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BMS charges in polyhomogeneous spacetimes
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We classify the asymptotic charges of a class of polyhomogeneous asymptotically flat spacetimes with
finite shear, generalizing recent results on smooth asymptotically flat spacetimes. Polyhomogeneous
spacetimes are a formally consistent class of spacetimes that do not satisfy the well-known peeling
property. As such, they constitute a more physical class of asymptotically flat spacetimes compared to the
smooth class. In particular, we establish that the generalized conserved nonlinear Newman-Penrose charges
that are known to exist for such spacetimes are a subset of asymptotic BMS charges.
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I. INTRODUCTION

One of the most striking results in the mathematical
study of gravitational waves in general relativity is the so-
called peeling property [1-3] (see, e.g., also Ref. [4]). The
peeling property is a statement regarding the asymptotic
behavior of the Weyl tensor components as one approaches
null infinity. For a smooth asymptotically flat spacetime,
the result follows from the assumed smoothness of the
unphysical spacetime upon conformal compactification [5].
In Bondi coordinates [1,2], it is

Cupea = 17" Cﬁﬁfﬂ-d +r _ZCEIZQJ +r7 Cilhlgd

+ e .+ O3,

abc (11)
where r is an affine parameter along an outgoing null
geodesic. The superscripts on the Weyl tensors on the rhs
denote the components of the Weyl tensor in a null basis
that is used to define the Petrov type of the spacetime. Thus,
the leading order term corresponds to the Weyl tensor
components of Petrov type N. Given that the Weyl tensor
encompasses the remaining degrees of freedom in the
curvature, the peeling property can be viewed as a state-
ment regarding the falloff behavior of isolated gravitating
bodies and the radiation they emit. However, already in
Ref. [3] (see footnote 27), doubts were expressed regarding
the validity of the assumptions that lead to this result. Since
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then, the question of the validity of the peeling property has
attracted much research; see e.g., Refs. [6-16]. What is
clear by now is that the smoothness assumption precludes
many interesting physically relevant cases. One class of
spacetimes that moves away from the smoothness
assumption are those that admit a polyhomogeneous
expansion [12]. These spacetimes are formally consistent
with the Einstein equations and admit the BMS group as an
asymptotic symmetry group [12], have a well-defined
Trautman-Bondi mass parameter [17] and admit
Newman-Penrose charges [18,19]. Importantly, they pro-
vide an example of a more realistic class of asymptotically
flat spacetimes than the smooth case.

In this paper, we shall study the asymptotic BMS charges
admitted by polyhomogeneous spacetimes that have a finite
shear [18]. This subset of polyhomogeneous spacetimes
has a slightly better falloff property at leading order
compared with the most general spacetimes. We will
concentrate on this large subset of polyhomogeneous
spacetimes in order to make the rather involved calculations
tractable. However, we are confident that the results
obtained in this paper may be generalized to the full class.

In recent work, a relation has been established [20,21], in
the smooth case, between Newman-Penrose charges [22],
which are a set of ten conserved nonlinear charges at null
infinity, and asymptotic BMS charges [23-25], which are
the charges associated with the generators of the BMS
algebra via the Noether theorem. Although, such a relation
ought to be natural, remarkably, such a relation had not
been previously found. Indeed, in order to make progress, it
has been required to extend the notion of asymptotic BMS
charges to include subleading charges [20] and new dual
charges [21,26], which have recently been derived from
first principles [27,28].

Our aim in this work is to extend the formalism
developed in Refs. [20,21] to classify the asymptotic

Published by the American Physical Society
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BMS charges within the class of polyhomogeneous space-
times with finite shear. This generalization is nontrivial for
two reasons: the calculational complexity increases sub-
stantially when considering polyhomogeneous spacetimes
and particular features of the polyhomogeneous expansion
raises interesting new questions about the nature of charges,
as will become apparent below. In particular, the nature of
the characteristic value problem applied to polyhomoge-
neous spacetimes means that nontrivial conserved BMS
charges can be defined in terms of initial data that do not
evolve. This is a new feature that is specific to polyho-
mogeneous spacetimes and compels us to reappraise what
we mean by conserved BMS charges.

Our main result is to establish a relation between asymp-
totic BMS charges and the generalized Newman-Penrose
charges discovered in Ref. [18] for polyhomogeneous space-
times with finite shear. Generalized Newman-Penrose
charges exist for the full class of polyhomogeneous space-
times [19] and we expect this relation to also hold in the
full class.

The insights gained from this study have led to a better
understanding of how Newman-Penrose charges come
about and the possibility of identifying conserved charges
at lower orders. An as of yet open question is whether
conserved charges could exist at lower orders in the 1/r
expansion. We hope to tackle this interesting problem in a
future work.

In Sec. II, we give some prerequisite information
regarding polyhomogeneous spacetimes and the falloff
behavior of their Weyl tensor components, the Einstein
equations and the action of the BMS group on the metric
components. Also, we define the subclass of polyhomoge-
neous spacetimes with finite shear. In Sec. III, we classify
the standard BMS charges up to order 1/7* and identify a
subset of five conserved nonlinear charges. Similarly, in
Sec. IV, we classify the dual charges defined in Ref. [21] up
to order 1/ and, again, discover a subset of five conserved
nonlinear charges. In Sec. V, we show, via a translation to
the Newman-Penrose formalism, that the set of ten con-
served charges found in Secs. III and IV is equivalent to the
generalized Newman-Penrose charges of Ref. [18].

II. PRELIMINARIES

A polyhomogeneous spacetime is one for which the
metric components can be expanded asymptotically as a
combination of powers of r~! and positive powers of z =
logr as r — oo. For example, a function f admits a
polyhomogeneous expansion if

f(r)=fo+fliz)+f2r<f)+ ;

R,

(2.1)

where each f; is itself a series expansion in positive powers
of z. As in Refs. [12,19], we restrict our attention to
spacetimes where only finite powers of z appear in the

series, so that f; are polynomials in z.! Following Ref. [19],
we denote the degree of a polynomial f as #f.

Working with the Bondi definition of asymptotic flatness
[1,2], we introduce Bondi coordinates (u,r,x!) with
x! ' ={6, ¢}, such that the metric takes the form

ds? = —FePdu® — 2¢*P dudr

+ r2hy(dx! = Cldu)(dx’ — C'du), (2.2)

where a residual gauge freedom in defining r is fixed by
imposing

deth = detw (2.3)

with w;; the standard metric on the round 2-sphere. This
condition implies that /;; has two degrees of freedom.
The Bondi definition of asymptotic flatness and the
condition of polyhomogeneity requires that the metric
parameters have the following large r asymptotic form™:

ﬁ(u,r,x’):ﬂo(z’r;"xl)+ﬁ1(z;§l’x1)

1
Z,U,x
+/32( - )

Fol(z,u,x!
O(Z”x)+
r r

+o(r ),

Fy(z,u,x")
2

F(u,r.x')=1+

Fr(zu,x!)  Fs(zu,x!
+ 2(r3 )—l- 3(r4 )+0(r‘4),
Chleur’)  Clleus®)  Chleu)

2 3 4

Cl(u,r,xl)=
r r

,
Ci(z,u,x")

-5
o),

CIJ(Zv ”JCI)
2

BIJ(ZJWCI)
r r

Dy (z,u,x")  E;(z,u,x!
T 1 )+ 1 )

3 ’,.4

hyy(u.r.x") = o, +

. +o(r ), (2.4)

where

= 1 7 1 KL
Ciy=Cy +ZB Wy, D;; =Dy +§BKLC wyy,

_ 1 1 1
E;;=E+ <5 By D*E + 1 C? - 3 (32)2> oy (2.5)

'Relaxing this condition would mean that the infinite series in
z that would appear in these calculations would in fact reduce to
integer powers of r. Therefore, our analysis, which treats the
exgansions in 1/r and z independently, would no longer be valid.

Note the slight difference in notation in the expansion of #;;
compared to Refs. [20,21], cf. Eq. (2.2) of Ref. [20].
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with B?> = B;;B"” and C? = C;,C"”. This form of the
h;; expansion is chosen so that condition (2.3) simply
translates to

TrB = TrC = TrtD = TrE =0 (2.6)

at this order, where for some tensor X;;, TrX = 0’/ X,,.
Furthermore, the 2-sphere tensors B, C, D and E are
independent and parametrize the 2 degrees of freedom of
h;; at each order.

A. Asymptotic behavior of Weyl scalar ¥,

For spacetimes that are analytic in 1/r, i.e., there exist no
log terms, the Weyl tensor satisfies the so-called peeling
property [3], which can be simply stated as the fact that the
Weyl tensor in the unphysical spacetime vanishes at null
infinity. In Newman-Penrose language [3], this statement is
equivalent to the fact that

¥, — 0(%_) ie{0,...4, (27

where the W, are the Newman-Penrose Weyl scalars defined
with respect to a complex null frame (£, n?, m*, in“),

LPO = f“mbfcmdcabcd,

_ bac,d
Y, =2m’mnCpeqs

Lpl = f“nbfcdeabcd,
‘“P3 = f“nbﬁicndcabcd,

b

lP4 =nm nCrthabcd.

(2.8)

As we shall explain below, the peeling property no longer
holds in polyhomogeneous spacetimes [12,29]. Moreover,
we shall find that the Weyl scalar ¥, falls off too slowly.
This will lead us to make some further assumptions on the
metric expansion (2.4).

We begin by choosing a complex null frame e, =
(£, n?, m*, m*) with inverse E*,,

Yab = E”aEybn;un
0 -1

M = o 1|

where

0 o 1_0 0
= =e | ——-F—+C—|,
o " a2 ot 8x1]
m:A—Ii " =—e?du n’ =— dr—i—leu
r ox!’ ’ 2 ’
m" = ring(dx! — C'du), (2.10)
2mUm!) = nt’ (2.11)

with 4!/ the matrix inverse of h;;. The polyhomogeneous
expansion (2.4) implies that

1 i

~— __v 41004
¥, 3 <B% Sin689¢)+(’)(r logh+r), (2.12)

where B;; = d.B;; — 9*B,;. Compare this with the falloff
of ¥, in Refs. [20-22]:

E S G
Yo=2+2+—7+
r r r

o(r77). (2.13)

In this paper, in order to make progress, we will assume
that ¥, behaves asymptotically as O(r~*log"+ r). While, it
is true that Newman-Penrose charges exist more generally
for any polyhomogeneous spacetime defined by the falloffs
(2.4) [19], the analysis is much simpler if we assume that
the leading order term in the shear of the null congruence
defined by # has no log terms [18]. This is equivalent to the
requirement that ¥, ~ O(r~*log"* r), or that

i

BHG'_—

2.14
sin 6 ( )

Bg¢ = 0,

which is equivalent to the condition that Byy = Byy = 0,
given that BB, is real. From the fact that B, is traceless and
symmetric, we deduce that 3;; is traceless and symmetric
and hence the above condition is equivalent to
B]J:aZB”—agB”:O. (215)
The fact that B;; is a polynomial in z of finite order implies
that
8ZB” - O, (216)
i.e., that B;; is independent of z and contains no log terms.
Henceforth, we shall assume that this condition always
holds. We shall find below that, together with this con-

dition, the Einstein equations imply that all leading order
terms in (2.4) are independent of P

JAt the next order, ¥, ~ L (Cop + 55Cop) + O(r~ Tog"s r),
where C;; = —2C;; +30.C;; — 02C;;. Requiring that W, =
o(r7) would imply that C;; = 0, which recovers the falloff

conditions (2.2) in Ref. [20].
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B. Notation

For brevity, it will prove useful to use the following

notation:
1
/ X(z) = e /dze‘ﬂZX(z),

for A an integer, in order to reduce the size of some of the
equations. Furthermore, [* will be treated as an operator
acting on the right, so we have for example

(2.17)

(3] =2[ + [ +6-0)X(2)
= 3e¥ / e %X (z)dz — 2€° / e *X(z)dz

+ /X(z)dz +6X(z) — X'(2). (2.18)

For 4 # 0, [* does not change the order of the polynomial
in z; see Appendix A. However, 0, decreases the order by 1
and [* increases it by 1.

Moreover, angled brackets () on pairs of indices will be
used to denote the symmetric trace-free part; thus, for an
arbitrary tensor X;;

1
Xy = 5 (X + Xy — 0" Xgpwpy).  (2.19)

13
G = 0o(r™) = p1 = —g(f +1)B,CY,

oo | —

Goo = 0(r ) = fr = -

Gow = olr) = Cf = (€)' =5 (] + 2))D,C",

4 1
1)By, DV — =
([+ 1By 3

For example,

1 1
Bk CXyy = EBIKCKJ + EBJKCKI

1

_EBKLCKL(UL/. (220)

C. Einstein equations

We will assume that the energy-momentum tensor
satisfies the falloff conditions”

Too=0(r™), Ton=0(0"3), Ty =o0(r3). (2.21)
The Einstein equation then yields
-4 Lo
Goozo(r ) :’BOZ_ﬁB , (222)
1
Go = 0(r3) = Cl = —ED,B”, (2.23)
GOI == O(I"_S) = 8ZF0 == 0, (224)

where D; is the standard covariant derivative associated
with the round-sphere metric w;;. Since B;; is independent
of z, we conclude the leading order terms in (2.4) are all
independent of z.

Assuming stronger falloff conditions for the energy
momentum tensor, the Einstein equations imply the
following:

(2.25)

4 2 14 1J 1 2\2
(2 + 1)C + 14 [0.Cy0.CY 4 - (B, (2.26)
(2.27)

3 1 4 1 14 o0 1 4 3 13
Gon = 0(r™%) = C4 = =2 BY(C), =5 ([ +2))Dy DY = 2 (] = JBYDNCye + 4 (2 = NBuxD!C'K = 4 [CKDIB

1 1
— B’D,B” — —BlD,B,
tea P 16 I

(2.28)

*Given some arbitrary vector V,, we denote the components in the null basis as follows:

oV, =Vy==V",

with the obvious generalization to tensors.

nv,=V,==-v°

miV,=V, =V"
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5 5 2
sz(C?)’ +3/(C)),c” —1(/ +2[)D,EY — /DJKD’B,K 41 2/ / )B,;xDXD"

G = —6 CI =
Om O(r ):> 3 80

1
-7 / 2/ B”DKDK+ / /D’Cz—z— / 3[+2/)D1 (9.C7%9.C )
1 25
- = / / DICJKa CJK + / [ (9 CIJDKCJK - = / /)CIJDKC_] - 2/ CIJ/dZDKCJK)
5 /+ / )BY CXLD By, —1 (3 / /BKLCKLD,B”—l— /+ / )BYBXLD,C;

7/ 40/+ 18/ )B*D,CV ——(5/ 2/ )C'D,;B? +iBzDIB2, (2.29)

240 160

1 13 0 1 1 3
GOl = 0( ) = Fl _EDI(C?)I —g(/ - [)D[DJCIJ +§DIB[JDKBJK —gDIB‘]KDIBJK +—

S(O-2)B  (230)

3 1
Gy =0(r?) = F, = —Z(C?)’DJB,, -3 / [)D,D,D” + [ / (B;;,CY) -~ /C”DB,, + 2/ / )B;,C!

14 0 1 1 1
5= )DBYDKC, + 55 BYBX'DD By, + o B*D;D,BY = BY DBy, DB
5
+ ¢, D'B*D'By. (2.31)
3 3
Gon = 0lr) = F3 = 3 (C)(C); 15 D1 (BHCY) + (3] 2] = ) (C D/ Cyy 43 2] = ) CosD (€)'

2
[)D;D,EV +i(2/—/)B,JD” —|——/B,JDD”—Z/D(B”D”) —|—§/D,BJKD1DJK

5
(/=
; }D,B,KDJD1K+ (4/ 6/+3/ /DC2

4 302 2
—ﬁ(/—3/+3/—/) (0.C1,0,CY) +35 2[ 3/+/)8C”DC

1 5 3 1 s 403 5 3
—5(2/—/)(C11fdzmclj)—5(2/+f—2/)cz+ ([= N(0.Cy0,CY)+ (2 = [)(Cyy [dzC)

0| —

1 5 2 5 3
_E(/_f)DICJKDICJK + (/_/)DICUDKCJK

2.5 3 1
_5(3/_2/)<D1Cu[dZDKCJK) +§(/dZD[Cu)(/dZDKCJK)
L3 ke Lo 3 Pl 2
+5(5/=3))BYCKLD, DBy, — 5 (40 = 33[+8/)C'D, D, B

5 3 5 3
—1(3/—/)BKLCKLD,D,B”+1(/—/)B”BKLD,D,CKL 7/ 30/+20/+3/ )B>D;D,C!

240

1 35 3 5 3
0 107/—150/+40/+3[ YD, C”D,B? + Z([—/)B”D,BKLDJCKL— (/= [)B*D;B"D,;Cy,

FN

2

3 13
-3 /C”D,BKLD JBKL +Z( / + /)CKLD,BKLD sBY =3 [C DB D, B’

5 17 13 3 1
— (B*)?————[O(B*?+——D,;B*D'B*+—B2D,B,xD'B’X ——B2D,B,.D'B'X, (2.32
+512( ) 5120 (B2)? o g7 PPk 37 TIPUK (2.32)
Gmm = o(r_3) = 8uC” = 0, (233)
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1 1 1 1 3 0
Gpm = 0(r™) = 9,Dp; = gBIJauBZ - ZBIJFO - ED(I(C(I))J) 5 (4/+2[+3-30,)Cyy + 2/ +/ LCyy
1 1 1 1
—gBuDKDLBKL + 32D<1DJ>B2 + 2D< (BJ>KDLBK ) <I|BKLD\J) , (234)
-5 L kg0 13 1 oke KL
Gum =0(r™) = 0,E;; = ED ((CD)uBnk) + 3 ([—140.)CiF +§B Ckr0uB1y + BguCpy 0,B
13 13
+_/BIJCKLauBKL _Z(/ 1)Cy,0,B + 2/+/ uD¥D ——(2 9.)Dy;
';
f 1)C* DD By, + /+ C* DDy Bk,
1 3
+ 5+ 1)CyDxD, B — (3/—2/— /)BKLDUD,)CKL
1 ke Lot 3 0 ok
+203 / 2 / /)B,,DKDLC (3 [ =+ BXLDD,Cyy
4
- [D uB*Dj Cyy. + 2/+ )DB*D, C;y + fDKC LD, By,
1 5 1
3/ + 2/ + /)DKCK IDLBJ>L + 32 DK(BZD<IBJ> ) —gDK(BKUDJ)Bz), (235)
1 1
Gll = 0(r_2) = 8uF0 = —EDIDJauBIJ + ZauB]JauBIJ, (236)
-3 o _ Loy 1 v JK 1 L pika p
Glmzo(r )iau(cl) :gD F0+6|:|DJB _gD DJDKB +§B 8MD B./K
5 2 1
+20,B,xD'B" —20,B,xD*B" D, B". (2.37)

where (C9)! has no z dependence and [ = D'Dj is the covariant Laplacian on the unit 2-sphere.

The above Einstein equations are the generalizations of
the Einstein equations (2.15)—(2.26) of Ref. [20]. Setting
C;; = 0 and assuming that all tensors are z independent, so
that Eq. (A4) can be used, the above equations reduce to the
respective equations in Ref. [20] by taking B;; — Cy;.

Assuming the vacuum Einstein equations to the appro-
priate order, it is possible to deduce the z order of each
metric parameter in (2.4). In general,

#B;; =0, #C;,;=Nc>0, #D;;=Np, #E;;=Ng,
#6y=0, #p=Nc, #pp=max{Np,2N¢},

#C) =0, #C|=Nc+1,

#CL=Np, #CL=max{Ng,2Nq+1},

#Fy=0, #F =Nc+1,

#F,=Np, #Fy=max{Ng,2(Nc+1)}. (2.38)

An important assumption that we shall rely upon in what
follows is

Nz >N, > N¢ > 0. (2.39)

This is the case for generic initial data [19]. It is possible
that in special cases, for example if D;C" = 0, the above
assumption does not hold. Nevertheless, all the charges
obtained in this paper are still conserved in such cases.

D. BMS group

The asymptotic symmetry group of polyhomogeneous
spacetimes is given by the BMS group, as with the smooth
case [12]. This group is obtained by imposing that the
variation of the metric under the generators of the asymptotic
symmetry group respects the form of the metric and the
gauge choices. These conditions imply a group of the form

BMS = SL(2,C) X ST,
where ST represents the infinite affine group of super-

translations parametrized by a u and r-independent function
s(x!) and generated by diffeomorphisms of the form

2p
gzsau—i-/drer—zhl‘,D‘/S(‘?l—é(lel_ClD[S)ar. (240)
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As in Ref. [20], we shall concentrate on the supertranslation part of the BMS algebra.
We list below the variation of some of the metric components under supertranslations that will be useful later:

1
5F0 == SauFO - EauBIJDIDJS - D‘/auBIJDIS,

a(cy)!
1

0Dy = 50,Dyy

3 1
— (/ + 1 —58Z> CIJDS,

1
6E[J = SauE[j +§

1 4 1 4

1

w4>

—_

—a (C[JDKBKLDLS

[\.)

1
+ 5B DkClyDys + 5

N | —

1 3
KL
— 4/+2 8)3 CIJDKDLS_§</+

(2.41)
0\/ 1 2l 1 1 JK 0l 1 1J
= 50,(CY) +1—63MB D's + FyD's _ZB D'D;Dgs _EB D,Os
3 1
+ EDJBIKDJDKS - ZD’BJKDJDKS - ED‘]BJKDKDIS
1 1
- EDIDJBJKDKS -+ EDJDKBIKDJS - BIJDJS, (242)
(3B[J :SauB[J—2D<[DJ>S, (243)
5C[j = S@MC”, (244)
0 1 KL 1 2 1 2
— 2(C1)<]Dj>s —ZBIJB DKDLS —gB D<1Dj>s +§D<IB DJ)S
KL 3 K 4 3 g K
+DKB BL<1DJ>S - (2f+ 1>D C[JDKS +§(2/+I)D CK<1DJ>S
(2.45)
0 K 1 4
(CY)yBnkD"s — 5(2/ +3-0,)D;,0s
<1DJ>KDKS
1) (B, C*DgDys + BXCx DD ys)
+ /(C[(LD<[BKLDJ>S - CKLDKB]JDLS) + C[(<]DJ>BKLDLS + D](BKLCL<1DJ>S
4 3 3
(/ - /)BKLD<]CKLD]>S - 2/B[(<1DJ>CKLDLS
1
3/+2/+/ DKCKLBL<1DJ S + / f BIJDKC DLS
(2.46)

32

These variations are guaranteed to preserve the form of the
metric. However, we will impose further constraints on the
metric via the Einstein equations by assuming particular
falloffs of the components of the energy-momentum tensor.
If we impose a particular falloff on one component, we may
need to impose further conditions on other components so
that the desired falloff condition is preserved under the
BMS action. The variation of a particular component (for
fixed a, f € {0, 1,m,m}) is given by

0:Top = &0 T op + Top0,E + T oq0pE. (2.47)

5 5 1
+ — DX (B*BgDyys )+§BZDKsD<,B,>K—§3K<,D,>BZDKS.

If we insist that T, = o(r™"), certain falloff conditions
must be obeyed by 7., and T.. When assuming a
particular falloff condition, we will also assume that the
relevant conditions are satisfied for the other components.
This can always be done and presents no issues in our
calculations.

III. STANDARD BMS CHARGES

The asymptotic charges associated with the asymptotic
BMS symmetry group are given by the following expres-
sion [24] (see also Refs. [23,30]):
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§Q:l09.0] = g [ #Hle g5

1

2,20 pyur
= %G ere H""[E, g,8q],

(3.1)

where we have used the form of the background metric of
interest (2.2) in the second equality. The 2-form H is
given by

1
H = 5 {fbngvaégcd - gbvcégac + gcvbégca

1 1
+ 596d59cdvb§a + §5gbc(vafc - Vccfa)}dx“ A dxb.
(3.2)

The slash on the variational symbol § in (3.1) signifies the
fact that the variation is not, in general, integrable.

We have all the ingredients to compute charges, namely
the background metric g,;, given by (2.2) and the symmetry
generators given by (2.40). Plugging the above into
Eq. (3.1) leads to an expansion of the form [20]

1 7 L
o [ o T2 P00

B o)

where each §Z;(z) is a polynomial of finite order in
z =log r. The first term @gZ in the expansion above has
been derived previously for smooth asymptotically flat
spacetimes [25]. Below, we find that this result extends to
polyhomogeneous spacetimes [17]. Following Ref. [20],
we extend the definition of BMS charges to subleading
orders in a 1/r expansion. Investigating these subleading
BMS charges in the context of polyhomogeneous space-
times is indeed the main aim of this paper. We will find that
the results in the polyhomogeneous case are analogous to
those for smooth spacetimes, albeit, the expressions are
rather more complicated.

;ng[ég, 9] =

(3.3)

A. BMS charge at O(")
At leading order, we find

JTo = 8(=25Fy) + 5 0,B15B". (3.4)
Observe that at this leading order in the variation of the
BMS charges (3.3), we do not encounter log r terms. This is
a direct consequence of the finite shear condition (2.16),
which implies that all leading order terms in the expansion
(2.4) are independent of z.

As in the smooth case [25], the nonintegrability above is
related to the existence of flux at infinity. In particular, the
charge is integrable if and only if 9,B;; =0, i.e., in the

absence of Bondi news at null infinity [31]. The integrable
part when integrated over the 2-sphere corresponds to
leading-order BMS charges, which generalize the Bondi-
Sachs 4-momentum corresponding to s an £ =0 or 1
spherical harmonic.

B. BMS charge at O(r~!)

At the next order, we obtain

16

1
+ D,BYDXB, — ;DiB ,KD’B’K>

1
+§S(auB1‘/5C1‘I + 8ucljéBlj). (35)

If we assume the falloff condition on the matter fields
T,m = 0o(r™3), then from Eqgs. (2.33) and (2.44), 6C;;, =
50,C;; = 0, so the nonintegrable piece vanishes for all s.
Assuming further that Ty; = o(r*) and T, = o(r™),
then Egs. (2.27) and (2.30) imply

6T, =0. (3.6)

Therefore, in this case Z; = 0 and there is no nontrivial
charge. If, however, the falloff of T is weaker, we have
nonvanishing charges given by the coefficients of the
polynomial in z:

Q\(z) = / dQ(=5Toy ). (3.7)

provided that T,,, = o(r=) and Ty,, = o(r~*). It can be
shown by considering (2.47) that it is possible to have
T, = 0o(r3) and Ty, = o(r~*) with T, nonvanishing at
this order. The higher order charges depend only on Cy;.
Since we have assumed 0,,C;; = 0, such terms are trivially
conserved. Therefore, the only interesting charge will be
the one corresponding to the z° coefficient.

C. BMS charge at O(r-2)

Starting with weaker falloff conditions Tyy = o(r™),
Tom = o(r™*)and T,,, = o(r~3), which imply Egs. (2.25),
(2.27) and (2.33), the variation of the BMS charge at the
next order is
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3
ﬁIz = S5<—2F2 - (2 — aZ)ché — 3(C(1)>IDJB]J _ EDJ(C?)[BI_]

13 0 13 13 0
—Z(/—2/+l)B,JDC”—Z(/—1)C,,DB”—§(/+2/)BUC”
13 KlJ y 1J nK 1 2 1J 1 1J 2
—E/DKB,,D C” +2(D;B"D c,,(+§B D,D,B —53 D,D,B
1 3
- gB”D,BKLD yBKL + ED,B”D ,BZ>
1 1J 1 1J 1 2 2 1 2 1 J 0\/
+ 5 553 6MDIJ+—8HB 5D1J——8MB oB +§F053 —ED (C]) 581]
3
(CO)’DféB,,—— 2/ 2/+3a )6B,00CY + (2/+2—8Z)C”D53”
1
4/+2/ 3430 )5B,JC”+ 2/+/DK58”DKC”

+

[\)|_O\\

1 1
(1 -9,)D;6BYDXC,x + 16D,DJB”632 +33 D,D,;B*sB"

1 1
+ ED,B2D,519” + 5B D¥B kD 5B, + g(SB”D,BKLD,B'“) . (3.8)

As ever, the above separation into the integrable and nonintegrable parts is not unique. The choice above has been made in
order to obtain the simplest expressions possible. This will become most clear upon using further Einstein equations. If we

further assume that 7', = o(r™>), To; = o(r™>) and T,,,,, = o(r~*), which imply Egs. (2.28), (2.31) and (2.34), the above
expression reduces to

1
#I, = sD;D ;6 (—D” + 1—6323” )
1 1J 1 1J 1 2 2 1 2 1 J (0]
s 553 8MD,,+§8MB 5D”—1—68L,B 6B +§F05B —ED (C!sBy,

1,3 0 1,3
— () D'5By - 55 (2] -2+ 381)5B,,DC” +5 (27 +2-0.)c,088"

1 30
- (4 [+2 / 3439 >5B,jc” (2 [+ /)DKEB”DKC”
l 1 1
+5 (1-0,)D;8BYDXC i + ED,D /BB + iD,D ,B26B"
1 1 1
+1¢ D;B*D,5BV + 5B”DKB,KDLaB g 8B DBy, D ,BKL> , (3.9)
|
where for brevity, we have not directly substituted the Q; ;1":_# / dQY,,,D,D,D"| o forn>Nc+1,
expression for d,D;;. The integrable piece has z degree ’ 167G Js
Np > Ne > 0. A nontrivial charge could appear as a (3.10)

coefficient of each z power in the integrable piece. We
first consider the highest order—the coefficient of z¥». The
nonintegrable piece has maximum z degree N¢c + 1 as can  where Y, are spherical harmonics. However, inspecting
be seen from (2.38). If N, > N + 1 then each coefficient  Eq. (2.34), the Einstein equation for 9,,D;;, we notice that
of 7" for n> N¢c+1 in the integrable piece gives a  the right-hand side has z degree N + 1; hence the higher
nontrivial charge. These are order terms in D;; do not evolve, i.e., they are constant in .
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Therefore, the fact that the charges defined above are
conserved is unsurprising.

The highest nontrivial order to consider is O(zVc*1). We
must calculate the coefficient of zV<*! in the nonintegrable
piece and see what restrictions can be imposed in order to
guarantee that this vanishes. The only terms in §Z. gnon'mt)
that have z dependence are those containing C;;. Using
Egs. (2.34), (2.43) and (2.45), we obtain

FTI | s = DUDY s (-é (47 + 27 +3- 35;) sCy,
1,3 0
+<(2/+/)s0cy
- (2} + 1) DXC,,Dgs
4,3 0
+3 (2 [+ /) DKCyxDys

_%(27+2—3Z>C”Ds). (3.11)

Using the results of Appendix A, we find that the terms
of z degree N + 1 in the expression above are of the form

non-in 1
g — 6/dz DD s(s(O=2)Cyy

+8DKCx(Dyys) + O(ZV¢). (3.12)
For any given s(x), we can choose a C;;(x) to make the
expression in brackets an arbitrary symmetric traceless
tensor. That is, for any traceless symmetric X;;(x) and
s(x!), we can find a traceless symmetric solution C;(x) to
the second order partial differential equation:

S(D—2)C”—|—8DKCK<,D]>S:X,J. (313)
Since Cy;(z,u,x) can be freely specified on a Cauchy
surface, the expression in (3.13) can be made arbitrary
on the surface and so (3.12) vanishes in general if and
only if

thus s corresponds to an £ = 0 or 1 spherical harmonic (see
Appendix C).

From (3.11), we observe that §Z (zmm_lm) |, terms Vanishes
at all orders when s obeys Eq. (3.14). Moreover, from
Eq. (A13) in Appendix A, we have that for (3.11) to vanish
at a given order, it must vanish at all higher orders, in
particular the highest order. This means that s must obey
(3.14) for the coefficients of lower z orders to be integrable.
In conclusion, we deduce that at any order, (3.11) vanishes
if and only if s is an £ = 0 or 1 spherical harmonic.

Assuming Eq. (3.14), the nonintegrable part of Eq. (3.9)
reduces to

A 1
dz—énon int) _ DI <—52(C(1))18MBU 4 E S2D1328MB”

1
+252BJKDLBKLaMB]J>, (315)

which is a total derivative and can, therefore, be ignored.
Hence, at all orders in z we obtain the (unintegrated)
charges

1
IZ = SD[DJ <—D1J +RB2311>. (316)
However, up to total derivatives, this is equal to
T L ompy
2:D1D1S -D +EBB
1
= D<1DJ>S (—Dlj + EBzBL}> (317)
=0, (3.18)

where in the second line we have used the fact that B;; and
D;; are trace-free and in the third line we have used
Eq. (3.14). Therefore, the only nontrivial charges obtained
at O(r72) are those given in Eq. (3.10).

D. BMS charge at O(r~3)

Starting with the previous falloff conditions Ty, =
o(r7), Tow = 0(r™), Ty = o(r™) and To; = o(r™),
which imply Eqgs. (2.25), (2.27), (2.28), (2.33) and (2.34),
we find that, to leading orders in z,
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51-3 = 55<—2F3 + 4,62 + 2|:|ﬂ2 (3 8 D[ - 2/ IDJC[J

11 1 1 I
+5 [BYODy, + 3 Dy OB + 2 DDy DXBY +2[D,BD¥D

1,1 10
-5 @[ =1)B"Dy, —Z/D’(BZDJC,J)>

1 1 1 4 1
+s (— 6BY0,Eyy +50,B"5E,; — — (2] = 2] =3+ 30,)BV0ID,,

- 2/+3 d,)D,;,06BY +2(2 8.)DxD;;DX5B! + = (2/+/ YD 8B DXD ;¢

— 2B D,5B,x D, CKE
11

(3.19)

1
4

1 3

—Z 4/+ 2/ 6 +39.)D;;6B" +/{ D!sB’D’C,, +45B2D1DJC”
4y 3

3 4

E‘SB[ D,B,;xD,CKL — géB,jDKBIKDLC’L - FB”DK5B’KD c’t
1 1

géB”DKB,,DLCKL + 6B”DKéBuD CKLD + O(zNe).

As before, it should be emphasized that the separation into
integrable and nonintegrable pieces is not unique and the
form above has been chosen to make the following
expressions simpler.

Imposing a stronger falloff of the energy-momentum
tensor, Toy = o(r7%), Ty = o(r™®), To, = o(r°) and
Tym = o(r™>) implies Egs. (2.26), (2.32), (2.29) and

|

§I5 = 56(—=D;D;E" + O(z"¢))

|

(2.35). Substituting these equations into the expressions
above, in the integrable piece, terms will appear that
depend only on C;;. We drop such terms, since
0C;; =0 and one can add any arbitrary term depending
only on Cj; to the conserved charges. After applying
some Schouten identities (see Appendix B), up to total
derivatives

1 1 1,4 1
s(—éB”auE” + —auB”éEU -— (2/ -2[-3+430,)6B"0Dy,

1

’—‘-lk

-bO\

3
~3B"8B,XD,D, Ci* 3 B*6B" DD, Ci*

- 2/+3 d.)D,;06BY +2(2 9.)DxD;;DX5B! + = (2/+/ YD 8B DXD ;¢

3
- 4/+2/ 6+ 30 )D,,(SB”+j{ D’5B2DJC,J—|-4682D’DJC

— 2B D,5B,xD, CKL
11

3 4
~ 0B DBy D, CK" — 2 5B, DkB'* D C' —~ By, D5B™D,CT

1 1
- géB”DKB,,DLCKL + 6B”DK(SB, ,DLCKL} + O(zNC)),

where for brevity, we have not yet substituted in the
expression for 0,E;;. The integrable piece has z degree
Ng where N > Np > N. Using the appropriate Einstein
equations and the metric variations shows that the non-
integrable piece has z degree Np. If Np > Np, terms
O(zVr*1) or higher are integrable and we have charges

(3.20)

1
¢,
3,;:1 = _%\/S‘ dQ YmeIDJEIJ|O(z") for n > ND‘

(3.21)

As with charges (3.10) derived in Sec. III C, the existence
of such conserved charges is unsurprising, since we observe
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so the remaining terms in §Z gnon'mt) that can contribute to

this order arise from C;; and D;; terms. We have

from the Einstein equation (2.35) that terms of this degree
in E;; are constant in u. The highest order at which the
existence of a charge is not immediately obvious is at
O(z"»). After applying the metric variations to (3.20) and ﬁ.(non-im) —( ﬁI(non—int)| n ﬁz-(non—int)l )

tidying up the resulting expression using Schouten iden- 3 e Dterms 3 BCterms

tities (see Appendix B), we find all 9, terms at this order + O(zNe), (3.22)
result in a total derivative and can hence be ignored.

Recalling that N <Np, it is possible that No + 1 = Np where

|

non-in L1 1 . '
O™ e = 5= 41 = 2JTDDDss 45 4] 42 =2+ 0D DiDs

1 4
- E (2/ + 3 - aZ)DIJDDIDJS - (2 - az)DKDIJDKD[DJS
2 4 4 4 1
~5 @[+ )DDVD,0s - 2f + /)D,D”D,s> (3.23)

and

non-in 1 1
FTIM | ms = 3 / dz (B”DLCKLDKD,DJS ~ 5 BYDxC/<D,0s - B”DKCIKDJS) +O(Ne).  (3.24)

There is no Einstein equation relating D;; and Cj;, so the contributions from the two terms above, namely FZ{"" ™|, .
and §7 gnon'lm) | 5 terms» N€€d to vanish independently in (3.20) in order for the charge to be integrable in general. We focus on

978 gnon_im>| prerms 10 begin with. The O(z"?) coefficients can be calculated using (A2) in Appendix A. We find that

} 5 5
IL5™ " = s <_§D”D1D1S ~ 2 DVOID,Dys = 2DKDVDyeDyDys

+D1DIJDJ|:|S + 2D1DIJDJS> + O(ZND_]). (325)
O(z"p)
Now, in order to simplify this expression, we add to it an additional term,
12 L. U
S5s| D D]DJS+ZD D]DJDS—ZD DD[DJS N (326)

which vanishes upon use of the Ricci identity and the fact Dy, is traceless; thus we have not changed the nonintegrable piece
(3.25), which becomes

§ 5 5 5
dl-gnon int) |Dterms — (—ZDUDD[DJS 4 ZDUD]DJDS + ED”DIDJS

+ O(M071). (3.27)

- 2DKDIJDKD1DJS + D[DIJDJDS + 2D1DIJDJS>
O(z"p)

Up to total derivatives, the first line in (3.27) can be written as
S nKpl S K 5 1J S 5 1J S
ESD D DKDIDJS+§D D SDKDIDJS_ZSDID DJDS—ZD D[SDJDS—ESDID DJS—ED DISD]S, (328)

so that
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; 1 5 1 5
gTrom | = <2 sDXDY DD Dys +5 DY DXsDyDyDys — 4 sD;DVD,Bs =7 DV DysD,Cls

1 5
- 5 SD]DIJDJS - EDIJDISDJS>

N

The factor (sDxD;; + 5D;;Dgs) is an arbitrary tensor that
is symmetric and trace-free on its /, J indices. Thus, for the
O(z"») term to vanish for general Dy, it is necessary that
the projection onto the traceless, symmetric part of the
other factor vanishes, i.e.,

2DKD<1DJ>S - a)K<1DJ>Ds — 2(1)K<1DJ>S =0. (330)
In Appendix C, we show that the above equation (3.30) is
satisfied if and only if s is a superposition of £ = 0, 1 and 2
spherical harmonics. As with §7Z,, there is little point
considering # = 0 and 1 modes since their contribution to
the integrable piece is trivially zero; hence we now consider
exclusively the case in which s is an ¢ =2 spherical
harmonic, which means in particular that

(O+6)s=0. (3.31)
Combining (3.31) with (3.30), we have
1
DKD<1DJ>S—§Q)K<1DJ>DS =0 and
DKD<1DJ>S+2C[)K<1DJ>S = O (332)
Next, we consider the terms in ¢Z g“on'im) | BC terms-

Reorganizing these terms, Eq. (3.24) becomes

ﬁz- gﬂOH-lnt) |BC terms
1 1
= g/ dZ{BIJDLCKL <DKD]DJ - ga)K]DJDS>

1

—EB’JDKC,KD,(D+6)S} + O(zNe). (3.33)

(SDKDIJ + SDIJDKS) (2DKD1DJS - Q)KIDJDS - ZwIKDJS)

+ O(Ne7h)

O("p)

+ O(zMe ).
O(z"p)

(3.29)

Given that By, is trace-free and symmetric, we can use
Egs. (3.32) and (3.31) to conclude that

ﬁzgnon_im) |BCterms =0. (334)

Therefore, even in the extreme case Np = N+ 1, the
O(z"») term still vanishes for an # = 2 spherical harmonic.
The fact that the nonintegrable charges vanish at z degree
N¢ + 1 means that we have five conserved charges

Q,= form=0,+1,42.

/ dQY,, D,;D,EV
O(z"p)

- 162G S

(3.35)

We shall show below in Sec. V that these charges
correspond to half of the set of Newman-Penrose charges
that exist in such polyhomogeneous spacetimes [18].

We now consider the nonintegrable piece at lower orders.
Using the result in (A13), for the nonintegrable piece to
vanish at lower orders for general Dy, it is necessary that it
vanishes at the highest order for general D;; and so s must
be an £ = 2 spherical harmonic. In this case, applying
Eq. (A8) to the expression in (3.23), the contribution from
Dy, terms at O(zV»71) is

i 5 9
FZE"™ | s = N (DD”DIDJs ~2DYDyDys + - DVOID Dy

3 3
+DXDVDyD,D,s + ZD,D”D,Ds + ED,D”D,s)

Up to total derivatives, this becomes

+ O(zM072).
O(ZND—I)

(3.36)
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i 9 3 3
ﬁIgﬂon mt) |Dlerms = NDDIJ <16 SDD[DJS — ZSDIDJDS + DKSDKD[DJS - ZD[DSDJS

17
-+ DSD]D]S -

Then using Eqs. (3.31) and (3.32), this reduces to
dz—gnon—inl

> |D terms

=N D”<—1—9sDDs+DsD s)
D 7 $DiD; sD;

O(ZND—I>

+ O(ZND_Z), (338)
which for general D;; and s an £ = 2 spherical harmonic is
not zero. Any further restriction on s will make the integrable
piece vanish. There is no need to check §7 §“°“"“‘> |5 terms at
this order since there is no equation linking D;; to C;; and

B;; that could result in a cancellation in the nonintegrable

piece. We deduce that #Z"" ™|, . is nonvanishing at this
order and hence there are no charges at this order, nor
subsequent orders as implied by (A13).

In summary, the complete set of conserved charges
obtained at O(r~?) is given by (3.21) and (3.35).

IV. DUAL BMS CHARGES

We now turn to the tower of dual charges defined in
Ref. [21], given by the expression

~ 1 -
§:l00.9] = g [ Hle.s.59

1 H O¢p [é:’ 9, 59]
=— [ dQ——F—FF-—, 4.1
872G Js sin @ (41)
where we have used the form of the background metric of
interest (2.2) in the second equality with the 2-form H
given by

.1

H= Zagbc(vaa‘ + VeE,)dx A dxP. (4.2)
The dual BMS charges can be derived from first principles
from the Palatini-Holst action [27,28]. We will consider a
1/r expansion of the variation of the dual BMS charge:

I1(2) , 912
r 7’2

901005 = 1o [ a@{ i +

+ 5@3@) +

r o(r‘3)}.

3
§SD[DJS - 5D1SDJS>

+ O(zM072).
O(ZND—J)

(3.37)

The calculations will be analogous to those in Sec. III with
similar results being obtained, as with the smooth case [21].

Following Ref. [26], it will be useful to define the twist
of a symmetric tensor X,;:

0

XU = X UK, € = (_1

é) sing.  (4.4)

Note, if X'/ is trace-free, we can drop the symmetrization in
the definition (4.4). Additionally, it is helpful to note if X
and Y are both symmetric trace-free tensors, then

XIK?JK - _XIKYJK. (45)

Furthermore, if either one of the symmetric tensors X or Y
is trace-free, then
XIJ?IJ — —XIJY[]. (46)

With the above definitions in mind, Eq. (4.1) can be
written as

- 1 -
FQ¢[dg. 9] :@/SGQGUHU[? g.69]. (4.7)

We now proceed as before to substitute the metric expan-
sions (2.4) and the expression for & given in Eq. (2.40).

A. Dual charge at O(r°)
At leading order, we find

- - 1 -
#Zy = 8(—sD;D,;B") + EsauB”&B” . (4.8)

As with (3.4), we have an integrable piece that is in general
nonzero and a nonintegrable piece that vanishes if and only
if 9,B;; =0, i.e., in the absence of Bondi news. In this
case, we have an infinite set of conserved charges,

=
Q()m:

1 -
/ dQY,,D,D,BY,  (4.9)

162G Js

which are to be viewed as the generalization of the NUT
charge [26]; see also Ref. [32].
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B. Dual charge at O(r~1)

At the next order, we find

- - 1 - -
ﬁIl = 6(—SD1DJC[J) + Es(aucuﬁB” - 5C”8HB”).
(4.10)

If we assume T, = o(r~), which implies Eq. (2.33), then
using Eq. (2.44), we get #Z, = 0 so

- - 1 -
ﬁz-z = SD]D]5 <—DIJ + EBZBIJ>

Z,=0. (4.11)

This is analogous to the O(r~!) term in Sec. IIl B, where
we found that the charge is zero if strong enough falloff
conditions on the energy-momentum tensor are assumed.

C. Dual charge at O(r~?)

At the next order, we find

1 . - 1 o o
+s <§ (0,D;6BY — 6D,;;0,B") — RB,,((’)MBZéB” - 6B%0,BY)

1 ~ ~ 13 ~ 1 -
+ E@C”(SC” +D,(Cy,6B"”) - 5 (f+1)C,0sBY + Z@(D(C,,&B”))

30 1 3 . 1 - 1 .
+ [Cpy6BY — 5DKC,JDK(SBU — [DXCyxD6B" — BD,(D,B%SB”) - ED,(B,KDLBKL(SBU)>. (4.12)

The integrable piece has z degree N, whereas from (2.38)
we deduce that the nonintegrable piece has z degree at most
Nc+ 1 < Np.Inthe case N, > N + 1, we have charges

forn>Ncq+1.

Qfm — / dQy,,D;D,;D"
O(z")

2171616 Js

(4.13)

This is analogous to the result in Sec. Il C, where we found a
set of charges (3.10). As with those charges, the existence of
these conserved charges is unsurprising when we consider
the Einstein equation (2.34). Thus, as in Sec. IIIC, the
highest nontrivial order is O(zVe™!), which we consider
next. All terms with z dependence arise from the presence of
C,;, so we start by considering such terms. Assume that
Tom = o(r~*), which implies Eq. (2.27). Rewriting

s(@uDIJ5E” —5D1J8MB”)

=—(6D;;—50,D,;;)8B" +-6D,;(6B"” —s50,B")  (4.14)

and assuming T,,,, = o(r™*), i.e., Egs. (2.34), and (2.45) in
the first term in (4.14) and (2.43) in the second term, we get

ﬁf 2 (non-int) | Cterms
= D<1DJ>S5DIJ|Ctemls
1 ~ -
- g/ dZ D<1D'/>S(S(|:| - 2>C1./ + 8DKCK<1DJ)S)
+ O(zY),
where we have used Eqgs. (2.34) and (2.45). This is the same
expression as was obtained in (3.12), except that the tensor
field C;; has been twisted. Since C' is also an arbitrary

(4.15)

|
symmetric, traceless tensor, we again deduce that the highest
order term in #Z, ™™™ is zero if and only if D Dys =0,
i.e.,if sisanZ = Oor I spherical harmonic. Assuming this to
be the case, as we can see from Eq. (4.15), this implies that the
Cyy terms vanish at all orders in z. Furthermore, D ;D ;s = 0
implies that (2.43) reduces to 6B;; = s9,B;;. Thus, the
nonintegrable term in Eq. (4.12) reduces to

~ H D 1 B
§T,momin) — pl (sz(C?)JﬁuB” —5s*B"ED"By,0,Byy
1 2nJ R2 B
—RS D’B auBIJ

1 By N
+ 1—6sD<1DJ>s(B26uB” +2BXL), By, By)),

(4.16)

where the first line is a total derivative and so can be ignored
and the second line vanishes through our choice of 5. As was
the case in Sec. III C, the highest order term in the non-
integrable piece vanishes if and only if the nonintegrable
piece vanishes at all orders, with the reverse argument
following from (A13) in Appendix A.

With s an # =0 or 1 spherical harmonic, up to total
derivatives, the integrable piece becomes

N . 1 .
6Z, = D;D 1s6<—D” +1—632B”)

- 1 -
= D<1DJ>S5<_D[J + EBzBl">
—0. (4.17)

So as before, there is no nontrivial charge at this order.
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D. Dual charge at O(r~3)

At the next order, we find that

ﬁf::) = —SD]DjﬁEIJ

1 - - 1 - N
s (5 (0,E;;6BY — 6E;,0,B") + ZD,(3C{<B,K519” — CKBY§B,x)

N 1 . 1 4 LA
+ D;(C,;6BY) — Z(l - 0,)8BY0Dy, —1(2/ +3-0,)D,06BY + [6B Dy,

1 _ 4 3
~5 (2~ 0.)DxD;, D¥5B! - /DKDJKD’53”> + O(zNe),

where we have used Egs. (2.33) and (2.44) to drop all terms
involving only C;;. The integrable piece has z degree N,
whereas (2.38) implies that the nonintegrable piece has z
degree at most Np < Ng. We therefore have a set of
conserved charges:

oo =~ /dQ Y DD, EY for n > Np.

162G S

O(z")
(4.19)

Once again, this is unsurprising, when we consider the form
of the Einstein equation (2.35).

Next, we consider the highest order term in §Z5
and see if it is possible to make this zero in general for a
particular choice of s(x). The highest order term is
O(z"?), but in the extreme case where Np = N + 1, it
is essential that O(zVc*1) terms also vanish. We further
assume T, = o(r~>) and T,,, = o(r~>). Rewriting

(non-int)

S(auE1J6EIJ - 5EIJGMBI'I)

—(8E;; —sO,E;;)6B" + 6E;(6B" —s0,B")  (4.20)

in (4.18) and using Eqgs. (2.35) and (2.46) in the first set of
terms and (2.43) on the second set of terms, as well as
Eqgs. (2.27) and (2.28) gives

FL;momin) — DI DI sSE,, + O (N C)
=D'D's(Xyploen) + Y unlogies)) +O(z)
=DVD)s(X logo) ‘H711 logreny)
+0O(zNe), (4.21)
where

(4.18)

4

1 1
X1y =32+ [)sDD*Dx — 2 (2-0.)sDy,

W =

1 4
- (2/+3—8Z)D1JDS

4 1
(2/ + 4/ - S)DKDIKDJS

_I_
W = N

4
- (2/ + I)D]DJKDKS (422)

and

1
Y[j = 6/ dZ(SBKLDIDJCKL

- SB]JDKDLCKL - SBKLDKDLCIJ
- 2SDKBJKDLCL1 + ZBJKDLCKLDIS

- 2BIJDLCKLDKS). (423)

Note that only the symmetric traceless part of X;; and ¥,
and therefore X;; and Y;;, need be considered.

The contributions from the X;; terms and Y;; terms need
to vanish independently in (4.21), as there is no Einstein
equation that relates D;; and Cy;. First, we focus on X;;.
Use of the Ricci identity and the Schouten identity (B4)
allows us to rewrite X;; (up to the symmetric, trace-free
part) as

X,,_%( 7 )sD DD,y — (27+1)D,DJKDKS
( 7 )D,KD Dys
%(2/+4/ )DKD,KD,S
é<8/+4/+6 3. )sDyy. (4.24)

Then using Eq. (A2), we find that the highest order
term is
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1 1 5 5
XI-I‘O(ZND) = <_§SDKD1DJK _EDID./KDKS _EDJKDKD[S _EDKDJKD[S>

O(z"p)
of 1 5
=D —ESD[DJK - EDJKD]S (425)
O(Mp)
So in (4.21), the contribution from X;; is
~ . 1 ~ -
52.3(n0n_lm)|Dterms = _§D<1DJ>SDK(SD1DJK + SDJKDIS)l(?(zND) + O(ZND_I)
1 - -
= EDKD<IDJ>S(SD1DJK + SD]KDIS)|O(ZND) + O(ZND_1>, (426)

up to total derivatives. The expression sD ,D ik + 5D kDS
is an arbitrary tensor that is symmetric and trace-free on its
J, K indices. The contribution to §75 ™™™ from D, terms
therefore vanishes if and only if the projection of
DgDDys onto the symmetric trace-free part in the JK
indices is zero. It is shown in Sec. 5.4 of Ref. [21] that this
condition is satisfied if and only if s is an £ =0, 1 or 2
spherical harmonic. As in Sec. III D, the contribution of the
¢ = 0, 1 modes vanishes in the integrable piece and so can
be ignored. Henceforth, we assume that s is an £ = 2
spherical harmonic satisfying Eqs. (3.31) and (3.32).

Turning our attention to the Y;; contributions in (4.21),
the expression in (4.23) can be rewritten as

1
Y = _g/dZDK(SBJKDLCIL)

+ és / dz(BXLD,D,Cy, — B;;DxD, CKL
— BKLDyD, Cy; + 2B,k DXD"Cy;)

+% / dz(B;xD,CXEDys — B;;D, CKLDys
+ B,xDLCy DKs). (4.27)

Since B;; and C;; are symmetric and traceless, using
Schouten identities (B5) and (B6), the second and third
lines have zero trace-free symmetric parts and hence can be
ignored. The contribution of the ¥;; terms to §Z;"" " js
therefore simply

ﬁf3 (non-int

)|Cterms
1
:—§D<’Dj>s/dzDK(sBJKVLCIL)|O(ZNC+1)—i—O(zNC)

1
= gSDKDuD”S / dZ BJKVLC1L|O(ZNC+I) + O(ZNC),

(4.28)

up to total derivatives. Since Bk is symmetric and trace-
less, DXDY D)5 is projected onto the symmetric trace-free
part on its JK indices, which vanishes given that s is an
¢ = 2 spherical harmonic. We conclude that for s an Z = 2
spherical harmonic, the O(z"?) terms in FZ; ™™ vanish
even in the extreme case No + 1 = Np.

In summary, we have a set of conserved nontrivial
charges,

~ 1 -
Q — /dQYszIDJE[J

- form=0,%+1,42.
" 167G S orm

O(z"p)

(4.29)

We now turn our attention to the lower order terms.
Again, from (A13), if #Z;™"") cannot be made to vanish
at a particular order, then it cannot vanish at any lower
orders when the tensor fields being considered are arbitrary.
We will consider O(z"»~!) and show that the D;; terms
cannot be made to vanish at this order, confirming that there
are no further charges at lower orders. Using (A8), we find
that there are two independent contributions at O(zV»~1)
that must vanish independently. The first has the same form
as the highest order D;; terms so vanishes if and only if s is
an ¢ = 2 spherical harmonic. Using (A2), the remaining
contribution from the second term is

ﬁf 3 (non-int) |D terms

3 ~ 1 . 5 -
= NDD<IDJ>S(—§SDKD1DJK +§D1DJKDKS +ZSDIJ

9. 11 -
+—D1KD‘]DKS—§DKD1KDJS) (430)

8

O(zNp71)

Reorganizing the terms above gives
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- . 1 - - 1 -
ﬁzs(non—lm) |Dterms = NDD<[DJ>S <8 (SDKDIDJK + DIDJKDKS> - ESDKD[DJK

5 . 1 . 5 .
+_SD[]—— DIKDJD S+D D[KDJS)+_D1KDJD S
4 8 2 O(ZND—I)
unn(_L prn S A S & K
:NDD D —ESD DIDJK+ZSDIJ +§D1KDJD S s (431)
O(zNp71)
I
where we have integrated by parts and used the fact that s is 1 I L.,
an ¢ = 2 spherical harmonic. Applying Schouten iden- A__ﬂR’ Py __Zf " R“h_Zm M Rap. - (52)

tities, integrating by parts and applying the equations for an
¢ = 2 spherical harmonic, we obtain

ﬁf 3 (non-int) | D terms

=N D’f<—1—9sDDs+D sD s>
D 4 1~ 1 J

O(zNp)

+ O(zM072). (4.32)
The obstruction that prevents an integrable charge existing
at this order is exactly the twist of the obstruction in

FTIM| e 0 (3.38).
In conclusion, the set of conserved charges that can be
found by considering §Z5 are given by (4.19) and (4.29).

V. RELATING CHARGES TO THE NEWMAN
PENROSE FORMALISM

In this section, we relate the charges obtained here to
quantities in the Newman-Penrose formalism [3,18,22]. At
O(r73), we will see that the BMS charge and dual charge
together form a generalization of the Newman-Penrose
charges for polyhomogeneous spacetimes with finite shear.

The Newman-Penrose formalism begins with a complex
null frame {Z, n, m, m}, which we choose to be that given
in (2.10). Newman-Penrose scalars are then constructed by
contracting tensors into null frame components. One such
set of complex scalars are the Weyl scalars, given in
Eq. (2.8), which parametrize the ten degrees of freedom
of the Weyl tensor. We reproduce these definitions here for
convenience:

LP =¢“m bfcmdcahcd, LPI = f“nbfcmdcuhcd,

d _ bjc,d
= *mPimn?C .y, Vs =2%n"mnCupeqs

L114:” ﬁ’lb

(5.1)
The Riemann tensor is constructed from the Weyl tensor
and the Ricci tensor and the ten degrees of freedom of the
Ricci tensor, which is constrained by the Einstein equation,
are given by three complex and four real scalars. The
relevant quantities here are

n ﬁ’l Cabcd-

both of which are real. Similarly, the connection coeffi-
cients may be written in terms of 12 complex scalars. For
our purposes, we will only be interested in one such spin
coefficient that parametrizes the shear of the null con-
gruence generated by the vector field ¢,
o =-m‘mbV, ¢, (5.3)

All such quantities can be calculated from the metric
(2.2) and (2.4). We assume that the energy -momentum
tensor falls off as Ty = o(r™>), Ty, = o(r™*) and Ty, =

o(r73). Then one can show that the Weyl scalars fall off
as [19]

Yo = WG[Nc|r™* 4+ WG INplr™ + WH[Ng]r®
+ O(r oghr),

¥, = W[Nc + 1] 4+ O(rlog"2r),
Y, =W3[0]r= + W5[N¢e + 1]r* + O(rloghsr),
¥ =0072), ¥=00"), (5.4)

where the quantities in square brackets in each expression
refer to the z degree of each polynomial. The exact values
of N;, N, and N5 are not important for what we are
concerned with. The leading order shear term is indepen-
dent of z,

1

2

o = d°[0] .

(5.5)

which follows from condition (2.16). Furthermore,’

A = AN r* + O(r=>1loghsr),

) = B [Ny + 1] + O(r-Slogher), (5.6)

where the exact values of N5 and N¢ are unimportant.
Finally, we define the differential operators & and 9,

which act on a scalar # of spin n as follows [3,33]:

’If one assumes T, = o(r™*), then N, = N¢ + 1.
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(40, 1 n
On === —sin"0{ %0~ 55% |\ Gra)
(=i 1 .
(’517 = — > Sinne 89 +ma¢ (sm 67]) (57)

A Weyl scalar ¥, has spin 2 — n, while the shear ¢ has
spin 2. Complex conjugation changes the sign of the spin.

A. Charges at O(r?)

At leading order, we obtained the BMS charges and the
dual charges in Secs. IIl A and IVA,

(int) 1
— Q(=2sF,
< 167:G£d (=2sFo),

1 .
dQ(=sD,D,B).
167:G/S (=sD;D,BY)

o = (5.8)

Recall that the leading order charges are integrable if and
only if 0,B;; = 0. We define a complex quantity,

QO Qomt _ Q(mt). (59)
In terms of Newman-Penrose quantities,
1
_ 3 0
Q) = ~ G dQs(‘I’ +0%9,6°),  (5.10)

which is conserved if and only if 9,6° = 0. This condition
is equivalent to 0,B;; = 0; the integrability condition
encountered in Secs. III A and IVA.

B. Charges at O(r~!)

In Secs. I11 B and IV B, assuming that T',,,, = o(r~>) and
Tom = o(r~), we obtained the following set of integrable
charges at the next order®:

in 1
QiM(z) = / dQs(<2F, - (1 ,)D,C!

]67TG S
3
+16 (O -2)B%> + D;B"DXB ¢
1
- ZD,BJKDIBJK), (5.11)
~(in 1 =~
o™ (z) = G A dQ(—sD;D,C"). (5.12)

Note that the coefficient of each power of z is an
independent charge. Letting

Ql _ Qsim) _ i@ﬁim)’ (5.13)

®The dual charge here is trivially conserved and vanished in
Sec. IV C by virtue of the fact that 6C;; = 0.

it can be shown that

1

Q= 4nG

dQs/ [62‘114 /(@‘{1+3A4)). (5.14)

The first term is trivially conserved since T, = o(r™3)
implies 9,%3 = 0. Assuming Ty = o(r~*) makes the
second term zero. The second term is real and gives
the nontrivial conserved charges (3.7) in Sec. III B when
the falloff of the energy-momentum tensor is not too strong.

C. Charges at O(r~2)

At the next order, in Secs. III C and IV C, we obtained
the charges

1 1
dQsD,D,(-DV + —B*B" ),
1677.'G£ el ’< 16 >

04™(z) =

(5.15)

7 (int) 1 A L opon
= dQsD;D;| -D —B°B
%) 16ﬂG/S S ’< 16 >
(5.16)
and showed that the associated nonintegrable terms van-

ished for s an £ = 0, 1 spherical harmonic. It can be shown
that

- 1 -
V) = DD, <_Z (0? =50, + 6)(DY —iD")

+ 33_232(31.1 _ lB”)) (517)
and
H@g _s0, +6)]'1 — A=) (518)

as an operator equation. Thus,

- 4(7 - 7)62'113

= D,D,((D” —iDV) - —B*(BY - iB”)), (5.19)

where we have used Eq. (2.16),
independent. Defining

i.e., that BI] iS Z

%@ =% -i%" k. (520
it can be shown that the charges obtained in Secs. III C and
IV C at O(zNe*!) and lower can be written in terms of

Newman-Penrose quantities as
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1
4ﬂG/dQs/ 15w,

where each coefficient of a z power in Q,(z) is an
independent conserved charge. Integrating by parts, the
differential operators can be moved onto s confirming that
this is zero for s an £ = 0, 1 spherical harmonic, since
Y, =0for =0, 1.

Q(z) = (5.21)

D. Charges at O(r=3)

Finally, and most interestingly, in Secs. III D and IV D,
we obtained the charges

in 1
oM =1n l dQs(=DDsEY) o). (5.22)
i 1 .
o = 167:GA dQs(=DD;EY) vy, (5.23)

and showed that the associated nonintegrable pieces van-
ished for s an # = 0, 1 or 2 spherical harmonic. It can be
shown that

- 1 -
Y = - (02 =170, + 12)D;D,(E"Y — iEV)
+ O(zN¢) (5.24)
and
1 5 -1 4 3
{_Z (@2 —70. + 12)] - —4(/ - /) (5.25)
as an operator equation. Thus,
4 3\ _ N
~4(] - [)#%§ = DyD,(EY = iEV) + O(e).  (5.26)
Defining
Q; = o™ —id", (5.27)

it can be shown that the charges obtained in Secs. III D and
IV D can be written in terms of Newman-Penrose quan-
tities as

|
Q=1 dQs(/ [)62‘P ooy (5.28)

Recalling that, furthermore, we have another set of less-
interesting conserved charges (3.21) and (4.19), we readily
deduce that the expression

1 -
/ dQS[—D[DJ(E[J - iEIJ)|O(ZN)] (529)

162G Js

is a conserved charge for N > Np and any s, including, in
particular, when s is an £ = 0, 1 or 2 spherical harmonic.
The O, terms in (5.24) evaluated at O(z"») carry contri-
butions only from charges (5.29) and hence it is possible to
produce a more simple expression for the charge built out
of Newman-Penrose quantities given by

1 _
/ dQY, WG| o) for m=0,+1,+2.

.
2 487G Js

(5.30)

Integrating by parts, we obtain the generalization found in
Ref. [18] for the Newman-Penrose charges of polyhomo-
geneous spacetimes with finite shear. For a smooth space-
time, Np = 0; hence the above expression reduces to the
original Newman-Penrose charges [22].
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APPENDIX A: POLYNOMIALS IN z= logr

In this Appendix, we collect some useful properties of
polynomials in z. For 2 € R\{0} and n € N,

/dze—/iz n
:eiz _le—ﬂzzn+ﬁ/dze—lz n—1
A A

1
— e/lz (_Ee—ﬁzzn _%e—lzzn—l> + O(Zn—Z)

/Zn — 6

1
= 5@ 4 0E), (A1)

A

Let p(z) = p,z" + pp12"~' + O(2"72) be a polynomial in
Z, then using (A1), we have by linearity of /’1

A 1 n n 1 n 1 n-2
p(2) = ==p, 2" = (55 Pn + 5 Puc +O("7?).
A A A

(A2)
Also,
9.p(2) = np,z" ' + O("2). (A3)
In particular, note that for ¢ independent of z,
4 1
Je= =7 ¢ (A4)

If we apply a generic linear operator O formed of 0,
Land [* with 2 # 0 to any p(z) = p,2" + p,_12"", we get
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anew polynomial p(z) = Op(z) of the same degree, which
can be expressed in the form

p(z) = Ap," + (Ap,—y + nBp,)2" ™ + O(z"2)  (AS)
with A and B n-independent constants depending on the
choice of O.

Let X be some tensor of interest, depending on (u, r, x")
where the r dependence is such that X can be written as a
polynomial in z = logr with coefficients depending on
(u,x), s0 X = 3", X;z' where X; are tensors of the same
rank as X and independent of z. Taking angular derivatives
of such an expression, for example L1X, gives an expression
of the form F(D;)[X] = > ", Y(X;)z', where at each order
the same function Y appears. Suppose we have an expres-
sion Py(z) involving the log r operators above, X and its
derivatives, where X only appears linearly. In general, we
can decompose such as object as follows:

Px(z) =Y O.F.(D))[X], (A6)

where F,(D;)[X] =", Y,(X;)z' for some Y,. Then by
Eq. (AS), we can write

OaFa(DI)[X] = AaYa(Xn)Zn
+ (AaYa(Xn—]) + nBaYa(Xn))Zn_l

+ O(z"7?), (A7)

which implies that Eq. (A6) reduces to
Py(z) = > O,F,(Dy)[X]

= ZAaYa (Xn)zn
= (SAa ) + Y, () )2

+0O(z"2). (A8)
Now, we consider making this expression vanish at various
orders for general X. This expression vanishes at the
highest order z", if and only if

DAY (X,) =0. (A9)

Note that because we assume X to be some arbitrary tensor,
the above equation must hold as an operator equation and
should not be viewed an equation for X,,. At the next order
Z"~!, there are two terms that need to vanish independently
since one depends only on X,, and the other depends only
on X,_,, which are not necessarily related. So the z"~!
coefficient vanishes if and only if

> A (X)) =0 and ) BY,(X,)=0. (AlO)

Since both X, and X,,_; are arbitrary, these conditions show
that if Py(z) vanishes at the highest order, checking that it
vanishes at the second highest order only requires one to
check that > ,B,Y,(X,) =0 for some arbitrary X,.
Furthermore,

Px(z)

This argument can be extended to all orders, where at each
order a new condition arises, but the previous conditions
must still be met. We deduce for general X

-l = 0= Px(Z)

. =0. (Al1)

PX(Z)|ZH =0= PX(Z)|zi =0 (A]Z)

for i=1,...,n. In particular, considering the contrapositive,

Px(z)|li #0 = Px(z)|;-1 #0 V 1<i<n, (Al3)
i.e., in order for the expression Py(z) to vanish at a
particular order for general X, it needs to vanish at all
higher orders for general X.

APPENDIX B: IDENTITIES FOR TENSORS
ON THE 2-SPHERE

Schouten identities have been used extensively in this
paper to simplify expressions. For a traceless, symmetric
tensor X;;, the Schouten identity implies that [20]

o Xk + o X — o X —wxXg =0. (B1)
This equation can be used as the starting point for deriving
further useful identities. In addition to those identities listed
in Appendix B of Ref. [20], in this Appendix, we list
a few other important examples. For X;; and Y;; arbitrary
symmetric, traceless tensors and s some arbitrary scalar,

X XY px =0, (B2)

D D*X == 0X;; = Xy, (B3)
% 1

X[(<]DJ>D s = EX]JDS, (B4)

X]JDLYKLDKS—X<1|KDLYKLD|j>S—X<1|KDLY‘1>LDKS:O,

(BS)
Y[JDKDLXKL + YKLDKDLXIJ - YKLD<IDJ>XKL
- 2Y<1‘KDKDLX|1>L - (B6)

We briefly explain in turn how the above identities are
obtained from Eq. (B1). Contracting (B1) with symmetric
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traceless tensor YXL gives (B2). Next, we apply the
derivative operator D*DX on Eq. (B1). This gives
a)”DKDLXKL—H:IX”—DIDKXJK—DKDJXIK:O. <B7)

Making use of the Ricci identity and the form of the
Riemann tensor

Rk = Sy — 8L,k (B8)
for the standard 2-sphere metric w;;, we get
Q)IJDKDLXKL + DX]J - DIDKXJK
_DJDKXIK —ZXIJ = 0, <B9)

which is equivalent to (B3). This is an important identity
that is used frequently in this paper. Similarly, contracting
(B1) with DgD; s gives (B4).

Contracting Eq. (B1) with D, YX¥™DEs and taking the
symmetric trace-free part of the resulting equation
gives Eq. (BS).

Finally, we apply YA¥ DED,, as an operator on Eq. (B1)
to obtain

a)[jYKMDLDMXKL + YKLDKDLXIJ -
- YJKDLDKXIL - O

YXED D X
(B10)

Now, relabeling I — M in Eq. (B1) and acting with
YMLD, DX gives

YJLDIDKXKL + YKLD[DLXJK - YKLD]D]XKL = O

(B11)
Using Eq. (B11) to substitute for the Y2 D;D; X ;¢ term in
Eq. (B10) gives
- YKLDIDJXKL - YJKDLDKXIL - O (BlZ)
Next, replacing X — Y in Eq. (B1) and acting with
DDy XEM gives
a)”YKMDMDLXKL + YIJDKDLXKL

- YJLD]D[(XKL - Y[KDKDLXJL — 0, (B13)

which we use to replace the Y, D;DxXX’ term in
Eq. (B12), resulting in
CU]JYKMDLDMXKL —+ YKLDKDLXIJ -+ CO]JYKMDMDLXKL
+ Y, ;DgD; XKL — Y, . DXDLX,;, — YLD, D X g,
- YJKDLDKXIL == 0 (B14)

We use the Ricci identity to exchange the Dy and Dj
derivatives in the last term. This results in an additional
term of the form XY ,X. Now, taking the symmetric trace-
free part of this equation and using Eq. (B2) yields
identity (BO).

APPENDIX C: =0, =1 AND ¢ =2
SPHERICAL HARMONICS

In this Appendix, we list useful properties of 7 <2
spherical harmonics. This Appendix has a large overlap
with Appendix C of Ref. [20]. However, given the
importance of these results in this paper, for completeness,
we reproduce the relevant equations here. A regular
function y(x!) on the sphere can be written in terms of
an expansion

Mg

(C1)

l
E f
m Yfm

with y’” constants on the sphere and the spherical
harmonics Y, (x!) with £ > 0 and |m| < £ obeying

Y
Il

0 m

OY,, = =€+ 1)Y 4. (C2)
Consider the equation
DD py = 0. (C3)

Let T;; = DyDjy. Integrating by parts and using the
Ricci identity, it can be shown

1
S S

If w(x!) is regular, we can assume the expansion (C1).
Plugging this into (C4) and using the orthogonality
relations for spherical harmonics [(dQY,, Y.,y =
Opp1 O » We find

/ dQT

/dQZZ Y Y 1) +2)
(=0 ¢'=0 m=—¢ m'=—¢"
X l//fml//fm Ymef’ !
iy S 1+ (C3)

=0 m=—¢

Notice that each term in the summation on the rhs is non-
negative. Therefore, for the rhs to vanish, all terms must
individually vanish, which implies that the rhs vanishes if
and only if y“™ =0 for all £ > 1, i.e., w(x') is a linear
combination of Z =0 and £ = 1 modes. We conclude,
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then, that Eq. (C3) holds if and only if y(x) is a linear
combination of £ = 0 and ¢ = 1 modes.

Consider now Eq. (3.30), which is equivalent to
Tk =0,

Tk =2DgD Dy — ok DOy — 20k D pyy. (Co)

For a function w(x!) that is regular on the sphere,
integration by parts can be used to show that

/dQ|TUK|2 _ -/ dQy OO +2)(O+6)y. (CT)
S S

Inserting expansion (C1) into the above equation yields

[ @it =3 3" -2 - e+

=0 t=—m

X (€ +2)(¢ +3)lw™P. (C8)

Using the same argument as above, we deduce that 7;;x =
0 if and only if y(x!) is a linear combination of # = 0, 1
and 2 spherical harmonics.
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