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We classify the asymptotic charges of a class of polyhomogeneous asymptotically flat spacetimes with
finite shear, generalizing recent results on smooth asymptotically flat spacetimes. Polyhomogeneous
spacetimes are a formally consistent class of spacetimes that do not satisfy the well-known peeling
property. As such, they constitute a more physical class of asymptotically flat spacetimes compared to the
smooth class. In particular, we establish that the generalized conserved nonlinear Newman-Penrose charges
that are known to exist for such spacetimes are a subset of asymptotic BMS charges.
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I. INTRODUCTION

One of the most striking results in the mathematical
study of gravitational waves in general relativity is the so-
called peeling property [1–3] (see, e.g., also Ref. [4]). The
peeling property is a statement regarding the asymptotic
behavior of the Weyl tensor components as one approaches
null infinity. For a smooth asymptotically flat spacetime,
the result follows from the assumed smoothness of the
unphysical spacetime upon conformal compactification [5].
In Bondi coordinates [1,2], it is

Cabcd ¼ r−1CðNÞ
abcd þ r−2CðIIIÞ

abcd þ r−3CðIIÞ
abcd

þ r−4CðIÞ
abcd þOðr−5Þ; ð1:1Þ

where r is an affine parameter along an outgoing null
geodesic. The superscripts on the Weyl tensors on the rhs
denote the components of the Weyl tensor in a null basis
that is used to define the Petrov type of the spacetime. Thus,
the leading order term corresponds to the Weyl tensor
components of Petrov type N. Given that the Weyl tensor
encompasses the remaining degrees of freedom in the
curvature, the peeling property can be viewed as a state-
ment regarding the falloff behavior of isolated gravitating
bodies and the radiation they emit. However, already in
Ref. [3] (see footnote 27), doubts were expressed regarding
the validity of the assumptions that lead to this result. Since

then, the question of the validity of the peeling property has
attracted much research; see e.g., Refs. [6–16]. What is
clear by now is that the smoothness assumption precludes
many interesting physically relevant cases. One class of
spacetimes that moves away from the smoothness
assumption are those that admit a polyhomogeneous
expansion [12]. These spacetimes are formally consistent
with the Einstein equations and admit the BMS group as an
asymptotic symmetry group [12], have a well-defined
Trautman-Bondi mass parameter [17] and admit
Newman-Penrose charges [18,19]. Importantly, they pro-
vide an example of a more realistic class of asymptotically
flat spacetimes than the smooth case.
In this paper, we shall study the asymptotic BMS charges

admitted by polyhomogeneous spacetimes that have a finite
shear [18]. This subset of polyhomogeneous spacetimes
has a slightly better falloff property at leading order
compared with the most general spacetimes. We will
concentrate on this large subset of polyhomogeneous
spacetimes in order to make the rather involved calculations
tractable. However, we are confident that the results
obtained in this paper may be generalized to the full class.
In recent work, a relation has been established [20,21], in

the smooth case, between Newman-Penrose charges [22],
which are a set of ten conserved nonlinear charges at null
infinity, and asymptotic BMS charges [23–25], which are
the charges associated with the generators of the BMS
algebra via the Noether theorem. Although, such a relation
ought to be natural, remarkably, such a relation had not
been previously found. Indeed, in order to make progress, it
has been required to extend the notion of asymptotic BMS
charges to include subleading charges [20] and new dual
charges [21,26], which have recently been derived from
first principles [27,28].
Our aim in this work is to extend the formalism

developed in Refs. [20,21] to classify the asymptotic

*m.godazgar@qmul.ac.uk
†g.macaulay@qmul.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 064036 (2020)

2470-0010=2020=102(6)=064036(24) 064036-1 Published by the American Physical Society

https://orcid.org/0000-0001-8926-7745
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.064036&domain=pdf&date_stamp=2023-05-18
https://doi.org/10.1103/PhysRevD.102.064036
https://doi.org/10.1103/PhysRevD.102.064036
https://doi.org/10.1103/PhysRevD.102.064036
https://doi.org/10.1103/PhysRevD.102.064036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


BMS charges within the class of polyhomogeneous space-
times with finite shear. This generalization is nontrivial for
two reasons: the calculational complexity increases sub-
stantially when considering polyhomogeneous spacetimes
and particular features of the polyhomogeneous expansion
raises interesting new questions about the nature of charges,
as will become apparent below. In particular, the nature of
the characteristic value problem applied to polyhomoge-
neous spacetimes means that nontrivial conserved BMS
charges can be defined in terms of initial data that do not
evolve. This is a new feature that is specific to polyho-
mogeneous spacetimes and compels us to reappraise what
we mean by conserved BMS charges.
Our main result is to establish a relation between asymp-

totic BMS charges and the generalized Newman-Penrose
charges discovered in Ref. [18] for polyhomogeneous space-
times with finite shear. Generalized Newman-Penrose
charges exist for the full class of polyhomogeneous space-
times [19] and we expect this relation to also hold in the
full class.
The insights gained from this study have led to a better

understanding of how Newman-Penrose charges come
about and the possibility of identifying conserved charges
at lower orders. An as of yet open question is whether
conserved charges could exist at lower orders in the 1=r
expansion. We hope to tackle this interesting problem in a
future work.
In Sec. II, we give some prerequisite information

regarding polyhomogeneous spacetimes and the falloff
behavior of their Weyl tensor components, the Einstein
equations and the action of the BMS group on the metric
components. Also, we define the subclass of polyhomoge-
neous spacetimes with finite shear. In Sec. III, we classify
the standard BMS charges up to order 1=r3 and identify a
subset of five conserved nonlinear charges. Similarly, in
Sec. IV, we classify the dual charges defined in Ref. [21] up
to order 1=r3 and, again, discover a subset of five conserved
nonlinear charges. In Sec. V, we show, via a translation to
the Newman-Penrose formalism, that the set of ten con-
served charges found in Secs. III and IV is equivalent to the
generalized Newman-Penrose charges of Ref. [18].

II. PRELIMINARIES

A polyhomogeneous spacetime is one for which the
metric components can be expanded asymptotically as a
combination of powers of r−1 and positive powers of z≡
log r as r → ∞. For example, a function f admits a
polyhomogeneous expansion if

fðrÞ ¼ f0 þ
f1ðzÞ
r

þ f2ðzÞ
r2

þ f3ðzÞ
r3

þ � � � ; ð2:1Þ

where each fi is itself a series expansion in positive powers
of z. As in Refs. [12,19], we restrict our attention to
spacetimes where only finite powers of z appear in the

series, so that fi are polynomials in z.1 Following Ref. [19],
we denote the degree of a polynomial f as #f.
Working with the Bondi definition of asymptotic flatness

[1,2], we introduce Bondi coordinates ðu; r; xIÞ with
xI ¼ fθ;ϕg, such that the metric takes the form

ds2 ¼ −Fe2βdu2 − 2e2βdudr

þ r2hIJðdxI − CIduÞðdxJ − CJduÞ; ð2:2Þ

where a residual gauge freedom in defining r is fixed by
imposing

det h ¼ detω ð2:3Þ

with ωIJ the standard metric on the round 2-sphere. This
condition implies that hIJ has two degrees of freedom.
The Bondi definition of asymptotic flatness and the

condition of polyhomogeneity requires that the metric
parameters have the following large r asymptotic form2:

βðu;r;xIÞ¼ β0ðz;u;xIÞ
r2

þβ1ðz;u;xIÞ
r3

þβ2ðz;u;xIÞ
r4

þoðr−4Þ;

Fðu;r;xIÞ¼ 1þF0ðz;u;xIÞ
r

þF1ðz;u;xIÞ
r2

þF2ðz;u;xIÞ
r3

þF3ðz;u;xIÞ
r4

þoðr−4Þ;

CIðu;r;xIÞ¼CI
0ðz;u;xIÞ

r2
þCI

1ðz;u;xIÞ
r3

þCI
2ðz;u;xIÞ

r4

þCI
3ðz;u;xIÞ

r5
þoðr−5Þ;

hIJðu;r;xIÞ¼ωIJþ
BIJðz;u;xIÞ

r
þ C̄IJðz;u;xIÞ

r2

þ D̄IJðz;u;xIÞ
r3

þ ĒIJðz;u;xIÞ
r4

þoðr−4Þ; ð2:4Þ

where

C̄IJ ¼ CIJ þ
1

4
B2ωIJ; D̄IJ ¼ DIJ þ

1

2
BKLCKLωIJ;

ĒIJ ¼ EIJ þ
�
1

2
BKLDKL þ 1

4
C2 −

1

32
ðB2Þ2

�
ωIJ ð2:5Þ

1Relaxing this condition would mean that the infinite series in
z that would appear in these calculations would in fact reduce to
integer powers of r. Therefore, our analysis, which treats the
expansions in 1=r and z independently, would no longer be valid.

2Note the slight difference in notation in the expansion of hIJ
compared to Refs. [20,21], cf. Eq. (2.2) of Ref. [20].
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with B2 ¼ BIJBIJ and C2 ¼ CIJCIJ. This form of the
hIJ expansion is chosen so that condition (2.3) simply
translates to

TrB ¼ TrC ¼ TrD ¼ TrE ¼ 0 ð2:6Þ

at this order, where for some tensor XIJ, TrX ≡ ωIJXIJ.
Furthermore, the 2-sphere tensors B, C, D and E are
independent and parametrize the 2 degrees of freedom of
hIJ at each order.

A. Asymptotic behavior of Weyl scalar Ψ0

For spacetimes that are analytic in 1=r, i.e., there exist no
log terms, the Weyl tensor satisfies the so-called peeling
property [3], which can be simply stated as the fact that the
Weyl tensor in the unphysical spacetime vanishes at null
infinity. In Newman-Penrose language [3], this statement is
equivalent to the fact that

Ψi ¼ O

�
1

r5−i

�
; i ∈ f0;…; 4g; ð2:7Þ

where theΨi are the Newman-PenroseWeyl scalars defined
with respect to a complex null frame ðla; na; ma; m̄aÞ,

Ψ0 ¼ lamblcmdCabcd; Ψ1 ¼ lanblcmdCabcd;

Ψ2 ¼ lambm̄cndCabcd; Ψ3 ¼ lanbm̄cndCabcd;

Ψ4 ¼ nam̄bncm̄dCabcd: ð2:8Þ

As we shall explain below, the peeling property no longer
holds in polyhomogeneous spacetimes [12,29]. Moreover,
we shall find that the Weyl scalar Ψ0 falls off too slowly.
This will lead us to make some further assumptions on the
metric expansion (2.4).
We begin by choosing a complex null frame eμa ¼

ðla; na; ma; m̄aÞ with inverse Eμ
a,

gab ¼ Eμ
aEν

bημν;

ημν ¼

0
BBBBBBBBB@

0 −1
0

−1 0

0 1

0

1 0

1
CCCCCCCCCA
; ð2:9Þ

where

l¼ ∂
∂r ; n¼ e−2β

� ∂
∂u−

1

2
F

∂
∂rþCI ∂

∂xI
�
;

m¼ m̂I

r
∂
∂xI ; l♭ ¼ −e2βdu; n♭ ¼ −

�
drþ 1

2
Fdu

�
;

m♭ ¼ rm̂IðdxI −CIduÞ; ð2:10Þ

2m̂ðI ¯̂mJÞ ¼ hIJ ð2:11Þ

with hIJ the matrix inverse of hIJ. The polyhomogeneous
expansion (2.4) implies that

Ψ0 ∼
1

r3

�
Bθθ −

i
sin θ

Bθϕ

�
þOðr−4 logN4 rÞ; ð2:12Þ

where BIJ ¼ ∂zBIJ − ∂2
zBIJ. Compare this with the falloff

of Ψ0 in Refs. [20–22]:

Ψ0 ¼
Ψ5

0

r5
þ Ψ6

0

r6
þΨ7

0

r7
þ oðr−7Þ: ð2:13Þ

In this paper, in order to make progress, we will assume
that Ψ0 behaves asymptotically asOðr−4 logN4 rÞ. While, it
is true that Newman-Penrose charges exist more generally
for any polyhomogeneous spacetime defined by the falloffs
(2.4) [19], the analysis is much simpler if we assume that
the leading order term in the shear of the null congruence
defined by l has no log terms [18]. This is equivalent to the
requirement that Ψ0 ∼Oðr−4 logN4 rÞ, or that

Bθθ −
i

sin θ
Bθϕ ¼ 0; ð2:14Þ

which is equivalent to the condition that Bθθ ¼ Bθϕ ¼ 0,
given that BIJ is real. From the fact that BIJ is traceless and
symmetric, we deduce that BIJ is traceless and symmetric
and hence the above condition is equivalent to

BIJ ¼ ∂zBIJ − ∂2
zBIJ ¼ 0: ð2:15Þ

The fact that BIJ is a polynomial in z of finite order implies
that

∂zBIJ ¼ 0; ð2:16Þ

i.e., that BIJ is independent of z and contains no log terms.
Henceforth, we shall assume that this condition always
holds. We shall find below that, together with this con-
dition, the Einstein equations imply that all leading order
terms in (2.4) are independent of z.3

3At the next order, Ψ0 ∼ 1
r4 ðCθθ þ i

sin θ CθϕÞ þOðr−5 logN5 rÞ,
where CIJ ¼ −2CIJ þ 3∂zCIJ − ∂2

zCIJ . Requiring that Ψ0 ¼
oðr−5Þ would imply that CIJ ¼ 0, which recovers the falloff
conditions (2.2) in Ref. [20].
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B. Notation

For brevity, it will prove useful to use the following
notation:

Z
λ
XðzÞ≡ eλz

Z
dze−λzXðzÞ; ð2:17Þ

for λ an integer, in order to reduce the size of some of the
equations. Furthermore,

R
λ will be treated as an operator

acting on the right, so we have for example

ð3∫4 − 2∫1 þ ∫0 þ 6 − ∂zÞXðzÞ

¼ 3e4z
Z

e−4zXðzÞdz − 2ez
Z

e−zXðzÞdz

þ
Z

XðzÞdzþ 6XðzÞ − X0ðzÞ: ð2:18Þ

For λ ≠ 0,
R
λ does not change the order of the polynomial

in z; see Appendix A. However, ∂z decreases the order by 1
and

R
0 increases it by 1.

Moreover, angled brackets hi on pairs of indices will be
used to denote the symmetric trace-free part; thus, for an
arbitrary tensor XIJ

XhIJi ≡ 1

2
ðXIJ þ XJI − ωKLXKLωIJÞ: ð2:19Þ

For example,

BhIjKCK jJi ¼
1

2
BIKCK

J þ
1

2
BJKCK

I

−
1

2
BKLCKLωIJ: ð2:20Þ

C. Einstein equations

We will assume that the energy-momentum tensor
satisfies the falloff conditions4

T00¼ oðr−4Þ; T0m¼ oðr−3Þ; T01¼ oðr−3Þ: ð2:21Þ

The Einstein equation then yields

G00 ¼ oðr−4Þ ⇒ β0 ¼ −
1

32
B2; ð2:22Þ

G0m ¼ oðr−3Þ ⇒ CI
0 ¼ −

1

2
DJBIJ; ð2:23Þ

G01 ¼ oðr−3Þ ⇒ ∂zF0 ¼ 0; ð2:24Þ

where DI is the standard covariant derivative associated
with the round-sphere metric ωIJ. Since BIJ is independent
of z, we conclude the leading order terms in (2.4) are all
independent of z.
Assuming stronger falloff conditions for the energy

momentum tensor, the Einstein equations imply the
following:

G00 ¼ oðr−5Þ ⇒ β1 ¼ −
1

8
ð∫3 þ 1ÞBIJCIJ; ð2:25Þ

G00 ¼ oðr−6Þ ⇒ β2 ¼ −
1

8
ð∫4 þ 1ÞBIJDIJ −

1

8
ð2∫4 þ 1ÞC2 þ 1

16
∫4∂zCIJ∂zCIJ þ 1

128
ðB2Þ2; ð2:26Þ

G0m ¼ oðr−4Þ ⇒ CI
1 ¼ ðC0

1ÞI −
1

3
ð∫3 þ 2∫0ÞDJCIJ; ð2:27Þ

G0m ¼ oðr−5Þ ⇒ CI
2 ¼ −

3

4
BIJðC0

1ÞJ −
1

3
ð∫4 þ 2∫1ÞDJDIJ −

1

2
ð∫4 − ∫0ÞBIJDKCJK þ 1

4
ð2∫4 − ∫3ÞBJKDICJK −

1

4
∫3CJKDIBJK

þ 1

64
B2DJBIJ −

1

16
BIJDJB2; ð2:28Þ

4Given some arbitrary vector Va, we denote the components in the null basis as follows:

laVa≡V0 ¼−V1; naVa≡V1 ¼−V0; maVa≡Vm ¼Vm̄;

with the obvious generalization to tensors.
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G0m ¼ oðr−6Þ ⇒ CI
3 ¼

9

80
B2ðC0

1ÞI þ 3∫5ðC0
1ÞJCIJ −

1

3
ð∫5 þ 2∫2ÞDJEIJ −

1

4
∫4DJKDIBJK þ 1

4
ð2∫5 − ∫4ÞBJKDKDIJ

−
1

4
ð∫4 − 2∫1ÞBIJDKDJK þ 1

2
ð∫5 − ∫4ÞDIC2 −

1

24
ð∫5 − 3∫4 þ 2∫2ÞDIð∂zCJK∂zCJKÞ

−
1

6
ð∫5 − ∫2ÞDICJK∂zCJK þ 2

3
ð∫5 − ∫2Þ∂zCIJDKCJK −

2

3
ð∫5 − ∫2ÞCIJDKCJK − 2∫5ðCIJ∫ dzDKCJKÞ

þ 1

8
ð5∫5 þ ∫3ÞBIJCKLDJBKL −

1

8
ð3∫5 − ∫3ÞBKLCKLDJBIJ þ 1

8
ð∫5 þ ∫3ÞBIJBKLDJCKL

−
1

240
ð7∫5 − 40∫2 þ 18∫0ÞB2DJCIJ −

1

12
ð5∫5 − 2∫2ÞCIJDJB2 þ 3

160
B2DIB2; ð2:29Þ

G01 ¼ oðr−4Þ ⇒ F1 ¼ −
1

2
DIðC0

1ÞI −
1

3
ð∫3 − ∫0ÞDIDJCIJ þ 1

2
DIBIJDKBJK −

1

8
DIBJKDIBJK þ 3

32
ð□ − 2ÞB2; ð2:30Þ

G01 ¼ oðr−5Þ ⇒ F2 ¼ −
3

4
ðC0

1ÞIDJBIJ −
1

3
ð∫4 − ∫1ÞDIDJDIJ þ 1

4
ð∫4 − ∫3Þ□ðBIJCIJÞ − 1

4
∫4CIJ□BIJ þ

1

4
ð2∫4 − ∫3ÞBIJCIJ

−
1

2
ð∫4 − ∫0ÞDIBIJDKCJK þ 1

32
BIJBKLDKDLBIJ þ

1

64
B2DIDJBIJ −

1

32
BIJDIBKLDJBKL

þ 5

64
DIB2DJBIJ; ð2:31Þ

G01 ¼ oðr−6Þ⇒F3 ¼
3

4
ðC0

1ÞIðC0
1ÞI þ

3

160
DIðB2ðC0

1ÞIÞþð3∫5−2∫3− ∫0ÞðC0
1ÞIDJCIJ þ

3

2
ð2∫5− ∫3ÞCIJDJðC0

1ÞI

−
1

3
ð∫5− ∫2ÞDIDJEIJ þ1

4
ð2∫5− ∫4ÞBIJDIJ þ1

4
∫5BIJ□DIJ −

1

4
∫4□ðBIJDIJÞþ1

2
∫1DIBJKDIDJK

þ1

2
ð∫5− ∫1ÞDIBJKDJDIK þ 1

12
ð4∫5−6∫4þ3∫3− ∫2Þ□C2

−
1

24
ð∫5−3∫4þ3∫3− ∫2Þ□ð∂zCIJ∂zCIJÞþ 1

12
ð2∫5−3∫3þ ∫2Þð∂zCIJ□CIJÞ

−
1

2
ð2∫5− ∫3ÞðCIJ∫ dz□CIJÞ−1

2
ð2∫5þ ∫4−2∫3ÞC2þ1

8
ð∫4− ∫3Þð∂zCIJ∂zCIJÞþð2∫5− ∫3ÞðCIJ∫ dzCIJÞ

−
1

12
ð∫5− ∫2ÞDICJKDICJK þð∫5− ∫3ÞDICIJDKCJK

−
2

3
ð3∫5−2∫3ÞðDICIJ∫ dzDKCJKÞþ1

3
ð∫ dzDICIJÞð∫ dzDKCJKÞ

þ1

8
ð5∫5−3∫3ÞBIJCKLDIDJBKL−

1

96
ð40∫5−33∫3þ8∫2ÞCIJDIDJB2

−
1

8
ð3∫5− ∫3ÞBKLCKLDIDJBIJ þ1

8
ð∫5− ∫3ÞBIJBKLDIDJCKL−

1

240
ð7∫5−30∫3þ20∫2þ3∫0ÞB2DIDJCIJ

−
1

240
ð107∫5−150∫3þ40∫2þ3∫0ÞDICIJDJB2þ3

4
ð∫5− ∫3ÞBIJDIBKLDJCKL−

1

4
ð∫5− ∫3ÞBKLDIBIJDJCKL

−
1

8
∫3CIJDIBKLDJBKLþ1

4
ð∫5þ ∫3ÞCKLDIBKLDJBIJ −

1

2
∫3CKLDIBIKDJBJL

þ 5

512
ðB2Þ2− 17

5120
□ðB2Þ2þ 13

1024
DIB2DIB2þ 3

128
B2DIBJKDIBJK −

1

32
B2DIBJKDJBIK; ð2:32Þ

Gmm ¼ oðr−3Þ ⇒ ∂uCIJ ¼ 0; ð2:33Þ
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Gmm ¼ oðr−4Þ ⇒ ∂uDIJ ¼
1

8
BIJ∂uB2 −

1

4
BIJF0 −

1

2
DhIðC0

1ÞJi −
1

6
ð4∫3 þ 2∫0 þ 3 − 3∂zÞCIJ þ

1

6
ð2∫3 þ ∫0Þ□CIJ

−
1

8
BIJDKDLBKL þ 1

32
DhIDJiB2 þ 1

2
DhIðBJiKDLBKLÞ − 1

8
DhIjBKLDjJiBKL; ð2:34Þ

Gmm ¼ oðr−5Þ ⇒ ∂uEIJ ¼
1

2
DKððC0

1ÞhIBJiKÞ þ
1

2
ð∫3 − 1þ ∂zÞCIJF0 þ

1

2
BKLCKL∂uBIJ þ BKhICJiL∂uBKL

þ 1

2
∫3BIJCKL∂uBKL −

1

4
ð∫3 þ 1ÞCIJ∂uB2 þ 1

3
ð2∫4 þ ∫1ÞDhIDKDJiK −

1

2
ð2 − ∂zÞDIJ

−
1

2
ð∫3 þ 1ÞCKLDKDLBIJ þ

1

2
ð∫3 þ 1ÞCKLDhIDJiBKL

þ 1

4
ð∫3 þ 1ÞCIJDKDLBKL −

1

6
ð3∫4 − 2∫3 − ∫0ÞBKLDhIDJiCKL

þ 1

6
ð3∫4 − 2∫3 − ∫0ÞBIJDKDLCKL −

1

6
ð3∫4 − ∫3 þ ∫0ÞBKLDKDLCIJ

− ∫4DhIBKLDJiCKL þ 1

2
ð2∫3 þ 1ÞDKBKLDLCIJ þ ∫4DKCKLDLBIJ

−
1

3
ð3∫4 þ 2∫3 þ ∫0ÞDKCKhIDLBJiL þ 5

32
DKðB2DhIBJiKÞ −

1

8
DKðBKhIDJiB2Þ; ð2:35Þ

G11 ¼ oðr−2Þ ⇒ ∂uF0 ¼ −
1

2
DIDJ∂uBIJ þ 1

4
∂uBIJ∂uBIJ; ð2:36Þ

G1m ¼ oðr−3Þ ⇒ ∂uðC0
1ÞI ¼

1

3
DIF0 þ

1

6
□DJBIJ −

1

6
DIDJDKBJK þ 1

8
BJK∂uDIBJK

þ 5

8
∂uBJKDIBJK −

2

3
∂uBJKDKBIJ −

1

6
DJBIJ; ð2:37Þ

where ðC0
1ÞI has no z dependence and □ ¼ DIDI is the covariant Laplacian on the unit 2-sphere.

The above Einstein equations are the generalizations of
the Einstein equations (2.15)–(2.26) of Ref. [20]. Setting
CIJ ¼ 0 and assuming that all tensors are z independent, so
that Eq. (A4) can be used, the above equations reduce to the
respective equations in Ref. [20] by taking BIJ → CIJ.
Assuming the vacuum Einstein equations to the appro-

priate order, it is possible to deduce the z order of each
metric parameter in (2.4). In general,

#BIJ ¼ 0; #CIJ≡NC ≥ 0; #DIJ ≡ND; #EIJ ≡NE;

#β0 ¼ 0; #β1 ¼NC; #β2 ¼maxfND;2NCg;
#CI

0 ¼ 0; #CI
1 ¼NCþ1;

#CI
2 ¼ND; #CI

3 ¼maxfNE;2NCþ1g;
#F0 ¼ 0; #F1 ¼NCþ1;

#F2 ¼ND; #F3 ¼maxfNE;2ðNCþ1Þg: ð2:38Þ

An important assumption that we shall rely upon in what
follows is

NE ≥ ND > NC ≥ 0: ð2:39Þ

This is the case for generic initial data [19]. It is possible
that in special cases, for example if DICIJ ¼ 0, the above
assumption does not hold. Nevertheless, all the charges
obtained in this paper are still conserved in such cases.

D. BMS group

The asymptotic symmetry group of polyhomogeneous
spacetimes is given by the BMS group, as with the smooth
case [12]. This group is obtained by imposing that the
variation of themetric under the generators of the asymptotic
symmetry group respects the form of the metric and the
gauge choices. These conditions imply a group of the form

BMS ¼ SLð2;CÞ ⋉ ST;

where ST represents the infinite affine group of super-
translations parametrized by a u and r-independent function
sðxIÞ and generated by diffeomorphisms of the form

ξ¼s∂uþ
Z

dr
e2β

r2
hIJDJs∂I−

r
2
ðDIξ

I−CIDIsÞ∂r: ð2:40Þ
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As in Ref. [20], we shall concentrate on the supertranslation part of the BMS algebra.
We list below the variation of some of the metric components under supertranslations that will be useful later:

δF0 ¼ s∂uF0 −
1

2
∂uBIJDIDJs −DJ∂uBIJDIs; ð2:41Þ

δðC0
1ÞI ¼ s∂uðC0

1ÞI þ
1

16
∂uB2DIsþ F0DIs −

1

4
BJKDIDJDKs −

1

2
BIJDJ□s

þ 1

2
DJBIKDJDKs −

3

4
DIBJKDJDKs −

1

2
DJBJKDKDIs

−
1

2
DIDJBJKDKsþ 1

2
DJDKBIKDJs − BIJDJs; ð2:42Þ

δBIJ ¼ s∂uBIJ − 2DhIDJis; ð2:43Þ

δCIJ ¼ s∂uCIJ; ð2:44Þ

δDIJ ¼ s∂uDIJ − 2ðC0
1ÞhIDJis −

1

4
BIJBKLDKDLs −

1

8
B2DhIDJisþ

1

8
DhIB2DJis

þDKBKLBLhIDJis − ð2∫3 þ 1ÞDKCIJDKsþ
4

3
ð2∫3 þ ∫0ÞDKCKhIDJis

−
�
∫3 þ 1 −

1

2
∂z

�
CIJ□s; ð2:45Þ

δEIJ ¼ s∂uEIJ þ
1

2
ðC0

1ÞhIBJiKDKs −
1

2
ð2∫4 þ 3 − ∂zÞDIJ□s

þ 1

3
ð2∫4 þ 4∫1 − 3ÞDKDKhIDJis − ð2∫4 þ 1ÞDhIDJiKDKs

þ 1

4
ð4∫3 þ 2 − ∂zÞBKLCIJDKDLs −

1

2
ð∫3 þ 1ÞðBIJCKLDKDLsþ BKLCKLDhIDJisÞ

þ ∫3ðCKLDhIBKLDJis − CKLDKBIJDLsÞ þ CKhIDJiBKLDLsþDKBKLCLhIDJis

−
1

2
∂zðCIJDKBKLDLsÞ − ð∫4 − ∫3ÞBKLDhICKLDJis − 2∫3BKhIDJiCKLDLs

þ 1

2
BKLDKCIJDLsþ

1

3
ð3∫4 þ 2∫3 þ ∫0ÞDKCKLBLhIDJisþ

1

3
ð∫3 − ∫0ÞBIJDKCKLDLs

þ 5

32
DKðB2BKhIDJisÞ þ

5

32
B2DKsDhIBJiK −

1

8
BKhIDJiB2DKs: ð2:46Þ

These variations are guaranteed to preserve the form of the
metric. However, we will impose further constraints on the
metric via the Einstein equations by assuming particular
falloffs of the components of the energy-momentum tensor.
If we impose a particular falloff on one component, we may
need to impose further conditions on other components so
that the desired falloff condition is preserved under the
BMS action. The variation of a particular component (for
fixed α; β ∈ f0; 1; m; m̄gÞ is given by

δξTαβ ¼ ξc∂cTαβ þ Tcβ∂αξ
c þ Tcα∂βξ

c: ð2:47Þ

If we insist that Tαβ ¼ oðr−nÞ, certain falloff conditions
must be obeyed by Tcα and Tcβ. When assuming a
particular falloff condition, we will also assume that the
relevant conditions are satisfied for the other components.
This can always be done and presents no issues in our
calculations.

III. STANDARD BMS CHARGES

The asymptotic charges associated with the asymptotic
BMS symmetry group are given by the following expres-
sion [24] (see also Refs. [23,30]):
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=δQξ½δg; g� ¼
1

8πG

Z
S
⋆H½ξ; g; δg�

¼ 1

8πG

Z
S
dΩ r2e2βHur½ξ; g; δg�; ð3:1Þ

where we have used the form of the background metric of
interest (2.2) in the second equality. The 2-form H is
given by

H ¼ 1

2

�
ξbgcd∇aδgcd − ξb∇cδgac þ ξc∇bδgca

þ 1

2
gcdδgcd∇bξa þ

1

2
δgbcð∇aξ

c −∇cξaÞ
�
dxa ∧ dxb:

ð3:2Þ

The slash on the variational symbol δ in (3.1) signifies the
fact that the variation is not, in general, integrable.
We have all the ingredients to compute charges, namely

the background metric gab given by (2.2) and the symmetry
generators given by (2.40). Plugging the above into
Eq. (3.1) leads to an expansion of the form [20]

=δQξ½δg; g� ¼
1

16πG

Z
S
dΩ

�
=δI0 þ

=δI1ðzÞ
r

þ =δI2ðzÞ
r2

þ =δI3ðzÞ
r3

þ oðr−3Þ
�
; ð3:3Þ

where each =δI iðzÞ is a polynomial of finite order in
z ¼ log r. The first term =δI0 in the expansion above has
been derived previously for smooth asymptotically flat
spacetimes [25]. Below, we find that this result extends to
polyhomogeneous spacetimes [17]. Following Ref. [20],
we extend the definition of BMS charges to subleading
orders in a 1=r expansion. Investigating these subleading
BMS charges in the context of polyhomogeneous space-
times is indeed the main aim of this paper. We will find that
the results in the polyhomogeneous case are analogous to
those for smooth spacetimes, albeit, the expressions are
rather more complicated.

A. BMS charge at Oðr0Þ
At leading order, we find

=δI0 ¼ δð−2sF0Þ þ
s
2
∂uBIJδBIJ: ð3:4Þ

Observe that at this leading order in the variation of the
BMS charges (3.3), we do not encounter log r terms. This is
a direct consequence of the finite shear condition (2.16),
which implies that all leading order terms in the expansion
(2.4) are independent of z.
As in the smooth case [25], the nonintegrability above is

related to the existence of flux at infinity. In particular, the
charge is integrable if and only if ∂uBIJ ¼ 0, i.e., in the

absence of Bondi news at null infinity [31]. The integrable
part when integrated over the 2-sphere corresponds to
leading-order BMS charges, which generalize the Bondi-
Sachs 4-momentum corresponding to s an l ¼ 0 or 1
spherical harmonic.

B. BMS charge at Oðr− 1Þ
At the next order, we obtain

=δI1 ¼ sδ

�
−2F1 − ð1 − ∂zÞDICI

1 þ
3

16
ð□ − 2ÞB2

þDIBIJDKBJK −
1

4
DIBJKDIBJK

�

þ 1

2
sð∂uBIJδCIJ þ ∂uCIJδBIJÞ: ð3:5Þ

If we assume the falloff condition on the matter fields
Tmm ¼ oðr−3Þ, then from Eqs. (2.33) and (2.44), δCIJ ¼
s∂uCIJ ¼ 0, so the nonintegrable piece vanishes for all s.
Assuming further that T01 ¼ oðr−4Þ and T0m ¼ oðr−4Þ,
then Eqs. (2.27) and (2.30) imply

δI1 ¼ 0: ð3:6Þ

Therefore, in this case I1 ¼ 0 and there is no nontrivial
charge. If, however, the falloff of T01 is weaker, we have
nonvanishing charges given by the coefficients of the
polynomial in z:

Q1ðzÞ ¼
Z
S
dΩð−sT01jr−4Þ; ð3:7Þ

provided that Tmm ¼ oðr−3Þ and T0m ¼ oðr−4Þ. It can be
shown by considering (2.47) that it is possible to have
Tmm ¼ oðr−3Þ and T0m ¼ oðr−4Þ with T01 nonvanishing at
this order. The higher order charges depend only on CIJ.
Since we have assumed ∂uCIJ ¼ 0, such terms are trivially
conserved. Therefore, the only interesting charge will be
the one corresponding to the z0 coefficient.

C. BMS charge at Oðr− 2Þ
Starting with weaker falloff conditions T00 ¼ oðr−5Þ,

T0m ¼ oðr−4Þ and Tmm ¼ oðr−3Þ, which imply Eqs. (2.25),
(2.27) and (2.33), the variation of the BMS charge at the
next order is
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=δI2 ¼ sδ

�
−2F2 − ð2 − ∂zÞDICI

2 − 3ðC0
1ÞIDJBIJ −

3

2
DJðC0

1ÞIBIJ

−
1

4
ð∫3 − 2∫0 þ 1ÞBIJ□CIJ −

1

4
ð∫3 − 1ÞCIJ□BIJ −

1

2
ð∫3 þ 2∫0ÞBIJCIJ

−
1

2
∫3DKBIJDKCIJ þ 2∫0DIBIJDKCJK þ 1

8
B2DIDJBIJ −

1

32
BIJDIDJB2

−
1

8
BIJDIBKLDJBKL þ 3

16
DIBIJDJB2

�

þ s

�
1

2
δBIJ∂uDIJ þ

1

2
∂uBIJδDIJ −

1

16
∂uB2δB2 þ 1

8
F0δB2 −

1

2
DJðC0

1ÞIδBIJ

− ðC0
1ÞIDJδBIJ −

1

12
ð2∫3 − 2∫0 þ 3∂zÞδBIJ□CIJ þ 1

4
ð2∫3 þ 2 − ∂zÞCIJ□δBIJ

−
1

6
ð4∫3 þ 2∫0 − 3þ 3∂zÞδBIJCIJ þ 2

3
ð2∫3 þ ∫0ÞDKδBIJDKCIJ

þ 1

2
ð1 − ∂zÞDIδBIJDKCJK þ 1

16
DIDJBIJδB2 þ 1

32
DIDJB2δBIJ

þ 1

16
DIB2DJδBIJ þ 1

2
BIJDKBIKDLδBJL þ 1

8
δBIJDIBKLDJBKL

�
: ð3:8Þ

As ever, the above separation into the integrable and nonintegrable parts is not unique. The choice above has been made in
order to obtain the simplest expressions possible. This will become most clear upon using further Einstein equations. If we
further assume that T0m ¼ oðr−5Þ, T01 ¼ oðr−5Þ and Tmm ¼ oðr−4Þ, which imply Eqs. (2.28), (2.31) and (2.34), the above
expression reduces to

=δI2 ¼ sDIDJδ

�
−DIJ þ 1

16
B2BIJ

�

þ s

�
1

2
δBIJ∂uDIJ þ

1

2
∂uBIJδDIJ −

1

16
∂uB2δB2 þ 1

8
F0δB2 −

1

2
DJðC0

1ÞIδBIJ

− ðC0
1ÞIDJδBIJ −

1

12

�
2∫3 − 2∫0 þ 3∂z

	
δBIJ□CIJ þ 1

4

�
2∫3 þ 2 − ∂z

	
CIJ□δBIJ

−
1

6

�
4∫3 þ 2∫0 − 3þ 3∂z

	
δBIJCIJ þ 2

3

�
2∫3 þ ∫0

	
DKδBIJDKCIJ

þ 1

2
ð1 − ∂zÞDIδBIJDKCJK þ 1

16
DIDJBIJδB2 þ 1

32
DIDJB2δBIJ

þ 1

16
DIB2DJδBIJ þ 1

2
BIJDKBIKDLδBJL þ 1

8
δBIJDIBKLDJBKL

�
; ð3:9Þ

where for brevity, we have not directly substituted the
expression for ∂uDIJ. The integrable piece has z degree
ND > NC ≥ 0. A nontrivial charge could appear as a
coefficient of each z power in the integrable piece. We
first consider the highest order—the coefficient of zND . The
nonintegrable piece has maximum z degree NC þ 1 as can
be seen from (2.38). If ND > NC þ 1 then each coefficient
of zn for n > NC þ 1 in the integrable piece gives a
nontrivial charge. These are

Ql;m
2;n ¼−

1

16πG

Z
S
dΩYlmDIDJDIJjOðznÞ for n>NCþ1;

ð3:10Þ

where Ylm are spherical harmonics. However, inspecting
Eq. (2.34), the Einstein equation for ∂uDIJ, we notice that
the right-hand side has z degree NC þ 1; hence the higher
order terms inDIJ do not evolve, i.e., they are constant in u.
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Therefore, the fact that the charges defined above are
conserved is unsurprising.
The highest nontrivial order to consider isOðzNCþ1Þ. We

must calculate the coefficient of zNCþ1 in the nonintegrable
piece and see what restrictions can be imposed in order to

guarantee that this vanishes. The only terms in =δI ðnon-intÞ
2

that have z dependence are those containing CIJ. Using
Eqs. (2.34), (2.43) and (2.45), we obtain

=δI ðnon-intÞ
2 jCIJ terms ¼DhIDJis

�
−
1

6

�
4∫3þ 2∫0þ 3− 3∂z

	
sCIJ

þ 1

6

�
2∫3þ ∫0

	
s□CIJ

−
�
2∫3þ 1

	
DKCIJDKs

þ 4

3

�
2∫3þ ∫0

	
DKCIKDJs

−
1

2

�
2∫3þ 2− ∂z

	
CIJ□s

�
: ð3:11Þ

Using the results of Appendix A, we find that the terms
of z degree NC þ 1 in the expression above are of the form

=δI ðnon-intÞ
2 ¼ 1

6

Z
dzDhIDJisðsð□ − 2ÞCIJ

þ 8DKCKhIDJisÞ þOðzNCÞ: ð3:12Þ

For any given sðxÞ, we can choose a CIJðxÞ to make the
expression in brackets an arbitrary symmetric traceless
tensor. That is, for any traceless symmetric XIJðxÞ and
sðxIÞ, we can find a traceless symmetric solution CIJðxÞ to
the second order partial differential equation:

sð□ − 2ÞCIJ þ 8DKCKhIDJis ¼ XIJ: ð3:13Þ

Since CIJðz; u; xÞ can be freely specified on a Cauchy
surface, the expression in (3.13) can be made arbitrary
on the surface and so (3.12) vanishes in general if and
only if

DhIDJis ¼ 0; ð3:14Þ

thus s corresponds to an l ¼ 0 or 1 spherical harmonic (see
Appendix C).

From (3.11), we observe that =δI ðnon-intÞ
2 jCIJ terms vanishes

at all orders when s obeys Eq. (3.14). Moreover, from
Eq. (A13) in Appendix A, we have that for (3.11) to vanish
at a given order, it must vanish at all higher orders, in
particular the highest order. This means that s must obey
(3.14) for the coefficients of lower z orders to be integrable.
In conclusion, we deduce that at any order, (3.11) vanishes
if and only if s is an l ¼ 0 or 1 spherical harmonic.
Assuming Eq. (3.14), the nonintegrable part of Eq. (3.9)

reduces to

=δI ðnon-intÞ
2 ¼ DI

�
−s2ðC0

1ÞJ∂uBIJ þ
1

16
s2DJB2∂uBIJ

þ 1

2
s2BJKDLBKL∂uBIJ

�
; ð3:15Þ

which is a total derivative and can, therefore, be ignored.
Hence, at all orders in z we obtain the (unintegrated)
charges

I2 ¼ sDIDJ

�
−DIJ þ 1

16
B2BIJ

�
: ð3:16Þ

However, up to total derivatives, this is equal to

I2 ¼ DIDJs

�
−DIJ þ 1

16
B2BIJ

�

¼ DhIDJis
�
−DIJ þ 1

16
B2BIJ

�
ð3:17Þ

¼ 0; ð3:18Þ

where in the second line we have used the fact that BIJ and
DIJ are trace-free and in the third line we have used
Eq. (3.14). Therefore, the only nontrivial charges obtained
at Oðr−2Þ are those given in Eq. (3.10).

D. BMS charge at Oðr− 3Þ
Starting with the previous falloff conditions T00 ¼

oðr−5Þ, T0m ¼ oðr−5Þ, Tmm ¼ oðr−4Þ and T01 ¼ oðr−5Þ,
which imply Eqs. (2.25), (2.27), (2.28), (2.33) and (2.34),
we find that, to leading orders in z,
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=δI3 ¼ sδ

�
−2F3 þ 4β2 þ 2□β2 − ð3 − ∂zÞDICI

3 − 2∫0ðC0
1ÞIDJCIJ

þ 1

2
∫1BIJ

□DIJ þ
1

2
DIJ□BIJ þ 1

2
DKDIJDKBIJ þ 2∫1DIBIJDKDJK

−
1

2
ð2∫1 − 1ÞBIJDIJ −

1

4
∫0DIðB2DJCIJÞ

�

þ s
�
1

2
δBIJ∂uEIJ þ

1

2
∂uBIJδEIJ −

1

12
ð2∫4 − 2∫1 − 3þ 3∂zÞδBIJ□DIJ

þ 1

4
ð2∫4 þ 3 − ∂zÞDIJ□δBIJ þ 1

2
ð2 − ∂zÞDKDIJDKδBIJ þ 2

3
ð2∫4 þ ∫1ÞDIδBIJDKDJK

−
1

6
ð4∫4 þ 2∫1 − 6þ 3∂zÞDIJδBIJ þ ∫0

�
5

6
DIδB2DJCIJ þ

3

4
δB2DIDJCIJ

−
4

3
BIJδBI

KDJDLCK
L −

3

2
BI

KδBIJDJDLCK
L − 2BIJDIδBJKDLCKL

−
3

2
δBIJDIBJKDLCKL −

4

3
δBIJDKBIKDLCJL −

11

6
BIJDKδBIKDLCJL

−
1

6
δBIJDKBIJDLCKL þ 1

6
BIJDKδBIJDLCKL

��
þOðzNCÞ: ð3:19Þ

As before, it should be emphasized that the separation into
integrable and nonintegrable pieces is not unique and the
form above has been chosen to make the following
expressions simpler.
Imposing a stronger falloff of the energy-momentum

tensor, T00 ¼ oðr−6Þ, T01 ¼ oðr−6Þ, T0m ¼ oðr−6Þ and
Tmm ¼ oðr−5Þ implies Eqs. (2.26), (2.32), (2.29) and

(2.35). Substituting these equations into the expressions
above, in the integrable piece, terms will appear that
depend only on CIJ. We drop such terms, since
δCIJ ¼ 0 and one can add any arbitrary term depending
only on CIJ to the conserved charges. After applying
some Schouten identities (see Appendix B), up to total
derivatives

=δI3 ¼ sδð−DIDJEIJ þOðzNCÞÞ

þ s

�
1

2
δBIJ∂uEIJ þ

1

2
∂uBIJδEIJ −

1

12
ð2∫4 − 2∫1 − 3þ 3∂zÞδBIJ

□DIJ

þ 1

4
ð2∫4 þ 3 − ∂zÞDIJ□δBIJ þ 1

2
ð2 − ∂zÞDKDIJDKδBIJ þ 2

3
ð2∫4 þ ∫1ÞDIδBIJDKDJK

−
1

6
ð4∫4 þ 2∫1 − 6þ 3∂zÞDIJδBIJ þ ∫0

�
5

6
DIδB2DJCIJ þ

3

4
δB2DIDJCIJ

−
4

3
BIJδBI

KDJDLCK
L −

3

2
BI

KδBIJDJDLCK
L − 2BIJDIδBJKDLCKL

−
3

2
δBIJDIBJKDLCKL −

4

3
δBIJDKBIKDLCJL −

11

6
BIJDKδBIKDLCJL

−
1

6
δBIJDKBIJDLCKL þ 1

6
BIJDKδBIJDLCKL

�
þOðzNCÞ

�
; ð3:20Þ

where for brevity, we have not yet substituted in the
expression for ∂uEIJ. The integrable piece has z degree
NE where NE ≥ ND > NC. Using the appropriate Einstein
equations and the metric variations shows that the non-
integrable piece has z degree ND. If NE > ND, terms
OðzNDþ1Þ or higher are integrable and we have charges

Ql;m
3;n ¼ −

1

16πG

Z
S
dΩYlmDIDJEIJjOðznÞ for n > ND:

ð3:21Þ
As with charges (3.10) derived in Sec. III C, the existence
of such conserved charges is unsurprising, since we observe
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from the Einstein equation (2.35) that terms of this degree
in EIJ are constant in u. The highest order at which the
existence of a charge is not immediately obvious is at
OðzNDÞ. After applying the metric variations to (3.20) and
tidying up the resulting expression using Schouten iden-
tities (see Appendix B), we find all ∂u terms at this order
result in a total derivative and can hence be ignored.
Recalling that NC<ND, it is possible that NC þ 1 ¼ ND

so the remaining terms in =δI ðnon-intÞ
3 that can contribute to

this order arise from CIJ and DIJ terms. We have

=δI ðnon-intÞ
3 ¼ ð=δI ðnon-intÞ

3 jD terms þ =δI ðnon-intÞ
3 jBCtermsÞ

þOðzNCÞ; ð3:22Þ

where

=δI ðnon-intÞ
3 jD terms ¼ s

�
−
1

2
ð∫1 þ 1 − ∂zÞ□DIJDIDJsþ

1

2
ð4∫4 þ 2∫1 − 2þ ∂zÞDIJDIDJs

−
1

2
ð2∫4 þ 3 − ∂zÞDIJ

□DIDJs − ð2 − ∂zÞDKDIJDKDIDJs

−
2

3
ð2∫4 þ ∫1ÞDIDIJDJ□s −

4

3
ð2∫4 þ ∫1ÞDIDIJDJs

�
ð3:23Þ

and

=δI ðnon-intÞ
3 jBC terms ¼

1

3

Z
dz

�
BIJDLCKLDKDIDJs −

1

2
BIJDKCI

KDJ□s − BIJDKCI
KDJs

�
þOðzNCÞ: ð3:24Þ

There is no Einstein equation relating DIJ and CIJ, so the contributions from the two terms above, namely =δI ðnon-intÞ
3 jD terms

and =δI ðnon-intÞ
3 jBC terms, need to vanish independently in (3.20) in order for the charge to be integrable in general. We focus on

=δI ðnon-intÞ
3 jD terms to begin with. The OðzNDÞ coefficients can be calculated using (A2) in Appendix A. We find that

=δI ðnon-intÞ
3 jD terms ¼ s

�
−
5

2
DIJDIDJs −

5

4
DIJ

□DIDJs − 2DKDIJDKDIDJs

þDIDIJDJ□sþ 2DIDIJDJs

�




OðzND Þ

þOðzND−1Þ: ð3:25Þ

Now, in order to simplify this expression, we add to it an additional term,

5s

�
DIJDIDJsþ

1

4
DIJDIDJ□s −

1

4
DIJ

□DIDJs

�
; ð3:26Þ

which vanishes upon use of the Ricci identity and the factDIJ is traceless; thus we have not changed the nonintegrable piece
(3.25), which becomes

=δI ðnon-intÞ
3 jD terms ¼ s

�
−
5

2
DIJ

□DIDJsþ
5

4
DIJDIDJ□sþ 5

2
DIJDIDJs

− 2DKDIJDKDIDJsþDIDIJDJ□sþ 2DIDIJDJs

�




OðzND Þ

þOðzND−1Þ: ð3:27Þ

Up to total derivatives, the first line in (3.27) can be written as

5

2
sDKDIJDKDIDJsþ

5

2
DIJDKsDKDIDJs −

5

4
sDIDIJDJ□s −

5

4
DIJDIsDJ□s −

5

2
sDIDIJDJs −

5

2
DIJDIsDJs; ð3:28Þ

so that
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=δI ðnon-intÞ
3 jD terms ¼

�
1

2
sDKDIJDKDIDJsþ

5

2
DIJDKsDKDIDJs −

1

4
sDIDIJDJ□s −

5

4
DIJDIsDJ□s

−
1

2
sDIDIJDJs −

5

2
DIJDIsDJs

�




OðzND Þ

þOðzND−1Þ

¼ 1

4
ðsDKDIJ þ 5DIJDKsÞð2DKDIDJs − ωKIDJ□s − 2ωIKDJsÞ






OðzND Þ

þOðzND−1Þ: ð3:29Þ

The factor ðsDKDIJ þ 5DIJDKsÞ is an arbitrary tensor that
is symmetric and trace-free on its I, J indices. Thus, for the
OðzNDÞ term to vanish for general DIJ, it is necessary that
the projection onto the traceless, symmetric part of the
other factor vanishes, i.e.,

2DKDhIDJis − ωKhIDJi□s − 2ωKhIDJis ¼ 0: ð3:30Þ

In Appendix C, we show that the above equation (3.30) is
satisfied if and only if s is a superposition of l ¼ 0, 1 and 2
spherical harmonics. As with =δI2, there is little point
considering l ¼ 0 and 1 modes since their contribution to
the integrable piece is trivially zero; hence we now consider
exclusively the case in which s is an l ¼ 2 spherical
harmonic, which means in particular that

ð□þ 6Þs ¼ 0: ð3:31Þ

Combining (3.31) with (3.30), we have

DKDhIDJis −
1

3
ωKhIDJi□s ¼ 0 and

DKDhIDJisþ 2ωKhIDJis ¼ 0: ð3:32Þ

Next, we consider the terms in =δI ðnon-intÞ
3 jBC terms.

Reorganizing these terms, Eq. (3.24) becomes

=δI ðnon-intÞ
3 jBC terms

¼ 1

3

Z
dz

�
BIJDLCKL

�
DKDIDJ −

1

3
ωKIDJ□s

�

−
1

6
BIJDKCI

KDJð□þ 6Þs
�
þOðzNCÞ: ð3:33Þ

Given that BIJ is trace-free and symmetric, we can use
Eqs. (3.32) and (3.31) to conclude that

=δI ðnon-intÞ
3 jBC terms ¼ 0: ð3:34Þ

Therefore, even in the extreme case ND ¼ NC þ 1, the
OðzNDÞ term still vanishes for an l ¼ 2 spherical harmonic.
The fact that the nonintegrable charges vanish at z degree
NC þ 1 means that we have five conserved charges

Qm¼−
1

16πG

Z
S
dΩY2mDIDJEIJ






OðzND Þ

form¼0;�1;�2:

ð3:35Þ

We shall show below in Sec. V that these charges
correspond to half of the set of Newman-Penrose charges
that exist in such polyhomogeneous spacetimes [18].
We now consider the nonintegrable piece at lower orders.

Using the result in (A13), for the nonintegrable piece to
vanish at lower orders for generalDIJ, it is necessary that it
vanishes at the highest order for general DIJ and so s must
be an l ¼ 2 spherical harmonic. In this case, applying
Eq. (A8) to the expression in (3.23), the contribution from
DIJ terms at OðzND−1Þ is

=δI ðnon-intÞ
3 jD terms ¼ NDs

�
□DIJDIDJs −

5

8
DIJDIDJsþ

9

16
DIJ

□DIDJs

þDKDIJDKDIDJsþ
3

4
DIDIJDJ□sþ 3

2
DIDIJDJs

�




OðzND−1Þ

þOðzND−2Þ: ð3:36Þ

Up to total derivatives, this becomes
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=δI ðnon-intÞ
3 jD terms ¼ NDDIJ

�
9

16
s□DIDJs −

3

4
sDIDJ□sþDKsDKDIDJs −

3

4
DI□sDJs

þ□sDIDJs −
17

8
sDIDJs −

3

2
DIsDJs

�




OðzND−1Þ

þOðzND−2Þ: ð3:37Þ

Then using Eqs. (3.31) and (3.32), this reduces to

=δI ðnon-intÞ
3 jD terms

¼ NDDIJ

�
−
19

4
sDIDJsþDIsDJs

�




OðzND−1Þ

þOðzND−2Þ; ð3:38Þ

which for general DIJ and s an l ¼ 2 spherical harmonic is
not zero. Any further restriction on swill make the integrable

piece vanish. There is no need to check =δI ðnon-intÞ
3 jBC terms at

this order since there is no equation linking DIJ to CIJ and
BIJ that could result in a cancellation in the nonintegrable

piece.We deduce that=δI ðnon-intÞ
3 jD terms is nonvanishing at this

order and hence there are no charges at this order, nor
subsequent orders as implied by (A13).
In summary, the complete set of conserved charges

obtained at Oðr−3Þ is given by (3.21) and (3.35).

IV. DUAL BMS CHARGES

We now turn to the tower of dual charges defined in
Ref. [21], given by the expression

=δQ̃ξ½δg; g� ¼
1

8πG

Z
S
H̃½ξ; g; δg�

¼ 1

8πG

Z
S
dΩ

H̃θϕ½ξ; g; δg�
sin θ

; ð4:1Þ

where we have used the form of the background metric of
interest (2.2) in the second equality with the 2-form H̃
given by

H̃ ¼ 1

4
δgbcð∇aξ

c þ∇cξaÞdxa ∧ dxb: ð4:2Þ

The dual BMS charges can be derived from first principles
from the Palatini-Holst action [27,28]. We will consider a
1=r expansion of the variation of the dual BMS charge:

=δQ̃ξ½δg; g� ¼
1

16πG

Z
S
dΩ

�
=δĨ0 þ

=δĨ1ðzÞ
r

þ =δĨ2ðzÞ
r2

þ =δĨ3ðzÞ
r3

þ oðr−3Þ
�
: ð4:3Þ

The calculations will be analogous to those in Sec. III with
similar results being obtained, as with the smooth case [21].
Following Ref. [26], it will be useful to define the twist

of a symmetric tensor XIJ:

X̃IJ ¼ XK
ðIϵJÞK; ϵIJ ¼

�
0 1

−1 0

�
sin θ: ð4:4Þ

Note, if XIJ is trace-free, we can drop the symmetrization in
the definition (4.4). Additionally, it is helpful to note if X
and Y are both symmetric trace-free tensors, then

XIKỸJK ¼ −X̃IKYJK: ð4:5Þ

Furthermore, if either one of the symmetric tensors X or Y
is trace-free, then

XIJỸIJ ¼ −X̃IJYIJ: ð4:6Þ

With the above definitions in mind, Eq. (4.1) can be
written as

=δQ̃ξ½δg; g� ¼
1

16πG

Z
S
dΩ ϵIJH̃IJ½ξ; g; δg�: ð4:7Þ

We now proceed as before to substitute the metric expan-
sions (2.4) and the expression for ξ given in Eq. (2.40).

A. Dual charge at Oðr0Þ
At leading order, we find

=δĨ0 ¼ δð−sDIDJB̃IJÞ þ 1

2
s∂uBIJδB̃IJ: ð4:8Þ

As with (3.4), we have an integrable piece that is in general
nonzero and a nonintegrable piece that vanishes if and only
if ∂uBIJ ¼ 0, i.e., in the absence of Bondi news. In this
case, we have an infinite set of conserved charges,

Q̃l;m
0 ¼ −

1

16πG

Z
S
dΩYlmDIDJB̃IJ; ð4:9Þ

which are to be viewed as the generalization of the NUT
charge [26]; see also Ref. [32].
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B. Dual charge at Oðr− 1Þ
At the next order, we find

=δĨ1 ¼ δð−sDIDJC̃
IJÞ þ 1

2
sð∂uCIJδB̃IJ − δCIJ∂uB̃IJÞ:

ð4:10Þ
If we assume Tmm ¼ oðr−3Þ, which implies Eq. (2.33), then
using Eq. (2.44), we get =δĨ1 ¼ 0 so

Ĩ1 ¼ 0: ð4:11Þ

This is analogous to the Oðr−1Þ term in Sec. III B, where
we found that the charge is zero if strong enough falloff
conditions on the energy-momentum tensor are assumed.

C. Dual charge at Oðr− 2Þ
At the next order, we find

=δĨ2 ¼ sDIDJδ

�
−D̃IJ þ 1

16
B2B̃IJ

�

þ s

�
1

2
ð∂uDIJδB̃IJ − δDIJ∂uB̃IJÞ − 1

16
BIJð∂uB2δB̃IJ − δB2∂uB̃IJÞ

þ 1

2
∂uCIJδC̃

IJ þDIðC1JδB̃IJÞ − 1

2
ð∫3 þ 1ÞCIJ□δB̃IJ þ 1

4
∂zð□ðCIJδB̃IJÞÞ

þ ∫3CIJδB̃IJ −
1

2
DKCIJDKδB̃IJ − ∫3DKCJKDIδB̃IJ −

1

16
DIðDJB2δB̃IJÞ − 1

2
DIðBJKDLBKLδB̃IJÞ

�
: ð4:12Þ

The integrable piece has z degree ND, whereas from (2.38)
we deduce that the nonintegrable piece has z degree at most
NC þ 1 ≤ ND. In the case ND > NC þ 1, we have charges

Q̃l;m
2;n ¼−

1

16πG

Z
S
dΩYlmDIDJD̃IJ






OðznÞ

for n>NCþ1:

ð4:13Þ

This is analogous to the result in Sec. III C, wherewe found a
set of charges (3.10). As with those charges, the existence of
these conserved charges is unsurprising when we consider
the Einstein equation (2.34). Thus, as in Sec. III C, the
highest nontrivial order is OðzNCþ1Þ, which we consider
next. All terms with z dependence arise from the presence of
CIJ, so we start by considering such terms. Assume that
T0m ¼ oðr−4Þ, which implies Eq. (2.27). Rewriting

sð∂uDIJδB̃IJ−δDIJ∂uB̃IJÞ
¼−ðδDIJ−s∂uDIJÞδB̃IJþδDIJðδB̃IJ−s∂uB̃IJÞ ð4:14Þ

and assuming Tmm ¼ oðr−4Þ, i.e., Eqs. (2.34), and (2.45) in
the first term in (4.14) and (2.43) in the second term, we get

=δĨ2
ðnon-intÞjC terms

¼ DhIDJisδD̃IJjC terms

¼ 1

6

Z
dzDhIDJisðsð□ − 2ÞC̃IJ þ 8DKC̃KhIDJisÞ

þOðzNCÞ; ð4:15Þ
where we have used Eqs. (2.34) and (2.45). This is the same
expression as was obtained in (3.12), except that the tensor
field CIJ has been twisted. Since C̃IJ is also an arbitrary

symmetric, traceless tensor, we again deduce that the highest
order term in =δĨ2

ðnon-intÞ is zero if and only if DhIDJis ¼ 0,
i.e., if s is anl ¼ 0 or 1 spherical harmonic. Assuming this to
be the case, aswe can see fromEq. (4.15), this implies that the
CIJ terms vanish at all orders in z. Furthermore,DhIDJis ¼ 0

implies that (2.43) reduces to δBIJ ¼ s∂uBIJ. Thus, the
nonintegrable term in Eq. (4.12) reduces to

=δĨ2
ðnon-intÞ ¼ DI

�
s2ðC0

1ÞJ∂uB̃IJ −
1

2
s2BJKDLBKL∂uB̃IJ

−
1

16
s2DJB2∂uB̃IJ

�

þ 1

16
sDhIDJisðB2∂uB̃IJ þ 2BKL∂uB̃KLBIJÞ;

ð4:16Þ
where the first line is a total derivative and so can be ignored
and the second line vanishes through our choice of s. As was
the case in Sec. III C, the highest order term in the non-
integrable piece vanishes if and only if the nonintegrable
piece vanishes at all orders, with the reverse argument
following from (A13) in Appendix A.
With s an l ¼ 0 or 1 spherical harmonic, up to total

derivatives, the integrable piece becomes

δĨ2 ¼ DIDJsδ

�
−D̃IJ þ 1

16
B2B̃IJ

�

¼ DhIDJisδ
�
−D̃IJ þ 1

16
B2B̃IJ

�

¼ 0: ð4:17Þ
So as before, there is no nontrivial charge at this order.
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D. Dual charge at Oðr− 3Þ
At the next order, we find that

=δĨ3 ¼ −sDIDJδẼIJ

þ s

�
1

2
ð∂uEIJδB̃IJ − δEIJ∂uB̃IJÞ þ 1

4
DIð3CK

1 BJKδB̃IJ − CK
1 B

IJδB̃JKÞ

þDIðC2JδB̃IJÞ − 1

4
ð1 − ∂zÞδB̃IJ

□DIJ −
1

4
ð2∫4 þ 3 − ∂zÞDIJ□δB̃IJ þ ∫4δB̃IJDIJ

−
1

2
ð2 − ∂zÞDKDIJDKδB̃IJ − ∫4DKDJKDIδB̃IJ

�
þOðzNCÞ; ð4:18Þ

where we have used Eqs. (2.33) and (2.44) to drop all terms
involving only CIJ. The integrable piece has z degree NE,
whereas (2.38) implies that the nonintegrable piece has z
degree at most ND ≤ NE. We therefore have a set of
conserved charges:

Q̃l;m
3;n ¼ −

1

16πG

Z
S
dΩYlmDIDJẼIJ






OðznÞ

for n > ND:

ð4:19Þ

Once again, this is unsurprising, when we consider the form
of the Einstein equation (2.35).
Next, we consider the highest order term in =δĨ3

ðnon-intÞ

and see if it is possible to make this zero in general for a
particular choice of sðxIÞ. The highest order term is
OðzNDÞ, but in the extreme case where ND ¼ NC þ 1, it
is essential that OðzNCþ1Þ terms also vanish. We further
assume T0m ¼ oðr−5Þ and Tmm ¼ oðr−5Þ. Rewriting

sð∂uEIJδB̃IJ−δEIJ∂uB̃IJÞ
¼−ðδEIJ− s∂uEIJÞδB̃IJþδEIJðδB̃IJ− s∂uB̃IJÞ ð4:20Þ

in (4.18) and using Eqs. (2.35) and (2.46) in the first set of
terms and (2.43) on the second set of terms, as well as
Eqs. (2.27) and (2.28) gives

=δĨ3
ðnon-intÞ ¼DIDJsδẼIJþOðzNCÞ

¼DIDJsðX̃hIJijOðzND Þ þ ỸhIJijOðzNCþ1ÞÞþOðzNCÞ
¼DhIDJisðX̃hIJijOðzND Þ þ ỸhIJijOðzNCþ1ÞÞ
þOðzNCÞ; ð4:21Þ

where

XIJ ¼
1

3
ð2∫4 þ ∫1ÞsDIDKDJK −

1

2
ð2 − ∂zÞsDIJ

−
1

2
ð2∫4 þ 3 − ∂zÞDIJ□s

þ 1

3
ð2∫4 þ 4∫1 − 3ÞDKDIKDJs

− ð2∫4 þ 1ÞDIDJKDKs ð4:22Þ

and

YIJ ¼
1

6

Z
dzðsBKLDIDJCKL

− sBIJDKDLCKL − sBKLDKDLCIJ

− 2sDKBJKDLCLI þ 2BJKDLCKLDIs

− 2BIJDLCKLDKsÞ: ð4:23Þ

Note that only the symmetric traceless part of X̃IJ and ỸIJ,
and therefore XIJ and YIJ, need be considered.
The contributions from the XIJ terms and YIJ terms need

to vanish independently in (4.21), as there is no Einstein
equation that relates DIJ and CIJ. First, we focus on XIJ.
Use of the Ricci identity and the Schouten identity (B4)
allows us to rewrite XIJ (up to the symmetric, trace-free
part) as

XIJ ¼
1

3

�
2∫4 þ ∫1

	
sDKDIDJK −

�
2∫4 þ 1

	
DIDJKDKs

−
�
2∫4 þ 3 − ∂z

	
DJKDKDIs

þ 1

3

�
2∫4 þ 4∫1 − 3

	
DKDJKDIs

−
1

6

�
8∫4 þ 4∫1 þ 6 − 3∂z

	
sDIJ: ð4:24Þ

Then using Eq. (A2), we find that the highest order
term is
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XIJjOðzND Þ ¼
�
−
1

2
sDKDIDJK −

1

2
DIDJKDKs −

5

2
DJKDKDIs −

5

2
DKDJKDIs

�




OðzND Þ

¼ DK

�
−
1

2
sDIDJK −

5

2
DJKDIs

�




OðzND Þ

: ð4:25Þ

So in (4.21), the contribution from XIJ is

=δĨ3
ðnon-intÞjD terms ¼ −

1

2
DhIDJisDKðsDID̃JK þ 5D̃JKDIsÞjOðzND Þ þOðzND−1Þ

¼ 1

2
DKDhIDJisðsDID̃JK þ 5D̃JKDIsÞjOðzND Þ þOðzND−1Þ; ð4:26Þ

up to total derivatives. The expression sDID̃JK þ 5D̃JKDIs
is an arbitrary tensor that is symmetric and trace-free on its
J, K indices. The contribution to =δĨ3

ðnon-intÞ fromDIJ terms
therefore vanishes if and only if the projection of
DKDhIDJis onto the symmetric trace-free part in the JK
indices is zero. It is shown in Sec. 5.4 of Ref. [21] that this
condition is satisfied if and only if s is an l ¼ 0, 1 or 2
spherical harmonic. As in Sec. III D, the contribution of the
l ¼ 0, 1 modes vanishes in the integrable piece and so can
be ignored. Henceforth, we assume that s is an l ¼ 2
spherical harmonic satisfying Eqs. (3.31) and (3.32).
Turning our attention to the YIJ contributions in (4.21),

the expression in (4.23) can be rewritten as

YIJ ¼ −
1

3

Z
dzDKðsBJKDLCILÞ

þ 1

6
s
Z

dzðBKLDIDJCKL − BIJDKDLCKL

− BKLDKDLCIJ þ 2BJKDKDLCILÞ

þ 1

3

Z
dzðBJKDLCKLDIs − BIJDLCKLDKs

þ BJKDLCILDKsÞ: ð4:27Þ

Since BIJ and CIJ are symmetric and traceless, using
Schouten identities (B5) and (B6), the second and third
lines have zero trace-free symmetric parts and hence can be
ignored. The contribution of the YIJ terms to =δĨ3

ðnon-intÞ is
therefore simply

=δĨ3
ðnon-intÞjC terms

¼ −
1

3
DhIDJis

Z
dzDKðsBJK∇LCILÞjOðzNCþ1Þ þOðzNCÞ

¼ 1

3
sDKDhIDJis

Z
dzBJK∇LCILjOðzNCþ1Þ þOðzNCÞ;

ð4:28Þ

up to total derivatives. Since BJK is symmetric and trace-
less, DKDhIDJis is projected onto the symmetric trace-free
part on its JK indices, which vanishes given that s is an
l ¼ 2 spherical harmonic. We conclude that for s an l ¼ 2

spherical harmonic, the OðzNDÞ terms in =δĨ3
ðnon-intÞ vanish

even in the extreme case NC þ 1 ¼ ND.
In summary, we have a set of conserved nontrivial

charges,

Q̃m¼−
1

16πG

Z
S
dΩY2mDIDJẼIJ






OðzND Þ

form¼0;�1;�2:

ð4:29Þ

We now turn our attention to the lower order terms.
Again, from (A13), if =δĨ3

ðnon-intÞ cannot be made to vanish
at a particular order, then it cannot vanish at any lower
orders when the tensor fields being considered are arbitrary.
We will consider OðzND−1Þ and show that the DIJ terms
cannot be made to vanish at this order, confirming that there
are no further charges at lower orders. Using (A8), we find
that there are two independent contributions at OðzND−1Þ
that must vanish independently. The first has the same form
as the highest orderDIJ terms so vanishes if and only if s is
an l ¼ 2 spherical harmonic. Using (A2), the remaining
contribution from the second term is

=δĨ3
ðnon-intÞjD terms

¼ NDDhIDJis
�
−
3

8
sDKDID̃JK þ 1

8
DID̃JKDKsþ 5

4
sD̃IJ

þ 9

8
D̃IKDJDKs−

11

8
DKD̃IKDJs

�




OðzND−1Þ

: ð4:30Þ

Reorganizing the terms above gives
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=δĨ3
ðnon-intÞjD terms ¼ NDDhIDJis

�
1

8
ðsDKDID̃JK þDID̃JKDKs

�
−
1

2
sDKDID̃JK

þ 5

4
sD̃IJ −

11

8

�
D̃IKDJDKsþDKD̃IKDJsÞ þ

5

2
D̃IKDJDKs

�




OðzND−1Þ

¼ NDDhIDJi
�
−
1

2
sDKDID̃JK þ 5

4
sD̃IJ þ

5

2
D̃IKDJDKs

�




OðzND−1Þ

; ð4:31Þ

where we have integrated by parts and used the fact that s is
an l ¼ 2 spherical harmonic. Applying Schouten iden-
tities, integrating by parts and applying the equations for an
l ¼ 2 spherical harmonic, we obtain

=δĨ3
ðnon-intÞjD terms

¼ NDD̃IJ

�
−
19

4
sDIDJsþDIsDJs

�




OðzND−1Þ

þOðzND−2Þ: ð4:32Þ

The obstruction that prevents an integrable charge existing
at this order is exactly the twist of the obstruction in

=δI ðnon-intÞ
3 jD terms in (3.38).
In conclusion, the set of conserved charges that can be

found by considering =δĨ3 are given by (4.19) and (4.29).

V. RELATING CHARGES TO THE NEWMAN
PENROSE FORMALISM

In this section, we relate the charges obtained here to
quantities in the Newman-Penrose formalism [3,18,22]. At
Oðr−3Þ, we will see that the BMS charge and dual charge
together form a generalization of the Newman-Penrose
charges for polyhomogeneous spacetimes with finite shear.
The Newman-Penrose formalism begins with a complex

null frame fl; n; m; m̄g, which we choose to be that given
in (2.10). Newman-Penrose scalars are then constructed by
contracting tensors into null frame components. One such
set of complex scalars are the Weyl scalars, given in
Eq. (2.8), which parametrize the ten degrees of freedom
of the Weyl tensor. We reproduce these definitions here for
convenience:

Ψ0 ¼ lamblcmdCabcd; Ψ1 ¼ lanblcmdCabcd;

Ψ2 ¼ lambm̄cndCabcd; Ψ3 ¼ lanbm̄cndCabcd;

Ψ4 ¼ nam̄bncm̄dCabcd: ð5:1Þ

The Riemann tensor is constructed from the Weyl tensor
and the Ricci tensor and the ten degrees of freedom of the
Ricci tensor, which is constrained by the Einstein equation,
are given by three complex and four real scalars. The
relevant quantities here are

Λ¼−
1

24
R; Φ11¼−

1

4
lanbRab−

1

4
mam̄bRab; ð5:2Þ

both of which are real. Similarly, the connection coeffi-
cients may be written in terms of 12 complex scalars. For
our purposes, we will only be interested in one such spin
coefficient that parametrizes the shear of the null con-
gruence generated by the vector field l,

σ ¼ −mamb∇bla: ð5:3Þ

All such quantities can be calculated from the metric
(2.2) and (2.4). We assume that the energy-momentum
tensor falls off as T00 ¼ oðr−5Þ, T0m ¼ oðr−4Þ and T01 ¼
oðr−3Þ. Then one can show that the Weyl scalars fall off
as [19]

Ψ0 ¼ Ψ4
0½NC�r−4 þΨ5

0½ND�r−5 þΨ6
0½NE�r−6

þOðr−7logN1rÞ;
Ψ1 ¼ Ψ4

1½NC þ 1�r−4 þOðr−5logN2rÞ;
Ψ2 ¼ Ψ3

2½0�r−3 þ Ψ4
2½NC þ 1�r−4 þOðr−5logN3rÞ;

Ψ3 ¼ Oðr−2Þ; Ψ4 ¼ Oðr−1Þ; ð5:4Þ

where the quantities in square brackets in each expression
refer to the z degree of each polynomial. The exact values
of N1, N2 and N3 are not important for what we are
concerned with. The leading order shear term is indepen-
dent of z,

σ ¼ σ0½0� 1
r2
; ð5:5Þ

which follows from condition (2.16). Furthermore,5

Λ ¼ Λ4½N4�r−4 þOðr−5logN5rÞ;
Φ11 ¼ Φ4

11½N4 þ 1� þOðr−5logN6rÞ; ð5:6Þ

where the exact values of N5 and N6 are unimportant.
Finally, we define the differential operators ð and ð̄,

which act on a scalar η of spin n as follows [3,33]:

5If one assumes T01 ¼ oðr−4Þ, then N4 ¼ NC þ 1.
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ðη ¼ −
ð1þ iÞ

2
sinn θ

�
∂θ −

1

sin θ
∂ϕ

��
η

sinn θ

�
;

ð̄η ¼ −
ð1 − iÞ

2

1

sinn θ

�
∂θ þ

1

sin θ
∂ϕ

�
ðsinn θηÞ: ð5:7Þ

A Weyl scalar Ψn has spin 2 − n, while the shear σ has
spin 2. Complex conjugation changes the sign of the spin.

A. Charges at Oðr0Þ
At leading order, we obtained the BMS charges and the

dual charges in Secs. III A and IVA,

QðintÞ
0 ¼ 1

16πG

Z
S
dΩð−2sF0Þ;

Q̃ðintÞ
0 ¼ 1

16πG

Z
S
dΩð−sDIDJB̃IJÞ: ð5:8Þ

Recall that the leading order charges are integrable if and
only if ∂uBIJ ¼ 0. We define a complex quantity,

Q0 ¼ QðintÞ
0 − iQ̃ðintÞ

0 : ð5:9Þ

In terms of Newman-Penrose quantities,

Q0 ¼ −
1

4πG

Z
S
dΩsðΨ3

2 þ σ0∂uσ̄
0Þ; ð5:10Þ

which is conserved if and only if ∂uσ
0 ¼ 0. This condition

is equivalent to ∂uBIJ ¼ 0; the integrability condition
encountered in Secs. III A and IVA.

B. Charges at Oðr− 1Þ
In Secs. III B and IV B, assuming that Tmm ¼ oðr−3Þ and

T0m ¼ oðr−4Þ, we obtained the following set of integrable
charges at the next order6:

QðintÞ
1 ðzÞ ¼ 1

16πG

Z
S
dΩsð−2F1 − ð1 − ∂zÞDICI

1

þ 3

16
ð□ − 2ÞB2 þDIBIJDKBJK

−
1

4
DIBJKDIBJKÞ; ð5:11Þ

Q̃ðintÞ
1 ðzÞ ¼ 1

16πG

Z
S
dΩð−sDIDJC̃

IJÞ: ð5:12Þ

Note that the coefficient of each power of z is an
independent charge. Letting

Q1 ¼ QðintÞ
1 − iQ̃ðintÞ

1 ; ð5:13Þ

it can be shown that

Q1 ¼
1

4πG

Z
S
dΩsðð∫2 − ∫1Þð̄2Ψ4

0 − ∫1ðΦ4
11 þ 3Λ4ÞÞ: ð5:14Þ

The first term is trivially conserved since Tmm ¼ oðr−3Þ
implies ∂uΨ4

0 ¼ 0. Assuming T01 ¼ oðr−4Þ makes the
second term zero. The second term is real and gives
the nontrivial conserved charges (3.7) in Sec. III B when
the falloff of the energy-momentum tensor is not too strong.

C. Charges at Oðr− 2Þ
At the next order, in Secs. III C and IV C, we obtained

the charges

QðintÞ
2 ðzÞ ¼ 1

16πG

Z
S
dΩsDIDJ

�
−DIJ þ 1

16
B2BIJ

�
;

ð5:15Þ

Q̃ðintÞ
2 ðzÞ ¼ 1

16πG

Z
S
dΩsDIDJ

�
−D̃IJ þ 1

16
B2B̃IJ

�

ð5:16Þ

and showed that the associated nonintegrable terms van-
ished for s an l ¼ 0, 1 spherical harmonic. It can be shown
that

ð̄2Ψ5
0 ¼ DIDJ

�
−
1

4
ð∂2

z − 5∂z þ 6ÞðDIJ − iD̃IJÞ

þ 3

32
B2ðBIJ − iB̃IJÞ

�
ð5:17Þ

and

�
−
1

4
ð∂2

z − 5∂z þ 6Þ
�
−1

¼ −4ð∫3 − ∫2Þ ð5:18Þ

as an operator equation. Thus,

− 4
�
∫3 − ∫2

	
ð̄2Ψ5

0

¼ DIDJ

�
ðDIJ − iD̃IJÞ − 1

16
B2ðBIJ − iB̃IJÞ

�
; ð5:19Þ

where we have used Eq. (2.16), i.e., that BIJ is z
independent. Defining

Q2ðzÞ ¼ QðintÞ
2 ðzÞ − iQ̃ðintÞ

2 ðzÞ; ð5:20Þ

it can be shown that the charges obtained in Secs. III C and
IV C at OðzNCþ1Þ and lower can be written in terms of
Newman-Penrose quantities as

6The dual charge here is trivially conserved and vanished in
Sec. IV C by virtue of the fact that δCIJ ¼ 0.
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Q2ðzÞ ¼
1

4πG

Z
S
dΩsð∫3 − ∫2Þð̄2Ψ5

0; ð5:21Þ

where each coefficient of a z power in Q2ðzÞ is an
independent conserved charge. Integrating by parts, the
differential operators can be moved onto s confirming that
this is zero for s an l ¼ 0, 1 spherical harmonic, since
ð̄2Ylm ¼ 0 for l ¼ 0, 1.

D. Charges at Oðr− 3Þ
Finally, and most interestingly, in Secs. III D and IV D,

we obtained the charges

QðintÞ
3 ¼ 1

16πG

Z
S
dΩsð−DIDJEIJÞjOðzND Þ; ð5:22Þ

Q̃ðintÞ
3 ¼ 1

16πG

Z
S
dΩsð−DIDJẼIJÞjOðzND Þ; ð5:23Þ

and showed that the associated nonintegrable pieces van-
ished for s an l ¼ 0, 1 or 2 spherical harmonic. It can be
shown that

ð̄2Ψ6
0 ¼ −

1

4
ð∂2

z − 7∂z þ 12ÞDIDJðEIJ − iẼIJÞ
þOðzNCÞ ð5:24Þ

and

�
−
1

4
ð∂2

z − 7∂z þ 12Þ
�
−1

¼ −4
�
∫4 − ∫3

	
ð5:25Þ

as an operator equation. Thus,

−4
�
∫4 − ∫3

	
ð̄2Ψ6

0 ¼ DIDJðEIJ − iẼIJÞ þOðzNCÞ: ð5:26Þ

Defining

Q3 ¼ QðintÞ
3 − iQ̃ðintÞ

3 ; ð5:27Þ

it can be shown that the charges obtained in Secs. III D and
IV D can be written in terms of Newman-Penrose quan-
tities as

Q3 ¼
1

4πG

Z
S
dΩs

�
∫4 − ∫3

	
ð̄2Ψ6

0jOðzND Þ: ð5:28Þ

Recalling that, furthermore, we have another set of less-
interesting conserved charges (3.21) and (4.19), we readily
deduce that the expression

1

16πG

Z
S
dΩs½−DIDJðEIJ − iẼIJÞjOðzNÞ� ð5:29Þ

is a conserved charge for N > ND and any s, including, in
particular, when s is an l ¼ 0, 1 or 2 spherical harmonic.
The ∂z terms in (5.24) evaluated at OðzNDÞ carry contri-
butions only from charges (5.29) and hence it is possible to
produce a more simple expression for the charge built out
of Newman-Penrose quantities given by

QVK
3 ¼

1

48πG

Z
S
dΩY2;mð̄2Ψ6

0jOðzND Þ for m ¼ 0;�1;�2:

ð5:30Þ
Integrating by parts, we obtain the generalization found in
Ref. [18] for the Newman-Penrose charges of polyhomo-
geneous spacetimes with finite shear. For a smooth space-
time, ND ¼ 0; hence the above expression reduces to the
original Newman-Penrose charges [22].
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APPENDIX A: POLYNOMIALS IN z= log r

In this Appendix, we collect some useful properties of
polynomials in z. For λ ∈ Rnf0g and n ∈ N≥0

∫λzn≡eλz
Z

dze−λzzn

¼ eλz
�
−
1

λ
e−λzznþn

λ

Z
dze−λzzn−1

�

¼ eλz
�
−
1

λ
e−λzzn−

n
λ2
e−λzzn−1

�
þOðzn−2Þ

¼−
1

λ
zn−

n
λ2
zn−1þOðzn−2Þ: ðA1Þ

Let pðzÞ ¼ pnzn þ pn−1zn−1 þOðzn−2Þ be a polynomial in
z, then using (A1), we have by linearity of ∫ λ

∫λpðzÞ ¼ −
1

λ
pnzn −

�
n
λ2

pn þ
1

λ
pn−1

�
zn−1 þOðzn−2Þ:

ðA2Þ
Also,

∂zpðzÞ ¼ npnzn−1 þOðzn−2Þ: ðA3Þ
In particular, note that for c independent of z,

∫λc ¼ −
1

λ
c: ðA4Þ

If we apply a generic linear operator O formed of ∂z,
1 and ∫ λ with λ ≠ 0 to any pðzÞ ¼ pnzn þ pn−1zn−1, we get
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a new polynomial p̃ðzÞ ¼ OpðzÞ of the same degree, which
can be expressed in the form

p̃ðzÞ ¼ Apnzn þ ðApn−1 þ nBpnÞzn−1 þOðzn−2Þ ðA5Þ

with A and B n-independent constants depending on the
choice of O.
Let X be some tensor of interest, depending on ðu; r; xIÞ

where the r dependence is such that X can be written as a
polynomial in z ¼ log r with coefficients depending on
ðu; xIÞ, so X ¼ P

n
i¼0 Xizi where Xi are tensors of the same

rank as X and independent of z. Taking angular derivatives
of such an expression, for example□X, gives an expression
of the form FðDIÞ½X� ¼

P
n
i¼0 YðXiÞzi, where at each order

the same function Y appears. Suppose we have an expres-
sion PXðzÞ involving the log r operators above, X and its
derivatives, where X only appears linearly. In general, we
can decompose such as object as follows:

PXðzÞ ¼
X
a

OaFaðDIÞ½X�; ðA6Þ

where FaðDIÞ½X� ¼
P

n
i¼0 YaðXiÞzi for some Ya. Then by

Eq. (A5), we can write

OaFaðDIÞ½X� ¼ AaYaðXnÞzn
þ ðAaYaðXn−1Þ þ nBaYaðXnÞÞzn−1
þOðzn−2Þ; ðA7Þ

which implies that Eq. (A6) reduces to

PXðzÞ ¼
X
a

OaFaðDIÞ½X�

¼
X
a

AaYaðXnÞzn

þ
�X

a

AaYaðXn−1Þ þ n
X
a

BaYaðXnÞ
�
zn−1

þOðzn−2Þ: ðA8Þ

Now, we consider making this expression vanish at various
orders for general X. This expression vanishes at the
highest order zn, if and only if

X
a

AaYaðXnÞ ¼ 0: ðA9Þ

Note that because we assume X to be some arbitrary tensor,
the above equation must hold as an operator equation and
should not be viewed an equation for Xn. At the next order
zn−1, there are two terms that need to vanish independently
since one depends only on Xn and the other depends only
on Xn−1, which are not necessarily related. So the zn−1

coefficient vanishes if and only if

X
a

AaYaðXn−1Þ ¼ 0 and
X
a

BaYaðXnÞ ¼ 0: ðA10Þ

Since both Xn and Xn−1 are arbitrary, these conditions show
that if PXðzÞ vanishes at the highest order, checking that it
vanishes at the second highest order only requires one to
check that

P
a BaYaðXnÞ ¼ 0 for some arbitrary Xn.

Furthermore,

PXðzÞjzn−1 ¼ 0 ⇒ PXðzÞjzn ¼ 0: ðA11Þ
This argument can be extended to all orders, where at each
order a new condition arises, but the previous conditions
must still be met. We deduce for general X

PXðzÞjzi−1 ¼ 0 ⇒ PXðzÞjzi ¼ 0 ðA12Þ

for i¼1;…;n. In particular, considering the contrapositive,

PXðzÞjzi ≠ 0 ⇒ PXðzÞjzi−1 ≠ 0 ∀ 1 ≤ i ≤ n; ðA13Þ

i.e., in order for the expression PXðzÞ to vanish at a
particular order for general X, it needs to vanish at all
higher orders for general X.

APPENDIX B: IDENTITIES FOR TENSORS
ON THE 2-SPHERE

Schouten identities have been used extensively in this
paper to simplify expressions. For a traceless, symmetric
tensor XIJ, the Schouten identity implies that [20]

ωIJXKL þ ωKLXIJ − ωILXJK − ωJKXIL ¼ 0: ðB1Þ

This equation can be used as the starting point for deriving
further useful identities. In addition to those identities listed
in Appendix B of Ref. [20], in this Appendix, we list
a few other important examples. For XIJ and YIJ arbitrary
symmetric, traceless tensors and s some arbitrary scalar,

XhIKYJiK ¼ 0; ðB2Þ

DhIDKXJiK ¼ 1

2
□XIJ − XIJ; ðB3Þ

XKhIDJiDKs ¼ 1

2
XIJ□s; ðB4Þ

XIJDLYKLDKs−XhIjKDLYKLDjJis−XhIjKDLY jIiLDKs¼0;

ðB5Þ

YIJDKDLXKL þ YKLDKDLXIJ − YKLDhIDJiXKL

− 2YhIjKDKDLXjJiL ¼ 0: ðB6Þ

We briefly explain in turn how the above identities are
obtained from Eq. (B1). Contracting (B1) with symmetric
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traceless tensor YKL gives (B2). Next, we apply the
derivative operator DLDK on Eq. (B1). This gives

ωIJDKDLXKLþ□XIJ−DIDKXJK−DKDJXIK¼0: ðB7Þ

Making use of the Ricci identity and the form of the
Riemann tensor

RI
JKL ¼ δIKωJL − δILωJK ðB8Þ

for the standard 2-sphere metric ωIJ, we get

ωIJDKDLXKL þ□XIJ −DIDKXJK

−DJDKXIK − 2XIJ ¼ 0; ðB9Þ

which is equivalent to (B3). This is an important identity
that is used frequently in this paper. Similarly, contracting
(B1) with DKDLs gives (B4).
Contracting Eq. (B1) with DMYKMDLs and taking the

symmetric trace-free part of the resulting equation
gives Eq. (B5).
Finally, we apply YKMDLDM as an operator on Eq. (B1)

to obtain

ωIJYKMDLDMXKL þ YKLDKDLXIJ − YKLDIDLXJK

− YJKDLDKXIL ¼ 0: ðB10Þ

Now, relabeling I → M in Eq. (B1) and acting with
YMLDIDK gives

YJLDIDKXKL þ YKLDIDLXJK − YKLDIDJXKL ¼ 0:

ðB11Þ

Using Eq. (B11) to substitute for the YKLDIDLXJK term in
Eq. (B10) gives

ωIJYKMDLDMXKL þ YKLDKDLXIJ þ YJLDIDKXKL

− YKLDIDJXKL − YJKDLDKXIL ¼ 0: ðB12Þ

Next, replacing X → Y in Eq. (B1) and acting with
DLDMXKM gives

ωIJYKMDMDLXKL þ YIJDKDLXKL

− YJLDIDKXKL − YIKDKDLXJL ¼ 0; ðB13Þ

which we use to replace the YJLDIDKXKL term in
Eq. (B12), resulting in

ωIJYKMDLDMXKL þ YKLDKDLXIJ þ ωIJYKMDMDLXKL

þ YIJDKDLXKL − YIKDKDLXJL − YKLDIDJXKL

− YJKDLDKXIL ¼ 0: ðB14Þ

We use the Ricci identity to exchange the DK and DL
derivatives in the last term. This results in an additional
term of the form XIKYJ

K . Now, taking the symmetric trace-
free part of this equation and using Eq. (B2) yields
identity (B6).

APPENDIX C: l = 0, l= 1 AND l = 2
SPHERICAL HARMONICS

In this Appendix, we list useful properties of l ≤ 2
spherical harmonics. This Appendix has a large overlap
with Appendix C of Ref. [20]. However, given the
importance of these results in this paper, for completeness,
we reproduce the relevant equations here. A regular
function ψðxIÞ on the sphere can be written in terms of
an expansion

ψðxIÞ ¼
X∞
l¼0

Xl

m¼−l
ψlmYlmðxIÞ ðC1Þ

with ψlm constants on the sphere and the spherical
harmonics YlmðxIÞ with l ≥ 0 and jmj ≤ l obeying

□Ylm ¼ −lðlþ 1ÞYlm: ðC2Þ

Consider the equation

DhIDJiψ ¼ 0: ðC3Þ

Let TIJ ¼ DhIDJiψ . Integrating by parts and using the
Ricci identity, it can be shown

Z
S
dΩjTIJj2 ¼

1

2

Z
S
dΩψ□ð□þ 2Þψ : ðC4Þ

If ψðxIÞ is regular, we can assume the expansion (C1).
Plugging this into (C4) and using the orthogonality
relations for spherical harmonics

R
S dΩYlmYl0m0 ¼

δll0δmm0 , we find

Z
S
dΩjTIJj2

¼ 1

2

Z
S
dΩ

X∞
l¼0

X∞
l0¼0

Xl
m¼−l

Xl0
m0¼−l0

ðl − 1Þlðlþ 1Þðlþ 2Þ

× ψlmψl0m0
YlmYl0m0

¼ 1

2

X∞
l¼0

Xl
m¼−l

ðl − 1Þlðlþ 1Þðlþ 2Þjψlmj2: ðC5Þ

Notice that each term in the summation on the rhs is non-
negative. Therefore, for the rhs to vanish, all terms must
individually vanish, which implies that the rhs vanishes if
and only if ψlm ¼ 0 for all l > 1, i.e., ψðxIÞ is a linear
combination of l ¼ 0 and l ¼ 1 modes. We conclude,
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then, that Eq. (C3) holds if and only if ψðxIÞ is a linear
combination of l ¼ 0 and l ¼ 1 modes.
Consider now Eq. (3.30), which is equivalent to

TIJK ¼ 0;

TIJK ¼ 2DKDhIDJiψ − ωKhIDJi□ψ − 2ωKhIDJiψ : ðC6Þ

For a function ψðxIÞ that is regular on the sphere,
integration by parts can be used to show that

Z
S
dΩjTIJKj2 ¼ −

Z
S
dΩψ□ð□þ 2Þð□þ 6Þψ : ðC7Þ

Inserting expansion (C1) into the above equation yields

Z
S
dΩjTIJKj2 ¼

X∞
l¼0

Xm
l¼−m

ðl − 2Þðl − 1Þlðlþ 1Þ

× ðlþ 2Þðlþ 3Þjψlmj2: ðC8Þ

Using the same argument as above, we deduce that TIJK ¼
0 if and only if ψðxIÞ is a linear combination of l ¼ 0, 1
and 2 spherical harmonics.
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