 2Zm

αβ

dfα

dx0

�
ðxβ − fβÞ

þOð2Þ; ð7Þ

Am
α ¼ Ym

α þ 2Zm
αβðxβ − fβÞ þOð2Þ: ð8Þ

Consequently on the line the components Am
k are

½Am
0 �L ¼ dXm

dx0
− Ym

α
dfα

dx0
; ð9Þ

½Am
β �L ¼ Ym

β : ð10Þ

From (7) and (8) follows values of the partial derivatives
Am
k;l of matrix Am

k on the line:

½Am
0;0�L ¼

d
dx0

�
dXm

dx0
−Ym

α
dfα

dx0

�
−
�
dYm

β

dx0
−2Zm

αβ

dfα

dx0

�
dfβ

dx0
;

ð11Þ

½Am
0;β�L ¼ dYm

β

dx0
− 2Zm

αβ

dfα

dx0
; ð12Þ

½Am
β;0�L ¼ dYm

β

dx0
− 2Zm

αβ

dfα

dx0
; ð13Þ

½Am
α;β�L ¼ 2Zm

αβ: ð14Þ

It is convenient to use for the quantity ½Am
0 �L from (9) the

special notation Λm:

Λm ¼ dXm

dx0
− Ym

α
dfα

dx0
: ð15Þ

After substituting expressions (9)–(14) into Eq. (4) we find
that this equation is equivalent to the following system:

dΛm

dx0
¼

�
½Γ0

β0�L
dfβ

dx0
þ ½Γ0

00�L
�
Λm

þ
�
½Γα

β0�L
dfβ

dx0
þ ½Γα

00�L
�
Ym
α ; ð16Þ

dYm
β

dx0
¼

�
½Γ0

αβ�L
dfα

dx0
þ ½Γ0

β0�L
�
Λm

þ
�
½Γγ

αβ�L
dfα

dx0
þ ½Γγ

β0�L
�
Ym
γ ; ð17Þ

Zαβ ¼
1

2
½Γ0

αβ�LΛm þ 1

2
½Γγ

αβ�LYm
γ ; ð18Þ

dXm

dx0
¼ Λm þ Ym

α
dfα

dx0
: ð19Þ

Because all Γ symbols of the original metric and functions
fα are given Eqs. (16) and (17) represent the closed linear
system of the ordinary differential equations of first order
with respect to the variable x0 for coefficients Λmðx0Þ and
Ym
α ðx0Þ in expansion (6). These solutions should be sub-

stituted to the right-hand side of Eq. (18) which gives
coefficients Zαβðx0Þ. After that we need to substitute
Λmðx0Þ and Ym

α ðx0Þ into Eq. (19) where we obtain the last
coefficients Xmðx0Þ by quadrature.
This is the general procedure how to construct the Fermi

coordinates for any metric in the vicinity of any given
curve. There is also a possibility to specialize the Fermi
coordinates in such a way that the metric in these
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coordinates in the first two approximations will be
Minkowskian:

ǵikðx́Þ ¼ ηik þOð2Þ; ð20Þ

where ηik is the Minkowski metric tensor. This can be done
by choosing in a special way the arbitrary constants of
integration which contain the general solution of the
Eqs. (16)–(17) and (19) [there are 20 such constants, ten
of which should be fixed in order to obtain the form (20)
and another ten will remain arbitrary reflecting the Poincarè
symmetry of the Minkowskian spacetime].

III. METRIC IN FERMI COORDINATES

The same line (1) in Fermi coordinates x́ has an equation
of similar form:

x́α ¼ Fαðx́0Þ: ð21Þ

The functions Fαðx́0Þ follow from transformation (6). This
transformation tells that on the line x́0 ¼ X0ðx0Þ and
x́α ¼ Xαðx0Þ. Then

Fαðx́0Þ ¼ ½XαðζÞ�ζ¼ðarcX0Þðx́0Þ; ð22Þ

where arcX0 is a function inverse to X0.
Because in Fermi coordinates

½ǵikðx́Þ�L ¼ cik;

�∂ǵikðx́Þ
∂x́l

�
L
¼ 0; cik ¼ const ð23Þ

the expansion for metric near the line has the form

ǵikðx́Þ ¼ cik þ
1

2

�∂2ǵikðx́Þ
∂x́α∂x́β

�
L
½x́α − Fαðx́0Þ�

× ½x́β − Fβðx́0Þ� þOð3Þ: ð24Þ

Then to obtain this metric we need the second derivatives of
the metric tensor with respect to the space coordinates x́α on
the line. However, these second derivatives depend on the
cubic terms Oð3Þ in expansion (6) and up to now remain
completely arbitrary. To make a choice for this cubic
addend it is necessary to accept some additional coordinate
restrictions which will not violate conditions (23). We
already mentioned in the Introduction that the natural
physical arguments for such a choice have been proposed
by Eddington and here we will follow his proposal; that is
we will specify the cubic addends in coordinate trans-
formation to the Fermi coordinates so as to represent the
second derivatives in metric (24) in terms of the Riemann
tensor. Eddington showed that Riemann coordinates can be
further specified in such a way that cyclic combination
Γ́i
kl;m þ Γ́i

mk;l þ Γ́i
lm;k of derivatives of Γ́ symbols at a point

where Γ́i
kl are zero also vanish. Under this condition it is a

simple matter to express second derivatives of the metric at
this point in terms of the components of the Riemann
tensor. In case of Fermi coordinates we described in the
preceding section the full four-dimensional Eddington
condition cannot be accepted because it contradicts
Eqs. (16)–(19). However, it is possible to restrict the choice
of Fermi coordinates by the following reduced version of
the same condition:

�∂Γ́i
νλðx́Þ
∂x́μ þ ∂Γ́i

μνðx́Þ
∂x́λ þ ∂Γ́i

λμðx́Þ
∂x́ν

�
L
¼ 0; ð25Þ

where the upper index remains four dimensional and all
three lower indices are three dimensional. The proof of the
possibility of this restriction we placed in Appendix B.
Under the restriction ½Γ́i

klðx́Þ�L ¼ 0 from the general
expression for the Riemann tensor we have

½Ŕi
klmðx́Þ�L ¼

�∂Γ́i
kmðx́Þ
∂x́l −

∂Γ́i
klðx́Þ
∂x́m

�
L
: ð26Þ

Let us apply this formula for the three-dimensional indices
ðk; l; mÞ ¼ ðν; λ; μÞ, that is

½Ŕi
νλμðx́Þ�L ¼

�∂Γ́i
νμðx́Þ
∂x́λ −

∂Γ́i
νλðx́Þ
∂x́μ

�
L
: ð27Þ

By simple manipulation with indices it is easy to show that
the last expression with the help of condition (25) can be
inverted:

�∂Γ́i
νλðx́Þ
∂x́μ

�
L
¼ −

1

3
½Ŕi

νλμðx́Þ þ Ŕi
λνμðx́Þ�L: ð28Þ

Now from the identity ½ǵikðx́Þ�;l;m ¼ 0, taking into
account the restriction ½Γ́i

klðx́Þ�L ¼ 0, one can express the
second derivatives of the metric tensor on the line L in
Fermi coordinates in the form

�∂ǵikðx́Þ
∂x́λ∂x́μ

�
L
¼

�∂Γ́l
iλðx́Þ
∂x́μ ǵlkðx́Þ þ

∂Γ́l
kλðx́Þ
∂x́μ ǵliðx́Þ

�
L
: ð29Þ

From this formula we have

�∂ǵ00ðx́Þ
∂x́λ∂x́μ

�
L
¼ 2

�∂Γ́l
0λðx́Þ
∂x́μ ǵl0ðx́Þ

�
L
; ð30Þ

�∂ǵ0αðx́Þ
∂x́λ∂x́μ

�
L
¼

�∂Γ́l
0λðx́Þ
∂x́μ ǵlαðx́Þ þ

∂Γ́l
αλðx́Þ
∂x́μ ǵl0ðx́Þ

�
L
; ð31Þ

�∂ǵαβðx́Þ
∂x́λ∂x́μ

�
L
¼

�∂Γ́l
αλðx́Þ
∂x́μ ǵlβðx́Þ þ

∂Γ́l
βλðx́Þ
∂x́μ ǵlαðx́Þ

�
L
: ð32Þ
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The first two of these formulas show that in order to express
all second derivatives of the metric in terms of the Riemann
tensor the relation (28) is not enough. It is necessary to find
analogous expression also for the quantity ∂Γ́l

0λðx́Þ=∂x́μ on
the line. To do this let us take the general four-dimensional
relation (26) for indices k ¼ ν, l ¼ λ, m ¼ 0 and sum it
with Eq. (27) being multiplied by the derivative
dFμðx́0Þ=dx́0. In the right-hand side of this sum will appear
the quantity

�∂Γ́i
νλðx́Þ
∂x́0

�
L
þ
�∂Γ́i

νλðx́Þ
∂x́μ

�
L

dFμðx́0Þ
dx́0

; ð33Þ

which is zero because for any function Ψ́ðx́Þ which is
zero along line L, that is which satisfy the restriction
Ψ́½x́0; F1ðx́0Þ; F2ðx́0Þ; F3ðx́0Þ� ¼ 0, the ordinary derivative
of its value on the line with respect to x́0 is also zero and due
to this evident fact we deduce

d
dx́0

Ψ́½x́0; F1ðx́0Þ; F2ðx́0Þ; F3ðx́0Þ�

¼
�∂Ψ́ðx́Þ

∂x́0
�
L
þ
�∂Ψ́ðx́Þ

∂x́μ
�
L

dFμðx́0Þ
dx́0

¼ 0: ð34Þ

Then the resulting sum gives the following equation:

½Ŕi
νλ0ðx́Þ�L þ ½Ŕi

νλμðx́Þ�L
dFμðx́0Þ
dx́0

¼
�∂Γ́i

ν0ðx́Þ
∂x́λ

�
L
þ
�∂Γ́i

νμðx́Þ
∂x́λ

�
L

dFμðx́0Þ
dx́0

; ð35Þ

where from the quantity ½∂Γ́i
ν0ðx́Þ=∂x́λ�L can be represented

in terms of the Riemann tensor since for the derivatives
½∂Γ́i

νμðx́Þ=∂x́λ�L we already have such representation, see
formula (28). The result is

�∂Γ́i
ν0ðx́Þ
∂x́λ

�
L
¼ ½Ŕi

νλ0ðx́Þ�L

þ 1

3
½Ŕi

μνλðx́Þ − 2Ŕi
νμλ�L

dFμðx́0Þ
dx́0

: ð36Þ

Now from (24) and (30)–(32) (using definition Riklm ¼
ginRn

klm) we obtain the final general [10] result for the
canonical (Eddington’s terminology) metric in Fermi
coordinates:

ǵ00ðx́Þ ¼ c00 þ
�
Ŕ0λμ0ðx́Þ −

2

3
Ŕ0λνμðx́Þ

dFνðx́0Þ
dx́0

�
L

× ½x́λ − Fλðx́0Þ�½x́μ − Fμðx́0Þ� þOð3Þ; ð37Þ

ǵ0αðx́Þ ¼ c0α þ
�
2

3
Ŕαλμ0ðx́Þ −

1

3
Ŕαλνμðx́Þ

dFνðx́0Þ
dx́0

�
L

× ½x́λ − Fλðx́0Þ�½x́μ − Fμðx́0Þ� þOð3Þ; ð38Þ

ǵαβðx́Þ ¼ cαβ þ
1

3
½Ŕαλμβðx́Þ�L½x́λ − Fλðx́0Þ�

× ½x́μ − Fμðx́0Þ� þOð3Þ: ð39Þ

IV. FERMI COORDINATES FOR STATIC
OBSERVER IN SCHWARZSCHILD SPACETIME

Let us take the Schwarzschild metric in its standard form:

−ds2 ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2

þ r2ðdθ2 þ sin2 θdφ2Þ; ð40Þ

with the following designation for coordinates:

t; r; θ;φ ¼ x0; x1; x2; x3: ð41Þ

The world line of a static observer is

xα ¼ xα�; ð42Þ

where xα� ¼ ðx1�; x2�; x3�Þ ¼ ðr�; θ�;φ�Þ are arbitrary con-
stants. The transformation to Fermi coordinates x́ along
this line is given by the formula (6), that is

x́m ¼ XmðtÞ þ Ym
α ðtÞðxα − xα�Þ

þ Zm
αβðtÞðxα − xα�Þðxβ − xβ�Þ þOð3Þ: ð43Þ

In Eqs. (16), (17) and (19) all terms containing dfα=dx0

disappear and among those Γ symbols which are present in
these equations there are only two non-zero, namely

½Γ1
00�L¼

m
r2�

�
1−

2m
r�

�
; ½Γ0

10�L¼
m
r2�

�
1−

2m
r�

�
−1
: ð44Þ

Under these conditions equations (16)–(17) and (19)
become very simple and can be integrated easily. The
solution for the functions ΛmðtÞ is Λm ¼ Cm

1 e
ωt þ Cm

2 e
−ωt

and for coefficients XmðtÞ and Ym
α ðtÞ we have

Xm ¼ ω−1ðCm
1 e

ωt − Cm
2 e

−ωtÞ þ Cm
3 ; ð45Þ

Ym
1 ¼

�
1 −

2m
r�

�
−1
ðCm

1 e
ωt − Cm

2 e
−ωtÞ; ð46Þ

Ym
2 ¼ Cm

4 ; Ym
3 ¼ Cm

5 ; ð47Þ

V. A. BELINSKI PHYS. REV. D 102, 064044 (2020)

064044-4



where Cm
1 ;…; Cm

5 are arbitrary constants of integration and

ω ¼ m
r2�
: ð48Þ

Without loss of generality we can chose constants
Cm
1 ; C

m
2 ; C

m
4 ; C

m
5 in the following way:

Cm
1 ¼ ðC0

1; C
1
1; C

2
1; C

3
1Þ ¼ ðλ; λ; 0; 0Þ; ð49Þ

Cm
2 ¼ ðC0

2; C
1
2; C

2
2; C

3
2Þ ¼ ðλ;−λ; 0; 0Þ; ð50Þ

Cm
4 ¼ ðC0

4; C
1
4; C

2
4; C

3
4Þ ¼ ð0; 0; r�; 0Þ; ð51Þ

Cm
5 ¼ ðC0

5; C
1
5; C

2
5; C

3
5Þ ¼ ð0; 0; 0; r� sin θ�Þ; ð52Þ

where quantity λ is defined by the relation

λ2 ¼ 1

4

�
1 −

2m
r�

�
: ð53Þ

This choice for free parameters fixes the arbitrary constants
cik in the metric (37)–(39) as

c00 ¼ −1; c0α ¼ 0; cαβ ¼ δαβ; ð54Þ
that is in the first two approximations the metric is
Minkowskian in Fermi coordinates.
Now we substitute the constants (49)–(52) into expres-

sions (45)–(47) to obtain the final form for coefficients
XmðtÞ, Ym

α ðtÞ and after that insert them together with
Schwarzschild Γ symbols ½Γ0

αβ�L and ½Γγ
αβ�L into the right-

hand side of the equation (18). This gives the coefficients
ZαβðtÞ after which we can write the final form of trans-
formation to Fermi coordinates along the world line of static
Schwarzschild observer:

x́0 ¼C0
3þ

2λ

ω
sinhωtþ 1

2λ
ðr− r�Þsinhωt

−
�

ω

16λ3
ðr− r�Þ2þ r�λðθ−θ�Þ2þ r�λsin2θ�ðφ−φ�Þ2

�

×sinhωtþOð3Þ; ð55Þ

x́1 ¼C1
3þ

2λ

ω
coshωtþ 1

2λ
ðr− r�Þcoshωt

−
�

ω

16λ3
ðr− r�Þ2þ r�λðθ−θ�Þ2þ r�λsin2θ�ðφ−φ�Þ2

�

×coshωtþOð3Þ; ð56Þ

x́2 ¼ C2
3 þ r�ðθ − θ�Þ þ ðr − r�Þðθ − θ�Þ

−
1

2
r� sin θ� cos θ�ðφ − φ�Þ2 þOð3Þ; ð57Þ

x́3 ¼ C3
3 þ r� sin θ�ðφ − φ�Þ þ sin θ�ðr − r�Þðφ − φ�Þ

þ r� cos θ�ðθ − θ�Þðφ − φ�Þ þOð3Þ: ð58Þ

The metric for the static Schwarzschild observer in
canonical Fermi coordinates follows from formulas (37)–
(39). The arbitrary constants cik we already specified, see
(54). Now we need to find the functions Fαðx́0Þ and
components of the Riemann tensor Ŕiklmðx́Þ. The equation
of the Schwarzschild static world line in the Fermi coor-
dinates can be extracted from transformation (55)–(58). On
the line we have

x́0 ¼ C0
3 þ

2λ

ω
sinhωt; x́1 ¼ C1

3 þ
2λ

ω
coshωt;

x́2 ¼ C2
3; x́3 ¼ C3

3: ð59Þ

Then functions Fαðx́0Þ are

F1ðx́0Þ ¼ C1
3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ðx́0 − C0

3Þ2
q

;

F2 ¼ C2
3; F3 ¼ C3

3; ð60Þ

where

a ¼ r4�
m2

�
1 −

2m
r�

�
: ð61Þ

The arbitrary constants Ci
3 are not important, they can be

eliminated by the shift of the origin of the Fermi coordinates.
The Riemann tensor Ŕiklmðx́Þ can be found by trans-

formation (55)–(58) from its known counterpart RiklmðxÞ
for the Schwarzschild metric (40) which has the following
nonzero components:

R0101 ¼ Rtrtr ¼ −
2m
r3

; ð62Þ

R0202 ¼ Rtθtθ ¼
m
r

�
1 −

2m
r

�
; ð63Þ

R0303 ¼ Rtφtφ ¼ m
r

�
1 −

2m
r

�
sin2 θ; ð64Þ

R1212 ¼ Rrθrθ ¼ −
m
r

�
1 −

2m
r

�
−1
; ð65Þ

R1313 ¼ Rrφrφ ¼ −
m
r

�
1 −

2m
r

�
−1

sin2 θ; ð66Þ

R2323 ¼ Rθφθφ ¼ 2mr sin2 θ: ð67Þ

We do not include in this list those nonzero components of
RiklmðxÞ which can be obtained from (62)–(67) by appli-
cation of all symmetries of the Riemann tensor. These
components transform to the components of Ŕiklmðx́Þ by the
usual tensor law and on the line this transformation takes
the form
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½Ŕpsqn�L ¼ ½RiklmQi
pQk

sQl
qQm

n �L; ð68Þ

where matrixQi
k is inverse to the Jacobian matrix Ai

k introduced in (2), see also (B3). For the transformation (55)–(58) these
matrices calculated on the line L (the upper index numerates the matrix lines and the lower index corresponds to the
columns) are

½Ai
k�L ¼

0
BBB@

2λ coshωt ð2λÞ−1 sinhωt 0 0

2λ sinhωt ð2λÞ−1 coshωt 0 0

0 0 r� 0

0 0 0 r� sin θ�

1
CCCA; ð69Þ

½Qi
k�L ¼

0
BBB@

ð2λÞ−1 coshωt −ð2λÞ−1 sinhωt 0 0

−2λ sinhωt 2λ coshωt 0 0

0 0 ðr�Þ−1 0

0 0 0 ðr� sin θ�Þ−1

1
CCCA: ð70Þ

Calculations of ½Ŕpsqn�L from (68) using ½Qi
k�L from (70)

and ½Riklm�L ¼ Riklmðr�; θ�Þ from (62)–(67) give

½Ŕ0101�L ¼ −
2m
r3�

; ½Ŕ0202�L ¼ m
r3�
; ½Ŕ0303�L ¼ m

r3�
;

ð71Þ

½Ŕ1212�L ¼−
m
r3�
; ½Ŕ1313�L ¼−

m
r3�
; ½Ŕ2323�L ¼ 2m

r3�
:

ð72Þ

We see that on line L the Riemann tensor in the Fermi
coordinates contains the same set of nonzero components
as in Schwarzschild coordinates but their values are
simpler. We again do not include in formulas (71) and
(72) those nonzero components of ½Ŕiklm�L which can be
obtained by application of the symmetries of the Riemann
tensor.
To write down the final form of the metric it is convenient

to introduce shifting Fermi coordinates τ, u, v, w:

τ ¼ x́0 − C0
3; u ¼ x́1 − C1

3;

v ¼ x́2 − C2
3; w ¼ x́3 − C3

3: ð73Þ

Collecting all information on the constants cik (54),
functions Fαðx́0Þ (60), and components of the Riemann
tensor ½Ŕiklmðx́Þ�L (71) and (72), we obtain from (37)–(39)
the final form of the metric for the static Schwarzschild
observer in Fermi coordinates τ, u, v, w (73):

−ds2 ¼ ǵikðx́Þdx́idx́k
¼ ǵττdτ2 þ 2ǵτudτduþ 2ǵτvdτdvþ 2ǵτwdτdw

þ ǵuudu2 þ ǵvvdv2 þ ǵwwdw2 þ 2ǵuvdudv

þ 2ǵuwdudwþ 2ǵvwdvdw; ð74Þ

where components of the metric tensor (up to the
quadratic terms with respect to the three small deviations
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p
; v, w from the line) are

ǵττ ¼ −1þ m
r3�

h
2
	
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p 

2
− v2 − w2

i
; ð75Þ

ǵuu ¼ 1þ m
3r3�

ðv2 þ w2Þ; ð76Þ

ǵvv ¼ 1þ m
3r3�

h	
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p 

2
− 2w2

i
; ð77Þ

ǵww ¼ 1þ m
3r3�

h	
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p 

2
− 2v2

i
; ð78Þ

ǵτu ¼
mτðv2 þ w2Þ
3r3�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p ; ǵτv ¼
mτð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p
− uÞv

3r3�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p ;

ǵτw ¼ mτð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p
− uÞw

3r3�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ a

p ; ð79Þ

ǵuv ¼
m
3r3�

	 ffiffiffiffiffiffiffiffiffiffiffiffi
τ2þa

p
−u



v; ǵuw ¼

m
3r3�

	 ffiffiffiffiffiffiffiffiffiffiffiffi
τ2þa

p
−u



w;

ǵvw ¼
2m
3r3�

vw: ð80Þ

To understand better the relation between the Synge and
Fermi approach it would be instructive to take a timelike
nongeodesic line and construct along it two different
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coordinate systems: (1) Fermi coordinates and (2) Singe’s
quasi-Fermi coordinates (that is coordinates associated with
the observer’s proper reference frame along this line) and
work out the transformation between these two coordinate
systems. In general this is not a simple enterprise, however,
in the particular case of the static observer in Schwarzschild
spacetime considered in this section the task can be
resolved easily. In this case Fermi coordinates along the
static world line in terms of Schwarzschild coordinates we
already found [see (55)–(58)]. For simplicity let us take in
these formulas θ� ¼ π=2 in which case the Fermi coor-
dinates τ, u, v, w (73) are

τ ¼ ρ sinhωtþOð3Þ; ð81Þ

u ¼ ρ coshωtþOð3Þ; ð82Þ

v ¼ r�ðθ − π=2Þ þ ðr − r�Þðθ − π=2Þ þOð3Þ; ð83Þ

w ¼ r�ðφ − φ�Þ þ ðr − r�Þðφ − φ�Þ þOð3Þ; ð84Þ

where we introduced the notation

ρ ¼ 2λ

ω
þ 1

2λ
ðr − r�Þ −

ω

16λ3
ðr − r�Þ2

− r�λðθ − π=2Þ2 − r�λðφ − φ�Þ2: ð85Þ

The Synge’s quasi-Fermi coordinates T; X; Y; Z along
the same world line in terms of the same Schwarzschild
coordinates have been constructed in [5] and they are [11]

T ¼ 2λt; ð86Þ

X ¼ ρ −
2λ

ω
þOð3Þ; ð87Þ

Y ¼ r�ðθ − π=2Þ þ ðr − r�Þðθ − π=2Þ þOð3Þ; ð88Þ

Z ¼ r�ðφ − φ�Þ þ ðr − r�Þðφ − φ�Þ þOð3Þ: ð89Þ

Then from (81)–(89) follows transformation between these
two coordinate systems:

τ ¼
�
2λ

ω
þ X

�
sinh

ωT
2λ

þOð3Þ; ð90Þ

u ¼
�
2λ

ω
þ X

�
cosh

ωT
2λ

þOð3Þ; ð91Þ

v ¼ Y þOð3Þ; w ¼ Z þOð3Þ: ð92Þ

Because of spherical symmetry the angular coordinatiza-
tion in both systems coincides as it should. The trans-
formation in the radial-time sector is of Rindler-Minkowski
type as it also should be because (up to the second order
with respect to the deviation from the line) the proper frame
of a static observer in Schwarzschild metric (with Synge’s
coordinates T, X) is equivalent to one-dimensional accel-
erated motion in flat space (with Fermi coordinates τ, u).
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APPENDIX A: STANDARD FORMULAS

We use notations of the book [12]. In any spacetime with
coordinates xi and metric tensor gik the Γ symbols and
Riemann tensor are

Γi
kl ¼

1

2
gimðgmk;l þ glm;k − gkl;mÞ; ðA1Þ

Ri
klm ¼ Γi

km;l − Γi
kl;m þ Γi

nlΓn
km − Γi

nmΓn
kl; ðA2Þ

Riklm ¼ ginRn
klm: ðA3Þ

There are four symmetry identities for the Riemann tensor:

Riklm¼−Rkilm; Riklm ¼−Rikml; Riklm¼Rlmik; ðA4Þ

Riklm þ Rimkl þ Rilmk ¼ 0: ðA5Þ

From definitions (A1)–(A3) follows another representation
for Riklm:

Riklm ¼ 1

2
ðgim;kl þ gkl;im − gil;km − gkm;ilÞ

þ gnpðΓn
klΓ

p
im − Γn

kmΓ
p
ilÞ: ðA6Þ

APPENDIX B: ON THE REDUCED EDDINGTON
COORDINATES RESTRICTION

The transformation (6) with cubic terms is

x́m ¼ Xmðx0Þ þ Ym
α ðx0Þ½xα − fαðx0Þ�

þ Zm
αβðx0Þ½xα − fαðx0Þ�½xβ − fβðx0Þ�

þWm
αβγðx0Þ½xα − fαðx0Þ�½xβ − fβðx0Þ�

× ½xγ − fγðx0Þ� þOð4Þ; ðB1Þ
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where coefficients Wm
αβγ are symmetric with respect to the

transposition of any two of the lower indices. Then we have
40 (ten for each four-dimensional index m) independent
coefficients Wm

αβγ. Now we apply the four-dimensional
partial derivative ∂=∂xs to the general transformation of Γ
symbols (3) and restrict the result to the line L (taking into
account that all Γ́q

nm are zero on this line). This operation
gives

� ∂
∂xs ðΓ

i
klA

q
i Þ ¼

� ∂
∂x́p Γ́

q
nm

�
Ap
s An

kA
m
l þ ∂3x́q

∂xk∂xl∂xs
�
L
:

ðB2Þ

Let us denote the four-dimensional matrix inverse to Ai
k by

Qi
k, that is

Qk
i A

l
k ¼ δli; ðB3Þ

and multiply relation (B2) by ðQs
αQk

βQ
l
γÞL with all three

lower indices three dimensional. We obtain

�
Qs

αQk
βQ

l
γ
∂
∂xs ðΓ

i
klA

q
i Þ¼

∂
∂x́α Γ́

q
βγ þ

∂3x́q

∂xk∂xl∂xsQ
s
αQk

βQ
l
γ

�
L
:

ðB4Þ

Then we repeat this relation 2 times more with cyclic
permutation of the three-dimensional indices β; γ; α →
α; β; γ → γ; α; β and sum all three expressions. In result
we have

� ∂
∂x́α Γ́

q
βγþ

∂
∂x́γ Γ́

q
αβþ

∂
∂x́β Γ́

q
γα

�
L

¼−
�
3Qs

αQk
βQ

l
γ

∂3x́q

∂xk∂xl∂xs
�

L

þ
�
Qs

αQk
βQ

l
γ

� ∂
∂xsðΓ

i
klA

q
i Þþ

∂
∂xlðΓ

i
skA

q
i Þþ

∂
∂xk ðΓ

i
lsA

q
i Þ
��

L
:

ðB5Þ

Consequently the three-dimensional Eddington condi-
tion (25) will be satisfied if we choose the cubic addend in
transformation (B1) to satisfy the requirement:

�
Qs

αQk
βQ

l
γ

∂3x́q

∂xk∂xl∂xs
�

L

¼1

3

�
Qs

αQk
βQ

l
γ

� ∂
∂xsðΓ

i
klA

q
i Þþ

∂
∂xlðΓ

i
skA

q
i Þþ

∂
∂xk ðΓ

i
lsA

q
i Þ
��

L
:

ðB6Þ
The left and right sides in relation (B6) are symmetric

with respect to the transposition of any two of the indices
α, β, γ, consequently this relation represents 40 indepen-
dent equations for 40 unknown coefficients Wm

αβγ which
enter the third derivatives of x́q. No other quantity
in (B6) contains these Wm

αβγ . It is important that terms
ð∂3x́q=∂xk∂xl∂xsÞL are linear with respect toWm

αβγðx0Þ and
do not contain x0 derivatives of these functions. Then the
system (B6) is the set of the linear algebraic equations with
respect to the unknownsWm

αβγ. Indeed, only the last term in
expansion (B1) for Fermi coordinates x́q contains quantities
Wm

αβγ and it is easy to show that the left-hand side of
equation (B6) has the structure

�
Qs

αQk
βQ

l
γ

∂3x́q

∂xk∂xl∂xs
�
L
¼ 6Wq

μλν½Nμ
αNλ

βN
ν
γ �L þ � � � ; ðB7Þ

where dots mean all terms which do not contain coefficients
Wq

μλν and 3 × 3 matrix ðNα
βÞL is

½Nα
β�L ¼

�
Qα

β −Q0
β

dfα

dx0

�
L
: ðB8Þ

Then using the matrix inverse to ðNα
βÞL, the system (B6)

can be uniquely resolved with respect to the unknown
coefficients Wq

μλν. This is the proof of the possibility to
specialize the Fermi coordinate in the way to achieve the
three-dimensional analog of the Eddington coordinates
condition (25).
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