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Degenerate scalar-tensor theories of gravity extend general relativity by a single degree of freedom,
despite their equations of motion being higher than second order. In some cases, this is a mere consequence
of a disformal field redefinition carried out in a nondegenerate theory. More generally, this is made possible
by the existence of an additional constraint that removes the would-be ghost. It has been noted that this
constraint can be thwarted when the coupling to matter involves time derivatives of the metric, which
results in a modification of the canonical momenta of the gravitational sector. In this paper we expand on
this issue by analyzing the precise ways in which the extra degree of freedom may reappear upon minimal
coupling to matter. Specifically, we study examples of matter sectors that lead either to a direct loss of the
special constraint or to a failure to generate a pair of secondary constraints. We also discuss the recurrence
of the extra degree of freedom using the language of disformal transformations in particular for what
concerns “veiled” gravity. On the positive side, we show that the minimal coupling of spinor fields is
healthy and does not spoil the additional constraint. We argue that this virtue of spinor fields to preserve the
number of degrees of freedom in the presence of higher derivatives is actually very general and can be seen
from the level decomposition of Grassmann-valued classical variables.

DOI: 10.1103/PhysRevD.102.064037

I. INTRODUCTION

Scalar-tensor theories of gravity are appealing for a
number of reasons [1,2]. The resounding experimental
success of general relativity (GR) suggests that if gravity
is to be modified in the infrared, we had better do so in a
conservative way, and the most minimal tweak to be done is
to add a single scalar degree of freedom besides the graviton
described by GR. At the same time, wemay hope that such a
minimal field content would allow for a strong theoretical
control, permitting us, for instance, to accomplish a
thorough classification of scalar-tensor models of gravity.
This effort of charting the space of all theories describing

the dynamics of a single spin-0 and a single massless spin-2
particle has indeed been an active research program over the
past decade, beginning with the rediscovery of Horndeski
theory [3,4] (following that of the Galileon [5] and its
covariant version [6]). While Horndeski theory comprises
the most general action leading to manifestly second-order

equations of motion for both the scalar field and the metric
tensor, hence ensuring the correct number of degrees of
freedom (DOF) classically, it is also clear that such a theory
(or in fact mere general relativity) can be “disguised” into a
higher derivative theory via an invertible field redefinition
such as the well-known disformal transformations first
considered byBekenstein [7].More generally it was realized
that an action can produce higher-order equations of motion
while still giving rise to the desired number of 3DOF, thanks
to the existence of degeneracies among the equations so that
the required pieces of initial data are reduced. In the context
of the Hamilton-Dirac analysis, these degeneracies manifest
themselves as additional pairs of second class constraints,
thus making very transparent that some of the DOF that one
would naively infer from the action are actually nondynam-
ical [8–15]. This leads to the generalization of Horndeski
theories to “beyond Horndeski” [8,10,16–18] and eventu-
ally to the larger class of degenerate higher-order scalar-
tensor theories (DHOST) [19–21] (see [22–24] for reviews).
Although this story is by now well understood, a rather

unexplored question concerns the coupling to matter in
DHOST. Applications of DHOST coupled to certain matter
fields have of course been considered, particularly in the
contexts of cosmology and astrophysics (see e.g., [25–33]),
yet a general understanding of the consistency of matter
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coupling is currently lacking. This is in fact rather surpris-
ing: indeed, besides its obvious relevance for phenomenol-
ogy, this question is crucial for the claim that the considered
theory propagates fewer degrees of freedom than naively
expected. Consider for example the class of DHOST
theories whose extended gravity (i.e., metric and scalar)
sector can be obtained explicitly out of nondegenerate
scalar-tensor theories via a field redefinition. Obviously,
these theories, in the absence of matter, are just the same as
their nondegenerate counterparts. The only difference
between them can only be coming from the coupling to
matter, which in turn can spoil the degeneracy (some
examples are given below) and the equivalence between
the considered theories. This is all the more true if the field
redefinition is disformal, as it involves in this case a
derivative of the scalar which can potentially lead to a
kinetic mixing with matter degrees of freedom.
The consistency of matter coupling is obviously a very

broad question that is hard to address in full generality, but
an interesting first step is to define such a consistency
problem as follows: we shall say that a matter field can be
coupled consistently to DHOST if the minimal coupling
prescription preserves the number of degrees of freedom of
the extended gravity sector in the absence of matter. In
other words, the complete counting should yield 3 DOF for
the scalar-tensor sector plus whatever number of DOF the
matter sector had in the absence of gravity. It is important to
emphasize that this is already a nontrivial question in pure
GR, even for matter theories without gauge invariance, the
reason being that minimal gravitational coupling can spoil
some of the constraints that a matter action would other-
wise have in flat spacetime [34].
Our goal in this paper is to point out that this issue is even

more delicate in DHOST. The reason is quite simple:
gravitational coupling in DHOST is not only a threat to the
constraints of the matter sector, but it can also doom the
special constraint that ensures the degeneracy of the scalar-
tensor equations of motion and is responsible for removing
the Ostrogradski ghost. We remark that this problem was
already observed in [15], where it was explained that the
presence of time derivatives of the lapse function, which in
pure DHOST can always be removed via a field redefini-
tion, can become truly pathological when coupled to
additional fields. We seek in this paper to further clarify
this aspect through a full Hamilton-Dirac analysis of
three instructive examples of matter fields coupled to a
generic quadratic DHOST theory. Although of course this
does not encompass the most general set of scalar-tensor
models, it should be clear that the general lessons we will
draw should apply very generically. The case of quadratic
DHOST theory is also worth focusing on given its interest
in the astrophysical and cosmological literature (see
e.g., [35–43]). Our analysis also opens the way to a
classification based on matter coupling consistencies (in the
above terminology) of the different scalar-tensor theories

among themselves as well as compared with pure general
relativity.
These issues indeed also arise in the case of pure gravity

disguised in the form of the so-called veiled gravity via a
disformal transformation. Indeed, it will be shown that the
mere minimal coupling of veiled gravity to a single scalar is
enough to make dynamical the scalar appearing in the
disformal transformation. This serves as an illustrating
simple starting point for the rest of the discussion which
uses a Hamiltonian approach. The first of our examples is
then a toy noncanonical vector model that leads to a loss of
the DHOST primary constraint and hence to the reappear-
ance of the Ostrogradski ghost. The second case is the cubic
Galileon considered in [15], which spoils the DOF count in
the Hamilton-Dirac analysis in a more subtle way, namely
by preventing the primary constraints of the DHOST and
Galileon sectors to generate their corresponding secondary
constraints. Finally we consider the physically relevant
example of a Majorana spinor field coupled to DHOST,
which we will show to be consistent in the sense defined
above despite what one might naively think at first given the
higher-order nature of the field equations. We will argue,
however, that this positive result is not an accident of
DHOST but rather a generic virtue of classical spinor fields:
higher-order derivatives of a field coupled to a spinor are in
many cases harmless (at least “classically” and from the
point of view of the Hamilton-Dirac counting of DOF) as a
result of the so-called level decomposition of Grassmann-
valued variables. Such harmless couplings include e.g.,
curvature-dependent mass terms of the formRnλ̄λwhich can
have an interesting phenomenology.
To outline the rest of the paper, in Sec. II we briefly

review the formulation of quadratic DHOST models that
we will focus on, including the Hamiltonian analysis of
[12]. We also discuss there the simple case of veiled gravity.
In Sec. III we consider the coupling to matter in DHOST
and show through two examples of matter fields the
possible ways in which minimal gravitational coupling
can render the theory inconsistent according the aforemen-
tioned criterion. We give a separate treatment of the
coupling of spinors to DHOST in Sec. IV, focusing on a
minimally coupled Majorana spinor. We end our paper in
Sec. V with some general conclusions and comments.
Conventions used in the paper are as follows: Wework in

four spacetime dimensions and use themostly plus signature
for themetric. Greek indices stand for spacetime coordinates
(μ; ν;… ¼ 0, 1, 2, 3) and latin indices for spatial coordinates
(i; j;… ¼ 1, 2, 3). Symmetrizations and antisymmetriza-
tions of indices are defined with unit weight. When we deal
with spinors in Sec. IV we will need to further distinguish
the tangent space coordinates, which we denote with latin
indices starting with a; b;… ¼ 0, 1, 2, 3, as well as
4-component spinor indices that we denote with greek
indices starting with α; β;… ¼ 1, 2, 3, 4. See footnote 12
for more explanations on our conventions for spinors.
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II. DEGENERATE HIGHER-ORDER
SCALAR-TENSOR THEORIES

The general quadratic DHOST gravitational theory for a
metric gμν and scalar field ϕ is defined by the action [17]

Sg½g;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Fðϕ; XÞRþ Pðϕ; XÞ þQðϕ; XÞ□ϕ

þ Cμνρσ½ϕ�∇μ∇νϕ∇ρ∇σϕ�; ð1Þ
where R is the 4-dimensional curvature scalar, X ≔
∇μϕ∇μϕ and

Cμνρσ ≔A1gμðρgσÞνþA2gμνgρσþ
A3

2
ðϕμϕνgρσþϕρϕσgμνÞ

þA4

2
ðϕμϕðρgσÞνþϕνϕðρgσÞμÞþA5ϕ

μϕνϕρϕσ; ð2Þ

with ϕμ ≔ ∇μϕ and the A’s are functions of ϕ and X.
Propagation of 3 DOF, and hence absence of an
Ostrogradski ghost, imposes certain constraints among
the functions A’s. In addition, there exist some subclasses
of degenerate theories which also constrain the function F,
while P andQ are always arbitrary as far as the counting of
DOF is concerned. For our purposes we will not need the
precise form of these relations among the various functions
(the reader may find them in [23]), but simply assume the
existence of a degeneracy. We will also ignore special cases
with even more degeneracies that lead to less than 3 DOF,
except when we will discuss the case of veiled gravity in
Sec. III A 2.
For the Hamilton-Dirac analysis it is convenient to first

eliminate the second derivatives of the scalar field by
introducing an auxiliary vector Aμ, with the relation Aμ ¼∇μϕ being enforced by a Lagrange multiplier [11,12,17].
Thus we consider the modified action

Sg½g;ϕ; A; λ� ¼
Z

d4xf ffiffiffiffiffiffi
−g

p ½Fðϕ; XÞRþ Pðϕ; XÞ

þQðϕ; XÞ∇μAμ þ Cμνρσ½ϕ; A�∇μAν∇ρAσ�
þ λμðAμ −∇μϕÞg; ð3Þ

and it is understood that now X ¼ AμAμ and likewise all
instances of ϕμ in Cμνρσ have been replaced.
The next step is to introduce Arnowitt-Deser-Misner

(ADM) variables for the metric [44]

gμνdxμdxν ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ ð4Þ
and perform a 3þ 1 decomposition of every operator in the
action. The first three terms in (3) (which we refer to as the
kinetic gravity braiding (KGB) action following [45]) yield1

SKGB ¼
Z

dtd3xN
ffiffiffi
γ

p fF½KijKij − K2 þ Rð3Þ

− 2∇μðaμ − KnμÞ� þ PþQ∇μAμg; ð5Þ

where Kij is the extrinsic curvature, K ≔ γijKij, and Rð3Þ is
the curvature scalar associated with the 3-metric. As
explained in [12], the presence of the function F means
that there is an extra contribution relative to the standard
Einstein-Hilbert result which involves the vectors

nμ ≔
1

N
ð1;−NiÞ; aμ ≔ nν∇νnμ: ð6Þ

Here nμ corresponds to the vector normal to the constant-
time hypersurfaces (it is normalized, nμnμ ¼ −1) and aμ is
the “acceleration” of the integral curves of nμ (see e.g., [46]).
In ADM components one has aμ ¼ ð0; DiN=NÞ.
Completing the 3þ 1 decomposition one finds the result

of [12], here slightly generalized to include the KGB terms2

SKGB ¼
Z

dtd3xN
ffiffiffi
γ

p �
2

N
Bij
KGBKijð _A� − ΞAÞ

þKij;kl
KGBKijKkl þ 2CijKGBKij

þ 2

N
C0KGBð _A� − ΞAÞ − UKGB

�
; ð7Þ

where

A� ≔ nμAμ ¼
1

N
ðA0 − NiAiÞ;

ΞA ≔ AiDiN þ NiDiA�; ð8Þ

and

Bij
KGB ¼ 2FXA�γij;

Kij;kl
KGB ¼ FðγiðkγlÞj − γijγklÞ þ 2FXðγijAkAl þ γklAiAjÞ;

CijKGB ¼ −ðFϕA� þ 2FXAiDiA�Þγij −
1

2
QA�γij;

C0KGB ¼ −
1

2
Q;

UKGB ¼ −Rð3Þ þ 2DiDiF − P −QDiAi; ð9Þ

with Fϕ ≔ ∂F=∂ϕ and FX ≔ ∂F=∂X. Note that A� is to be
regarded as a dynamical variable instead of A0, so that the
set of tensors in (9) are independent of the lapse and shift.3

They also do not involve any time derivatives, which only
appear in the form of Kij and _A�, while time derivatives of

1We raise and lower latin indices with the 3-metric γij, for
instance Ai ¼ γijAj. The covariant derivative compatible with γij
is denoted by Di.

2It helps in the calculation to know that ∇μnμ ¼ K and
∇μaμ ¼ 1

N D
iDiN.

3In particular X ¼ −A2� þ AiAi is independent of N and Ni.
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Ai can always be removed by employing the Lagrange
constraint.
To the decomposed KGB action in (7) we must add the

quadratic DHOST contribution

Squad ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Cμνρσ½ϕ; A�∇μAν∇ρAσ: ð10Þ

The resulting 3þ 1 decomposition is of the same structure
as (7) but with an additional term that is quadratic in _A�,

Squad ¼
Z

dtd3xN
ffiffiffi
γ

p �
1

N2
Að _A� − ΞAÞ2

þ 2

N
Bij
quadKijð _A� − ΞAÞ þKij;kl

quadKijKkl

þ 2CijquadKij þ
2

N
C0quadð _A� − ΞAÞ − Uquad

�
; ð11Þ

where

A ¼ A1 þ A2 − ðA3 þ A4ÞA2� þ A5A4�: ð12Þ

We will actually not need this explicit expression nor those
of the other tensors (which can be found in [12]); it should
only be remembered that they involve ϕ, A�, Ai, and γij, but
not their time derivatives or the lapse and shift.
Collecting everything we arrive at the full 3þ 1-

decomposed gravitational action,

Sg ¼
Z

dtd3xfN ffiffiffi
γ

p ½AV2� þ 2BijV�Kij þKij;klKijKkl

þ 2CijKij þ 2C0V� − U�
þ λ0ðNA� þ NiAi − _ϕÞ þ λiðAi −DiϕÞg; ð13Þ

where Bij ≔ Bij
KGB þ Bij

quad and similar for the other
tensors. We also introduced the shorthand notation V� ≔
ð _A� − ΞAÞ=N. Again, explicit expressions will not be
needed, but only the fact that in DHOST it holds that [17]

A −K−1
ij;klB

ijBkl ¼ 0: ð14Þ

This is the degeneracy condition that ensures the absence of
the Ostrogradski ghost, as we review next in the Hamiltonian
language.

A. Hamiltonian and degrees of freedom

From the action (13) we derive the canonical momenta,

π0≔
∂L
∂ _N

¼ 0; πi ≔
∂L
∂ _Ni¼ 0;

πij≔
∂L
∂ _γij¼

1

2N
∂L
∂Kij

¼ ffiffiffi
γ

p ½Kij;klKklþBijV� þCij�; ð15Þ

pϕ ≔
∂L
∂ _ϕ ¼ −λ0; pi ≔

∂L
∂ _Ai

¼ 0;

p� ≔
∂L
∂ _A�

¼ 1

N
∂L
∂V�

¼ 2
ffiffiffi
γ

p ½AV� þ BijKij þ C0�: ð16Þ

From these expressions one obtains the following set of
primary constraints4

π0≈0; πi≈0; pi≈0; χi≔Ai−Diϕ≈0; ð17Þ

Ψ≔p�−2K−1
ij;klπ

ijBklþ2
ffiffiffi
γ

p ðK−1
ij;klC

ijBkl−C0Þ≈0; ð18Þ

where the last constraint is a direct consequence of the
degeneracy condition (14).
Solving for the velocities the “base” Hamiltonian can be

shown to reduce to

Hbase ¼
Z

d3x½πij _γij þ p� _A� þ pϕ
_ϕ − L�

¼
Z

d3x½NH0 þ NiHi�; ð19Þ

with

H0 ¼ ffiffiffi
γ

p �
K−1

ij;kl

�
πijffiffiffi
γ

p − Cij
��

πklffiffiffi
γ

p − Ckl
�
þ U

�

þ pϕA� −Diðp�AiÞ;
Hi ¼ −2Djπij þ pϕAi þ p�DiA�; ð20Þ

which is the form expected for a diffeomorphism-invariant
theory. Adding the constraints we obtain the “augmented”
Hamiltonian5

Haug ¼
Z

d3x½NH0 þ NiHi þ μ0π0 þ μiπi

þ λiχi þ αipi þ ξΨ�; ð21Þ

where μ0, μi, λi, αi, and ξ are Lagrange multipliers.
The augmented Hamiltonian is to be used to enforce the
preservation in time of the primary constraints. Each of

4We follow the convention of [12] of not regarding the Lagrange
multiplier λμ as an independent variable in the Hamilton-Dirac
analysis. In this approach one uses the relation λ0 ¼ −pϕ directly
in the action, while the Lagrange constraint enforced by λi is
incorporated as a primary constraint (and it is therefore not
included in the base Hamiltonian below). Note that in the
alternative convention, where one does see λμ as a phase space
variable, the Lagrange constraint χi would appear as a secondary
constraint.

5We call the Hamiltonian that includes the primary constraints
augmented to distinguish it from the “total” Hamiltonian that
incorporates all the constraints, even though we will not need to
derive the latter explicitly.
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these conditions will either (a) be automatically satisfied, or
(b) determine a Lagrange multiplier, or (c) yield a secon-
dary constraint.
The constraints π0 ≈ 0 and πi ≈ 0 generate the secondary

constraints H0 ≈ 0 and Hi ≈ 0, respectively. This set of 8
constraints must be first class because of the general
covariance of the theory (although, as remarked in [12],
showing this explicitly can be extremely cumbersome). On
the other hand, time preservation of χi ≈ 0 and pi ≈ 0
determines the associated Lagrange multipliers,6

0 ¼ fχi; Haugg ¼ αi þDiðNA� þ NjAjÞ
⇒ αi ¼ −DiðNA� þ NjAjÞ;

0 ¼ fpi;Haugg ¼ −λi ⇒ λi ¼ 0: ð22Þ

Finally, the consistency of the DHOST constraint Ψ ≈ 0
gives Ω ≔ fΨ; Haugg ¼ fΨ; Hbaseg ≈ 0, where the first
equality follows because Ψ commutes with the other
primary constraints. Thus the last relation does not involve
any Lagrange multiplier and defines a secondary constraint.
In the absence of further degeneracies, as we assume,
the consistency of this last constraint Ω ≈ 0 then fixes the
multiplier ξ and the Hamilton-Dirac analysis ends. The
total number of second class constraints is therefore eight.
For the final counting of DOF, the number of phase space

variables for the fields ðgμν; Aμ;ϕÞ is 30 ¼ 15 × 2, from
which we subtract 2 × 8 for the first class constraints and 8
for the second class constraints, giving 6 dynamical phase
space variables or 3 DOF, which is the correct result for a
theory describing a graviton and a scalar field.

III. COUPLING TO MATTER IN DHOST

We now address the question of whether the coupling to
matter in a generic DHOST theory may be inconsistent in
the restricted sense we adopted in the introduction. This
means that, if a given matter field hasN DOF in the absence
of gravity, then the coupling to DHOST will be said to be
inconsistent if the full action with the matter field being
minimally coupled to the metric propagates strictly more
than N þ 3 DOF.
It is well known that this “continuity” condition can be

violated already in pure GR. The case of massless higher-
spin theories is a prominent instance in which minimal
gravitational coupling leads to a violation of gauge invari-
ance (see [47–49] for early works).7 But there are simpler
examples of matter sectors with no gauge symmetries that
are also inconsistent, for the reason that they possess

second class constraints that are lost upon coupling to
GR [34]. It is easy to see that the “dangerous” matter
theories are the ones that, in their covariantized versions,
include the Christoffel connection and hence time deriv-
atives of the metric. Indeed, if terms involving _γij are absent
in the matter action then the kinetic matrix is block diagonal
and the number of primary constraints, corresponding to
the kernel dimension of the kinetic matrix, is preserved by
the gravitational coupling. Moreover, secondary constraints
are also safe in this situation because diffeomorphism
invariance ensures that the GR constraints remain first
class and that the matter primary constraints come in pairs
with their secondary constraints (regardless of whether they
are first or second class).8 It is therefore no surprise that the
most familiar matter models—standard scalar fields,
Maxwell, Proca, and Yang-Mills fields—pose no problem
to the consistency of minimal coupling (the case of spinors
is less trivial; we will come back to it in Sec. IV).
It is then natural to ask if this issue is somehow worse in

DHOST. Concretely, do there exist matter fields that are
consistent when coupled to GR, but inconsistent when
coupled to DHOST? The answer is yes, as we will show
next through two examples of matter sectors. It should be
clear that our argument does not aim to rule out the class of
DHOST models (our examples are admittedly somewhat
contrived) but rather to extract general lessons on the
problem of matter coupling in extended scalar-tensor
theories of gravity, as well as to stress the differences
between DHOSTand standard scalar-tensor theories or GR.
We emphasize also that similar issues can arise in DHOST
which propagate strictly less than 3 DOF, the canonical
example of which being the so-called veiled gravity. This
aspect is discussed in the next subsection as an illustrative
starting point and in fact, as we will show, the situation
there is even worse than in generic DHOST: even the
simplest minimal coupling of veiled gravity to a mere scalar
spoils the free theory DOF counting.

A. Matter coupling and disformal transformations

Consider a given DHOST theory whose extended gravity
sector has an action Sg½gμν;ϕ�, with a minimal coupling of
the matter fields, collectively denoted by Φm, to the metric
gμν, so that the (minimally coupled) matter action can be
written as Sm½gμν;Φm�. We then ask if this coupling is
consistent (in the terminology of our introduction), i.e., if it
preserves the number of DOF of the free theory Sg½gμν;ϕ�.
This question will be addressed later in the Hamiltonian
framework, however, an interesting light can be shed
on this issue using disformal transformations, as we now

6In deriving these relations we freely use the weak equa-
lity Ai ≈Diϕ to simplify the constraints and the solutions for
the Lagrange multipliers.

7Of course also well known is the fact that minimal coupling of
“matter” particles can actually be problematic in the context of
electromagnetism; see e.g., [50–52].

8There remains, however, the logical possibility that a matter
field could also have tertiary and quaternary (or even higher-
order) constraints that become lost due to the coupling to gravity,
but we are not aware of any example of this type.
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show with some generality before applying this to general
relativity and veiled gravity.

1. Disformal transformations

It is known that a subset of DHOST theories can be
mapped to Horndeski theories via a disformal transforma-
tion [8,53]. Such a transformation is defined by the
following relation [7] between two metrics gμν, g̃μν and a
scalar ϕ,

gμν ¼ gμνðg̃μν;ϕÞ ð23Þ

¼ aðϕ; X̃Þg̃μν þ bðϕ; X̃Þϕμϕν ð24Þ

where X̃ is defined as above from the derivative of the
scalar ϕμ ≡ ∂μϕ and the inverse metric g̃μν as X̃ ¼ g̃μνϕμϕν.
Such a transformation is generically (i.e., for generic
functions a and b) invertible, with an inverse of the same
form

g̃μν ¼ g̃μνðgμν;ϕÞ ð25Þ

¼ αðϕ; XÞgμν þ βðϕ; XÞϕμϕν; ð26Þ

where the relation between ½αðϕ; XÞ; βðϕ; XÞ� and ½aðϕ; X̃Þ;
bðϕ; X̃Þ� can easily be found (possibly only implicitly) and
does not matter here. It also implies a relation between the
Christoffel symbols Γ̃λ

μν and Γλ
μν of the two metrics of the

form

Γλ
μν ¼ Γ̃λ

μν þ Cλ
μν ð27Þ

where the exact expression of Cλ
μν is not important here (it

can be found at numerous places, including the seminal
work [8]), except for the fact that it depends on up to
second derivatives of the scalar ϕ. When the above (23) is
invertible, it is clear that the extended gravity actions
Sg½gμν;ϕ� and S̃g½g̃μν;ϕ�≡ Sg½gμν ¼ gμνðg̃μν;ϕÞ;ϕ� describe
the same physics and in particular have the same number
of DOF, even if it can be that the first one is degenerate
while the second is not. Let us assume we are now in
this situation. The equivalence then also holds if one
adds to the first theory a minimal matter coupling
Sm½gμν;Φm� and, to the second, its disformally transformed
one: S̃m½g̃μν;ϕ;Φm�≡ Sm½gμν ¼ gμνðg̃μν;ϕÞ;Φm�. The latter
coupling makes, however, the nondegenerate scalar-tensor
theory S̃g½g̃μν;ϕ� nonminimally coupled to matter. This can
lead in fact to an increase in the number of propagating
DOF compared to the situation where the same non-
degenerate scalar-tensor theory S̃g½g̃μν;ϕ� would have been
minimally coupled to the very same matter fields Φm.
When this happens, it also means that the original minimal
matter coupling of the original DHOST is not consistent (in

the terminology of the Introduction to this work). Using
disformal transformations, it is easy to understand why
such an increase can happen: indeed the disformal trans-
formation (23) contains a first derivative of the scalar. As a
result any occurrence of the metric gμν in the minimal
coupling Sm½gμν;Φm� will contain a first derivative of the
scalar ϕ when expressed in the action S̃m½g̃μν;ϕ;Φm� and
any gμν-covariant derivative of a given matter field Φm

which appear in the minimal coupling Sm½gμν;Φm� will
contain a second derivative of ϕ when expressed in the
action S̃m½g̃μν;ϕ;Φm� (as a consequence of the above
discussion for Christoffel symbols). In general, the occur-
rence of first derivative of ϕ in the matter coupling can
result in a mixing with matter and is not worrisome if this
scalar already propagates in the action S̃g½g̃μν;ϕ�; it is,
however, worrisome when this scalar does not propagate
(this is precisely what happens in the example discussed
in the next subsection). The occurrence of second deriv-
atives of ϕ is, however, more worrisome in general and
can lead to an inconsistent coupling. Hence we expect to
find inconsistent matter coupling in theories with minimal
coupling involving covariant derivatives of the matter field.
Fortunately, scalars or gauge-invariant p-forms (as the
latter have actions with exterior derivatives which do not
involve covariant derivatives) are not of the latter type. This
is not true for non-gauge-invariant forms. Similarly, and
more importantly, this also does not hold for fermions, and
the consistency of their matter coupling appears hence
worth of investigation.

2. The example of veiled gravity

Veiled gravity, as the name indicates, is just general
relativity disguised via a disformal transformation [54]. In
other words, we can consider the standard Einstein Hilbert
action

Z
d4x

ffiffiffiffiffiffi
−g̃

p
R̃ ð28Þ

as representing the action S̃g½g̃μν;ϕ� defined above.
Obviously this action just propagates the two DOF of a
massless spin-2 field and no scalar. When disformally
transformed as in (25), however, the resulting action
Sg½gμν;ϕ� contains a scalar which is not propagating either.
The equivalence of the two theories S̃g½g̃μν;ϕ� and Sg½gμν;ϕ�
has been studied in Ref. [54]. The standard minimal matter
coupling of general relativity translates into a nonminimal
coupling using the disformally transformed variables of the
extended gravitational sector gμν and ϕ. However, imagine
we are just given the action Sg½gμν;ϕ� (i.e., without
knowing its equivalence with general relativity) and couple
matter minimally to the metric gμν. A very simple such
possibility is just provided by the minimal coupling of a
single scalar Φ as in
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Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμνΦμΦν; ð29Þ

where Φμ denotes ∂μΦ. The transformation (23) then
implies that this action depends explicitly on the scalar
ϕ. For example, for simplicity, let us choose the functions a
and b verifying

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X̃

p
; ð30Þ

b ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X̃

p ð31Þ

(a choice that implies in particular aþ bX̃ ¼ 1=a), then, it
is easy to show that one has

S̃m ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
ðg̃μνΦμΦν þ ϕμϕνΦμΦνÞ ð32Þ

and it is clear that the theory now propagates two scalars in
addition to the metric: the matter coupling has made
dynamical the “disformal” scalar. This can be verified first
by writing the scalar field equations which read

□̃Φþ ∇̃μðϕμΦσϕσÞ ¼ 0; ð33Þ

∇̃μðΦμϕσΦσÞ ¼ 0; ð34Þ

where a ˜ indicates that derivatives are computed with the
g̃μν metric. Considering then just time-dependent scalars on
flat backgrounds (i.e., neglecting in particular the back-
reaction on the metric) we get, after some trivial manip-
ulations, that these equations just boil down to the trivial
(where a dot means a time derivative)

Φ̈ ¼ 0; ð35Þ

ϕ̈ ¼ 0 ð36Þ

exhibiting the announced 2 degrees of freedom. This shows
that matter cannot be consistently (in the terminology of
this paper) coupled to veiled gravity. Of course veiled
gravity considered as a DHOST is somehow pathological
as it is doubly degenerate: with no matter coupling, it does
propagate just 2 DOF (as opposed to 3 for a more generic
DHOST and 4 for a generic HOST), and this is the reason
why a minimally genuine scalar Φ with minimal coupling
is enough to make the disformal scalar φ reappear as a bona
fide DOF. In this case, as shown above, this just comes
from the fact that the disformal transformation contains first
derivatives of the scalar φ. For a generic DHOST, an
increase of the DOF might stem from minimal matter
coupling when the latter contains derivatives of the metric,
e.g., connections contained in covariant derivatives, as we
explore below.

B. Noncanonical vector field

Our first example is a matter vector field Bμ with a
noncanonical kinetic term given by the action

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ∇μBν∇μBν: ð37Þ

In flat spacetime this action has no constraints, and hence
minimal coupling to GR trivially maintains the number of
DOF, namely four. It is well known that this theory is in fact
pathological on its own (see e.g., [55]), but let us emphasize
again that here we are not concerned with issues such as the
presence of ghost instabilities, but simply ask if the cova-
riantized theory is consistent according to our criterion of
continuity in the DOF. As a side remark, we mention that
vector fieldswith such noncanonical kinetic terms have found
applications as effective models in various contexts [56–58].9
To settle the question we perform a Hamilton-Dirac

analysis of the generic quadratic DHOST model plus the
above matter action. The 3þ 1 expansion of the DHOST
action was given above in Eq. (13), while for the decom-
position of (37) we obtain

Sm ¼
Z

dtd3xN
ffiffiffi
γ

p ½W2� − FiFi þKij;kl
m KijKkl þ 2BiFjKij

þ 2CijmKij − 2DiB�Fi − Um�: ð38Þ
We have redefined the B0 variable as

B� ≔
1

N
ðB0 − NiBiÞ; ð39Þ

analogously to the DHOST vector, and introduced the
shorthand notations

W� ≔
1

N
ð _B� − ΞBÞ with ΞB ≔ BiDiN þ NiDiB�;

Fi ≔
1

N
ð _Bi −ϒiÞ with

ϒi ≔ DiðNB�Þ þ BkDiNk þ NkDkBi; ð40Þ
and the expressions

Kij;kl
m ¼ B2�γiðkγlÞj − ðBiBðkγlÞj þ BjBðkγlÞiÞ;
Cijm ¼ 2BðiDjÞB� − B�DðiBjÞ;

Um ¼ 2DiB�DiB� −DiBjDiBj: ð41Þ

9More relevant in modified gravity is the example of Einstein-
aether theory [59], which also involves a vector field with a
noncanonical kinetic Lagrangian. However, this case is qualita-
tively different because the norm of the vector is constrained to be
a constant. See also [60,61] for studies of the constraint structure
in Einstein-aether theory. It is also interesting to remark that the
infrared limit of Hořava gravity can be recast as a certain
constrained version of the Einstein-aether model [62].
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The complete action, S ¼ Sg þ Sm, then reads

S ¼
Z

dtd3xfN ffiffiffi
γ

p ½AV2� þ 2BijV�Kij

þKij;kl
tot KijKkl þW2� − FiFi þ 2BiFjKij

þ 2CijtotKij þ 2C0V� − 2DiB�Fi − U tot�
þ λ0ðNA� þ NiAi − _ϕÞ þ λiðAi −DiϕÞg; ð42Þ

where Kij;kl
tot ≔ Kij;kl þKij;kl

m , Cijtot ≔ Cij þ Cijm, and U tot ≔
U þ Um.
Proceeding with the Hamilton-Dirac analysis we first

compute the canonical momenta,

π0 ≔
∂L
∂ _N

¼ 0; πi ≔
∂L
∂ _Ni ¼ 0;

πij ≔
∂L
∂ _γij ¼

ffiffiffi
γ

p ½Kij;kl
tot Kkl þ BijV� þ Cijtot þ BðiFjÞ�; ð43Þ

pϕ ≔
∂L
∂ _ϕ ¼ −λ0; pi ≔

∂L
∂ _Ai

¼ 0;

p� ≔
∂L
∂ _A�

¼ 2
ffiffiffi
γ

p ½AV� þ BijKij þ C0�; ð44Þ

q� ≔
∂L
∂ _B�

¼ 2
ffiffiffi
γ

p
W�;

qi ≔
∂L
∂ _Bi

¼ 2
ffiffiffi
γ

p ½−Fi þ BjKij −DiB��: ð45Þ

The obvious primary constraints are again given by

π0≈ 0; πi≈ 0; pi≈ 0; χi ≔ Ai−Diϕ≈0: ð46Þ

The important question is whether there exists an additional
constraint stemming from the degeneracy condition (14). It
is clear, however, that the phase space functionΨ defined in
(18) does no longer vanish weakly. Due to the presence of
the matter vector Bμ we instead have

Ψ ≈ −2
ffiffiffi
γ

p
K−1

ij;kl½Kij;mn
m Kmn þ Cijm þ BðiFjÞ�Bkl; ð47Þ

which depends explicitly on the velocities and so does not
define a constraint anymore. Of course it is still in principle
possible that an extra constraint does exist but takes a more
complicated form in the presence of matter. But in fact this
is not the case, as we can demonstrate explicitly simply by
showing that one can solve for the velocities _γij, _A�, _B�,
and _Bi.
From Eq. (45) we immediately have _B� ¼ Nq�

2
ffiffi
γ

p þ ΞB,
while from Eqs. (44) and (45) we first find

V� ¼
1

A

�
p�
2

ffiffiffi
γ

p − BijKij − C0
�
;

Fi ¼ −
qi
2

ffiffiffi
γ

p þ BjKij −DiB�: ð48Þ

The latter can be substituted in (43) to get the following
equation for Kij:

�
Kij;kl −

BijBkl

A

�
Kkl þ B2�Kij − BkBðiKjÞk

¼ 1ffiffiffi
γ

p
�
πij þ BðiqjÞ

2

�
þ BðiDjÞB�

−
1

A

�
p�
2

ffiffiffi
γ

p − C0
�
Bij − Cijtot; ð49Þ

and observe that the rhs depends only on the canonical
variables. Although the matrix Kij;kl − BijBkl

A is noninver-
tible by virtue of the degeneracy condition, Eq. (14), the
presence of the field Bμ renders this equation invertible (for
generic field values), and therefore the metric velocity _γij
can be solved for in terms of the canonical variables. The
result can then be substituted back into Eqs. (48) to
determine _A� and _Bi.
The analysis of secondary constraints proceeds almost

identically to the vacuum case of Sec. II, with the
simplification that the DHOST constraint is now absent.
The augmented Hamiltonian thus takes the form

Haug ¼
Z

d3x½NH0 þNiHi þ μ0π0 þ μiπi þ λiχi þ αipi�:

ð50Þ

Although the Hamiltonian and momentum constraints,
H0 ≈ 0 and Hi ≈ 0, now receive contributions from the
matter vector field, general covariance again guarantees
that they will be first class. Moreover, the momentum pϕ

appears in H0 and Hi in the same way as in the vacuum
case: H0 ⊃ pϕA� and Hi ⊃ pϕAi. The preservation in time
of the constraint χi ≈ 0 therefore determines the Lagrange
multiplier αi through exactly the same relation obtained
above in (22). Similarly the consistency of the constraint
pi ≈ 0 simply yields λi ¼ 0 by the arguments already
given.
The final tally of DOF is as follows. The fields

ðgμν; Aμ;ϕ; BμÞ span a 38 ¼ 19 × 2-dimensional phase
space. Subtracting 2 × 8 for the first class constraints
and 6 for the second class constraints, we get 16, that is
8 DOF in total. Since the vector Bμ propagates 4 DOF, this
means that the gravitational sector has 4 DOF, which is
one more than in vacuum. The conclusion is that the
coupling to the matter vector has spoiled the degeneracy of
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the gravitational action with the result that the Ostrogradski
ghost has reappeared.

C. Cubic Galileon

The second example of matter field that we study is the
cubic Galileon,

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∇πÞ2 þ κð∇πÞ2□π

�
; ð51Þ

with κ a constant. For the Hamilton-Dirac analysis we write
the action with only first derivatives by introducing an
auxiliary vector Bμ constrained as Bμ ¼ ∇μπ,

Sm ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
−
1

2
BμBμ þ κBμBμ∇νBν

�

þ σμðBμ −∇μπÞ
�
; ð52Þ

and σμ is a Lagrange multiplier.
The 3þ 1 decomposition is straightforward and in fact

very analogous to that of the DHOST action, since in fact
the cubic Galileon falls in the same class. We find

Sm ¼
Z

dtd3xfN ffiffiffi
γ

p ½2CijmKij þ κðB2� − B2ÞW� − Um�

þ σ0ðNB� þ NiBi − _πÞ þ σiðBi −DiπÞg; ð53Þ

where

Cijm ¼ κ

2
B�ðB2� − B2Þγij;

Um ¼ −
1

2
ðB2� − B2Þ þ κðB2� − B2ÞDiBi; ð54Þ

and B2 ≔ BiBi.
The complete action S ¼ Sg þ Sm is then given by

S ¼
Z

dtd3xfN ffiffiffi
γ

p ½AV2� þ 2BijV�Kij þKij;klKijKkl

þ 2CijtotKij þ 2C0V� þ κðB2� − B2ÞW� − U tot�
þ λ0ðNA� þ NiAi − _ϕÞ þ λiðAi −DiϕÞ
þ σ0ðNB� þ NiBi − _πÞ þ σiðBi −DiπÞg; ð55Þ

with Cijtot ≔ Cij þ Cijm and U tot ≔ U þ Um. Observe that,
unlike in the previous example, the kinetic terms do not
receive contributions from the matter field. We thus expect
that the primary constraints of DHOST theory to remain,
although we will see that this is not enough to guarantee the
consistency of the model in the presence of matter.
To settle this we proceed with the Hamilton-Dirac

analysis, starting with the canonical momenta,

π0 ≔
∂L
∂ _N

¼ 0; πi ≔
∂L
∂ _Ni ¼ 0;

πij ≔
∂L
∂ _γij ¼

ffiffiffi
γ

p ½Kij;klKkl þ BijV� þ Cijtot�; ð56Þ

pϕ ≔
∂L
∂ _ϕ ¼ −λ0; pi ≔

∂L
∂ _Ai

¼ 0;

p� ≔
∂L
∂ _A�

¼ 2
ffiffiffi
γ

p ½AV� þ BijKij þ C0�; ð57Þ

qπ ≔
∂L
∂ _π ¼ −σ0; qi ≔

∂L
∂ _Bi

¼ 0;

q� ≔
∂L
∂ _B�

¼ ffiffiffi
γ

p
κðB2� − B2Þ: ð58Þ

We can immediately read off the primary constraints

π0 ≈ 0; πi ≈ 0; pi ≈ 0; qi ≈ 0;

χi ≔ Ai −Diϕ ≈ 0; ψ i ≔ Bi −Diπ ≈ 0; ð59Þ

in addition to the two constraints associated with the
degeneracies of the action,

Ψ0 ≔ p� − 2K−1
ij;klπ

ijBkl þ 2
ffiffiffi
γ

p ðK−1
ij;klC

ij
totBkl − C0Þ ≈ 0;

Λ ≔ q� −
ffiffiffi
γ

p
κðB2� − B2Þ ≈ 0: ð60Þ

Note thatΨ0 differs from the vacuum constraintΨ in (18) in
that it involves the vector Bμ contained in Cijtot.
The augmented Hamiltonian then reads

Haug ¼
Z

d3x½NH0 þ NiHi þ μ0π0 þ μiπi þ λiχi

þ αipi þ σiψ i þ βiqi þ ξΨ0 þ ρΛ�; ð61Þ

where μ0, μi, λi, αi, σi, βi, ξ, and ρ form the set of Lagrange
multipliers at this stage in the analysis, and the Hamiltonian
and momentum constraint functions are given explicitly by

H0¼ ffiffiffi
γ

p �
K−1

ij;kl

�
πijffiffiffi
γ

p −Cijtot

��
πklffiffiffi
γ

p −Ckltot

�
þU tot

�

þpϕA�−Diðp�AiÞþqπB�−Diðq�BiÞ;
Hi¼−2DjπijþpϕAiþp�DiA� þqπBiþq�DiB�: ð62Þ

Continuing with the analysis, we immediately obtain the
diffeomorphism secondary constraints H0 ≈ 0 and Hi ≈ 0,
while the consistency of the constraints pi ≈ 0, χi ≈ 0,
qi ≈ 0, and ψ i ≈ 0 determines the associated Lagrange
multipliers in the by now familiar way,
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0 ¼ fχi; Haugg ¼ αi þDiðNA� þ NjAjÞ
⇒ αi ¼ −DiðNA� þ NjAjÞ;

0 ¼ fpi;Haugg ¼ −λi ⇒ λi ¼ 0;

0 ¼ fψ i; Haugg ¼ βi þDiðNB� þ NjBjÞ
⇒ βi ¼ −DiðNB� þ NjBjÞ;

0 ¼ fqi; Haugg ¼ −σi ⇒ σi ¼ 0: ð63Þ

We have seen that in the absence of matter the constraint
Ψ ≈ 0 led to a secondary constraint, whose own consis-
tency would then determine the multiplier ξ. With Galileon
matter the story is modified because of the fact that Ψ0 and
Λ do not commute. Explicitly,10

fΨ0;Λg ¼ 2κ
ffiffiffi
γ

p
K−1

ij;klðB2�γij − BiBjÞBkl: ð64Þ

Therefore the preservation in time of Ψ0 ≈ 0 and Λ ≈ 0 will
determine the Lagrange multipliers ξ and ρ instead of
producing any secondary constraints, and the Hamilton-
Dirac analysis ends at this point.
To summarize, there are eight first class constraints asso-

ciated with general covariance while the rest, 14 in total, are
all second class constraints. The fields ðgμν; Aμ;ϕ; Bμ; πÞ
span a 40 ¼ 20 × 2-dimensional phase space, from which
we subtract 2 × 8þ 14 to get 10, that is 5 DOF. This is again
one too many for a healthy scalar-tensor theory coupled to a
Galileon matter field, fromwhich we infer the presence of an
Ostrogradski ghost.

IV. SPINOR FIELDS IN DHOST

In this section we consider the minimal coupling of a
spinor field to DHOST. Spinors fall in the class of
dangerous matter fields for the simple reason that their
kinetic Lagrangian includes the spin connection, and so
time derivatives of the tetrad. Moreover their equations of
motion are first order and they feature constraints. We will,
however, demonstrate that the coupling of spinors to
DHOST is in fact consistent in that all constraints are
preserved.11 We will focus on the treatment of a massless
spin-1=2 Majorana spinor for the sake of simplicity (a
Dirac spinor would pose no further trouble than doubling
the spinor’s DOF); more involved cases such as the analysis
of a spin-3=2 field would be very interesting but certainly
beyond our present scope.

A. Majorana field in DHOST

The minimally covariantized action of a massless spin-
1=2 Majorana spinor λα is given by12

Sm ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
eaμλαðγaÞαβ∇μλβ; ð65Þ

where eaμ is the inverse of the tetrad field eaμ, related to the
metric via gμν ¼ ηabeaμebν, while the covariant derivative
of λα reads

∇μλα ¼ ∂μλα þ
1

4
ωab

μðγabÞαβλβ; ð66Þ

and ωab
μ is the spin connection. In the second-order

formalism that we adopt it can be expressed as ωa
bμ ¼

ebνðΓρ
μνeaρ − ∂μeaνÞ.

Here and in the following subsection, we will consider,
as is customary (see e.g., [69–71]), all (classical) variables
and fields as supernumber valued. In other words, our
variables will take their values in an infinite-dimensional
Grassmann algebra with the infinite set of (anticommuting)
generators θA such that any supernumber z can be written as
(with the Einstein summation implied on the indices A, B
running over the generators)

z ¼ zð0Þ þ zAθA þ zABθAθB þ… ð67Þ

where zð0Þ; zA; zAB;… are just real or complex numbers. All
terms with the same number of generators on the right hand
side of the above equation, say n, belong to what is called
the level n component of the supernumber. The level 0
component zð0Þ is called the body of the supernumber,
while the other level n, with n ≥ 1, sum up to what is called
the soul zS of z. Hence we can write

z ¼ zð0Þ þ zS: ð68Þ

For future reference we can also define as zðnÞ the sum of all
components at level n, e.g.,

zð1Þ ¼ zAθA; zð2Þ ¼ zABθAθB;… ð69Þ

10Here we are omitting the coordinates to avoid cluttering.
The full expression should of course read fΨ0ðt;xÞ;Λðt; yÞg ¼
ð…Þδðx − yÞ.

11See [63] for earlier work on spinors in (nondegenerate)
scalar-tensor theories of gravity. Also related to the context of
DHOST theories are the analyses of [64,65] who considered the
behavior of a minimally coupled spinor under disformal trans-
formations and [66,67] who studied degenerate scalar-spinor
systems without gravity.

12We employ the spinor conventions of [68]. In particular, we
use 4-component notation for our spinor field λα, with the
Majorana conjugate being denoted by λα ≔ Cαβλβ, where the
matrix Cαβ is related to the charge conjugation matrix. Our
gamma matrices are always the standard constant ones of flat
spacetime (we will not use the notation γμ ¼ eμaγa in order to
avoid any confusion), and a multi-index gamma matrix stands for
the antisymmetrized product: γa1���an ≔ γ½a1 � � � γan�. Lorentz in-
dices are raised and lowered with the Minkowski metric ηab (we
will refrain from moving the spacetime index in the tetrads, again
to avoid confusion).
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such that zS ¼
P

n¼∞
n¼1 zðnÞ. Fermionic variables only have

nonvanishing odd level components (and hence in particu-
lar a vanishing body), while bosonic variables only have
nonvanishing even level components. Note that, as usual,
for consistency, bosonic variables do not only have a
nontrivial body, but should also be considered as having
a nontrivial soul.
The Hamilton-Dirac analysis of GR in the tetrad for-

malism and with spinorial matter has been studied in
[72–76], and most of the results carry over to DHOST
gravity in a rather straightforward way. Following [75] we
first introduce the matrices

E0 ≔ −nμeaμγa; Ei ≔ γijeajγa: ð70Þ

Note that in terms of ADM variables we have E0¼Nea0γa,
which can be regarded as a redefinition of the variable ea0

that will have the effect of removing nonlinear terms in the
lapse [very analogously to the redefinition of A0 in
Eq. (8)].13 The canonical momentum of the spinor field
can then be written as14

ϖα ≔
∂RL

∂ _λα
¼ −

1

2

ffiffiffi
γ

p
λβðE0Þβα: ð71Þ

As remarked at the beginning of the section, the gravita-
tional coupling of the spinor also modifies the graviton’s
canonical momentum. A direct calculation yields

π0a ≔
∂L
∂ _ea0 ¼ 0;

πa
i ≔

∂L
∂ _eai ¼ 2

ffiffiffi
γ

p
eaj½Kij;klKkl þ BijV� þ Cij�

þ 1

8

ffiffiffi
γ

p
λαðγaEiE0Þαβλβ: ð72Þ

Notice that the momentum corresponding to the 3-metric
(which in the tetrad formalism should be taken merely as a
shorthand notation since γij is not an independent variable)
does not receive contributions from the spinor field,15

πij ≔
1

2
eaðiπajÞ ¼ ffiffiffi

γ
p ½Kij;klKkl þ BijV� þ Cij�; ð73Þ

and of course coincides with the result of vacuum DHOST
(a property that is well known in GR [75]). For complete-
ness we also write again the momenta associated with the
DHOST scalar and auxiliary vector, which are trivially the
same as in vacuum,

pϕ ≔
∂L
∂ _ϕ ¼ −λ0; pi ≔

∂L
∂ _Ai

¼ 0;

p� ≔
∂L
∂ _A�

¼ 2
ffiffiffi
γ

p ½AV� þ BijKij þ C0�: ð74Þ

From these results we next infer the set of primary
constraints. For the tetrad sector we have16

πa
0 ≈ 0; Jab ≔ π½aieb�i þ

1

4
ϖαðγabÞαβλβ ≈ 0 ð75Þ

and correspond to the primary constraints associated with
general covariance and local Lorentz invariance, respec-
tively [72]. For the spinor sector we have the standard
constraint

Λα ≔ ϖα þ 1

2

ffiffiffi
γ

p
λβðE0Þβα ≈ 0; ð76Þ

from the fact that the Lagrangian is linear in the spinor’s
velocity. Finally we have the familiar DHOST constraints

pi ≈ 0; χi ≔ Ai −Diϕ ≈ 0;

Ψ ≔ p� − 2K−1
ij;klπ

ijBkl þ 2
ffiffiffi
γ

p ðK−1
ij;klC

ijBkl − C0Þ ≈ 0;

ð77Þ

the latter being a direct consequence of Eq. (73) and the
degeneracy condition (14).
After some further manipulations we derive the aug-

mented Hamiltonian,

Haug ¼
Z

d3x½NH0 þ NiHi þ μaπa
0 þ ϵabJab þ λiχi

þ αipi þ ξΨþ Λαζα�; ð78Þ

where

H0¼ ffiffiffi
γ

p �
K−1

ij;kl

�
πijffiffiffi
γ

p −Cij
��

πklffiffiffi
γ

p −Ckl
�
þU

�

þpϕA�−Diðp�AiÞþ1

2

ffiffiffi
γ

p
λαðEiÞαβDiλβ;

Hi¼−2DjπijþpϕAiþp�DiA�

−
1

2

ffiffiffi
γ

p
λαðE0ÞαβDiλβþ

1

8

ffiffiffi
γ

p
Dj½λαðEjEiE0Þαβλβ�; ð79Þ

13The explicit inverse relation that expresses ea0 in terms of E0

is ea0 ¼ 1
2N fE0; γag.

14Here ∂R stands for right differentiation; see e.g., [70,71] for
general discussions on the canonical formalism with Grassmann-
odd variables.

15To see this step more explicitly, observe that the matter
contribution to πij is 1

16

ffiffiffi
γ

p
λαðEðiEjÞE0 − 1

N E
0NðiEjÞE0Þαβλβ,

which follows from the identity eaiγa ¼ Ei − Ni

N E0. On using
the gamma matrix Clifford algebra the previous expression
reduces to a sum of spinor bilinears of the form λαðγaÞαβλβ,
which vanish due to a Majorana flip identity.

16In deriving the local Lorentz constraint it proves useful to
know the identity γijeaiebj ¼ ηab þ nμnνeaμebν.
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and μa, ϵab, λi, αi, ξ, and ζα are Lagrange multipliers. The
analysis of secondary constraints proceeds much like in the
examples of Sec. III. Once again the general covariance of
the action guarantees that the constraints πa0 ≈ 0 and their
descendantsH0 ≈ 0 andHi ≈ 0 are first class. By the same
reasoning, the local Lorentz invariance of the action in
tetrad variables ensures that the Jab ≈ 0 are also first class
(but they do not generate secondary constraints [73]). It is
also obvious that the preservation in time of the constraints
χi ≈ 0 and pi ≈ 0 works out exactly as in vacuum, since the
contributions of the matter spinor are unrelated to ϕ and Aμ,
with the familiar result that they simply determine the
multipliers λi and αi.
The only outstanding question is whether constraints

Ψ ≈ 0 and Λα ≈ 0 give rise to secondary constraints. Recall
that this was precisely the step where the Galileon matter
field evinced its inconsistency, which we saw to stem from
the fact that the primary constraints did not commute. The
case at hand is, however, slightly more complex as the
relevant question is whether the matrix

MIJ ≔ fCI; CJg; with CI ≔ ðΨ;ΛαÞ; ð80Þ

possesses an inverse or not. More precisely, the rank of M
equals the number of Lagrange multipliers among the set
ðξ; ζαÞ that are fixed by the requirement of preservation in
time of the primary constraints.
The matrix M is in fact singular. Working out the

Poisson brackets we find17

fΨ;Λαg ¼ 1

2

ffiffiffi
γ

p
K−1

ij;klγ
ijBklλβðE0Þβα;

fΛα;Λβg ¼ ffiffiffi
γ

p ðE0Þαβ: ð81Þ

Deciding whetherM is invertible turns out to be very easy
and follows directly from a simple lemma on the invert-
ibility of Grassmann-valued matrices [69,70]: given the
decomposition of any matrix M into its body and soul,
M ¼ Mð0Þ þMS, then M is invertible if and only if the
body Mð0Þ is invertible. In our case we have

Mð0Þ ¼
�
0 0

0
ffiffiffi
γ

p ðE0Þαβ
�
; ð82Þ

which is obviously singular. Moreover, since the matrix
fΛα;Λβg is nonsingular (both the charge conjugation
matrix and the gamma matrices are nonsingular), we infer
thatM has rank four and therefore the time preservation of
the constraints Ψ ≈ 0 and Λα ≈ 0 leads to precisely one

secondary constraint (the constraint Ω ≈ 0 explained in
Sec. II) and the determination of four Lagrange multipliers.
The merry conclusion is that the DHOST constraint

remains in the presence of spinorial matter and the
Ostrogradski ghost is absent. Indeed we can complete the
counting of DOF by taking the 25 × 2 phase space varia-
bles18 corresponding to the fields ðeaμ; Aμ;ϕ; λαÞ, subtract
14 × 2 for the first class constraints fπa0;Hμ; Jabg ≈ 0 and
12 for the second class constraints fpi; χi;Ψ;Ω;Λαg ≈ 0,
giving a grand total of 10, that is 5 DOF, which matches the
expectation of having 3DOF for the scalar-tensor sector plus
2 DOF for the Majorana spinor field.
One may worry that this outcome may be specific to the

simple spinor action that we have considered, which
neglects all self-interactions. It is obvious, however, that
any nonderivative potential will have no effect on the
constraint structure and hence is perfectly allowed. At the
next level of complexity one may consider arbitrary
interactions that are linear in the derivative of the spinor
field. The latter assumption is sufficient in order to maintain
an analog of the constraint (76). What is less trivial is that
this condition also ensures that, upon minimal coupling to
gravity, the 3-metric canonical momentum defined in (73)
remains independent of the spinor field (the proof of
this property is somewhat technical and is given in the
Appendix), and this is enough to guarantee that the DHOST
constraint is left unchanged. It thus follows that any self-
interacting spin-1=2 particle admits a consistent coupling to
DHOST provided the matter action is at most linear in the
spinor derivative. It is worth emphasizing that this require-
ment is not very restrictive, since generalized spinor models
that involve second or higher derivatives or terms nonlinear
in first derivatives generically lead to the loss of the
constraint (76), or equivalently to higher than first-order
equations of motion, which typically signals a pathology. It
is only very recently that healthy generalized fermionic
systems have been constructed [67], although the consis-
tency of the coupling to gravity for such models, not only in
DHOST but already in pure GR, remains an open question
that we would like to address in the future.

B. Superclassical dynamics with higher derivatives

It is evident from the previous analysis that the consistent
coupling between DHOST and a spinor matter field has
little to do with the detailed structure of the scalar-tensor
sector or with the specific form of the constraints. It is
rather due to the properties of the spinor fields and the
assumption that their action is at most linear in time
derivatives, which we have seen to be a sufficient condition

17Here we raise a spinor index in the matrix E0 using the
charge conjugation matrix (see footnote 12). Note that ðE0Þαβ is
symmetric, in accordance with the fact that the Poisson bracket of
two Grassmann-odd functions must be symmetric.

18Although the four components in the spinor λα could be
complex, the Majorana condition implies that there are four
independent real variables. Note that in four dimensions one may
use a so-called “really real” representation of the gamma
matrices, in which case Majorana spinors are purely real [68].

CÉDRIC DEFFAYET and SEBASTIAN GARCIA-SAENZ PHYS. REV. D 102, 064037 (2020)

064037-12



for the existence of the spinor and DHOST primary
constraints in the minimally coupled system. The fact that
a secondary scalar constraint is also guaranteed to exist is
then immediate from the properties of classical fermionic
fields and particularly from the lemma quoted in the
previous subsection. This suggests that the consistency
of interactions between higher-derivative bosonic systems
and a fermionic sector is very generic, thus potentially
opening the door to a wealth of novel theories.
Here we would like to initiate an exploration of

this question by considering a mechanical toy model
involving a set of commuting and anticommuting variables,
i.e., a superclassical mechanical model (see e.g., [69]).
Concretely we envisage the action

S ¼
Z

dt

�
ϕ _π þ 1

2
χ _χ þ 1

2
ξ_ξþ gχξϕπ̈

�
; ð83Þ

where ϕ and π are commuting and χ and ξ are anticommut-
ing supernumber-valued time-dependent functions, while g
is a coupling constant. Morally we can think of the ðϕ; πÞ
subsystem as a toy scalar-tensor theory, while ðχ; ξÞ
represents some fermionic matter sector. We are simplify-
ing the discussion as much as possible by considering a
situation in which, in the absence of coupling (g ¼ 0), the
dynamics is purely of first differential order. It is thus
evident that the number of DOF (in the mechanical sense) is
four when the two subsectors do not interact. The question
is whether this conclusion changes by the inclusion of the
above quartic interaction, which modifies a priori the
differential order of the equations of motion. Note that
the above interaction is chosen in close analogy with the
fermionic coupling to gravity of the previous subsection:
there, indeed, we stressed that the spin connection intro-
duces a coupling to the fermionic fields which is (i) quad-
ratic in the fermionic fields and (ii) depending linearly on
the first derivative of the bosonic tetrad which in turn
combines into the bosonic metric. Carrying then a dis-
formal transformation, we can expect to generate in this
way a coupling between the second derivative of the scalar
of the disformal transformation and a term quadratic in the
fermions, just like the interaction term above, while for
DHOST theories obtained by disformally transforming a
Horndeski theory the pure bosonic sector has just second-
order field equations (after the disformal transformation).
After some simple manipulations of the Euler-Lagrange

equations we arrive at the following differential system:

_π ¼ −gχξπ̈; _ϕ ¼ gχξϕ̈;

_χ ¼ −gξϕπ̈; _ξ ¼ −gχϕπ̈; ð84Þ

which is indeed higher order. However, the variables being
here supervariables, this implies that this system demulti-
plies into a recursive system at each level of the Grassmann
algebra. This should be taken into account in order to

properly count the number of DOF (see e.g., [77] where a
similar analysis is carried out to address the Cauchy
problem of supergravity). More specifically, we write here

π¼πð0ÞðtÞþπð2ÞðtÞþ… χ¼ χð1ÞðtÞþχð3ÞðtÞþ…

ϕ¼ϕð0ÞðtÞþϕð2ÞðtÞþ… ξ¼ ξð1ÞðtÞþξð3ÞðtÞþ… ð85Þ

At level 0 in the Grassmann algebra the Eqs. (84) give the
free system

_πð0Þ ¼ 0; _ϕð0Þ ¼ 0 ð86Þ

with trivial solution πð0ÞðtÞ¼cπ and ϕð0ÞðtÞ ¼ cϕ, cπ and cϕ
being c numbers. At level 1 the system (84) boils down to

_χð1Þ ¼ −gξð1Þϕð0Þπ̈ð0Þ; _ξð1Þ ¼ −gχð1Þϕð0Þπ̈ð0Þ; ð87Þ

where the right hand sides of the above equations vanish by
virtue of the body level system (86). Hence, the fermionic
level 1 is again free and only needs two integration
constants. At level 2 we have

_πð2Þ ¼ −gχð1Þξð1Þπ̈ð0Þ; _ϕð2Þ ¼ gχð1Þξð1Þϕ̈ð0Þ; ð88Þ

where we see that the quartic interaction does not introduce
more integration constants than in the noninteracting case
which would yield the above equations with vanishing right
hand sides. Indeed, at level 2, the interaction only appears
on the right hand side of the above and involves only
components of levels strictly smaller than 2 which have
been previously determined (moreover, at level 2, to the
right hand sides above in fact vanish as a consequence of
the body equations). It is easy to see that this statement
persists at all levels. This settles the question about the
number of DOF: the nonlinear coupling has no effect once
the level decomposition of the variables is performed and
we can conclude that the interacting theory has the same
number of DOF as the free one. Somehow, the Grassmann
algebra level decomposition forces one to consider the
interaction in a perturbative way and does not allow it to
introduce extra degrees of freedom. This is also the essence
of the result of the previous subsection.
The previous analysis was of course almost trivial due to

the simplicity of the model and the fact that the equations of
motion could be recast in a form that made manifest the
structure of the level decomposition. For more complicated
systems including constraints one may wish to resort to a
Hamilton-Dirac procedure in order to avoid any ambigu-
ities, as we did for the scalar-tensor-spinor theory in the last
subsection. It is actually instructive to compare the two
approaches, so in the following we perform a canonical
analysis of our toy model, which we hope will clarify the
argument by removing the added complications related to
general covariance and local Lorentz invariance that we had
to deal with before. To this end we first write the action (83)
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in first-order form with the help of a new variable ψ and a
Lagrange multiplier λ, both being bosonic (i.e., Grassmann-
even)

S¼
Z

dt
�
ϕψ þ 1

2
χ _χþ 1

2
ξ_ξþ gχξϕ _ψ þ λðψ − _πÞ

�
: ð89Þ

Computing the canonical momenta (denoted as pα for the
variable α) we find that these verify Ci ¼ 0, with Ci,
i ¼ 1;…; 6, defined by

C1 ¼ pϕ; C2 ¼ pχ −
1

2
χ; C3 ¼ pξ −

1

2
ξ;

C4 ¼ pψ − gχξϕ; C5 ¼ pπ þ λ; C6 ¼ pλ; ð90Þ

which yields six primary constraints Ci ≈ 0, amongwhich C2
and C3 are Grassmann-odd while the others are Grassmann-
even. Note that we have kept here the Lagrange multiplier λ
dynamical given the dynamical analogy between λ and ϕ,
both of which have vanishing momenta. We get hence the
total Hamiltonian (see e.g., [70])

HT ¼ −ϕψ − λψ þ
Xi¼6

i¼1

γiCi ð91Þ

with the γi enforcing the primary constraints, two of
them (γ2 and γ3) being Grassmann-odd while the others
are Grassmann-even. Note that the Lagrangian being
linear into the first derivatives of the fields, the canonical
Hamiltonian is the pure potential −ðϕþ λÞψ .
The next step is to check the time preservation of the

primary constraints by computing fCi; HTg,

fC1; HTg ¼ 0 ⇒ D1 ≡ ψ þ γ4gχξ ¼ 0; ð92Þ

fC2; HTg ¼ 0 ⇒ D2 ≡ γ2 − γ4gϕξ ¼ 0; ð93Þ

fC3; HTg ¼ 0 ⇒ D3 ≡ γ3 þ γ4gϕχ ¼ 0; ð94Þ

fC4;HTg¼ 0⇒ϕþλþgχϕγ3−gξϕγ2−gχξγ1¼ 0; ð95Þ

fC5; HTg ¼ 0 ⇒ D5 ≡ γ6 ¼ 0; ð96Þ

fC6; HTg ¼ 0 ⇒ D6 ≡ ψ − γ5 ¼ 0; ð97Þ

where we note in particular that the second and third lines
above imply a simplification of the expression in the fourth,
indeed e.g., the preservation of C2 implies that γ2 ¼ γ4gϕξ
which when inserted into the equation obtained by writing
the preservation of C4 makes the term depending on γ2
vanish because ξ squares to zero (and a similar reasoning
holds for the term depending on γ3). Hence the time
preservation of C4 yields simply

fC4; HTg ¼ 0 ⇒ D4 ≡ ϕþ λ − gχξγ1 ¼ 0: ð98Þ

We thus have six equations Di ¼ 0 generated by the time
preservation of the six primary constraints Ci ¼ 0 and six
Lagrange multipliers γi. If we would not work with
supernumbers, a simple examination of these equations
would lead to the conclusion that the process would stop
here as the above equation would determine fully all the γi,
and we would conclude that the number of propagating
DOF would be six (in the Hamiltonian sense) in agreement
with the expectation that higher-order equations would
result in an increase of the number of propagating DOF.
However, we deal with supernumbers here and we should
carefully level decompose the above Di. While the
Lagrange multipliers γ6 and γ5 are fully determined by
Eqs. (96) and (97) and that the (Grassmann-odd) Lagrange
multipliers γ2 and γ3 are fully determined once γ4 is known
using Eqs. (93) and (94), we see that the vanishing of the
bodies of D1 and D4 yield the additional constraints

ψ ð0Þ ¼ 0; ð99Þ

ϕð0Þ þ λð0Þ ¼ 0; ð100Þ

and the recursion relation for the Lagrange multipliers γ4
and γ1

ψ ð2nÞ þ g
Xk¼n

k¼1

γð2n−2kÞ4 ðχξÞð2kÞ; ð101Þ

ϕð2nÞ þ λð2nÞ þ g
Xk¼n

k¼1

γð2n−2kÞ1 ðχξÞð2kÞ: ð102Þ

Now if we compute the time evolution of ψ and ϕþ λ
we get

fψ ; HTg ¼ γ4; ð103Þ

fϕþ λ; HTg ¼ γ1 þ γ6: ð104Þ

This togetherwith (99), (100), and (96) yields in turn γð0Þ4 ¼ 0

and γð0Þ1 ¼ 0. Using then these equalities, the above two
equations and the recursion relations (101) and (102) we
conclude that γ4 and γ1 as well as ψ and ϕþ λ vanish at all
levels. These latter two expressions being secondary con-
straints, which obviously do not generate any tertiary con-
straints. So we have a total of eight (second class) constraints
for six canonical pairs of variables, giving the expected result
of four mechanical DOF that we obtained previously.

V. DISCUSSION

We have set out in this work to perform a first gen-
eral analysis on the consistency of matter coupling in
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generalized scalar-tensor theories of the degenerate type.
Our essential criterion that determined whether a given
matter field can be described consistently within DHOST
was that the interaction between the matter and scalar-
tensor sectors that derives from the minimal coupling
prescription should not introduce extra degrees of freedom.
The possibility of having this issue is nicely illustrated by
the simple example of veiled gravity minimally coupled to
an ordinary scalar field. More generally, we have seen that,
if such a pathology is present, it manifests itself in the
Hamiltonian language through a loss of constraints, and we
have explained by means of two examples the precise ways
in which this can happen.
The first case occurs when the minimal coupling results

in a mixing between the time derivatives of the metric and
matter fields so that the full kinetic matrix does not have a
block-diagonal form, implying that its rank may differ from
the number of primary constraints one had before intro-
ducing the coupling. Although our example model of a
noncanonical vector matter field was rather artificial,
theories that involve a kinetic mixing with gravity are
not hard to find. For instance any bosonic higher-spin
theory as well as nonminimally coupled lower spin matter
are dangerous in this sense. It should be remembered,
however, that such an issue is not specific to DHOST
theories and is already problematic in pure GR; this was our
motivation to consider the artificial vector model, which is
consistent in GR according to the aforementioned criterion.
The second possibility is that the gravitational coupling

preserves the primary constraints of the scalar-tensor and
matter sectors, but that it implies the failure to generate the
necessary secondary constraints for the correct counting of
DOF. This situation is more interesting as it does not occur
in pure GR (which has only first class constraints), but is
instead generic of degenerate modified gravity theories.
Indeed, whenever a degeneracy is present, if the associated
primary constraint fails to commute with any of the
constraints in the matter sector then its minimal coupling
to gravity must be deemed inconsistent.
This last remark motivates a careful study of spinor fields

in the context of DHOST, which we have undertaken here
by performing a full Hamilton-Dirac analysis of a mini-
mally coupled Majorana spinor. We have shown that the
required secondary constraints are actually present so that
the consistency criterion is satisfied, although we have also
pointed out that this property was not specific to the
structure of the DHOST action. Rather, the commutation
of the constraints is almost immediate once the level
decomposition of the Grassmann algebra is taken into
account. Even though this observation is somewhat trivial,
it does lead to the perhaps unappreciated possibility of
having a very large class of higher-derivative operators
within modified gravity without introducing extra patho-
logical DOF classically. We already mentioned, as an
example, that the curvature-dependent spinor “mass” terms

of the form Rnλ̄λ (some of which have been considered
recently in [78,79]) can be seen to be harmless from the
point of view of the DOF counting. There is, however, a
nontrivial aspect in our result, namely that the coupling to
the spinor matter field does not modify the form of the
DHOST constraint. We have moreover shown, through the
results of the Appendix, that this crucial property is not an
accident of the simple quadratic spinor model that we
focused on in the main text, but that it actually holds for a
very general set of self-interacting spin-1=2 theories. That
being said, there are several interesting fermionic models
that are not covered by our results, so we hope to revisit this
question in future work. These include the cases of a spin-
3=2 fermion, of multiple spinors involving mutual inter-
actions, and of generalized spinor theories with actions that
are not simply linear in the derivative of the field.
It is worth emphasizing again that our criterion on the

coupling to matter is only a first requirement for the overall
consistency of the DHOST framework and that phenom-
enological considerations may certainly impose additional
constraints on the space of viable matter-coupled theories.
However, these considerations depend on the specific
applications of the models considered, in contrast to our
analysis which is based on formal criteria, and an analysis
of phenomenological factors lies outside the scope of this
work. The current and main application of DHOST theories
is to address cosmic acceleration, however, similar to
vanilla scalar-tensor theories, one can consider many
noncosmological applications and our analysis will apply
there as well. Nonetheless, it is an intriguing question
whether our results can potentially complement the existing
constraints on such cosmological applications, in particular
the recent results on the decay of gravitational waves into
dark energy [80], on the destabilization of dark energy
inhomogeneities by gravitational waves [81], and on the
Vainshtein screening mechanism [32] (see also [31,82–84]
and below for other related works). At present these results
are quite orthogonal to our work given that the exotic types
of matter that we have so far identified as problematic do
not play any role in these analyses. Nevertheless, we can
foresee potentially useful applications in the context of
violent astrophysical events, such as the merger of two
neutron stars, in which higher-derivative corrections to the
matter sector could in principle become important, while
the Planck-suppressed corrections to the DHOST sector
would still be small. This theory would thus effectively be
described by DHOST gravity coupled to matter fields that
exhibit higher-derivative interactions, which may therefore
spoil the degeneracy condition according to our results,
under the assumption that the gravity sector can be treated
classically in this regime.
Another interesting prospect would be to generalize our

analysis by allowing for nonminimal coupling, although
this is likely to require a case by case study. In fact, since
there is a subset of DHOST models that are related to
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nondegenerate theories via field redefinitions, it is clear that
any matter field can be accommodated within this class
through a nonminimal coupling if it can be covariantized
consistently in the nondegenerate case. Another intriguing
avenue to pursue is the study of matter coupling within the
Palatini formalism recently developed for Horndeski and
DHOST theories in [85], as this is a very natural setting to
consider the gravitational interaction with fermions. Finally,
perhaps themost important restriction in our analysis was the
assumption that matter does not couple directly to the
DHOST scalar field, while for physical applications such
a coupling might in fact be necessary in order to achieve
nontrivial fifth force effects possibly screened à laVainshtein
[86–89] (see also e.g., [25,90,91]). It is therefore an interest-
ing problem to understand how a coupling of the form ϕTμ

μ,
but also more general ones, can affect our conclusions.
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APPENDIX: GENERAL SPINOR ACTION

In this Appendix we prove that the most general
action for a Majorana spinor λ involving at most a single
derivative of the field takes a very simple form, one which
ensures the consistency of minimal gravitational coupling
both in GR and in DHOST.19

To this end we begin by classifying all the independent
products of spinor bilinears under the above assumption on
the total number of derivatives. We recall that in four
dimensions the set f1; γa; γab; γaγ5; γ5g provides a com-
plete basis of the complex 4 × 4 matrices. Note, however,
that due to the Majorana condition only the bilinears λ̄λ,
λ̄γ5λ and λ̄γaγ5λ are nonzero among the candidates without
derivatives [68]. We therefore have four possible Lorentz-
invariant products of bilinears that have no derivatives,

A1 ¼ ðλ̄λÞ2; A2 ¼ ðλ̄γ5λÞ2; A3 ¼ λ̄γaγ5λ · λ̄γaγ5λ;

B1 ¼ λ̄λ · λ̄γ5λ: ðA1Þ

These terms are not all independent due to Fierz identities.
The product B1 transforms into itself under a Fierz
rearrangement, which can be used to show that it vanishes.

The An terms are reshuffled among themselves upon
Fierzing and from the resulting relations it is straightfor-
ward to show that

A2 ¼ A1; A3 ¼ −4A1; B1 ¼ 0; ðA2Þ
so that there is a single independent nontrivial product, that
we take to be A1. Products of bilinears containing one
derivative of the spinor field can be studied in the same
way. We now count eight Lorentz-invariant structures,20

C1 ¼ λ̄λ · λ̄γa∂aλ; C2 ¼ λ̄γ5λ · λ̄γaγ5∂aλ;

C3 ¼ λ̄γaγ5λ · λ̄γ5∂aλ; C4 ¼ λ̄γaγ5λ · λ̄γabγ5∂bλ;

D1 ¼ λ̄γ5λ · λ̄γa∂aλ; D2 ¼ λ̄λ · λ̄γaγ5∂aλ;

D3 ¼ λ̄γaγ5λ · λ̄∂aλ; D4 ¼ λ̄γaγ5λ · λ̄γab∂bλ: ðA3Þ

It is easy to see that the Cn and Dn groups transform
independently of each other under Fierzing. From the
resulting identities we find that only one product in each
group is nonredundant, which we take to be C1 and D1,

C2 ¼ −C1; C3 ¼ C1; C4 ¼ 3C1;

D2 ¼ D1; D3 ¼ −D1; D4 ¼ −3D1: ðA4Þ
Finally we also have to consider higher-degree Lorentz-
invariant contractions of spinor bilinears. For purely
potential terms without derivatives it is clear from the
above result that all such terms are simply powers of the
bilinear λ̄λ. For the terms with one derivative we have only
two new candidate structures given by

E1 ¼ λ̄γaγ5λ · λ̄γbγ5λ · λ̄γa∂bλ;

E2 ¼ λ̄γaγ5λ · λ̄γbγ5λ · λ̄γaγ5∂bλ: ðA5Þ
However, the Fierz identity

λ̄γaγ5λ · λ̄γbγ5λ ¼ −
2

3
ηabðλ̄λÞ2 ðA6Þ

allows us to conclude that the En products are not
independent from the ones we have already classified.
From these results we infer that the most general action

for a single Majorana spinor in flat space and including at
most one derivative is given by

Sm ¼
Z

d4xf½P1ðλ̄λÞ þ c1λ̄γ5λ�λ̄γa∂aλþ P2ðλ̄λÞg; ðA7Þ

where P1 and P2 are any (real) entire functions and c1 is an
arbitrary coupling constant.

19In order to lighten the notation in this Appendix we will omit
spinor indices, so that a spinor bilinear is written for instance as
λ̄Γλ, where λ̄ is the Majorana conjugate of λ and Γ is any product
of gamma matrices.

20It may be thought that the term C4 is redundant as it involves
the matrix γabγ5, which is not part of the basis we have chosen.
However, using a familiar identity, we can rewrite the product as
C4 ¼ i

2
ϵabcdλ̄γaγ5λ · λ̄γbc∂dλ.
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Next we wish to show that upon covariantization the
action (A7) does not thwart the constraints that ensure
the consistency of the coupling to DHOST gravity. The
existence of a spinor constraint is manifest from the fact
that the action is linear in the time derivative of the field.
Explicitly, the constraint (76) is modified in the presence of
self-interactions as

Λα ≔ ϖα −
ffiffiffi
γ

p ½P1ðλ̄λÞ þ c1λ̄γ5λ�λβðE0Þβα ≈ 0: ðA8Þ

On the other hand, the contribution of the matter action to
the canonical momentum conjugate to the tetrad is also
modified,

πðmÞai ¼ −
1

4

ffiffiffi
γ

p ½P1ðλ̄λÞ þ c1λ̄γ5λ�λαðγaEiE0Þαβλβ; ðA9Þ

but it remains true that

πijðmÞ ≔
1

2
eaðiπðmÞajÞ ¼ 0: ðA10Þ

The last relation guarantees that the DHOST constraint is
unmodified by the presence of the spinor field. This
completes the proof of the consistency of matter coupling
for spinorial matter with general self-interactions.
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