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One of the primary aims of upcoming spaceborne gravitational wave detectors is to measure radiation in
the mHz range from extreme-mass-ratio inspirals. Such a detection would place strong constraints on
hypothetical departures from a Kerr description for astrophysically stable black holes. The Kerr geometry,
which is unique in general relativity, admits a higher-order symmetry in the form of a Carter constant,
which implies that the equations of motion describing test particle motion in a Kerr background are
Liouville-integrable. In this article, we investigate whether the Carter symmetry itself is discernible from a
generic deformation of the Kerr metric in the gravitational waveforms for such inspirals. We build on
previous studies by constructing a new metric which respects current observational constraints, describes a
black hole, and contains two non-Kerr parameters, one of which controls the presence or absence of the
Carter symmetry, thereby controlling the existence of chaotic orbits, and another which serves as a generic
deformation parameter. We find that these two parameters introduce fundamentally distinct features into the
orbital dynamics, and evince themselves in the gravitational waveforms through a significant dephasing.
Although only explored in the quadrupole approximation, this, together with a Fisher metric analysis,
suggests that gravitational wave data analysis may be able to test, in addition to the governing theory of
gravity, the underlying symmetries of spacetime.
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I. INTRODUCTION

Many binary merger events involving black holes have
been detected by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) and Virgo [1]. While a wealth of
physical knowledge can and has been extracted from these
experiments [2,3], ground-based interferometers are limited
by a seismic noise cutoff (∼10 Hz for Advanced LIGO [4]),
which, due to the fact that the gravitational wave (GW)
frequencies emitted by a binary source scale inversely with
the constituent masses, prevents them from measuring
signals from objects above masses of ≲100 M⊙. Space-
borne detectors, such as the Laser Interferometer Space
Antenna (LISA) and Taiji [5,6], have the advantage that
they are not limited by this noise, and thus can observe
higher mass systems in the frequency band 10−4 ≲ f ≲
10−1 Hz [7]. One of the main targets for space-based
detectors are extreme-mass-ratio inspirals (EMRIs), which
are systems involving a supermassive black hole and a
plunging, stellar-mass companion [8]. Incidentally, a major
practical advantage in modeling these systems is that the
companion can be treated, to high accuracy, as a point
particle traversing the gravitational field generated by the
super-massive object. GWs from EMRIs are therefore

expected to contain detailed information about black-hole
structure [9–11].
In general relativity (GR), astrophysically stable black

holes in vacuum, supermassive or otherwise, must be Kerr
[12,13]. The Kerr metric, being stationary and axisym-
metric, admits two Killing vectors which respectively
imply that the energies and angular momenta of relativistic
particles moving within the spacetime are conserved.
Together with the particle Hamiltonian, we then have three
constants of motion, though these alone are insufficient to
ensure that the equations of motion are (Liouville-)inte-
grable. In this context, integrability implies the absence of
chaotic orbital phenomena (e.g., [14]). The Kerr spacetime,
however, admits a rank-two Killing tensor, which pro-
vides a fourth constant of motion in the form of the Carter
constant [15], and thus orbits necessarily display regular
behavior [16]. If, however, GR provides an inexact des-
cription of the geometry surrounding compact objects (as
anticipated by, e.g., perturbative nonrenormalizability
[17]), or the hole’s geometry is significantly warped due
the presence of an accretion disk [18–20], it may be that the
Kerr metric only approximately describes supermassive
black holes (though cf. Refs. [21,22]). Depending on how
potential departures from a Kerr description manifest, the
integrability property may be broken.
Due to the huge mass disparity, EMRIs may survive for

up to several years before the plunge. It is therefore possible*kyriakos.destounis@uni-tuebingen.de
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to model certain parts of the inspiral as bound orbits, which
are characterized by two librationlike frequencies, one of
which (ωr) is radial and describes the rate of transition
from the periapsis to the apoapsis of the orbit, and the other
(ωθ) which describes longitudinal oscillations around the
equatorial plane [23]. When a nonintegrable perturbation
is introduced into the Hamiltonian, only a finite number of
the periodic orbits that had a rational ratio of the above
frequencies (‘resonant’ orbits) survive. Surrounding each
surviving periodic orbit, a small “island” of stability
appears in the phase space; the orbits in these islands
share the same rational ratio of frequencies with the central
periodic one without necessarily being periodic [24–26].
When an inspiraling orbit crosses an island, the ratio ωr=ωθ

remains constant, whereas it otherwise behaves mono-
tonically as a function of radius, and so the orbital dyna-
mics display transient plateau features. The question then
becomes whether or not such a plateau feature imprints a
discernible signature onto the GW signal [27–31]. In any
case, an identification of such a feature in upcoming LISA
data may hint at physics describing a fundamentally non-
Kerr spacetime (though cf. Refs. [32–35]). Moreover, Ryan
[36,37] has shown that the spacetime multipole moments
are retrievable from the Keplerian frequency ωϕ together
with ωθ and ωr, so that EMRI analysis can be used to test
no-hair conjectures experimentally, independently of GR’s
validity [38–43].
However, the extent to which a plateau feature, which

signals chaos, may be distinguishable from more general
deformed-Kerr traits is not obvious [29,31]. For instance,
one could imagine that the EMRI waveform associated
to a deformed-Kerr object, i.e., one which still respects a
generalized Carter symmetry [15], might mimic that of a
non-Kerr object sufficiently well to prevent an identifica-
tion of the underlying spacetime symmetries. It is the aim
of this paper, by building on previous studies, to investigate
some aspects of this point, that is to see whether GWs from
EMRIs can test the fundamental symmetry properties of
astrophysical black holes. Although we do not solve a
realistic, non-Einstein plunging problem, we investigate
GWs associated with bound orbits in a new spacetime to
provide some first steps. Specifically, some elementary
data analysis relevant for LISA is carried out using Fourier
and Hilbert transforms together with a Fisher metric
analysis, to characterize the imprint on the resulting wave-
forms. Recently, Johannsen [44] developed a metric which
includes generic deviations from the Kerr spacetime while
preserving the Carter constant (see also Refs. [45–47]) and
otherwise remaining regular. Here, we adopt Johannsen’s
metric [44] though introduce an extra parameter which
explicitly breaks the Carter symmetry but maintains the
other desirable properties. Massive particle orbits and the
associated gravitational multipole moments in this space-
time are computed to study how EMRI data analysis can
probe spacetime symmetries.

This paper is organized as follows. In Sec. II we
introduce the geodesic equations for a general stationary,
axisymmetric spacetime, and describe features that may
manifest in orbital dynamics if the system is not
integrable. In Sec. III, a particular metric is introduced
which contains two free parameters, one of which
controls the presence (or absence) of the Carter sym-
metry, and another which deforms the black hole from
the Kerr geometry. Section IV then solves the geodesic
equations for this spacetime, and compares chaotic
features in the orbit with the gravitational waveform
associated to an EMRI (Sec. V). Some discussion is
presented in Sec. VI.

II. ORBITAL DYNAMICS

A general stationary, axisymmetric metric can be written
in Boyer-Lindquist coordinates ðt; r; θ;ϕÞ as [48]

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ grrdr2 þ gθθdθ2 þ gϕϕdϕ2;

ð1Þ

where each of the metric components are functions of r
and θ only. Geodesic motion is then governed by the
Hamiltonian (e.g., [28])

Hðx; pÞ ¼ 1

2μ
gαβðxÞ _xα _xβ ð2Þ

for a particle of mass μ with momenta pμ ¼ _xμ, where
an overhead dot denotes differentiation with respect to
the proper time τ. From stationarity and axisymmetry,
Hamilton’s equations immediately give _pt ¼ 0 ¼ _pϕ,
implying that we have two constants of motion, namely
the energy E and angular momentum Lz. Specifically, the
t- and ϕ-momenta are given by

_t ¼ Egϕϕ þ Lzgtϕ
g2tϕ − gttgϕϕ

; ð3Þ

and

_ϕ ¼ −
Egtϕ þ Lzgtt
g2tϕ − gttgϕϕ

; ð4Þ

and are completely determined by E, Lz, and the metric
components. The remaining equations of motion read

2grr ̈rþ 2 _r _θ ∂θgrr þ _r2∂rgrr − _t2∂rgtt − 2_t _ϕ ∂rgtϕ

− _θ2∂rgθθ − _ϕ2∂rgϕϕ ¼ 0; ð5Þ

2gθθθ̈ þ 2 _r _θ ∂rgθθ − _r2∂θgrr − _t2∂θgtt − 2_t _ϕ ∂θgtϕ

þ _θ2∂θgθθ − _ϕ2∂θgϕϕ ¼ 0: ð6Þ
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The constants of motion (3) and (4), together with the
conservation of the particle’s rest mass H ¼ −μ, lead to the
constraint equation [49]

_r2 þ gθθ
grr

_θ2 þ Veff ¼ 0; ð7Þ

where

Veff ≡ 1

grr

�
1þ gϕϕE2 þ gttL2

z þ 2gtϕELz

gttgϕϕ − g2tϕ

�
ð8Þ

is the effective potential. The curve defined by the vanish-
ing of Veff is called the curve of zero velocity (CZV), since
_r ¼ _θ ¼ 0 there, implying that whenever a geodesic orbit
reaches this surface the velocity components in the ðr; θÞ-
plane vanish [14].

A. Signatures of nonintegrability

As evidenced by expression (7), the dynamics of geo-
desic motion for the metric (1) can be reduced to motion on
a two-dimensional surface, where orbits oscillate in the two
available degrees of freedom with characteristic fre-
quencies ωr and ωθ. The ratio of these two quantities,
νθ ¼ ωr=ωθ, is called the rotation number, and carries
pertinent information about the properties of the trajectory.
Specifically, when the particle path intersects a parti-
cular surface of section within the phase space ðr; θ; _r; _θÞ
[e.g., the two-dimensional subspace spanned by ðr; _rÞ for
θ ¼ π=2, _θ ¼ 0], one can track the angles ϑ formed
between subsequent intersection points relative to some
fixed center u0. Denoting the nth crossing of the orbit
through a surface of section by wn, the angles ϑnþ1 ¼
arg ðRnþ1;RnÞ for position vectors Rn ¼ wn − u0 track the
points of intersection and define a sequence of rotation
numbers,

νθ;N ¼ 1

2πN

XN
i¼1

ϑi: ð9Þ

In the limit N → ∞, the sequence (9) converges to νθ.
In general, regular behavior is characterized by monoto-
nicity in high-N rotation numbers with respect to an
increase in one of the phase space parameters while
others stay fixed; this essentially states that, as one
smoothly approaches the boundary of the CZV, the orbits
do not behave erratically in an integrable system (see
Fig. 2 in Ref. [50] for a schematic representation of these
quantities).
The Kerr spacetime, in addition to admitting the

invariants μ, E, and Lz discussed above, has a “hidden”
symmetry in the form of a rank-2 Killing tensor, giving rise
to the Carter constant [12,15], which is quadratic in the
momenta p. This implies that the equations of motion

(3)–(6) are integrable, and thus that the high-N rotation
numbers on any given surface of section for the
Hamiltonian (2) behave monotonically with increasing
radius. Moreover, the orbit is periodic for rational rotation
numbers [26]. When νθ is irrational, the motion is instead
quasiperiodic and densely covers an invariant torus within
the phase space ðr; θ; _r; _θÞ.
In general, the Kolmogorov-Arnold-Moser (KAM)

theorem [24,25] states that, when introducing a nonintegr-
able perturbation H1 into the Kerr or any other regular
HamiltonianH0, i.e., forH ¼ H0 þ ϵH1, the dynamics will
smoothly deviate from the background dynamics provided
that the rotation numbers are “sufficiently irrational” so as
to satisfy Arnold’s criterion [25],

jnωr −mωθj >
KðH0; ϵÞ
ðnþmÞ3 ; ð10Þ

where the prefactor K is some complicated function
that approaches zero as ϵ → 0. However, when m is an
integer multiple of n or vice versa, the orbit is resonant and
the dynamics are fundamentally altered: the Poincaré-
Birkhoff theorem tells us that exactly half of these orbits
become unstable while the other half remain stable [51,52].
Small islands of stability (Birkhoff islands) form around
certain intersection points w on the surface of section, and
exhibit the crucial feature that νθ is constant when an orbit
traverses an island, thereby forming a plateau in the graph
of νθ [14].
While chaotic orbits are difficult to track (since the

onset of chaos need not begin until an arbitrarily large
number of cycles have elapsed), the identification of
plateaus in the rotation number profile are sufficient to
identify an absence of a (generalized) Carter constant as
they only appear in nonintegrable systems [27–29].

III. DEFORMED AND NON-KERR
BLACK HOLES

In this paper, we are interested in identifying whether
gravitational waveforms associated with EMRIs can be
used to identify the underlying symmetries of the space-
time. To achieve this, we introduce a new metric which,
although not arising as an exact solution within any known
theory of gravity (though see Ref. [53]), generalizes the
Kerr metric by admitting two extra parameters, one of
which controls the integrability of the geodesic equations,
and the other which deforms the geometry but maintains
integrability.
Although there are a number of such eponymous

metrics, the Johannsen metric [44] [see Eqs. (51) therein]
is a generalization of the Kerr metric designed such
that a number of desirable properties are maintained,
most notably that the spacetime admits a Carter constant.
As such, a stationary and axisymmetric metric which
cannot be cast into Johannsen’s most general form
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(see also Refs. [46,47]) will not possess the Carter
symmetry.1 There are many ways one can build such a
metric, almost all of which will introduce pathological
features into the spacetime, e.g., signature changes outside
of the horizon(s).
Nevertheless, consider the metric (1) with components

gtt ¼ −
Σ½ðαQ=rÞM3 þ Δ − a2AðrÞ2 sin2 θ�

½ðr2 þ a2Þ − a2AðrÞ sin2 θ�2 ;

gtϕ ¼ −
a½ðr2 þ a2ÞAðrÞ − Δ�Σ sin2 θ
½ðr2 þ a2Þ − a2AðrÞ sin2 θ�2 ;

grr ¼
ðαQ=rÞM3 þ Σ

Δ
;

gθθ ¼ Σ;

gϕϕ ¼ Σ sin2 θ½ðr2 þ a2Þ2 − a2Δ sin2 θ�
½ðr2 þ a2Þ − a2AðrÞ sin2 θ�2 ; ð11Þ

for

Σ ¼ r2 þ a2 cos2 θ; ð12Þ

Δ ¼ r2 − 2Mrþ a2; ð13Þ

and

AðrÞ ¼ 1þ α22M2

r2
; ð14Þ

where M and a represent the mass and spin of the
black hole, respectively, while α22 and αQ are deformation
parameters.
The parameter α22 is one of the Johannsen deformation

parameters that couples to the spin (i.e., trivially vanishes
when a ¼ 0), and thus is likely to have the strongest effect
for observables pertaining to rapidly rotating objects of
interest: gradual accretion is expected to spin-up a black
hole to a maximum value of amax ≈ 0.998M [56], so that
many super-massive objects in active galactic nuclei,
relevant for EMRIs detectable by LISA, may be spinning
close to this limit (e.g., [57]).
The other (new) parameter αQ controls the Carter

symmetry; for any αQ ≠ 0 the geodesic equations (3)–(6)
are not integrable for a spinning object. In any case, if
we treat both α parameters as small relative to the back-
ground terms, the KAM and Poincaré-Birkhoff theorems
discussed in the previous sections apply. Small or other-
wise, the metric (11) boasts several nice properties expected
of astrophysical black holes: (i) The metric possesses an

event horizon at the roots of Δ ¼ 0, an ergosphere at the
greatest positive root of gtt ¼ 0, and is regular everywhere
outside these surfaces. (ii) The metric has a Kerr limit when
both free parameters vanish. (iii) The metric is asymptoti-
cally flat, and (iv) The metric has a Newtonian limit and, by
construction, the post-Newtonian Eddington-Robertson-
Schiff parameters ðγ; βÞ exactly match the GR values for
any choice of the free parameters [58].
Some intuition about the physical interpretation of the

parameters αQ and α22 can be gained by comparing the
spacetime (11) with known exact solutions. For example,
the leading-order tt-component of a particular nonvacuum
black hole metric introduced by Bardeen reads gtt ¼ −1þ
2M=r − 3Mq2=r3 þOð1=r4Þ [59]. The parameter q
appearing in Bardeen’s metric can be interpreted as a
magnetic charge [60], as the metric solves the Einstein
equations coupled to a nonlinear electromagnetic field
sourced by a monopole. In our case, we have from (11)
that gtt ¼ −1þ 2M=r −M3αQ=r3 in the static limit, and
therefore the parameter αQ can be thought of as a
gravitational analogue of a Bardeen magnetic monopole.
The parameter α22 on the other hand couples to the spin at
next-to-leading order in gtϕ, and may therefore be thought
of as modulating the extent of frame-dragging in the
spacetime. More formal investigations into parameter
interpretations are possible with tools like multipole
moment expansions (see Sec. XI of [61]), though utilizing
these schemes is challenging in practice (cf. Ref. [62]).

IV. GEODESIC ORBITS AND CHAOS

In this section, we investigate the orbital dynamics of a
bound, test particle of mass μ for the spacetime metric (11).
This is achieved by numerically integrating Eqs. (5) and (6)
with respect to τ for some appropriate set of initial con-
ditions. We take the ratio μ=M ¼ 10−6 throughout all our
evolutions, and also fix the particle’s orbital parameters
E ¼ 0.95μ and Lz ¼ 3Mμ to simulate nearly circular
orbits. The momentum constraint (7) is checked at each
time step to ensure numerical accuracy. For all simulations
presented herein, we find that they are satisfied to within
one part in ∼109 for the first ∼103 crossings through the
equatorial plane.

A. Non-Kerr spacetime

When the Carter symmetry is broken, the geodesic
equations for the spacetime described by (11) are non-
integrable. As such, the CZV, and hence surfaces of section
and rotation numbers, deviate from that of Kerr when
αQ ≠ 0 in some fundamental respects. For αQ > 0, the
CZV volume decreases with increasing αQ (for fixed E and
Lz), and the test particle has access to only a subset of
the bound orbits available to a particle orbiting a Kerr
object. On the other hand, when αQ < 0 the CZV volume
increases, and the test particle has access to a larger region

1We note that this does not automatically preclude integra-
bility; a spacetime might, in principle, admit integrals of motion
which are cubic or higher-order in p, though this does not happen
in our case. Furthermore, there is evidence to suggest this is not
possible for stationary and axisymmetric spacetimes [54,55].
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of bound orbits. In this section, we focus on the latter case,
since setting αQ < 0 unlocks orbits with small periodicities.
This works in our favor since transient phenomena in the
evolution of resonant periodic orbits with small rotation
numbers are more prominent and easier to capture numeri-
cally [28].
In Fig. 1 some illustrative examples of the CZV are

shown. For αQ ¼ −1.2 (left panel), the CZV forms a closed
region of bound motion, as for Kerr with a ≤ M, though is
larger in volume. A second region of plunging orbits is also
formed close to the event horizon. For αQ ¼ −1.8 (right
panel), the CZV volume is greater than its αQ ¼ −1.2
counterpart, and the two regions are connected by a

“throat,” similar to what is seen for “bumpy” spacetimes
[63]. The particulars of the initial conditions determine
whether an orbit will plunge into the black hole or remain
bound around it. Our numerics indicate that for an orbit to
be bound, the initial position of the test particle, in the
equatorial plane, must not lie at or beyond the throat
opening or very close to the maximum radius of the CZV.
For both cases, periodic orbits with resonances (i.e.,
rotation numbers) 1=2 (red) and 2=3 (green, brown) are
also shown. Such orbits exhibit turning points within the
interior of the CZV, in contrast to nonresonant orbits (not
shown), all of which have turning points that lie on the
boundary of the CZV. A special case of an ordered,

FIG. 1. Curves of zero velocity (black solid curves) and bound orbits of a test particle with energy E ¼ 0.95μ, angular momentum
Lz ¼ 3Mμ, and mass ratio μ=M ¼ 10−6 around a non-Kerr black hole with angular momentum a ¼ 0.99M, for α22 ¼ 0 and αQ ¼ −1.2
(left panel), αQ ¼ −1.8 (right panel). The red (dotted) curve corresponds to an orbit of 1=2-resonance and the green (strongly dashed)
and brown (lightly dashed) curves correspond to orbits of 2=3-resonance, while the blue (solid horizontal) lines correspond to orbits
which pierce the equatorial plane exactly once. The event horizon is located at the leftmost edge of the r-axis.

FIG. 2. Left: the equatorial ðθ ¼ π=2Þ surface of section for the bound orbits of a test particle with energy E ¼ 0.95μ, angular
momentum Lz ¼ 3Mμ and mass ratio μ=M ¼ 10−6 around a non-Kerr object with angular momentum a ¼ 0.99M, for αQ ¼ −1.8 and
α22 ¼ 0. Right: the boxed (red) region from the previous surface of section, where one of the Birkhoff chains of islands is more visible.
The Birkhoff chain shown is associated with stable periodic orbits of 1=2-resonance.
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nonresonant orbit that pierces the equatorial plane exactly
once, thus defining the fixed center u0, is shown in blue.
A more practical way of distinguishing between ordered,

periodic, and chaotic orbits is by inspecting the Poincaré
maps, i.e., surfaces of section which trace points where
orbits intersect some particular phase subspace. The suc-
cessive intersections of ordered orbits lie along curves
which encircle the fixed center u0, while the intersections of
resonant orbits form chains of islands of stability which do
not surround this point. The successive iterates of chaotic
orbits are scattered irregularly. Fig. 2 shows such a Poincaré
map in the equatorial plane for the particular case
αQ ¼ −1.8, where the dot in the center of the left panel
shows the fixed central point u0. A zoom-in of the Birkhoff
island of resonance 1=2 is shown in the right-hand panel,
which reveals the nesting property common to islands
surrounding resonant geodesics. Points exist between the
successive islands of stability where unstable orbits of
resonance 1=2 and 2=3 emanate. Around these unstable
points, the orbits are chaotic and their intersections on the
Poincaré map are irregularly scattered. Such chaotic orbits
form an extremely thin layer, which surrounds the Birkhoff
islands and are not visible in Fig. 2.
A systematic way of discovering islands of stability is by

calculating the rotation numbers, which we show in Fig. 3
as a function of radius for some initial momenta _r, along
successive orbits at various distances from the fixed center
u0 using the method described in Sec. II for some large N.
In general, for an integrable system such as Kerr geodesics,
the rotation curve is strictly monotonic and smooth (cf. the
solid curve in Fig. 4 below). For αQ ≠ 0 the rotation curve
exhibits plateaus, designating the crossing into a Birkhoff
chain of stable resonant orbits, and inflection points,
designating the crossing into an unstable point where
chaotic orbits emanate and surround the associated islands

of stability. For _r ¼ 0 (left panel of Fig. 3) we can clearly
distinguish a plateau associated with the 1=2-resonant orbit,
where νθ ¼ 1=2, and an inflection point associated with the
2=3-resonant orbit, where νθ ¼ 2=3. The Birkhoff islands
of 2=3-resonance, which lie radially before the fixed center,
do not cross the _r ¼ 0 axis and therefore cannot be
accessed unless _r ≠ 0. In the right-hand panel of Fig. 3,
a plateau associated with the 2=3-resonant orbit can,
indeed, be seen along the _r ¼ 0.1 line. It is worth noting
that, however, the 2=3-resonant orbit occurring at large
(r=M ∼ 13) radii (that lie beyond the fixed center) can still
be observed in the νθ curve for _r ¼ 0, though is not shown
(see Fig. 2).

FIG. 3. Left: the rotation curve as a function of radius along the line _r ¼ 0 for the surface of section presented in Fig. 2. The plateau
presented in the inlay shows the boxed (red) region around the 1=2-resonance. Right: the rotation curve for the surface of section
presented in Fig. 2 along the line _r ¼ 0.1. The plateau is associated with the stable periodic orbits of 2=3-resonance.

FIG. 4. The rotation curve as a function of radius along the line
_r ¼ 0 for a surface of section for bound orbits of a test particle
with energy E ¼ 0.95μ, angular momentum Lz ¼ 3Mμ, and mass
ratio μ=M ¼ 10−6 around a deformed Kerr object with angular
momentum a ¼ 0.99M, αQ ¼ 0 and α22 ¼ 0 (solid curve), α22 ¼
−2.5 (dashed curve) and α22 ¼ 2.5 (dotted curve).
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Sizes and locations of resonant islands of stability
depend on both the physical parameters of the metric
(11) and the parameters of the orbit itself. Our analysis
finds that the most prominent islands (the ones with the
largest width) are those with the smallest multiplicities (i.e.,
2=3-resonance), as expected. A similar conclusion was
found in Ref. [28] for the Manko-Novikov spacetime; see
also Ref. [35], where prominence is shown to be related to
the proximity of the island to the neighboring chaotic sea.

B. Deformed Kerr spacetime

For αQ ¼ 0 though with α22 ≠ 0, the metric (11) admits
integrable geodesic equations, even though the spacetime
geometry is not Kerr. The deformation parameter α22
couples to the rotation of the black hole and trivially
vanishes in the static limit. The impact of α22 on the CZV is
similar to that of αQ: the CZV volume (for fixed E and Lz)
decreases (increases) when α22 is positive (negative).
Furthermore, since the Carter symmetry is preserved, the
equatorial Poincaré map is qualitatively similar to that of a
particle orbiting in Kerr spacetime. As expected from the
KAM and Poincaré-Birkhoff theorems, we find no resonant
or chaotic orbits, and no Birkhoff islands of stability form
anywhere. The rotation curves presented in Fig. 4 dem-
onstrate the absence of plateaus and inflection points. For
comparison, we include the rotation curve of geodesics in
Kerr spacetime (solid line) in this figure. Aside from the
fact that the rotation curve produced by a positive α22
(dotted curve) has different monotonicity than the ones of
Kerr or those with α22 < 0 (dashed curve), the qualitative
features of an integrable system remain. The only distinc-
tive feature of a deformed Kerr black hole relative to Kerr
from a dynamical system perspective, therefore, is the
modification of the orbital evolution through an adjustment
of the metric components gμν appearing within Hamilton’s
equations (3)–(6): the only pertinent information one can
obtain from rotation curves is that the system is integrable.

V. GRAVITATIONAL WAVES

In this section, we investigate GW emission from the
orbits considered in the previous section. Although the
metric (11) under consideration is not a solution to any
known theory of gravity, we treat the problem in the
Einstein-quadrupole approximation to understand the phe-
nomenology of the waveforms. The uncertainties generated
at this level of approximation likely eclipse any modified
gravity adjustments that might alter the quadrupole for-
mula [58] (though cf. Refs. [64,65]). A more sophisticated
approach would be to solve the (appropriately generalized,
see, e.g., [66]) Teukolsky equation directly or employ the
“kludge” waveforms developed in Ref. [67]. In any case,
we emphasize that our goal is not to present realistic
waveforms to compare with upcoming LISA data, but

rather to investigate whether the imprint of integrability
manifests, in principle, within a signal at this level.
Ignoring current-multipole contributions, the radiative

component of a metric perturbation at large luminosity
distance R from a source T can be written, in the transverse-
traceless (TT) gauge, as [61,68]

hTTij ¼ 2

R

d2Iij
dt2

ð15Þ

where Iij is the symmetric and trace-free (STF) mass
quadrupole associated to the perturbation,

Iij ¼
�Z

d3xxixjTttðt; xiÞ
�
STF

; ð16Þ

and t is the time measured by the detector. The tt-
component of the stress-energy tensor for a point-particle
with trajectory ZðtÞ reads [69]

Tttðt; xiÞ ¼ μδð3Þ½xi − ZiðtÞ�: ð17Þ

The Boyer-Lindquist coordinates used to describe the
metric (11) asymptotically reduce to spherical coordinates,
so that suitable Cartesian coordinates

x ¼ r sin θ cosϕ; y ¼ r sin θ sinϕ; z ¼ r cos θ;

ð18Þ

can be identified, and related to the position of a space-
borne detector at infinity. In reality, of course, the detector
is not located at infinity but at some finite R, so this
prescription is not strictly speaking valid, though has been
shown to reasonably approximate EMRI waveforms pro-
duced using more sophisticated approaches [67].
In GR, an incoming GW can be projected onto its

mutually orthogonal þ and × polarization states by intro-
ducing two vectors p ¼ n × Z=jn × Zj and q ¼ p × n,
which are defined in terms of a unit vector n which points
from the source to the detector. In terms of the polarization
tensors

ϵijþ ¼ pipj − qiqj; ϵij× ¼ piqj þ pjqi; ð19Þ

the corresponding GW metric perturbation is

hijðtÞ ¼ ϵijþhþðtÞ þ ϵij×h×ðtÞ; ð20Þ

with

hþðtÞ ¼
1

2
ϵijþhijðtÞ; h×ðtÞ ¼

1

2
ϵij×hijðtÞ: ð21Þ

In terms of the position, ZiðtÞ, velocity, viðtÞ ¼ dZi=dt,
and acceleration vectors aiðtÞ ¼ d2Zi=dt2, one finds [68]
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hþ;×ðtÞ ¼
2μ

R
ϵþ;×
ij ½aiðtÞZjðtÞ þ viðtÞvjðtÞ�: ð22Þ

To build some concrete example waveforms, we consider
two orbits, with initial conditions
(a) ½rð0Þ; _rð0Þ; θð0Þ� ¼ ð5.64M; 0.1; π=2Þ,
(b) ½rð0Þ; _rð0Þ; θð0Þ� ¼ ð7M; 0; π=2Þ,
where we fix the parameters μ=M ¼ 10−6, a ¼ 0.99M,
E ¼ 0.95μ, and Lz ¼ 3Mμ. The remaining initial condition
for _θð0Þ is fixed by the constraint equation (7). To test the
effect of nonintegrability and deformability of the black
hole to the gravitational waveform, we take certain choices
of the parameters αQ and α22. We remind the reader that a
Kerr black hole is recovered for αQ ¼ α22 ¼ 0. We focus on
the choice of αQ ¼ −1.8; α22 ¼ 0 to simulate bound orbit
stages of a non-Kerr EMRI and α22 ¼ −2.2; αQ ¼ 0 to
simulate deformed Kerr EMRIs. These choices are made so
that the deformed and non-Kerr geodesics, for initial
conditions (a) and (b), have the same rotation number
(to within ≈0.1%). Moreover, we note that the geodesic of
case (a) in the non-Kerr spacetime belongs to an island of
stability. In both cases, we evolve the geodesic equations

for a total time of tevol ¼ 2 × 106M ≈ 0.3 × year, corre-
sponding roughly to ∼104 cycles. For simplicity, we fix the
location of the detector to be on the z-axis at a distance of
R ¼ 8 kpc (the approximate distance to Sgr A�) relative to
the source.
In Fig. 5 we present theþ polarization waveforms for the

cases (a) (left panels) and (b) (right panels) discussed
above. The top and bottom rows show the non-Kerr (red
curve) and deformed-Kerr (blue curve) waveforms, respec-
tively, where we overplot Kerr waveforms (black curves)
with vanishing deformation parameters (αQ ¼ α22 ¼ 0) for
comparison. For each case, the test particles begin their
orbits, on their respective spacetimes, with the same initial
conditions. If one compares the waveforms between orbits
in the Kerr and non-Kerr spacetimes, their distinction is
visually obvious after only half a cycle has passed. The
difference between the waveforms initially manifests itself
in the form of dephasing (see Sec. V. A below), though after
a full cycle develops into something quite marked: while
maximum amplitudes are relatively unchanged, peak and
trough locations are swapped or significantly shifted
relative to Kerr. In any case, a substantial dephasing effect

FIG. 5. Plus polarization waveforms of a test particle with E ¼ 0.95μ, Lz ¼ 3Mμ and initial conditions (a) (left column) and (b) (right
column), orbiting a Kerr black hole (black solid curves), a non-Kerr spacetime with αQ ¼ −1.8 (red dashed curves) and a deformed
Kerr black hole with α22 ¼ −2.2 (blue dashed curves) for mass ratio μ=M ¼ 10−6 and spin parameter a ¼ 0.99M. The source distance is
set as R ¼ 8 kpc, while the particle’s mass is chosen μ ¼ 2 M⊙ to simulate a stellar mass black hole or a neutron star orbiting around
Sgr A�.
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should be evident in upcoming GW data [68,71]. A more
thorough analysis on the detectability of the parameters αQ
and α22 is provided in Sec. V. B below.

A. Frequency spectrum and dephasing

In this section, we compute frequency-space spectra for
the gravitational waveforms shown in Fig. 5. This is
achieved by implementing a simple Fourier transform on
the underlying data from the numerical geodesic evolution.
Comparative results are shown in Fig. 6. We see that the

frequency shifts relative to Kerr are visually significant,
nevertheless the deformed- and non-Kerr cases are remark-
ably similar (frequency spikes occurring within ≲0.1% of
each other, which is similar to the relative difference of
rotation numbers between those cases). We also observe
that the waveforms are multiperiodic (as in [63] for geo-
desics on the Manko-Novikov background), which is an
expected feature of generic, nonequatorial orbits [70].
Despite similarities in the spectra, the frequency shifts

seen above lead to a cumulative dephasing in the signals as
the orbits evolve. To estimate the extent of dephasing, we

employ a Hilbert transform. In general, given a real analytic
function u, the Hilbert transform, HðuÞ, is given by

HðuÞðtÞ ¼ 1

π

Z
∞

−∞
dτ

uðτÞ
t − τ

: ð23Þ

In particular, the transform is designed so that the complex
function uþ iHðuÞ satisfies the Cauchy-Riemann equa-
tions, and is thus holomorphic. Expressing the function in
polar form, (e.g., rueiθu ) therefore, allows for its phase to be
read off from the θuðtÞ term within the complex exponen-
tial. Given two functions u1 and u2 which, after taking their
respective Hilbert transforms, have polar forms ru2e

iθu2 and
ru2e

iθu2 , respectively, allows for a determination of the
relative phase difference between them: a simple applica-
tion of de Moivre’s theorem gives the phase difference
as θu2ðtÞ − θu1ðtÞ≡ φðtÞ.
Cumulative dephasings in the above sense are shown in

Fig. 7. We see that the phase difference between the
two signals oscillates rapidly. In both cases (a) and (b),
the phase difference is almost periodic for early times

(a) (b)

FIG. 6. Comparison of absolute values of the Fourier transforms of the gravitational wave component hþðtÞ resulting from Kerr
(α22 ¼ αQ ¼ 0), deformed Kerr (α22 ¼ −2.2) and non-Kerr (αQ ¼ −1.8) EMRI systems, with initial conditions ðaÞ (top and bottom left
plots) and ðbÞ (top and bottom right plots), in the frequency domain. For these cases we have fixed the orbital parameters as
μ=M ¼ 10−6, a ¼ 0.99M, E ¼ 0.95μ and Lz ¼ 3Mμ. The amplitude scaling is arbitrary and the evolution time of the EMRIs is
tevol ¼ 0.3 × year, which corresponds roughly to ∼104 cycles.
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(left panels), indicating that the non-Kerr waveform is
unlikely to be easily distinguished from the deformed-Kerr
counterpart for short observation times. However, we see
that for t≳ 104M (corresponding to ≳1 day in real time
observation; right panels) the phase difference ceases to be
periodic and therefore a significant dephasing accumulates.
The rate at which dephasing occurs is sensitive to the initial
conditions, as we see that the approximate periodicity in
case (a) persists for ∼ twice as long. In either case, such a
dephasing means that LISA may be able to distinguish
between the two spacetimes [71].

B. Parameter estimation

In this section we provide some estimates for the
detectability of the deformed- and non-Kerr parameters
by LISA from a hypothetical data stream, s. In general, we
assume that s includes both some stationary, Gaussian
noise, and an EMRI waveform. Provided that the signal-to-
noise ratio (SNR) is high enough [72], the prevalance of
beyond-Kerr parameters λi can be estimated by computing
a relevant Fisher metric built from expectations of random
variables associated with hþ;× and the noise within the

stream [68,73]. To achieve this, we calculate the pattern
response functions relative to the GW polarizations found
in Sec. V and use the spectral power densities relevant for
LISA. Details of the computation and the assumptions on
the noise, LISA’s response function, and other relevant
aspects are given in the Appendix.
The critical quantity of interest is ultimately the precision

Δλi [defined in Eq. (A17) from the inverse components of
the Fisher metric] with which one may measure the
parameter vector λ ¼ ðαQ;α22Þ (for a fixed mass and spin).
To achieve this in practice, we evolve a large set of orbits
for various parameter values and interpolate on them to
build “total” waveforms hþ;×ðαQ; α22; tÞ from which the
relevant inner-products and Fourier transforms can be
defined.
Table I shows relative precisions between the deformed-

and non-Kerr parameters for a fixed orbit with initial
conditions (b) for various λ. The relevant ratio of precision
ΔαQ=Δα22 is sensitive to the choice of the deforma-
tion parameters. When the deformation parameters satisfy
αQ < α22 then α22 can be estimated more accurately than
αQ, while for αQ > α22 we have that αQ can be estimated

(a)

(b)

FIG. 7. Relative phase φ between the gravitational wave component hþðtÞ of deformed Kerr (α22 ¼ −2.2) and non-Kerr (αQ ¼ −1.8)
EMRI systems with orbital parameters μ=M ¼ 10−6, a ¼ 0.99M, E ¼ 0.95μ, and Lz ¼ 3Mμ, and initial conditions ðaÞ (top left and
right plots) and ðbÞ (bottom left and right plots). The left column displays the relative phases for earlier times while the right column
displays the relative phases for later times.
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better than α22. Our analysis finds that neither parameter
can be estimated better than the other when the deforma-
tions are roughly equal ðαQ ≈ α22Þ; the deformation param-
eters are not “orthogonal” with respect to the Fisher
information metric. This latter effect is likely a conse-
quence of the large spin value we have chosen, i.e.,
a ¼ 0.99M. In particular, since α22 couples to the spin,
its observational prominence scales directly with the value
of a. Had we considered a slower system, the relative
precisions would be skewed in favor of detecting αQ, which
introduces a deformation to the metric (11) even in the
static limit. Although supermassive black holes tend to be
rapidly rotating, a sizeable number of the highest mass
systems with M ≳ 4 × 107 M⊙ have intermediate spin
values 0.4≲ a ≲ 0.8 [74].

VI. DISCUSSION

The Kerr metric uniquely describes asymptotically flat
and astrophysically stable black holes in GR [12,13].
However, several theoretical and observational issues hint
at new gravitational physics at the ultraviolet scale [17],
implying that astrophysical black holes may have non-Kerr
hairs (e.g., [38]). These features might theoretically mani-
fest in a number of ways, one interesting possibility of
which is that some fundamental symmetries are broken,
such as the Carter symmetry which implies the integrability
of the geodesic equations [46,47]. In this paper we explore
signatures of spacetime symmetries in orbital dynamics
(Sec. III), and investigate whether nonintegrability imprints
signatures onto GW signals associated with EMRIs for a
particular, new metric (11) first appearing in this work.
Under optimistic astrophysical assumptions, LISA is
expected to detect GWs from ∼103 EMRI events per year
[75], and it is therefore important to understand how
beyond-Kerr features or spacetime symmetries might
evince themselves in upcoming data.
This work builds on previous studies [27–30,35] by

introducing a new spacetime metric (11), which contains

two free parameters, one of which leads to a symmetry-
preserving deformation of the Kerr spacetime, while the
other explicitly breaks the Carter symmetry and leads to
nonintegrable dynamics (see Sec. II). This spacetime
admits several desirable properties, such as possessing a
horizon and respecting post-Newtonian constraints (see
Sec. III), and allows for the “switching off” of the Carter
symmetry in a simple, precise way. Geodesics within this
spacetime were studied numerically, and clear nonintegr-
able signatures in the orbital dynamics were found when
the Carter parameter was broken, most notably in the
rotation numbers; see Fig. 3.
Although the distinction between Kerr and beyond-Kerr

geodesics is apparent in our analysis, no obvious imprint is
carried over into the gravitational waveforms of deformed
and non-Kerr geodesics besides a substantial dephasing
(occurring roughly after just a day of real time observation;
see Fig. 7.). The Fourier spectra (Fig. 6) of the resulting
GWs from deformed and non-Kerr EMRIs, with similar
rotation numbers, are practically indistinguishable, and a
Fisher metric analysis indicates that both deformation
parameters can be approximated with similar precision.
This is likely due to our limited prescription.
Indeed, a full study of a realistic, non-Einstein EMRI

problem is beyond the scope of this work, and may be the
reason why we only see limited impact. For example, we do
not include: radiative backreactions [76–78], self-gravity or
finite-size effects for the companion [79,80], current,
higher-mass, or post-Newtonian multipole moments (i.e.,
no Teukolsky equation) [61,81], exact Cartesian-like coor-
dinates but rather only asymptotically Cartesian ones when
evaluating ZðtÞ (18) [67], Solar system motions or orbital
systematics which influence the detector orientation n [68],
non-Einstein corrections for GW formulas [58,64–66],
internal spin or angular momentum for the companion
(i.e., no Mathisson-Papapetrou-Dixon equations) [32–35],
or 3-body interactions with other objects near the super-
massive black hole or its accretion disk [18–20]. These
effects will be incorporated in a future study. In any case,
the work presented here demonstrates that beyond testing
the validity of GR, GWs from EMRIs may be able to also
probe fundamental aspects of spacetime, such as their
symmetries.
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APPENDIX: CALCULATION OF THE FISHER
INFORMATION METRIC

In this Appendix, which closely follows the work of
Canizares et al. [68] and references therein, we present
details of the calculation of the Fisher metric used in
Sec. V. B.
In general, LISA’s response to an incident GW is

determined by a vector hα which depends on the antenna
pattern response functions Fþ;×

I;II and the plus and cross
polarizations through [9]

hαðtÞ ¼
ffiffiffi
3

p

2
½Fþ

α ðtÞhþðtÞ þ F×
α ðtÞh×ðtÞ�; ðA1Þ

where α ¼ ðI; IIÞ is an index representing the different
independent channels of the interferometer, and

Fþ
I ¼ 1

2
ð1þ cos2 θÞ cosð2ϕÞ cosð2ψÞ

− cos θ sinð2ϕÞ sinð2ψÞ; ðA2Þ

F×
I ¼ 1

2
ð1þ cos2 θÞ cosð2ϕÞ cosð2ψÞ

þ cos θ sinð2ϕÞ sinð2ψÞ; ðA3Þ

Fþ
II ¼

1

2
ð1þ cos2 θÞ sinð2ϕÞ cosð2ψÞ

þ cos θ cosð2ϕÞ sinð2ψÞ; ðA4Þ

F×
II ¼

1

2
ð1þ cos2 θÞ sinð2ϕÞ sinð2ψÞ

− cos θ cosð2ϕÞ cosð2ψÞ: ðA5Þ

Assuming a fixed orientation n ¼ ð0; 0; 1Þ and that the
primary hole’s spin polar and spin azimuthal angles remain
fixed at the equatorial plane for simplicity, as in Sec. V, the
angles ðθ;ϕ;ψÞ (not to be confused with Boyer-Lindquist
coordinates) introduced above read (see Ref. [68] for
formulas in the general case) θðtÞ ¼ π=3, ϕðtÞ ¼ 2πt=Tþ
π=2, and ψ ¼ −2πt=T, where T ¼ 1 year is the orbital
period of the Earth around the Sun.
Suppose that the data stream observed by the detector,

sαðtÞ, contains both an EMRI signal hαðtÞ and some noise
nαðtÞ, viz.

sαðtÞ ¼ hαðtÞ þ nαðtÞ: ðA6Þ

To make progress, we assume that nα is both stationary
and Gaussian. We further assume that the two data streams
(i.e., α ¼ I and α ¼ II) are uncorrelated and that the power
spectral density of the noise for LISA, Sα;nðfÞ, is the same

in each channel, SI;nðfÞ ¼ SII;nðfÞ, so that we may drop
the subscript α on this quantity. The Fourier components of
the noise are therefore given by

hñαðfÞñ�βðf0Þi ¼
1

2
δαβδðf − f0ÞSnðfÞ; ðA7Þ

where h·i denotes an “ensemble average” over all possible
realizations, the asterisk denotes complex conjugation, and
the Fourier transform is denoted with an overhead tilde.
The power spectral density is given explicitly by [9]

Sn ¼ min fSinstn þ Sexgaln ; Sinstn þ Sgaln þ Sexgaln g; ðA8Þ

where Sinstn ðfÞ denotes the instrumental noise while Sgaln ðfÞ
and Sexgaln ðfÞ denote “confusion” noises from galactic and
extra-galactic binaries, respectively. These quantities have
the following functional forms [68]

Sinstn ðfÞ ¼ exp

�
κT−1

mis
dN
df

�
ð9.18 × 10−52f−4

þ 1.59 × 10−41 þ 9.18 × 10−38f2Þ Hz−1; ðA9Þ

Sgaln ðfÞ ¼ 2.1 × 10−45
�

f
1 Hz

�
−7=3

Hz−1; ðA10Þ

and

Sexgaln ðfÞ ¼ 4.2 × 10−47
�

f
1 Hz

�
−7=3

Hz−1; ðA11Þ

with dN=df ≈ 2 × 10−3ð1 Hz=fÞ11=3 representing the
number-density of galactic binaries with μ≲M⊙ per
unit frequency, Tmis denoting the lifetime of the LISA
mission (which we take to be 10 years), and κ ≈ 4.5
being the mean number of frequency bins that are lost
when each galactic binary is fitted out from the
data [9,68].
By virtue of the Gaussian noise assumption, the prob-

ability that a given EMRI GW signal h is present within the
data stream s reads

pðsjhÞ ∼ exp

�
−
1

2
ðs − hjs − hÞ

�
; ðA12Þ

where ðajbÞ denotes the inner product on the vector
space of signals associated with the power spectral density
SnðfÞ [82],

ðajbÞ ¼ 2
X
α

Z
∞

0

df
ã�αðfÞb̃αðfÞ þ ãαðfÞb̃�αðfÞ

SnðfÞ
: ðA13Þ

In general, the best-fitting waveform h is defined as the
one which maximizes ðsjhÞ. In practice, however, one
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considers a family of waveform templates that depend
on a set of parameters λi (say), and searches for those λi

that maximize the probability of a certain noise realiza-
tion [68]. If the SNR is sufficiently large, the best-fit
parameters λi0 can safely be assumed to follow a Gaussian
distribution that is centered around the true values. Taking
λi ¼ λi0 þ δλi, we expand expression (A12) around these
best-fit values to find

pðδλÞ ∼ exp
�
−
1

2
Γjkδλ

jδλk
�
; ðA14Þ

where

Γjk ¼
�∂h
∂λj

���� ∂h∂λk
�

ðA15Þ

is the Fisher information metric [73], whose inverse is the
covariance matrix for the waveform parameters, viz.

hδλjδλki ¼ ðΓ−1Þjk½1þOðSNR−1Þ�: ðA16Þ
Finally, using expression (A16), we are in a position to

estimate the precision Δλi with which one may measure the
parameter vector λi:

Δλi ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
: ðA17Þ
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