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Black hole photon spheres or light rings are closely linked to astronomical phenomena, such as
gravitational waves and the shadow in spherically symmetric or axisymmetric spacetime. In Cunha and
Herdeiro [Phys. Rev. Lett. 124, 181101 (2020)], a topological argument was applied for the four-
dimensional stationary, axisymmetric, asymptotically flat black hole, and the result indicates that at least,
there exists one standard light ring outside the black hole horizon for each rotation sense. Inspired by it,
in this paper, we would like to consider a similar issue for a nonrotating, static, spherically symmetric
black hole not only with asymptotically flat behavior, but also with AdS and dS behaviors. Following
Duan’s topological current ϕ-mapping theory, the topological current and charge for the photon spheres
are introduced. The topological current is nonzero only at the zero point of the vector field determining
the location of the photon sphere. So each photon sphere can be assigned a topological charge.
Considering the full exterior region, we find the total topological charge always equals −1. This result
confirms that there exists at least one standard photon sphere outside of the black hole not only in
asymptotically flat spacetime, but also in asymptotically AdS and dS spacetime. Then we apply the study
to the dyonic black holes. We observe that even when more photon spheres are included, the total
topological charge stays unchanged. Moreover, for a naked singularity, it has a vanishing topological
charge, indicating that the black hole and naked singularity are in different topological classes.
It is expected that this novel topological argument could provide an insightful idea on the study of the
black hole photon spheres or light rings, and further cast new light on the black hole astronomical
phenomena.

DOI: 10.1103/PhysRevD.102.064039

I. INTRODUCTION

The observations of gravitational waves [1] and black
hole shadow image [2–4] mark a new era of astrophysical
observations. These provide powerful tests to uncover the
spacetime structure near a black hole horizon.
In the ringdown stage of a black hole merge, the

radiating gravitational waves can be understood by the
quasinormal modes. It is also well known that in the eikonal
limit, the quasinormal modes are linked to the photon
spheres (PSs) or light rings (LRs) of the nonrotating or
rotating black holes (for recent progress, see Refs. [5–8]).
On the other hand, the formation of a black hole shadow
mainly depends on the existence of a PS or LR rather the
horizon. Moreover, the relativistic images of a light source
around a compact object are closely dependent on a PS and
LR. Different relations between these observable phenom-
ena were studied in Refs. [9–14]. All the results confirm
that a PS and LR play an extremely important role in

astronomical observation. Therefore, it is valuable to
investigate the characteristic properties of PS or LR for
a certain spacetime.
In Ref. [15], Cunha, Berti, and Herdeiro considered the

LR stability for ultracompact objects. Based on the
Brouwer degree of a continuous map, they found that
the LRs of the compact objects always come in pairs. This
introduces a novel scheme to investigate the LRs by using a
topological argument, while ignoring the specific field
equations. This result is proved to be generally true,
however, there is an important exception when the degen-
erate light rings are present [16,17]. Recently, Cunha and
Herdeiro [18] put forward a big step, and generalized the
study to a four-dimensional stationary, axisymmetric,
asymptotically flat black hole spacetime. They proved that
there exists, at least, one standard LR outside the black hole
horizon for each rotation sense by calculating the winding
number of the vector field defined by an effective potentials
on the orthogonal (r, θ) space. In addition, following their
topological argument, a horizonless ultracompact object,
such as the boson star, will show an even number of*weishw@lzu.edu.cn
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nondegenerate LRs. A valuable issue concerning the
topological argument is to consider the nonrotating black
holes. In addition to the asymptotically flat case [15], the
study can also be extended to these black holes with AdS
and dS behaviors. This can help us to understand the
topological property of PSs, and to uncover the influence of
black hole spin on the PS topology.
From an another point of view, we in Ref. [19] also

introduced an interesting topological approach to inves-
tigate the black hole shadow caused by the existence of the
LRs or PSs. Each shadow shape is endowed with a
topological covariant quantity. For a black hole shadow,
it equals one, while it deviates one for a naked singularity.
For a multiple disconnected shadow pattern, it can produce
the number of the shadow. So through the topological
quantity, one can distinguish different spacetimes. This also
provides us a distinctive approach to study the black hole
shadow from the topological argument.
In Refs. [15,18], the authors calculated the winding

number, a important topological quantity, of the vector field
around the zero point of the vector field, where a LR is
located. Thus the topological properties of the spacetime
were revealed by that topological quantity. Similarly, there
is a famous theory known as Duan’s topological current
ϕ-mapping theory [20,21], which starts the topological
current and then the corresponding topological charge
related to the winding number is given. This powerful
approach has shown insightful ideas into different physical
systems, such as gauge theories, superconduction, monop-
oles, magnetic skyrmions, knots, cosmological strings,
quantum Hall effect, and so on. Thus, it provides us a
natural and effective tool to investigate the topological
structure of PSs. In this paper, we will follow Refs. [20,21]
to study the topology of PSs in a general static, spherically
symmetric black hole with asymptotically flat, AdS, dS
behaviors of boundary.
The paper is organized as follows. In Sec. II, we give a

brief introduction of PS for a nonrotating black hole. Then
we follow Refs. [15,18] and introduce the vector field
through a regular potential function outside a black hole
horizon on the (r, θ) plane. Then based on the vector field,
we in Sec. III present the topological current and charge. In
particular, following the topological current ϕ-mapping
theory, we express the topological current in terms of a δ
function. The inner structure of the topological charge is
also investigated. In Sec. IV, we compute the topological
charge for a black hole with asymptotically flat, AdS, and
dS behaviors of boundary. All these black holes are found
to admit a minus one topological charge indicating the
existence of at least one standard PS. Next, in Sec. V, as a
specific example, we calculate the topological charge for
the dyonic black holes. Three different cases are examined
in details. After that, we briefly discuss the annihilation of
PSs in Sec. VI. Finally, we summarize and discuss our
results in Sec. VII.

II. BLACK HOLES AND PHOTON SPHERES

In this paper, we only consider the static, spherically
symmetric black hole. The black hole solution is assumed
to be in the following form:

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ hðrÞðdθ2 þ sin2θdφ2Þ: ð1Þ

Generally, the radius rh of the black hole horizon is the
largest root of gðrhÞ ¼ 0 or fðrhÞ ¼ 0. On the other hand,
by solving the null geodesics, one can obtain the radial
motion on the equatorial plane

_r2 þ Veff ¼ 0; ð2Þ

where the effective potential is given by

Veff ¼ gðrÞ
�

L2

hðrÞ −
E2

fðrÞ
�
: ð3Þ

Here E and L are the energy and angular momentum of
photon, which are related with the Killing vector fields ∂t
and ∂ϕ, respectively. Since this solution is spherically
symmetric, there exists a PS at rps determined by

Veff ¼ 0; ∂rVeff ¼ 0: ð4Þ

Solving them, we find that the radius of the PS satisfies the
following equation:

�
fðrÞ
hðrÞ

�0

r¼rps

¼ 0; ð5Þ

where the prime indicates the derivative with respect to r.
Moreover, ∂r;rVeffðrpsÞ <ð>Þ0 indicates the PS is unsta-
ble (stable). Carrying out the derivative, (5) reduces to

fðrÞhðrÞ0 − fðrÞ0hðrÞ ¼ 0: ð6Þ

It is worth noting that at the horizon where fðrhÞ ¼ 0, the
first term vanishes, while the second term is generally
nonzero. So the locations of rps and rh are different.
However, when a black hole has more than one horizon,
there will be the extremal black hole case, where two
horizons coincide. Or for the extremal black hole case, we
have both fðrhÞ ¼ 0 and fðrhÞ0 ¼ 0. Significantly, con-
dition (6) is satisfied. So the PS and the extremal black hole
horizon naturally coincide for the extremal black hole.
In order to study the topological property of the PS, we

introduce the everywhere regular potential function [15]

Hðr; θÞ ¼
ffiffiffiffiffiffiffiffi−gtt
gφφ

r
¼ 1

sin θ

�
fðrÞ
hðrÞ

�1
2

: ð7Þ
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Obviously, the radius of the PS locates at the root of
∂rH ¼ 0. Similar to Ref. [18], we can introduce a vector
field ϕ ¼ ðϕr;ϕθÞ [22]

ϕr ¼ ∂rHffiffiffiffiffiffi
grr

p ¼
ffiffiffiffiffiffiffiffiffi
gðrÞ

p ∂rH; ϕθ ¼ ∂θHffiffiffiffiffiffi
gθθ

p ¼ ∂θHffiffiffiffiffiffiffiffiffi
hðrÞp : ð8Þ

Although the circular photon orbit for a spherically
symmetric black hole is a PS, which is independent of
the coordinate θ, here we aim to investigate the topological
property of the circular photon orbit, so we preserve θ in
our discussions. Note that the vector can also be reformu-
lated as

ϕ ¼ jjϕjjeiΘ; ð9Þ

where jjϕjj ¼ ffiffiffiffiffiffiffiffiffiffiffi
ϕaϕap

. However, in terms of ϕ, a PS occurs
at ϕ ¼ 0. This implies that ϕ in (9) is not well defined for
the PS, so we treat the vector as ϕ ¼ ϕr þ iϕθ. The
normalized vectors are defined as

na ¼ ϕa

jjϕjj ; a ¼ 1; 2; ð10Þ

with ϕ1 ¼ ϕr and ϕ2 ¼ ϕθ.

III. TOPOLOGICAL CURRENT AND CHARGE

In this section, by treating the PSs as the defects located
at the zero points of ϕ, we will study their topological
current and charge following Duan’s ϕ-mapping topologi-
cal current theory.
At first we define a superpotential

Vμν ¼ 1

2π
ϵμνρϵabna∂ρnb; μ; ν; ρ ¼ 0; 1; 2: ð11Þ

Here xμ ¼ ðt; r; θÞ. Note that one can reformulate the
coordinate t with other black hole parameters as we will
show in what follows. It is clear that the superpotential is an
antisymmetric tensor Vμν ¼ −Vνμ. Employing the super-
potential, we introduce a topological current

jμ ¼ ∂νVμν ¼ 1

2π
ϵμνρϵab∂νna∂ρnb: ð12Þ

It is easy to find that this topological current satisfies

∂μjμ ¼ 0: ð13Þ

The component j0 is the charge density. Integrating it, we
will obtain the topological charge at given Σ,

Q ¼
Z
Σ
j0d2x: ð14Þ

In the next, we aim to uncover the characteristic property of
the topological current jμ. Inserting (10) into (12), we have

jμ ¼ 1

2π
ϵμνρϵab

∂
∂ϕc

�
ϕa

jjϕjj2
�
∂νϕ

c∂ρϕ
b: ð15Þ

Note that ∂ ln jjϕjj
∂ϕa ¼ ϕa

jjϕjj2, we can express the topological

current as

jμ ¼ 1

2π
ϵμνρϵab

� ∂
∂ϕc

∂
∂ϕa ln jjϕjj

�
∂νϕ

c∂ρϕ
b: ð16Þ

In terms of the Jacobi tensor

ϵabJμ
�
ϕ

x

�
¼ ϵμνρ∂νϕ

a∂ρϕ
b; ð17Þ

we get

jμ ¼ 1

2π
ðΔϕa ln jjϕjjÞJμ

�
ϕ

x

�
; ð18Þ

where Δϕa ¼ ∂
∂ϕa

∂
∂ϕa. Using the two-dimensional Laplacian

Green’s function in ϕ-mapping space

Δϕa ln jjϕjj ¼ 2πδðϕÞ; ð19Þ

we have the topological current

jμ ¼ δ2ðϕÞJμ
�
ϕ

x

�
: ð20Þ

From this expression, we are clear that jμ is only nonzero at
the zero points of ϕa, i.e., ϕaðxi; tÞ ¼ 0. According to the
implicit function theorem [23], when the Jacobi determi-
nant J0ðϕxÞ ≠ 0, one has ð∂μϕ

aÞdxμ ¼ 0. Then from the
Jacobi tensor (17), it is easy to obtain

ϵμνρJμ
�
ϕ

x

�
dxν ¼ 0: ð21Þ

Multiplying it by ϵλσρ, one can arrive at

dxμ

JμðϕxÞ
¼ dxν

JνðϕxÞ
: ð22Þ

After a simple calculation, we have

ui ¼ dxi

dt
¼ JiðϕxÞ

J0ðϕxÞ
: ð23Þ

Then from (20), the components of jμ can be expressed in
the following form:
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ji ¼ δ2ðϕÞJ0
�
ϕ

x

�
ui; ð24Þ

j0 ¼ δ2ðϕÞJ0
�
ϕ

x

�
: ð25Þ

Therefore, the topological charge reads

Q ¼
Z
Σ
δ2ðϕÞJ0

�
ϕ

x

�
d2x: ð26Þ

Due to the δ function, the charge is only nonzero at the zero
point of ϕ, where the PS locates, so we can assign each PS
with a topological charge Q. When Σ covers a single zero
point, a detailed study shows that the charge Q exactly
equals the winding number. If Σ covers several zero points,
Qwill be the sum of the winding number at each zero point.
Therefore this result obtained from Duan’s ϕ-mapping
topological current theory is the same as that given in
Ref. [18], while it provides a natural approach to obtain the
topological charge.
Significantly, if the boundary curve C ¼ ∂Σ in the

manifold encloses no zero point of ϕ, we must have
Q ¼ 0 from (26). Or if two different closed curves enclose
the same zero points, the corresponding topological charges
must equal. On the other hand, taking Σ as the manifold of
xi for certain t, it will give the total topological charge of
black hole PSs. So Q can be used to characterize different
spaces.
Furthermore, following Duan’s ϕ-mapping topological

current theory, we are allowed to examine the inner
structure of the topological charge. Considering there are
N zero points of ϕ and the Jacobi determinant J0ðϕxÞ ≠ 0,
the solution of ϕ ¼ 0 can be expressed as

xi ¼ zinðtÞ; n ¼ 1; 2;…; N: ð27Þ

Near the zero points of ϕ, δ2ðϕÞ can be expressed as

δ2ðϕÞ ¼
XN
n¼1

αnJ0
�
ϕ

x

�����
x¼zn

; ð28Þ

where αn is positive expanding coefficients.
According to Duan’s topological current theory [20,21],

the winding number of the nth zero point is expressed as
wn ¼ wðϕ; znÞ ¼ αnJ0ðϕxÞjx¼zn . Considering αi is positive,
we have

αi ¼
jwðϕ; znÞj
jJ0ðϕxÞjx¼zn

: ð29Þ

The ϕ-mapping Hopf index βi and the Brouwer degree ηi at
zero point zn are, respectively, given by

βn ¼ jwðϕ; znÞj; ηn ¼
J0ðϕxÞ

jJ0ðϕxÞjx¼zn

: ð30Þ

Thus,

J0
�
ϕ

x

�
δ2ðϕÞ ¼

XN
n¼1

βnηnδ
2ðx − znÞ: ð31Þ

Finally, the topological charge can be expressed as

Q ¼
XN
n¼1

wn ¼
XN
n¼1

βnηn: ð32Þ

This relation reflects the inner structure of the topological
charge.
As shown above, we suppose J0ðϕxÞ ≠ 0. However if this

condition violates, there will be the phenomenon, the
generation or annihilation. In order to show it, we suppose
at least one component of the Jacobi tensor does not vanish,
say J1ðϕxÞ ≠ 0. Therefore, according to (23), we have

dx1

dt

����
ðt�;znÞ

¼ J1ðϕxÞ
J0ðϕxÞ

����
ðt�;znÞ

¼ ∞; ð33Þ

which gives

dt
dx1

����
ðt�;znÞ

¼ 0: ð34Þ

Then at the critical point (t�, zn), we have the following
Taylor expansion:

t − t� ¼
1

2

d2t
dðx1Þ2

����
ðt�;znÞ

ðx1 − z1nÞ2: ð35Þ

Because the topological current is identically conserved,
the topological charge of these two defects must be
opposite at the critical point. When d2t

dðx1Þ2 jðt�;znÞ < 0 or

> 0, it represents an annihilation or generation [24].

IV. BLACKHOLESANDTOPOLOGICALCHARGE

As shown above, the topological charge Q equals the
sum of the winding number of each zero point of ϕ for
given Σ. For a black hole, we takes Σ as a full exterior
region outside of the outer horizon. This will give us the
total topological charge of the black hole PSs, which can be
used to characterize different spacetimes.

A. Asymptotically flat black holes

Here we first consider an asymptotically flat black hole
with the solution described by (1). At r → ∞, the metric
functions have the following asymptotic behaviors:
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fðrÞ ∼ 1 −
1

r
þO

�
1

r2

�
; ð36Þ

gðrÞ ∼ 1 −
1

r
þO

�
1

r2

�
; ð37Þ

hðrÞ ∼ r2: ð38Þ

Consider that the ith zero point of ϕ is enclosed by a
piecewise smooth and positive oriented closed curve Ci,
while other zero points are out of it. The winding number of
the vector is

wi ¼
1

2π

I
Ci

dΩ; ð39Þ

where Ω ¼ arctanðϕ2=ϕ1Þ. Then the total charge will be

Q ¼
X
i

wi: ð40Þ

On the other hand, due to the δ function in the topological
current (26), the total charge of the black hole system can
be calculated as

Q ¼ 1

2π

I
C
dΩ: ð41Þ

Here we adopt the contour C defined in Ref. [18], where
C ¼ P

i ∪ li or the union of four line segments l1 ∼ l4:
fr ¼ ∞; 0 ≤ θ ≤ πg ∪ fθ ¼ π; rh ≤ r < ∞g ∪ fr ¼ rh;
0 ≤ θ ≤ πg ∪ fθ ¼ 0; rh ≤ r < ∞g; see Fig. 1 with the
black arrows denoting the direction. In order to calculateQ,
we examine the vector field ϕa on these line segments. For
simplicity, we list ϕa

ϕr ¼ hf0 − fh0

2h
3
2 sin θ

ffiffiffi
g
f

r
; ð42Þ

ϕθ ¼ −
ffiffiffi
f

p
cos θ

hsin2θ
: ð43Þ

At the horizon, one has fðrhÞ ¼ gðrhÞ ¼ 0, whileffiffiffiffiffiffiffiffi
g=f

p jrh keeps finite. Therefore, we arrive at

ϕr
l3
ðr → rþh Þ > 0; ϕθ

l3
ðr → rþh Þ → 0; ð44Þ

where f0ðrhÞ > 0 is used. So as shown in Fig. 1, the vector
ϕ is horizontal to the right at the horizon and thus Ωl3 ¼ 0.
At θ ¼ 0 and π, we, respectively, have

ϕr
l4
ðθ → 0þÞ ∼ 1

θ
; ϕθ

l4
ðθ → 0þÞ ∼ −

1

θ2
; ð45Þ

ϕr
l2
ðθ → π−Þ ∼ 1

π − θ
; ϕθ

l2
ðθ → π−Þ ∼ 1

ðπ − θÞ2 : ð46Þ

So we have Ωl2 ¼ π
2
and Ωl4 ¼ − π

2
. These imply that along

line segments l2;3;4, Ω does not change, so one has
ΔΩl2 ¼ ΔΩl3 ¼ ΔΩl4 ¼ 0, and thus Ω3 ¼ Ω4 ¼ − π

2
.

Last, let us consider Ω along l1. When r → ∞,

ϕr
l1
ðr→∞Þ∝−

1

r2 sinθ
; ϕθ

l1
ðr→∞Þ¼−

cosθ
r2sin2θ

: ð47Þ

Considering that both ϕr
l1
and ϕθ

l1
are negative, we have

Ωl1 ¼ π þ arctanðcot θÞ. When θ varies from 0 to π, Ωl1
monotonically decreases from 3π=2 to π=2, or from −π=2
to π=2, which means that the vector ϕ changes smoothly
at points (r, θÞ ¼ ð∞, 0) and (∞, π). So we have
Ω1 ¼ Ω2 ¼ 0 and

ΔΩl1 ¼
Z
l1

dΩ ¼ −π: ð48Þ

Therefore, the total topological charge is

Q ¼ 1

2π
ðΔΩl1 þ ΔΩl2 þ ΔΩl3 þ ΔΩl4

þ Ω1 þ Ω2 þ Ω3 þ Ω4Þ ¼ −1: ð49Þ

It is clear that our result confirms that of Ref. [18] when the
black hole spin is set to zero. Note that here we divide the
total topological charge into eight parts. Four parts are for
the curves, which are the same as Ref. [18], while others
describe the changes of the direction of the vector field at
these four vertices. This division makes the calculation of
Q more clear.

1

2

3

4

l1

l2

l3

l4

rin rout
r

θ

0

π

FIG. 1. Representation of the contour C ¼ P
i ∪ li (which

encloses Σ) on the (r, θ) plane. The curve C has positive
orientation marked with the black arrows. rh denotes the inner
boundary of Σ, which equals rh for a black hole. rout is the outer
boundary, which equals ∞ for asymptotically flat or AdS black
holes, and rc for dS black holes. The angle Ωi represents the
change of the direction of vector n on the joint of two li.
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In Ref. [18], the authors suggested that the total
topological charge Q may change for other boundary
behaviors. We will consider this issue in the following.

B. Asymptotically AdS black holes

Here we would like to extend the study to some other
asymptotical behaviors beyond the asymptotically flat case.
Let us first consider an asymptotically AdS black hole case,
which has the following behaviors:

fðrÞ ∼ r2

l2
þ 1 −

1

r
þO

�
1

r2

�
; ð50Þ

gðrÞ ∼ r2

l2
þ 1 −

1

r
þO

�
1

r2

�
; ð51Þ

hðrÞ ∼ r2; ð52Þ

where l is the AdS radius. Note that these asymptotical
behaviors only modify the boundary condition at r → ∞,
so the calculation along l2, l3, and l4 is the same
as the asymptotically flat case. When r → ∞, we have
for a finite l

ϕr
l1
ðr→∞Þ∝−

1

r2 sinθ
; ϕθ

l1
ðr→∞Þ¼−

cosθ
lrsin2θ

: ð53Þ

A detailed analysis shows that Ω keeps constant value − π
2

for θ ∈ (0, π
2
), and constant value π

2
for θ ∈ (π

2
, π). Therefore

Ω only changes at θ ¼ π
2
, which gives ΔΩl1 ¼ −π. Note

that the minus sign comes from the fact that the angle
changes in clockwise rotation at θ ¼ π

2
. Similarly, we still

have Ω1 ¼ Ω2 ¼ 0. Then combining with the value of Ω
along other line segments, we obtain

Q ¼ −1; ð54Þ

which obviously is the same as the asymptotically flat black
hole case.

C. Asymptotically dS black holes

Now we turn to the asymptotically dS black hole case,
which can be described by the following behaviors at large r:

fðrÞ ∼ −
r2

l2
þ 1 −

1

r
þO

�
1

r2

�
; ð55Þ

gðrÞ ∼ −
r2

l2
þ 1 −

1

r
þO

�
1

r2

�
; ð56Þ

hðrÞ ∼ r2: ð57Þ

Different from the asymptotically flat andAdS cases, besides
the black hole horizon, the spacetime admits a cosmological

horizon with radius rc > rh, which is also a root of
gðrcÞ ¼ fðrcÞ ¼ 0. So for this case, we only consider the
case rc ≤ r ≤ rc. Similarly, we also only need to consider
the line segment l1. Considering gðrcÞ ¼ fðrcÞ ¼ 0, we
have

ϕr
l3
ðr → r−cÞ < 0; ϕθ

l3
ðr → r−cÞ ¼ 0: ð58Þ

Therefore, along l1, the direction ofϕ is horizontal to the left,
which indicates thatΩl1 ¼ π or−π. ThereforeΔΩl1 ¼ 0 and
Ω1 ¼ Ω2 ¼ − π

2
. Finally, we achieve

Q ¼ 1

2π
ðΩ1 þ Ω2 þ Ω3 þ Ω4Þ ¼ −1; ð59Þ

where ΔΩli ¼ 0 (i ¼ 1–4) is considered.
In summary, we in this section calculate the topological

charge of PS for the asymptotically flat, AdS, and dS black
holes in GR. The results show that all of them have a total
topological charge Q ¼ −1.
Before ending this section, we would like to give several

comments on this result. First, since all the black holes with
different asymptotical behaviors share the same value of
topological charge, they are in the same topological class
from the viewpoint of the topology of the black hole PS.
Second, there exists at least one unstable PS as suggested in
Ref. [18]. However the number of the PSs are not limited to
one. Or one can say that these black holes have an odd
number of PSs, while there is always one more unstable
photon sphere than the stable photon sphere. Third, as
indicated from above and Ref. [18], the nonrotating and
rotating black hole in asymptotically flat spacetimes have
the same topological charge, which indicates that the black
hole spin does not affect the topological property. Thus we
conjecture Kerr-AdS/dS black holes also haveQ ¼ −1, and
thus they are in the same topological class. Moreover, if
other black hole parameters do not affect the asymptotical
behaviors, the topological charge stays unchanged.

V. DYONIC BLACK HOLES

Here we would like to consider a specific case, the
Dyonic black hole solution [25], which has a rich horizon
and PS structures.
The action describing an asymptotically flat solution is

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4xðR − α1F2 − α2ððF2Þ2 − 2Fð4ÞÞÞ;

where the field strength is F2 ¼ −Fμ
νFν

μ and Fð4Þ ¼
Fμ
νFν

ρF
ρ
σFσ

μ. Solving the field equation, an exact solution
of static and spherically symmetric dyonic black holes
reads [25]
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ds2¼−fðrÞþ dr2

fðrÞþ r2ðdθ2þ sin2θdφ2Þ;

fðrÞ¼ 1−
2M
r

þα1p2

r2
þ q2

α1r2
2F1

�
1

4
;1;

5

4
;−

4p2α2
α1r4

�
: ð60Þ

It is clear that each black hole is characterized by a set of
parameters (M, q, p), which is associated with the mass and
electric and magnetic charges, respectively. This black hole
solution also satisfies the dominant energy condition.
Combining with (1), we see that for this black hole,

gðrÞ ¼ fðrÞ, hðrÞ ¼ r2, so our discussion in the last section
holds. Then the normalized vectors are

nr ¼ rf0 − 2fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrf0 − 2fÞ2 þ 4fcot2ðθÞ

p ; ð61Þ

nθ ¼ −
2

ffiffiffi
f

p
cotðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrf0 − 2fÞ2 þ 4fcot2ðθÞ
p : ð62Þ

Moreover since this black hole is an asymptotically flat
solution, we must have the total topological charge
Q ¼ −1. In the following we will perform the detailed
study of the topological property of the black hole PS.

A. Case one: M = 67
10, p=

ffiffiffiffiffiffi
396
443

q
, α1 = 1, α2 = 196249

1584 , q= 6.65

Under this case, the black hole has two horizons located
at rh1 ¼ 0.3873 and rh2 ¼ 7.6249.
We plot the normalized vector n in Fig. 2. The picture

is quite similar to the Schwarzschild black hole case given

in [18], where only one zero point of n is presented. At a
first glance, one finds there exists a zero point near r ¼
13.5 and θ ¼ π=2. Solving the equation of PS (5), we find
this black hole has only one PS at rps ¼ 13.4041, which
exactly coincides with the zero point of ϕ. Since there is
only one sphere photon, the topological charge or the
winding number associated with this PS must be Q ¼ −1.
Any closed curve enclosing this PS will produce Q ¼ −1,
while other closed curves will give Q ¼ 0. The result can
be obtained by observing the behavior of n from Fig. 2.
However, we should perform the calculation of the topo-
logical charge. In the following, we attempt to calculate the
topological charge (39) for the vector along closed circular
curves C1 and C2.
Considering that

Ω ¼ arctan
�
ϕ2

ϕ1

�
¼ arctan

�
n2

n1

�
: ð63Þ

Then, we obtain

dΩ ¼ n1dn2 − n2dn1

ðn1Þ2 þ ðn2Þ2 ¼ ϵabnadnb: ð64Þ

Therefore, the topological charge can be rewritten as

Q ¼ ΔΩ
2π

¼ 1

2π

I
C
ϵabna∂inbdxi: ð65Þ

Here we parametrize the closed curves C1 and C2 by the
angle ϑ ∈ (0, 2π) as

�
r ¼ a cos ϑþ r0;

θ ¼ b sinϑþ π
2
:

ð66Þ

We choose ða; b; r0Þ ¼ ð0.3; 0.3; 13.4041Þ for C1, and (0.3,
0.3, 14.5) for C2. Then we calculateΔΩ along C1 and C2 by
using (64). The result is shown in Fig. 3. ForC1, see Fig. 3(a),
we findΔΩ decreaseswithϑ, andapproaches−2π atϑ ¼ 2π.
Thus the topological charge of the vector along C1 is
Q ¼ −1.While forC2 shown inFig. 3(b),ΔΩ first decreases,
then increases, and finally decreases again. After a loop,ΔΩ
vanishes, which implies that Q ¼ 0 for C2. The difference
between them is that C1 encloses a single PS, while C2 does
not. This also reflects the δ function encoded in the
topological current (26).
This result also confirms our conclusion that the topo-

logical charge Q ¼ −1 for asymptotically flat black holes.
Note that in Ref. [18], the authors dubbed the PSs with
Q ¼ −1 or 1 as the standard or exotic PSs, respectively.
Actually, we can find that the PS with Q ¼ −1 is unstable,
while the one with Q ¼ 1 is stable.

FIG. 2. Behavior of the normalized vector n on the (r, θ) plane
for case one. The black dot denotes the zero point of n. C1 and C2

are two closed curves.
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B. Case two: M = 67
10, p=

ffiffiffiffiffiffi
396
443

q
, α1 = 1, α2 = 196249

1584 , q= 6.85

Generally, a black hole possesses one PS. However, for
this kind of black hole, in some parameter regions, it can
have more than one PS [18]. This provides us a good
opportunity to study the topological properties of a black
hole PS when its number is larger than one.

Here we focus on case two: M ¼ 67
10
, p ¼

ffiffiffiffiffi
396
443

q
, α1 ¼ 1,

α2 ¼ 196249
1584

, q ¼ 6.85. Solving fðrhÞ ¼ 0, we find that the
black hole has two horizons located at rh ¼ 0.6302
and 1.6643, respectively. Solving the PS equation, we
observe three PSs at rps1 ¼ 2.3066, rps2 ¼ 6.3340, and
rps3 ¼ 12.5075.

(a) (b)

FIG. 3. ΔΩ as a function of ϑ. (a) for C1, and (b) for C2.

(a) (b)

(d)

(c)

FIG. 4. Behavior of the normalized vector n on the (r, θ) plane for case two. Black dots denote the zero points of n. (a) Three zero
points are completely shown. (b) Behavior of n near zero point P1. (c) Behavior of n near zero point P2. (d) Behavior of n near zero
point P3.
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In order to clearly display the behavior of vector n, we
describe it on the (r, θ) plane in Fig. 4. Obviously, such
behavior is significantly different from the one given in
Fig. 2. We observe that there are three zero points of n,
which exactly coincide with the locations of PSs. So the
PSs can be treated as topological defects of the black hole
system even when more PSs are included. We show the
local behaviors of n near these three zero points in
Figs. 4(b)–4(d). Obviously, the vector n has similar
behaviors around points P1 and P3, while near P2, it is

like the electric field of a positive charge. So we conjecture
that the topological charges associated with P1 and P3 are
the same, while different from that of P2.
To examine the topological charges associated with these

three PSs, we construct three closed curves enclosed by
C3;4;5 shown in Fig. 4(a), respectively. Moreover, we also
construct a large closed curve C6, which contains these
three PSs. These parametrized forms share the same
expression given in Eq. (66) while with different coef-
ficients given in Table I. Then we numerically calculateΔΩ
along these curves. The results are given in Fig. 5. With the
increase of ϑ,ΔΩ decreases along C3 and C5, and increases
along C4. For complete closed curves, we easily observe
that the topological charge Q ¼ −1 for P1 and P3, and
Q ¼ 1 for P2. This confirms our conjecture that P1 and P3

have the same topological charge, while it is different for
P2. So we can say that the PSs at P1 and P3 are standard,
while the one at P2 is exotic.
On the other hand, since the black hole has three PSs and

the total topological charge for its PSs is minus one, any
closed curves enclosing these three points must produce
Q ¼ −1. To check this result, we calculate ΔΩ along C6.
Nevertheless, ΔΩ exhibits a nonmonotonic behavior with
ϑ; it gives ΔΩ ¼ −2π after a loop, which indicates
Q ¼ −1. Therefore, it is consistent with our analysis in
Sec. IVA for the asymptotically flat black holes.
Interestingly, we can also construct another closed curve;

see C7 shown in Fig. 6(a), which only encloses points P1

and P3. The curve C7 is constructed by four segments,
I1–I4, which are also parametrized as (66) with the
coefficients given in Table II. Here we show ΔΩ as C7’s
length parameter rather ϑ in Fig. 6(b). Circulating the
contour C7 anticlockwise ΔΩ approaches −4π. Hence, we
have the topological charge Q ¼ −2 for C7, which is just
the sum of the charges of C3 and C5 as expected.

TABLE I. Parametric coefficients of closed curves Ci
(i ¼ 1–6; 8–10).

C1 C2 C3 C4 C5 C6 C8 C9 C10

a 0.3 0.3 0.5 0.5 0.5 5.7 1.0 1.0 4.0
b 0.3 0.3 0.1 0.1 0.1 0.8 0.1 0.1 0.5
r0 13.40 14.50 2.31 6.33 12.51 9.42 7.64 11.53 9.58

FIG. 5. ΔΩ as a function of ϑ for C3, C4, C5, and C6.

(a) (b)

FIG. 6. (a) Schematic diagram of closed curve C7. (b) ΔΩ as a function of length parameter λ.
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C. Case three: M = 67
10, p =

ffiffiffiffiffiffi
396
443

q
, α1 = 1, α2 = 196249

1584 , q= 7

As shown above, the topological charge Q ¼ −1 for the
dyonic black holes in cases one and two. So these black
hole cases are in the same topological class, regardless of
the number of PS. Here we wonder whether there exists a
different structure of PS from the topology. For this
purpose, we focus on case three with charge q ¼ 7. It is
easy to find that the spacetime in this case will not admit a
black hole but a naked singularity. The disappearance of the
horizon will make the vector flow towards r ¼ 0.
Considering that the spacetime is singular at r ¼ 0, we
exclude it. Thus, this solution is quite similar to the
horizonless ultracompact object, and we conjecture
Q ¼ 0 for the naked singularity.
We first show the vector n on the (r, θ) plane in Fig. 7(a).

From it, two zero points of n are observed. The left one is
similar to the point P2, and the right one to P3. Proceeding
as above, we construct the closed curves C8 and C9, which,
respectively, enclose these two zero points. Another closed
curve C10 encloses both these two points. The parametrized
coefficients are given in Table I. Then we calculate ΔΩ as a
function of ϑ. The result is listed in Fig. 7(b). It is easy to
read out from the figure that Q ¼ 1 for C8 and Q ¼ −1 for
C9. Moreover, the topological charge vanishes for C10.
Therefore, we confirm that the naked singularity hasQ ¼ 0
as expected. Comparing with Ref. [18], we find that this

case is similar to the rotating boson star without event
horizon. And thus they belong to the same topologi-
cal class.
Further calculation shows that these two points approach

each other with the increase of charge q. When q ≈ 7.1,
these two points meet. Beyond that value, the spacetime
will not exhibit the PS. So we always have Q ¼ 0.
Moreover, it is worth pointing out that when q ¼ 6.92,

the naked singularity has four PSs located at rps ¼ 1.1358,
1.5794, 6.9090, and 12.1041 with the topological charge 1,
−1, 1, −1. And the total topological charge still equals zero.

VI. PHOTON SPHERES ANNIHILATION

From the topology, two defects of opposite topological
charge can annihilate, or generate from vacuum with time.
For an equilibrium black hole, its PS will be determined
and thus no phenomenon of the generation or annihilation
exists. However, when considering the Hawking radiation,
the black hole gradually losses its mass and other charges,
and the PS will be changed. Here we imagine a black hole
system that absorbs the charge from its surroundings
through a quasistatic process. With the continuous increase
of the charge, the black hole will turn to a naked singularity.
In this case, the electric charge plays the role of evolution
time, so we adopt x0 ¼ q. In the following, we would like
to examine the change of the PS.
For simplicity, we set α2 ¼ 0. Then the black hole

solution in (60) actually describes a charged Reissner-
Nordström black hole. The black hole horizons are located
at rh1;2 ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
, and the PSs are at

rqps1;2 ¼ 1
2
ð3M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8q2

p
Þ. For the black hole case

M > q, we always have rqps2 < rps1, which means that the
inner PS is covered by the outer horizon. Thus only one PS

TABLE II. Parametric coefficients of closed curves C7.

a b r0 ϑ

I1 0.5 0.2 12.51 (π, 2π)
I2 5.6 0.8 7.41 (0, π)
I3 0.5 0.2 2.31 (π, 2π)
I4 4.6 0.6 7.41 (π, 0)

(a) (b)

FIG. 7. (a) Behavior of the normalized vector n on the (r, θ) plane for case three. (b) ΔΩ as a function of ϑ for C8, C8, and C10.
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is allowed, which is a standard one and has topological
charge Q ¼ −1. When the black hole is over charged
M < q, these two horizons disappear. Then the second PS
of positive topological charge Q ¼ 1 at rqps2 takes action,
which leads toQ ¼ 0 for the naked singularity. Thus from a
black hole to a naked singularity, spacetime undergoes a
topological phase transition. We describe the case in Fig. 8.
For naked singularity, with the increase of the charge q,

these two PSs approach and annihilate at q ¼ q� ¼
3M=ð2 ffiffiffi

2
p Þ. From the viewpoint of topology, this phe-

nomenon denotes an annihilation of two PSs. Meanwhile
the total topological charge does not change.
Further, expanding the charge near q�, we have

q − q� ¼
1

2
q00ðr − rqpsÞ2; ð67Þ

q00 ¼ d2q
dr2

����
ðq�;r¼rqpsÞ

¼ −
ffiffiffi
2

p ðr − 3M
2
Þ2

3M2
: ð68Þ

Interestingly, one observes a negative q00. So this annihi-
lation process is in accord with that froms the topological
current ϕ-mapping theory discussed in [24].
On the other hand, if taking the decrease of q as the

evolution direction, this pattern will become the generation
of PSs.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper, we studied the topological property o a PS
for static, spherically symmetric black hole with different
asymptotical behaviors in GR.
Following Duan’s topological current ϕ-mapping theory,

we introduced the superpotential Vμν and topological

current jμ defined on the (r, θ) plane outside of a black
hole. After some calculations, we expressed the topological
charge Q of PSs in terms of a δ function, see (26), which
indicates that the black hole PS’s topological property is
closely dependent of the zero points of vector field ϕ
enclosed by the considering parameter region. The inner
structure of the topological charge is also investigated.
Then we computed the topological charge for a general

black hole solution with asymptotically flat, AdS, and dS
boundaries. Here we summarize two universal properties:
(i) Ω3 ¼ Ω4 ¼ − π

2
and ΔΩl2 ¼ ΔΩl3 ¼ ΔΩl4 ¼ 0, and

(ii) Ω1 þΩ2 þ ΔΩl3 ¼ −π. Then after carrying out the
detailed analysis, we find that all these black hole systems
have the same topological charge Q ¼ −1. This suggests
that these black holes have at least one standard PS, the
same as that for the stationary, axisymmetric, asymptoti-
cally flat black hole [18]. If there are several PSs, the
number of standard PSs should be one more than the exotic
ones. Considering that the black hole spin might not change
the total topological charge indicated in Ref. [18], we
conjectured that the rotating black holes with asymptoti-
cally flat, AdS, and dS boundaries also admitQ ¼ −1. This
issue is worth further pursuing.
As a specific example, we computed the topological

charge for the dyonic black holes with M ¼ 67
10
, p ¼

ffiffiffiffiffiffi
396
443

q
,

α1 ¼ 1, α2 ¼ 196249
1584

, while with different electric charge q.
For the case one, q ¼ 6.65, the black hole exhibits only one
standard PS. We clearly showed that for the closed curve
enclosing the PS, one has Q ¼ −1. While for other closed
curves, it produces Q ¼ 0. This reflects the property of the
δ function contained in the topological current (26). For
the second case, the electric charge is set to q ¼ 6.85. The
black hole admits more than one PS, and three of them are
observed. Two are standard ones associated with Q ¼ −1
and one is exotic one with Q ¼ 1. The total topological
charge still keeps −1. Therefore case two and case one are
in the same topological class. Case three with q ¼ 7
corresponds to a naked singularity rather a black hole.
Its topological charge is found to be Q ¼ 0, which implies
that the standard and exotic PSs come in pairs. For
example, when q ¼ 7, we observed a pair of standard
and exotic PSs. However two pairs will present when
q ¼ 6.92. The different total topological charges of black
holes and naked singularities also indicate that they are in
different topological classes.
Finally, we took the charge q as an evolution parameter

and investigated the annihilation of the standard and exotic
PSs. The result is also in accord with the Duan’s topological
current ϕ-mapping theory.
Our result confirms that static, spherically symmetric

black holes with different asymptotically flat, AdS, and dS
behaviors, respectively described by (36)–(38), (50)–(52),
(55)–(57) have at least one standard PS from the viewpoint
of topology. This topological approach provides us a novel

q
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q

r

FIG. 8. Annihilation of two PSs (red and blue thin lines) with
opposite sign of winding number. Top: w ¼ −1; bottom: w ¼ 1.
The dashed lines are for two horizons. The shadow region of
q < 1 is for the black hole case, while others is for naked
singularity. The parameter is q� ¼ 3

2
ffiffi
2

p . The black hole mass is set

to M ¼ 1.
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insight into the black hole PS structure. Topological phase
transition can also be revealed by the charge Q. So we
expect the topology of a black hole PS can play a novel role
in investigating the astronomical phenomena related with
the black hole PS. Furthermore, it is also interesting to
consider other black hole or naked singularity backgrounds
in a spacetimes with different asymptotics.
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