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Bondi-like (single-null) characteristic formulations of general relativity are used for numerical work in
both asymptotically flat and anti–de Sitter spacetimes. The well posedness of the resulting systems of
partial differential equations, however, remains an open question. The answer to this question affects
accuracy and, potentially, the reliability of conclusions drawn from numerical studies based on such
formulations. A numerical approximation can converge to the continuum limit only for well-posed
systems; for the initial value problem in the L2 norm, this is characterized by strong hyperbolicity. We find
that, due to a shared pathological structure, the systems arising from the aforementioned formulations
are, however, only weakly hyperbolic. We present numerical tests for toy models that demonstrate the
consequence of this shortcoming in practice for the characteristic initial boundary value problem. Working
with alternative norms in which our model problems may be well posed, we show that convergence may
be recovered. Finally, we examine the well posedness of a model for Cauchy-characteristic matching in
which model symmetric and weakly hyperbolic systems communicate through an interface, with the latter
playing the role of general relativity in the Bondi gauge on characteristic slices. We find that, due to the
incompatibility of the norms associated with the two systems, the composite problem does not naturally
admit energy estimates.
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I. INTRODUCTION

Characteristic formulations of general relativity (GR)
have advantages over more standard spacelike foliations in
a number of situations. For instance, in the asymptotically
flat setting, the Bondi-Sachs formalism [1,2], crucial to the
modern understanding of gravitational waves, underpins
codes that aim to produce waveforms of high accuracy.
This approach exploits the fact that null hypersurfaces
reach future null infinity and, hence, allows the avoidance
of systematic errors from extrapolation techniques. The
general setup in these approaches is to construct a standard
Cauchy problem in a finite region of the spacetime, where
the main action, such as the collision of two black holes,
takes place. The data on the worldtube of this finite region
serve as boundary data for the characteristic initial boun-
dary value problem (CIBVP). Solving this CIBVP, one can
compute quantities such as the gravitational wave news
function at future null infinity. This method is often called
Cauchy-characteristic extraction (CCE) [3–8]. If the
Cauchy and the CIBVP are solved simultaneously and
one attempts to match the worldtube data from both the
Cauchy problem and the CIBVP, then the method is called
Cauchy-characteristic matching (CCM); see [9,10] for a
thorough review. In Fig. 1, an illustration of the geometric
setup is given. Concerning asymptotically anti–de Sitter
(AdS) spacetimes, characteristic formulations of GR are

widely used in the field of numerical holography, which
provides insights into the behavior of strongly coupled
matter [11,12]. We refer to the aforementioned character-
istic formulations as Bondi-like or single null.
A practical advantage of Bondi-like gauges is that the

field equations can then be written as a set of nested
differential equations which can be efficiently solved. For
the resulting CIBVP, one provides data on a timelike
boundary and initial data on either an outgoing or ingoing
null hypersurface depending on the physical setup. There
are many examples of numerical codes making successful
use of this formalism. Since these codes have successfully
passed a multitude of convergence tests, and in various
physical contexts, one might say that there is numerical
evidence that the partial differential equation (PDE) prob-
lem solved is well posed. To the best of our knowledge,
however, a proof of this result is missing. By well posed-
ness, we mean the usual notion that the problem admits
unique solutions that depend continuously on the given
data in a suitable norm. Interest in this property is not
purely mathematical, since a numerical solution can con-
verge to the continuous one only for well-posed PDE
problems. The PDE systems that interest us here are of the
hyperbolic class. A necessary condition for well posedness
of these systems in L2, or, in fact, suitable Sobolev norms,
is that they are strongly hyperbolic [13,14]. Specifically, we
consider PDEs in the generic form
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Atðu; xμÞ∂tuþApðu; xμÞ∂puþ Sðu; xμÞ ¼ 0; ð1Þ

where u ¼ ðu1; u2;…; uqÞT is the state vector of the system
and

Aμ ¼

0
BBB@

aμ11 � � � aμ1q

..

. . .
. ..

.

aμq1 � � � aμqq

1
CCCA

denotes the principal part matrices, with detðAtÞ ≠ 0. To
classify locally the character of the PDE, we linearize about
a background solution and then work pointwise in the
frozen coefficient approximation, henceforth suppressing
the explicit dependencies of the principal part matrices and
source vector and requesting the following definitions
everywhere. We can construct the principal symbol

Ps ¼ ðAtÞ−1Apsp; ð2Þ

where si is an arbitrary unit spatial vector. If Ps has real
eigenvalues for all si, then the PDE system is called weakly
hyperbolic (WH), whereas if, in addition, Ps is diagonaliz-
able for all si, and there exists a constant K independent
of si such that

jTsj þ jT−1
s j ≤ K;

with Ts the similarity matrix that diagonalizes Ps, it is
called strongly hyperbolic (SH).
Presently, we analyze the character of the PDE systems

that arise in two specific Bondi-like formulations of GR.
The original systems involve second-order derivatives, so
we perform reductions to first order to conveniently build
the principal parts. We find that, due to a degeneracy in the
angular or transverse principal parts, these formulations are
only WH. Consequently, they give rise to PDE problems

that are ill posed in L2 even in the linear, frozen coefficient
approximation, which prohibits well posedness of the full
system in associated Sobolev norms. We argue, further-
more, that this result holds true for every possible first-
order reduction.
Subsequently, we perform careful numerical experiments

that demonstrate the consequence of this shortcoming in
practice. We work with two toy models, one of which is SH
and the other only WH. We perform robust-stability-like
[15,16] tests, suitably modified for the characteristic set-
ting, and find that convergence in a discrete approximation
to L2 is prohibited in the WH model. Convergence with
the latter model can be achieved by using a discrete
approximation to a modified norm that involves a subset
of derivatives of the state vector fields and adjusting the
initial data for the test.
The structure of the paper is as follows. In Sec. II, we

give an overview of popular Bondi-like formulations of
GR in both the asymptotically flat and AdS contexts and
present our hyperbolicity analysis of each. Afterward, in
Sec. III, we present our toy models, and then in Sec. IV we
present numerical experiments demonstrating the effect of
our analytic results in practice. Finally, we conclude in
Sec. V. Geometric units are used throughout.

II. CHARACTERISTIC FORMULATIONS

In this section, we present two characteristic formula-
tions of GR in Bondi-like gauges that are widely used in
numerical work. The first, the Bondi-Sachs formulation
proper, is popular in the asymptotically flat setting, whereas
the second, known as the affine-null system, is used most
often in numerical holography. We demonstrate that each is
only weakly hyperbolic.

A. Bondi-Sachs gauge

In the Bondi-Sachs gauge [1,2] a generic four-
dimensional axially symmetric metric can be written as

ds2 ¼
�
V
r
e2β −U2r2e2γ

�
du2 þ 2e2βdudr

þ 2Ur2e2γdudθ − r2ðe2γdθ2 þ e−2γsin2θdϕ2Þ:
ð3Þ

Here u is a null coordinate, called retarded time, r is the
areal radius, and θ;ϕ give coordinates on the two-sphere
in the standard way. All metric functions are functions of
ðu; r; θÞ. To make contact with Ref. [9], we adopt the
signature convention ðþ;−;−;−Þ. In this formulation,
Einstein’s equations exhibit a nested structure. For
axially symmetric spacetimes, the PDE system consists
of three equations intrinsic to the hypersurfaces of
constant time:

FIG. 1. The CIBVP for the wave zone of an asymptotically flat
spacetime. Boundary data are given on the timelike inner
boundary T , the worldtube r ¼ r0, and initial data on the null
hypersurface N 0 of constant retarded time u0.
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β;r ¼
1

2
rðγ;rÞ2;

½r4e2ðγ−βÞU;r�;r ¼ 2r2
�
r2
�
β

r2

�
;rθ

−
ðsin2θγÞ;rθ

sin2θ
þ 2γ;rγ;θ

�
;

V;r ¼ −
1

4
r4e2ðγ−βÞðU;rÞ2 þ

ðr4 sin θUÞ;rθ
2r2 sin θ

þ e2ðβ−γÞ
�
1 −

ðsin θβ;θÞ;θ
sin θ

þ γ;θθ

þ 3 cot θγ;θ − ðβ;θÞ2 − 2γ;θðγ;θ − β;θÞ
�
;

ð4Þ

and one equation that involves extrinsic derivatives:

4rðrγÞ;ur ¼
�
2rγ;rV − r2

�
2γ;θU þ sin θ

�
U

sin θ

�
;θ

��
;r

− 2r2
ðγ;rU sin θÞ;θ

sin θ
þ 1

2
r4e2ðγ−βÞðU;rÞ2

þ 2e2ðβ−γÞ
�
ðβ;θÞ2 þ sin θ

�
β;θ
sin θ

�
;θ

�
: ð5Þ

The remaining Einstein equations are not solved explic-
itly and, as in any other free-evolution approach, are
therefore ignored in our analysis.

1. First-order reduction and linearization

In Refs. [17,18], the authors studied the existence and
uniqueness of the CIBVP for the formulation given in the
previous subsection. They considered the linearized and
quasilinear systems but did not study continuous depend-
ence on given data, which will be our main focus. To treat
the system in the original higher-order derivative form, we
could follow Refs. [19,20]. But for convenience in building
the principal parts, we instead perform an explicit first-
order reduction. Since this PDE is built as a reduction, there
is the subtlety of the associated constraints and the specific
choice of reduction, which we discuss in detail later. The
minimal set of reduction variables are given by

Ur ¼ ∂rU; γr ¼ ∂rγ; γθ ¼ ∂θγ; βθ ¼ ∂θβ:

We linearize the resulting equations about a fixed back-
ground. In Ref. [21], one can find the complete analysis
for both Minkowski and arbitrary backgrounds. The result-
ing level of hyperbolicity of the system is the same
regardless, and so we present the former for brevity.
After this procedure, the system reads

∂rβ ¼ 0;

∂rUr −
2

r2
∂rβθ þ

2

r2
∂rγθ þ S2 ¼ 0;

∂rV þ ∂θβθ − ∂θγθ − 2r∂θU −
r2

2
∂θUr þ S3 ¼ 0;

4r2∂uγr þ 4r∂uγ − 2r2∂rγr þ 2r∂θU

þr2∂θUr − 2∂θβθ þ S4 ¼ 0;

∂rU þ S5 ¼ 0;

∂rγ þ S6 ¼ 0;

∂rγθ − ∂θγr ¼ 0;

∂rβθ ¼ 0; ð6Þ

where Si denotes the various source terms and we work in
the frozen coefficient approximation, so that r and so forth
must be treated as constants. The variables can be collected
in the state vector

u ¼ ðβ; γ; U; V; γr; Ur; βθ; γθÞT;

and the system can be written in the form (1) with

Au∂uuþAr∂ruþAθ∂θuþ S ¼ 0: ð7Þ

The principal part matrix Au associated with retarded time
u is not invertible (see [21] for the full calculation). In order
to use the standard definitions given in the introduction,
we need a principal part associated to time derivatives that
is invertible. We achieve this by performing a coordinate
transformation to a frame that involves one timelike and
three spacelike directions.

2. Coordinate transformation

We wish to bring the system (7) to the form (1), which
has a trivial time principal part matrix

∂tuþAp∂puþ S ¼ 0;

where ∂p denotes spatial derivatives and u denotes the
state vector. We therefore perform the following concrete
coordinate transformation:

u ¼ t − ρ; r ¼ ρ; ð8Þ

with the angular coordinates unchanged, which yields the
following relation between the old and new basis vectors:

∂u ¼ ∂t; ∂r ¼ ∂t þ ∂ρ;

with the remaining vectors unaltered. A schematic of the
auxiliary setup is given in Fig. 2. Applying the trans-
formation yields
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At∂tuþAr∂ρuþAθ∂θuþ S ¼ 0;

with At ¼ Au þAr invertible. After multiplying on the
left with the inverse of At, we bring the system to the
desired form:

∂tuþBρ∂ρuþ Bθ̂∂ θ̂uþ S ¼ 0; ð9Þ

where Bρ ¼ ðAtÞ−1Ar and Bθ̂ ¼ ρðAtÞ−1Aθ with
∂ θ̂ ≡ 1=ρ∂θ and S was redefined in the obvious manner.
The solution space in this frame is equivalent to that of the
original one, so in this sense the character of the PDE is
invariant. For our system, the principal part matrix Bρ is
diagonalizable with real eigenvalues. Although Bθ̂ has real
eigenvalues, it does not have a complete set of eigenvectors
and, hence, is not diagonalizable. Therefore, the system
resulting from the specific first-order reduction we made is
only WH. In Ref. [22], a subsystem of a similar first-order
reduction was shown to be symmetric hyperbolic. Here,
however, we are concerned with the best estimates that can
be made for the full system. In Sec. III, this is written up
explicitly for our homogeneous WH model.
So far, we have not ruled out the existence of an

alternative first-order reduction that is SH, however. To
examine this possibility, we have to understand if any
potential addition of reduction constraints can make the
system SH. The reduction constraints are

∂θβ − βθ ¼ 0; ∂θγ − γθ ¼ 0: ð10Þ

The definitions of the variables γr and Ur are solved
explicitly as time evolution equations within the system (6)
and, therefore, do not have an associated constraint. This
subtlety, along with an examination of the form of the
degeneracy, follows in the next section.

3. Generalized characteristic variables

To understand the nature of the degeneracy of Bθ̂

physically, it is useful to consider the generalized eigen-
value problem

lλiðBθ̂ − λi1Þm ¼ 0;

with λi standing for the various eigenvalues and lλi
representing either a true eigenvector when m ¼ 1 or else
a generalized eigenvector when m > 1. The eigenvalues of
Bθ̂ are λ ¼ �1, each with algebraic multiplicity one, and
λ ¼ 0 with algebraic multiplicity six. The geometric
multiplicity of each of λ ¼ �1 is also one, but λ ¼ 0
has geometric multiplicity five. In other words, one
associated eigenvector is missing, and we obtain one
nontrivial generalized eigenvector with m ¼ 2 for λ ¼ 0.
Defining the invertible matrix T−1

θ̂
with the vectors lλi , as

rows, we obtain the Jordan normal form of the principal
symbol in the θ direction by the similarity transformation

Jθ̂ ≡ T−1
θ̂
Bθ̂Tθ̂:

The same matrix can be used to construct the generalized
characteristic variables of the system in the θ direction,
namely, the components of v≡ T−1

θ̂
u. These are, of course,

nothing more than the left generalized eigenvectors con-
tracted with the state vector. Working as before in the
frozen coefficient approximation, focusing on the t, θ parts
of (9), and multiplying on the left with T−1

θ̂
, we get

∂tv þ Jθ̂∂ θ̂v ≃ 0; ð11Þ

with ≃ denoting here equality up to nonprincipal terms and
spatial derivatives transverse to ∂ θ̂. The generalized char-
acteristic variables with speed (eigenvalue) zero are

ρU þ ρ2

2
Ur − βθ þ γθ; βθ; V;

ρ

�
−2ρU −

ρ2

2
Ur þ βθ − γθ

�
; γ; β;

of which the third and fourth are associated with the
nontrivial 2 × 2 Jordan block within Jθ̂. Likewise, we have

−
ρ

2
U þ ρ

2
γr −

ρ2

4
Ur þ

1

2
βθ;

−
ρ

2
U −

ρ

2
γr −

ρ2

4
Ur þ

1

2
βθ;

with speeds �1, respectively. The structure of Jθ̂ thus
yields

−∂t

�
2ρU þ ρ2

2
Ur − βθ þ γθ

�
≃ 0;

∂tV − ρ∂ θ̂

�
2ρU þ ρ2

2
Ur − βθ þ γθ

�
≃ 0: ð12Þ

FIG. 2. The original CIBVP is transformed into an auxiliary
frame using the coordinate transformation (8) as shown. This
allows the use of textbook definitions of hyperbolicity but does
not affect the solution space.
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Strongly hyperbolic systems admit a complete set of
characteristic variables in each direction. In other words,
if our system were strongly hyperbolic, then up to non-
principal and transverse derivative terms each component
of v would satisfy an advection equation. Presently, the best
we can achieve for V, however, is (12). Physically, we may
therefore understand weak hyperbolicity as the failure of V,
a generalized characteristic variable, to satisfy such an
advection equation. As mentioned in the previous section,
we could try to cure the equations by using a different
first-order reduction. Observe that the choice of different
reductions corresponds to the freedom to add (derivatives
of) the reduction constraints to (12) without introducing
second derivatives. As V appears at most once differ-
entiated in the original equations, there is no associated
constraint, so we must hope to eradicate the ∂θ term from
(12) using (10) without introducing second derivatives.
Even if the variable Uθ ¼ ∂θU were introduced in the
reduction, however, the ∂θβθ and ∂θγθ terms would
obviously persist. Thus, one nontrivial generalized char-
acteristic variable always survives and prevents the exist-
ence of a complete set of characteristic variables. Hence,
within the coordinate basis built from ðt; ρ; θÞ, the field
equations are at best only weakly hyperbolic regardless of
the specific reduction.

B. Affine-null gauge

Although sometimes used in the asymptotically flat
setting [23,24], the affine-null gauge is particularly popular
for evolutions in asymptotically AdS spacetimes [25]. For
concreteness, we will treat the specific system that occurs
in the case of asymptotically AdS5 spaces with planar
symmetry, but we expect similar results in other contexts
with analogous gauges. The metric is written as

ds2 ¼ −Adv2 þ Σ2½eBdx2⊥ þ e−2Bdz2�
þ 2dRdvþ 2Fdvdz: ð13Þ

Here v denotes a null coordinate, called advanced time, and
R is called the holographic coordinate and increases from
the bulk of the spacetime toward the boundary. All metric
components are functions of ðv; R; zÞ. We also denote by
dx2⊥ the flat metric in the plane spanned by x⊥, the two
coordinates associated with the symmetry. Using the
convenient definitions

dz ≡ ∂z − F∂R;

dþ ≡ ∂v þ
A
2
∂R; ð14Þ

the field equations can be succinctly stated and are

∂2
RΣ ¼ −

1

2
ð∂RBÞ2Σ;

Σ2∂2
RF ¼ Σð6dzΣ∂RBþ 4∂RdzΣþ 3∂RF∂RΣÞ þ Σ2ð3dzB∂RBþ 2∂RdzBÞ − 4dzΣ∂RΣ;

12Σ3∂RdþΣ ¼ −8Σ2ð−3Σ2 þ 3dþΣ∂RΣÞ þ e2BfΣ2½4dzB∂RF − 4d2zB − 7ðdzBÞ2 þ 2∂RdzF þ ð∂RFÞ2� þ 4ðdzΣÞ2
þ 2Σ½dzΣð∂RF − 8dzBÞ − 4d2zΣ�g;

6Σ4∂RdþB ¼ −9Σ3ð∂RΣdþBþ ∂RBdþΣÞ þ e2BfΣ2½ðdzBÞ2 − dzB∂RF þ d2zB − 2∂RdzF − ð∂RFÞ2� − 4ðdzΣÞ2
þ Σ½dzΣðdzBþ 4∂RFÞ þ 2d2zΣ�g;

6Σ4∂2
RA ¼ 72Σ2dþΣ∂RΣ − 2Σ4ð9∂RBdþBþ 12Þ þ 3e2BfΣ2½4d2zBþ 7ðdzBÞ2 − ð∂RFÞ2�

þ 8Σð2dzBdzΣþ d2zΣÞ − 4ðdzΣÞ2g; ð15Þ

and, finally,

∂vB ¼ dþB −
A
2
∂RB: ð16Þ

As in the previous section, there are also two additional
equations that are not explicitly solved. The vector dþ
points to the direction of the outgoing null rays, and, hence,
Eqs. (15) do involve derivatives extrinsic to the hyper-
surfaces of constant time. However, if one considers dþB
and dþΣ as independent variables of the system, then
Eqs. (15) are intrinsic to the ingoing null hypersurfaces and
possess a nested structure just as in the Bondi gauge.

Hence, the only equation that involves derivatives extrinsic
to the hypersurfaces of constant retarded time is (16). To
analyze the hyperbolicity of the resulting PDE system, we
follow exactly the same steps as in the previous setup.

1. First-order reduction and linearization

The definition (14) was used earlier to write the field
equations in a more compact form, but for the rest of
the analysis we expand out the definition of dz. Before
performing the first-order reduction, we apply the coor-
dinate transformation r ¼ 1=R, drawing the boundary to
r ¼ 0. The metric components, however, still exhibit
singular behavior there, so, as elsewhere in the literature,
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we apply appropriate field redefinitions to obtain regular
fields on the boundary, namely,

Aðv; r; zÞ → 1

r2
þ r2Aðv; r; zÞ;

Bðv; r; zÞ → r4Bðv; r; zÞ;

Σðv; r; zÞ → 1

r
þ r3Σðv; r; zÞ;

Fðv; r; zÞ → r2Fðv; r; zÞ;

and similarly for derivatives of the above fields. To simplify
the presentation, we linearize here about vacuum AdS. Our
conclusions are, however, unaltered if we work about an
arbitrary background. Full expressions in the general case
can be found in Ref. [21]. We define reduction variables
according to

Ar ¼ ∂rA; Br ¼ ∂rB; Fr ¼ ∂rF; Σr ¼ ∂rΣ;

Az ¼ ∂zA; Bz ¼ ∂zB; Fz ¼ ∂zF; Σz ¼ ∂zΣ;

Bþ ¼ dþB; Σþ ¼ dþΣ:

The complete first-order system is then

r4∂vB ¼ −S1;

r4∂vBr ¼
r4

2
∂rBr þ r3∂rBþ − S2;

−6r∂rBþ ¼ 2r2∂rFz þ r2∂zBz þ 2r2∂zΣz − S3;

∂rBz ¼ ∂zBr;

∂rΣ ¼ −S5;

r7∂rΣr ¼ −S6;

12r∂rΣþ ¼ 2r2∂rFz þ 4r2∂zBz þ 8r2∂zΣz − S7;

∂rΣz ¼ ∂zΣr;

∂rF ¼ −S9;

r4∂rFr ¼ −4r4∂rΣz − 2r4∂rBz − S10;

∂rFz ¼ ∂zFr;

∂rA ¼ −S12;

6r2∂rAr ¼ 12r2∂zBz þ 24r2∂zΣz − S13;

∂rAz ¼ ∂zAr; ð17Þ

which can be written as

Av∂vuþAr∂ruþAz∂zuþ S ¼ 0; ð18Þ

with state vector

u ¼ ðAr; Bþ;Σþ;Σr; Fr; Bz;Σz; Br; Az; Fz; A; F; B;ΣÞT:

The principal part matrix associated with the retarded
advanced time Av is again not invertible, and, hence,
we proceed with a transformation to an appropriate
auxiliary frame.

2. Coordinate transformation

To obtain a suitable coordinate frame, we transform from
ðv; r; zÞ to ðt; ρ; zÞ with

v ¼ t − ρ; r ¼ ρ;

and the remaining coordinates unaltered, which gives

∂v ¼ ∂t; ∂r ¼ ∂t þ ∂ρ;

with ∂z unaffected. Applying the transformation yields

At∂tuþAr∂ρuþAz∂zuþ S ¼ 0;

where nowAt ¼ Av þAr is invertible. After multiplying
from the left with the inverse of At, we again bring the
system to the form

∂tuþBρ∂ρuþ Bz∂zuþ S ¼ 0; ð19Þ

where Bρ ¼ ðAtÞ−1Ar and Bz ¼ ðAtÞ−1Az. The princi-
pal part Bρ is diagonalizable with real eigenvalues 0 and
�1. The principal part Bz has the same real eigenvalues,
but it does not have a complete set of eigenvectors, so it is
not diagonalizable. The system resulting from this specific
first-order reduction is thus only WH. Next, by again
constructing generalized characteristic variables in the z
direction, we will examine whether or not an appropriate
addition of the reduction constraints can render the reduc-
tion strongly hyperbolic. The reduction constraints are

∂zA − Az ¼ 0; ∂zB − Bz ¼ 0;

∂zΣ − Σz ¼ 0; ∂zF − Fz ¼ 0;

∂zBρ − ∂ρBz ¼
1

2
∂zBr − ∂zBþ − ∂ρBz ¼ 0;

∂zΣρ − ∂ρΣz ¼
1

2
∂zΣr − ∂zΣþ − ∂ρΣz ¼ 0: ð20Þ

3. Generalized characteristic variables

The eigenvalues of Bz are λ ¼ �1 with algebraic multi-
plicity one and λ ¼ 0 with algebraic multiplicity 12. There is
one eigenvector for λ ¼ 1, one for λ ¼ −1, and nine for
λ ¼ 0. Since the algebraic and geometric multiplicity of
λ ¼ 0 differ by three, the Jordan normal form

Jz ≡ T−1
z BzTz
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must have some nontrivial block. Let us consider the t, z part
of (19) and, as earlier in (11), use T−1

z to construct the
generalized characteristic variables in the z direction:

v ¼ T−1
z u ð21Þ

satisfying

∂tv þ Jz∂zv ≃ 0; ð22Þ

with ≃ here denoting equality up to transverse derivatives
and nonprincipal terms. The components of v begin

− Br −
1

3
Bz −

2

3
Fr − 2Σr −

2

3
Σz;

− Br þ
1

3
Bz þ

2

3
Fr − 2Σr þ

2

3
Σz;

with speeds ∓ 1, respectively. Next, we have those with
vanishing speeds, which are most naturally presented in
three blocks. The first of these consists of the set of true
characteristic variables:

Bþ −
ρ

2
Br − ρΣr; Σþ −

ρ

8
Ar þ

ρ

4
Br þ

ρ

2
Σr;

1

4
Ar þ

3

2
Br þ Fz þ 3Σr; A; F; B;Σ;

a coupled pair consisting of one generalized and one
characteristic variable, respectively,

−
4

3
Bz −

2

3
Fr −

2

3
Σz; −2Σr; ð23Þ

and finally a coupled triplet of two generalized characteristic
variables and one characteristic variable, respectively,

1

4
Az þ

1

6
Bz þ

1

3
Fr þ

1

3
Σz; −

1

4
Ar þ

1

2
Br þ Σr;

2

3
Bz þ

1

3
Fr þ

4

3
Σz: ð24Þ

In other words, from the structure of the Jordan blocks of Jz,
reading off the components of (22) the first member of the
pair (23) and the first two members of the triple (24), we
have the schematic form

∂tvi þ ∂zviþ1 ≃ 0; ð25Þ

with vi referring to the field and viþ1 the next element of the
pair or triple. The question is whether or not there exists an
appropriate addition of the reduction constraints (20) such
that equations of the form (25) are turned into equations of
the form

∂tvi þ λi∂zvi ≃ 0; ð26Þ

where we are allowing different first-order reductions to
adjust also characteristic speeds. This is a necessary con-
dition for building an alternative reduction that is SH. This
would mean that the generalized characteristic variable vi
that is originally coupled with viþ1 could be decoupled, and
the respective generalized eigenvector replaced by a simple
eigenvector. We examine this for the second two elements of
the triplet (24) and show by contradiction that this necessary
condition cannot be fulfilled. With our original, specific
reduction, we have

∂t

�
2

3
Bz þ

1

3
Fr þ

4

3
Σz

�
≃ 0;

∂t

�
−
1

4
Ar þ

1

2
Br þ Σr

�
þ ∂z

�
2

3
Bz þ

1

3
Fr þ

4

3
Σz

�
≃ 0:

ð27Þ

Observe, first of all, that neither of these two equations, nor
the two large terms grouped separately in the second, can be
written as a linear combination (equality taken here in the
sense of ≃) of the reduction constraints (20). The choice
of reduction lies in the freedom to add multiples of the six
reduction constraints (20) to the evolution equations.
Suppose that some choice of addition of these constraints
did result in a SH first-order reduction. Starting with the first
equation of (27), for our alternative reduction we have

∂t

�
2

3
Bz þ

1

3
Fr þ

4

3
Σz

�
≃
X
α

cαCα; ð28Þ

with the terms on the right-hand side a linear combination of
the reduction constraints Cα. Since this alternative reduction
is SH, we have

X
α

cαCα ≃
X
α

a0α∂zv0α þ
X
α

a�α ∂zv�α ;

with v0α denoting the set of 0-speed characteristic variables
and v�α denoting the remaining characteristic variables.
Using ∂tv�α ≃ λα∂zv�α , we may therefore rewrite (28) as

∂t

�
2

3
Bz þ

1

3
Fr þ

4

3
Σz −

X
α

a�α λ−1α v�α

�
≃
X
α

a0α∂zv0α:

Now, by our observation directly after (27), the term inside the
large parentheses cannot vanish identically. Therefore, we
must have a0α ¼ 0, or we have found, on the left-hand side, a
nontrivial generalized characteristic variable, in contradiction
to the assumption that our reduction is SH. Moving on to
the second equation of (27), we can write the equivalent
expression for the alternative first-order reduction as
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∂t

�
−
1

4
Ar þ

1

2
Br þ Σr

�
þ ∂z

�
2

3
Bz þ

1

3
Fr þ

4

3
Σz

�

≃
X
α

c0αCα;

again with the right-hand side a linear combination of the
reduction constraints. From here, a simple calculation
shows that

−
1

4
Ar þ

1

2
Br þ Σr þ

X
α

a0αλ−1α v�α

is nevertheless still a nontrivial generalized characteristic
variable for a suitable choice of a0α. By contradiction, we
have therefore shown that there is no first-order reduction
that gives a SH first-order PDE system in the ðt; ρ; zÞ frame
used here.

C. Frame independence

In the previous subsections, we presented a hyperbolicity
analysis of two widely used Bondi-like formulations of GR.
We worked with a particular auxiliary frame with one
timelike element and the remainder spacelike. The auxiliary
basis was used to express the original PDEs, which were
then shown to be only WH. In this subsection, we argue
that this result persists for other auxiliary frames. Our
argument is based on the dual foliation (DF) approach of
Ref. [26] and follows closely Sec. II.D of Ref. [27]. In this
subsection, Latin letters a…e are used as abstract indices,
Greek letters run from 0 to dþ 1 for a dþ 1-dimensional
spacetime, and a given basis and Latin indices i, j, k denote
only the spatial components of this basis. We also use p as
an abstract index for the spatial derivatives appearing on the
right-hand side of a first-order PDE. The symbol ∂α stands
for the flat covariant derivative naturally defined by xμ.
The idea of the DF approach is to express a region of

spacetime in terms of two different frames, which we call
uppercase and lowercase. Considering a dþ 1 split of the
spacetime, let us denote as na and Na the normal vectors
on the hypersurfaces of constant time for the lower- and
uppercase frames, respectively. We call va and Va the boost
vectors for each frame, which are spatial with respect to
the corresponding normal vector. The Lorentz factor is
W ¼ ð1 − vavaÞ−1=2 ¼ ð1 − VaVaÞ−1=2, and we denote as
γab and ðNÞγab the lower- and uppercase spatial metrics,
respectively. The following useful relations hold:

δab ¼ γab − nanb ¼ ðNÞγab − NaNb;

na ¼ WðNa þ VaÞ; Na ¼ Wðna þ vaÞ: ð29Þ

Let us consider a first-order PDE in the compact form

Abδab∂auþ S ¼ 0;

and dþ 1 split using the lower- and uppercase frames,
replacing δab by means of (29), giving

An∂nu≃Abγab∂au; AN∂Nu≃AbðNÞγab∂au: ð30Þ

We obtain two evolution systems for the variables of u,
with

Aana ≡An; na∂a ≡ ∂n;

AaNa ≡AN; Na∂a ≡ ∂N: ð31Þ

Without loss of generality, we choose to identify the
uppercase frame with the auxiliary frames used in
Secs. II A and II B. The definitions

An ≡An; Aaγba ≡Ab;

AN ≡ BN; AaðNÞγba ≡Bb;

imply BbNb ¼ 0, Abnb ¼ 0 and lead to the following
upper- and lowercase first-order PDE forms, respectively:

∂Nu ¼ Bp∂pu − S; An∂nu ¼ Ap∂pu − S; ð32Þ

where BN ¼ 1 by assumption. The former is the same
form as in Eqs. (9) and (19). In this form, we found the PDE
systems only WH due to the 2 × 2 Jordan blocks of the
angular principal parts. This can be represented in a
generalized eigenvalue problem of the form

lNλN ðPS − 1λNÞM ¼ 0; ð33Þ

where Sa is a unit spatial vector, PS ≡BaSa is the principal
symbol, and M is the rank of the generalized left eigen-
vector lNλN with eigenvalue λN , with M ¼ 2 for the gener-
alized eigenvectors that correspond to the aforementioned
Jordan blocks. We wish to examine if generalized eigen-
value problems of this form exist also in the lowercase
frame. Hence, we need to relate the two equations of (32),
obtaining

An ¼ Wð1þBVÞ;
Ap ¼ Baðγpa þWVavpÞ −Wð1þ BVÞvp; ð34Þ

and

BN ¼ 1 ¼ WðAn þAvÞ;
Bp ¼ AaðNÞγpa −WAnVp; ð35Þ

where we write BaVa ≡BV . Let us examine 1þ BV . In
Ref. [27], invertibility of this matrix was guaranteed by
strong hyperbolicity. Here we want to analyze PDEs that
are only WH and so may not assume that BV is diago-
nalizable. Hence, let us denote as
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JSV ¼ T−1
SV
BSVTSV

the Jordan normal form of BSV ¼ BaðSVÞa, where
Va ¼ jVjSaV is the uppercase boost vector with norm jVj
pointing in the direction of SaV . One can write each block j
of the Jordan form J with only the eigenvalue λi on the
diagonal as

j ¼ λi1þN;

where N is a nilpotent matrix of the size of j with Nq ¼ 0.
Consequently,

T−1
SV
ð1þ BVÞTSV ¼ 1þ JSV jVj;

and for each block jSV ,

1þ jSV ¼ λ̃SVi

�
1þ jVj

λ̃SVi
NSV

�
;

assuming that

λ̃SVi ¼ 1þ jVjλSVi ≠ 0: ð36Þ

The inverse of this block is then

1

λ̃SVi

�
1þ

Xq−1
j¼1

�
−
jVj
λ̃SVi

�
j
ðNSV Þj

�
;

and, hence, 1þBV is invertible as long as condition (36)
is satisfied for each λi. Note that in our normalization light
speed corresponds to λ ¼ 1. Since jVj < 1, inequality (36)
is always satisfied for physical propagation speeds,
although it could be violated when superluminal gauge
speeds are present. If one considers, for instance, the
analysis of Secs. II A and II B on top of Minkowski and
vacuum AdS background, respectively, then this condition
is satisfied. We wish to find the equivalent of the uppercase
generalized eigenvalue problem (33) in the lowercase
frame. Thus, using the second equation of (35) and
Sa ¼ sa −WVSna [27,28], we express the principal sym-
bol in the lowercase frame, namely,

PS ≡ BaSa ¼ Aasa −AnWVS:

Hence, the equivalent of (33) in the lowercase frame is

lNλN ½Aðs−λNWvÞ −WðλN þ VSÞAn�M ¼ 0: ð37Þ

Thus, if in the uppercase frame the eigenproblem (33) with
M ¼ 1 fails to admit a complete set of left eigenvectors,
then so does the lowercase frame, and so both setups would
be at best weakly hyperbolic. To see this, we need only set

M ¼ 1 in (37) and note that the lowercase principal symbol
in the sa − λNWva direction is proportional to

ðAnÞ−1Aðs−λNWvÞ;

and so deficiency of the lowercase principal symbol in this
direction is equivalent to that of the uppercase principal
symbol stated before. Unfortunately, the relationship
between the upper- and lowercase generalized left eigen-
vectors is more subtle. Returning to our specific systems
and identifying the uppercase unit spatial vector Sa with the
unit spatial vectors in the ∂θ and ∂z directions of Sec. II, we
conclude that weak hyperbolicity of those PDEs persists in
other frames.

III. TOY MODELS

In this section, we introduce two toy models, one SH and
one WH, which capture the core structure of the systems
analyzed in the previous section. Our aim is to examine the
consequence of the algebraic properties determined earlier
on local well posedness in the context of the CIBVP. The
principal parts of the two models differ only in the angular
direction z, with the WH model possessing a nondiago-
nalizable principal symbol.

A. The PDEs

The equations of motion for the WH model are

∂xϕ ¼ −Sϕ;

∂xψv − ∂zϕ ¼ −Sψv
;

∂uψ −
ð1 − x2Þ3=2

2cx
∂xψ − ∂zψ ¼ −Sψ ; ð38Þ

with x ∈ ½0; 1�, z ∈ ½0; 2πÞ with periodic boundary con-
ditions, u ≥ u0 for some initial time u0, and cx a constant.
This PDE can be written in the form

Au∂uuþAx∂xuþAz∂zuþ S ¼ 0; ð39Þ

where u ¼ ðϕ;ψv;ψÞT is the state vector, and the principal
matrices are given by

Au ¼ diagð0; 0; 1Þ;

Ax ¼ diag

�
1; 1;

−1
2cx

ð1 − x2Þ3=2
�
;

and

Az ¼

0
B@

0 0 0

−1 0 0

0 0 −1

1
CA:
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The source terms are denoted by Sϕ, Sψv
, and Sψ . The first

two equations of (38) are intrinsic to a hypersurface of
constant u, whereas the last is the “evolution equation” of
the system. The angular principal part Az is not diago-
nalizable, since it has a 2 × 2 Jordan block for the intrinsic
equations, mimicking the core structure of the previously
analyzed single-null PDEs. One may think of this model as
a simplified analog of these systems with a compactified
radial coordinate, similar to the way that the Bondi-Sachs
formulation is used for characteristic extraction. This role
can be played by the coordinate x with cx a constant
involved in the compactification. More specifically,

x ¼ r − rminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x þ ðr − rminÞ2

p ;

where rmin is the minimum physical radius that we consider
and the factor cx controls the density of points toward
r → ∞, if we were to map the compactified grid x to the
physical radius grid r.
By removing the angular derivative from the second

intrinsic equation (38), we obtain our SH toy model:

∂xϕ ¼ −Sϕ;

∂xψv ¼ −Sψv
;

∂uψ −
ð1 − x2Þ3=2

2cx
∂xψ − ∂zψ ¼ −Sψ ; ð40Þ

which has the same principal part matrices Au and Ax as
before but has diagonal Az. We employ this model for
comparison between numerical results with SH and WH
systems. The PDE problem for both systems (38) and (40)
has as domain

x ∈ ½0; 1�; z ∈ ½0; 2πÞ; u ∈ ½u0; uf�;

for some initial and final times u0 and uf, respectively.
We apply periodic boundary conditions in the z direction
for simplicity. The initial and boundary data are

ψ� ≡ ψðu0; x; zÞ ð41Þ

and

ϕ̂≡ ϕðu; 0; zÞ; ψ̂v ≡ ψvðu; 0; zÞ; ð42Þ

respectively, and are freely specifiable.

B. Algebraic determination of well posedness

So far, we have discussed the degree of hyperbolicity
of GR in two gauges and constructed models that capture
the basic structure we unearthed. As mentioned in the
introduction, the reason we care about this algebraic
characterization is that, in the linear constant-coefficient

approximation, it determines well posedness of the initial
value problem [13,29]. In this subsection, we present our
well-posedness analysis, focusing on the WH toy model.
The interested reader can find the complete analysis of both
our models in Ref. [21]. In this analysis, we work in the
constant-coefficient approximation, following closely the
philosophy and notation of Ref. [29]. We start with the IVP
and adjust our results to the CIBVP at the end. Specifically,
we wish to understand what inequalities, with what norms,
can be used to bound solutions in terms of their given data
and how lower-order perturbations affect such estimates.
Consider the Cauchy problem for the linear, constant-

coefficient system,

∂tu ¼ Bp∂puþ S≡Bp∂puþBu: ð43Þ

To be well posed in the L2 norm, we must have real
constants K ≥ 1 and α ∈ R such that

jePðiωÞtj ≤ Keαt; ð44Þ

for all t ≥ 0 and all ω ∈ Rn. Here

PðiωÞ ¼ iωpBp þ B ð45Þ

is the constant-coefficient symbol of the PDE after Fourier
transforming in space, with iωpBp the principal symbol
and Bu ¼ −S the lower-order term related to sources.
Essentially, inequality (44) states that the solution of the
PDE has to be bounded at each time by an exponential that
is independent of the Fourier mode ωp. In this manner,
we obtain an estimate of the solution u at all times by the
initial data f:

jjuð·; tÞjjL2 ¼ jjePðiωÞtf̂ðωÞjjL2

≤ Keαtjjf̂jjL2 ¼ KeαtjjfjjL2 :

In the terminology of Ref. [29], if a Cauchy problem
instead satisfies only

jePðiωÞtj ≤ K1eαtð1þ jωjqÞ; ð46Þ

with q some natural number, it is called weakly well posed.
This type of estimate is weaker than (44), because the
explicit appearance of ω on the right-hand side makes it
impossible to bound the solution by an exponential
independent of ω. If, rather than insisting on L2, we allow
also some specific derivative, determined by the system,
within the norm, we can nevertheless obtain the estimate

jjuð·; tÞjjq ≤ K2eαtjjfjjq
for the solution u. This would not be terrible, except that if
the PDE is only weakly well posed, then perturbations to
the system by generic lower-order terms will lead to
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frequency-dependent exponential growth of the solution, and
the resulting perturbed problem is ill posed in any sense. We
show this explicitly for ourWHmodels later. The latter is not
true for well-posed problems, which remain well posed in
the presence of lower-order perturbations [29,30].
To apply the above results directly, the system needs to

be written in a form where the time principal part is the
identity matrix. We achieve the latter via a coordinate
transformation similar to those of Sec. II:

u ¼ t − ρ; x ¼ ρ; z ¼ z:

Starting from Eqs. (38), we bring the system to the form

∂tϕ ¼ −∂ρϕ − Sϕ;

∂tψv ¼ −∂ρψv þ ∂zϕ − Sψv
;

∂tψ ¼ F∂ρψ þ G∂zψ −GSψ ;

where

F ¼ ð1 − ρ2Þ3=2
2cx − ð1 − ρ2Þ3=2 ; G ¼ 2cx

2cx − ð1 − ρ2Þ3=2

are fixed real constants for fixed ρ and cx, with nonzero
denominator for our ρ domain and an appropriately chosen
cx. In this frame, the principal parts are Bt ¼ 1 and

Bρ ¼

0
B@

−1 0 0

0 −1 0

0 0 F

1
CA; Bz ¼

0
B@

0 0 0

1 0 0

0 0 G

1
CA:

This is the auxiliary Cauchy-type setup for the WH model,
similarly to the PDEs in Sec. II after the coordinate
transformation. After applying a Fourier transformation,
the principal symbol for the WH model is

iωpBp ¼ iωρAρ þ iωzAz:

1. Homogeneous WH model

Focusing first on the homogeneous WH model where
Sϕ ¼ Sψv

¼ Sψ ¼ 0, we obtain

eðiω̂pBpÞjωjt ¼

0
B@

e−ijωjω̂ρt 0 0

ijωjω̂zte−ijωjω̂ρt e−ijωjω̂ρt 0

0 0 eijωjðFω̂ρþGω̂zÞt

1
CA;

ð47Þ

where we express the wave vector as

ωp ¼ jωjω̂p;

with jωj its magnitude so that ω̂2
ρ þ ω̂2

z ¼ 1. The norm of
(47) is (see Chap. 2 of Ref. [30] for useful definitions)

jeðiω̂pBpÞjωjtj2 ¼ 1þjωj2ω̂2
zt2

2
þ
��

1þjωj2ω̂2
zt2

2

�
2

− 1

�
1=2

:

ð48Þ

This norm behaves as jωjt for large jωj, and so the
homogeneous WH model obeys an inequality of the
form (46), with q ¼ 1. Hence, this PDE is only weakly
well posed and so satisfies an estimate in some jj · jjq norm.
This norm is specified for our system in Sec. III B 3. If one
would discard from the previous analysis the equation for
ψv of the homogeneous WH model (38), since it is
decoupled, the remaining subsystem would be symmetric
hyperbolic, and one might expect well posedness of the full
system in the L2 norm. However, as shown in Fig. 6, this
expectation is not true.

2. Inhomogeneous WH model

For the homogeneous WH model, we computed the
norm of eðiω̂pBpÞjωjt to estimate the behavior of solutions.
However, we could also examine the form of the eigen-
values of the full symbol PðiωÞ for large jωj to understand
if the solutions exhibit exponential growth in ωp (see
Lemma 2.3.1 of Ref. [29]). If there is any eigenvalue λ of
PðiωÞ such that

Re½λ� ∼ jωjs > 0 with s > 0;

for large jωj, then solutions of the PDE may exhibit
frequency-dependent exponential growth, and the PDE
problem is ill posed in any sense. For the inhomogeneous
WHmodel, we consider the following possible lower-order
source terms:

B1¼

0
B@
0 0 1

1 0 1

1 0 0

1
CA; B2¼

0
B@
1 0 1

1 1 1

1 1 1

1
CA; B3¼

0
B@
0 1 0

0 0 0

0 0 0

1
CA;

where −S ¼ Bu. The choice B1 is motivated by analogy
with the linearized Bondi-Sachs system with ϕ ∼ β,
ψv ∼ V, and ψ ∼ γr. In B2, we include all possible source
terms that do not break the nested structure of the intrinsic
equations, and, finally, in choice B3 we introduce source
terms that violate the nested structure, thus rendering the
intrinsic system a coupled PDE. For both B1 and B2, the
eigenvalues of PðiωÞ are

λ1 ¼ λ2 ¼ −ijωjω̂ρ; λ3 ¼ ijωjðFω̂ρ þ Gω̂zÞ;

as jωj → ∞, with the next terms appearing at the order of
jωj0. For these choices of lower-order source terms, the
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inhomogeneous WH model remains well posed in the
lopsided norm. On the other hand, if B ¼ B3, the eigen-
values of the symbol are

λ1 ¼ −ijωjω̂ρ − ð−1Þ1=4
ffiffiffiffiffiffiffiffiffiffiffi
jωjω̂z

p
þOðjωj0Þ;

λ2 ¼ −ijωjω̂ρ þ ð−1Þ1=4
ffiffiffiffiffiffiffiffiffiffiffi
jωjω̂z

p
þOðjωj0Þ;

λ3 ¼ ijωjðFω̂ρ þ Gω̂zÞ þOðjωj0Þ

for large jωj. Since Re½λ� ∼ jωj1=2, we conclude that when
the nested structure of the intrinsic equations is broken, the
solution of the inhomogeneous WH exhibits frequency-
dependent exponential growth. Consequently, the IVP
with this system is no longer weakly well posed but ill
posed. Note, in contrast, that for the homogeneous SH
model we have

jePðiωÞtj ¼ 1:

Hence, for this model, the IVP is well posed already in the
L2 norm. Unlike the WH model, well posedness for this
model is not affected by source terms.

3. The CIBVP, CCE, and CCM

The previous analysis was performed in Fourier space
and yielded that an IVP based on the homogeneous WH
model may be well posed in an appropriate lopsided norm,
whereas one on the SH model is (strongly) well posed in
the L2 norm. We now present our energy estimates for
solutions to the IBVP and CIBVP by working in position
space. For concreteness and simplicity, the PDE system for
the IBVP is a homogeneous SH model (which is further-
more symmetric hyperbolic)

∂tϕ̄þ ∂ρϕ̄þ ∂zψ̄v ¼ 0;

∂tψ̄v þ ∂ρψ̄v þ ∂zϕ̄ ¼ 0;

∂tψ̄ −
1

2
∂ρψ̄ − ∂zψ̄ ¼ 0; ð49Þ

with initial data ϕ̄�, ψ̄v�, ψ̄� on Σ0, boundary data ˆ̄ψ on T 0

and domain t ∈ ½0; tf�, ρ ∈ ð−∞; 0� and the compact
z ∈ ½0; 2πÞ, and for the CIBVP the homogeneous WH
model

∂xϕ ¼ 0; ð50aÞ

∂xψv − ∂zϕ ¼ 0; ð50bÞ

∂uψ −
1

2
∂xψ − ∂zψ ¼ 0; ð50cÞ

with initial data ψ� on N 0, boundary data ϕ̂ and ψ̂v on
T 0 and domain u ∈ ½0; uf�; x ∈ ½0; xf� and the aforemen-
tioned z. The domains of the two problems are illustrated

in Fig. 3. We view the IBVP as a simplified analog of GR
in strongly (here even symmetric) hyperbolic formula-
tions widely used in Cauchy-type problems, with the
CIBVP standing for the Bondi-Sachs gauge used in
characteristic evolutions. We wish to understand whether
or not problems with these features can be successfully
used for CCE or CCM in principle.
For the IBVP estimate, our starting point is

∂tkūk2L2ðΣtÞ ¼ ∂t

Z
Σt

ūTū ¼ ∂t

Z
Σt

ðϕ̄2 þ ψ̄v
2 þ ψ̄2Þ;

which after using (49), the divergence theorem assuming
ū → 0 as ρ → −∞, and integrating in the t domain, yields

kūk2L2ðΣtf
Þ þ kūk2L2

outðT 0Þ ¼ kūk2L2ðΣ0Þ þ kūk2L2
inðT 0Þ; ð51Þ

where kūk2L2
outðT 0Þ denotes the integral over T 0 that contains

only the outgoing fields ϕ̄ and ψ̄v, and similarly for
the ingoing. The estimate (51) states that the energy of
the solution equals the energy of its given data, so that the
solution is controlled by the given data.
In a Cauchy-type setup, we specify all fields on the initial

spacelike hypersurface, and, by solving the system, we
obtain all of them on spacelike hypersurfaces to the future.
On the contrary, in a single-null characteristic setup, fields
with “evolution” equations are chosen on the initial null
hypersurface, and those that satisfy equations intrinsic to
the null hypersurfaces are specified as boundary data. As
we will see in the following, this has a natural consequence
on the type of estimates that we can hope to demonstrate, in
terms of both the domain on which we integrate and the

FIG. 3. The IBVP (left) and the CIBVP (right) setups. For CCE,
outgoing data from the IBVP serve as boundary data on T 0 for
the CIBVP, which can be viewed as an independent PDE
problem. In this case, the IBVP’s spatial domain is more extended
such that data on T 0 are unaffected by the boundary conditions
chosen for the problem. For CCM, the IBVP and CIBVP are
solved simultaneously and out- and ingoing data are communi-
cated from one to the other via T 0. Effectively, the two problems
are viewed as one.
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particular fields that appear. This is due to the geometry of
the setup.
Motivated from the IVP estimates in Fourier space of

Secs. III B 1 and III B 2, we might naively first consider for
the CIBVP the lopsided norm

kuk2qðDÞ ¼
Z
D
ðϕ2 þ ψ2

v þ ψ2 þ ð∂zϕÞ2Þ;

in some domain D, where only ∂zϕ is added to the
integrand of the L2 norm, because precisely this term
causes the pathological structure in the angular principal
part of the WH model. Following our previous discussion,
however, it is more appropriate to split the integrand into
separate pieces for the ingoing and outgoing variables. The
domain D becomes N u and T x, respectively, for each. For
the ingoing variables, we start from

∂ukuk2qinðN uÞ ¼ ∂u

Z
N u

ψ2;

since there are no ∂u equations for the outgoing ones. We
assume that ψ → 0 as x → xf in the given data, which is the
analog in our model to requiring no incoming gravitational
waves from future null infinity, working on a compactified
radial domain. After using (50c), the divergence theorem
and integrating in the u domain, we obtain

2kuk2qinðN uf
Þ þ kuk2qinðT 0Þ ¼ 2kuk2qinðN 0Þ: ð52Þ

For the outgoing variables, the starting point is

∂xkuk2qoutðT xÞ ¼ ∂x

Z
T x

ðϕ2 þ ψ2
v þ ð∂zϕÞ2Þ;

and, by using (50a) and (50b), the divergence theorem
and integrating in the x domain up to some arbitrary x0,
we obtain

kuk2qoutðT x0 Þ ¼ kuk2qoutðT 0Þ þ
Z

x0

0

�Z
T x

2ψv∂zϕ

�
dx; ð53Þ

where the last term is due to the hyperbolicity of the
system and would not appear for our SH example. Using
2ψv∂zϕ ≤ ϕ2 þ ψ2

v þ ð∂zϕÞ2, the latter reads

kuk2qoutðT x0 Þ ≤ kuk2qoutðT 0Þ þ
Z

x0

0

kuk2qoutðT xÞdx;

and by applying Grönwall’s inequality we obtain

kuk2qoutðT x0 Þ ≤ ex
0kuk2qoutðT 0Þ: ð54Þ

Hence, the energy of the outgoing fields at each arbitrary
timelike hypersurface T x0 in the characteristic domain is

bounded. The sum of Eqs. (52) and (54) is the complete
energy estimate for the CIBVP and yields

2kuk2qinðN uf
Þ þ kuk2qinðT 0Þ þ supx0 kuk2qoutðT x0 Þ

≤ 2kuk2qinðN 0Þj2jj þ exfkuk2qoutðT 0Þ; ð55Þ

where we used that ex
0 ≤ exf for x0 ∈ ½0; xf� and chose the

supremum of kuk2qoutðT x0 Þ to obtain the largest possible

bounded left-hand side, since the outgoing lopsided norm is
not necessarily monotonically increasing with x. Thus, the
energy of the solution to the CIBVP is controlled by the
given data on N 0 and T 0.
We first interpret these estimates in the framework of

CCE. Choosing suitable data, our estimate for the IBVP
shows that one obtains a smooth solution in the domain of
the Cauchy-type setup. One can then use this solution to
provide boundary data on T 0 for the CIBVP that are finite
also in the lopsided norm, and the solution to this character-
istic problem has a good energy estimate as shown earlier,
too. Hence, the CCE process is perfectly valid for our
model and, provided analogous estimates for GR in the
Bondi-like gauges used, would be in that context, too. One
question that arises for GR, but which for now we have no
insight, is whether or not this procedure excludes any data
of interest. For CCM, the discussion is rather different,
since IBVP and CIBVP are solved simultaneously and data
are communicated between domains. Effectively, one joins
the PDE problems, and they may be viewed as one. Hence,
let us try to obtain an energy estimate for the joint PDE
problem, by adding Eqs. (51) and (55):

kuk2L2ðΣtf
Þ þ kuk2L2

outðT 0Þ þ 2kuk2qinðN uf
Þ

þ kuk2qinðT 0Þ þ supx0 kuk2qoutðT x0 Þ

≤ kuk2L2ðΣ0Þ þ kuk2L2
inðT 0Þ þ 2kuk2qinðN 0Þ þ exfkuk2qoutðT 0Þ;

ð56Þ

where now ū ¼ u. For the joint problem there is “effec-
tively” no boundary T 0 at which we are free to choose
data, and, hence, any estimate should not involve integrals
over this domain. The relevant terms can, however, cancel
each other only if the two norms that appear coincide.
This requires either that the CIBVP relies on a symmetric
hyperbolic PDE system and, hence, is well posed in the L2

norm (see, for instance, [31–33]) or that the IBVP relies
on a system that is well posed in the same lopsided norm as
the CIBVP. But this requires special structure, above and
beyond symmetric hyperbolicity, on the equations used in
the IBVP. Regarding GR, the first option would translate
into developing a SH (hopefully also symmetric hyper-
bolic) single-null formulation and the second to building a
formulation that is well posed in the same lopsided norm
that Bondi-like gauges (perhaps) are. Given the long search
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for formulations that work for practical evolution, however,
such an artisanal construction seems poorly motivated. In
summary, unless special structure is present in the field
equations solved for the IBVP, the solution to the weakly
hyperbolic CIBVP cannot be combined with that of an
IBVP of a symmetric hyperbolic system in such a way as to
provide a solution to the whole problem which has an
energy bounded by that of the given data.

IV. NUMERICAL EXPERIMENTS

We now use the toy models introduced in Sec. III to
diagnose the effects of weak hyperbolicity at the numerical
level. We perform convergence tests in the single-null setup
for both the WH and SH models in a discrete approxima-
tion to the L2 norm, for smooth and noisy given data. We
also perform convergence tests with noisy given data in the
lopsided norm, for the different versions of the WH model
analyzed in the previous section.

A. Implementation

As in other schemes to solve the CIBVP, several different
ingredients are needed in the algorithm. These can be
summarized for our models (38) and (40) as follows.
(1) The domain of the PDE problem is x ∈ ½0; 1�,

z ∈ ½0; 2πÞ with periodic boundary conditions and
u ∈ ½u0; uf�, with u0 and uf the initial and final
times, respectively. We always include the point
x ¼ 1 in the computational domain so that we do not
need to impose boundary conditions at the outer
boundary, since there are no incoming characteristic
variables there.

(2) For the initial time u0, provide initial data ψðu0; x; zÞ
on the surface u ¼ u0 and boundary data ϕðu0; 0; zÞ
and ψvðu0; 0; zÞ.

(3) Integrate the intrinsic equations of each model to
obtain ϕðu0; x; zÞ and ψvðu0; x; zÞ. We perform this
integration using the two-stage, second-order strong
stability preserving method of Shu and Osher
(SSPRK22) [34].

(4) Integrate the evolution equation of each model to
obtain ψðu1; x; zÞ at the surface u ¼ u1 ¼ u0 þ Δu.
We choose Δu ¼ 0.25Δx to satisfy the Courant-
Friedrichs-Lewy (CFL) condition, and the numerical
integration is performed using the fourth-order
Runge-Kutta (RK4) method.

(5) Any derivative appearing in the right-hand sides of
these integrations is approximated using second-
order accurate centered finite difference operators,
except at the boundaries, where second-order accu-
rate forward and backward difference operators are
used, respectively.

(6) Providing boundary data ϕðu; 0; zÞ and ψvðu; 0; zÞ
as in the PDE specification (42), we repeat steps 2
and 3 to obtain ϕðu; x; zÞ, ψvðu; x; zÞ and ψðu; x; zÞ

until the final time uf. This is the solution of
the PDE.

No artificial dissipation is introduced. The implementation
was made using the Julia language [35] with the
DifferentialEquations.jl package [36] to integrate the
equations. Our code is freely available [21]. We apply
convergence tests to our numerical scheme for both toy
models. The tests are performed for smooth, as well as for
noisy given data. The latter are often called robust stability
tests. They form part of the Mexico-city test bed for
numerical relativity [37]. These tests have been performed
widely in the literature [38–43], often, as in our case, with
adaptations for the setup under consideration.

B. Convergence tests

By convergence, we mean the requirement that the
difference between the numerical approximation provided
by a finite difference scheme and the exact solution of the
continuum PDE system tends to zero as the grid spacing is
increased. The finite difference scheme is called consistent
when it approximates the correct PDE system, and the
degree to which this is achieved is its accuracy. The scheme
is called stable if it satisfies a discretized version of (44)
or (46). In this context, versions of each continuum norm
are replaced by a suitable discrete analog. Here we replace
the L2 norm for the single-null setup with

kuk2hu;hx;hz ¼
X
x;z

ψ2hxhz þmaxx
X
u;z

ðϕ2 þ ψ2
vÞhuhz; ð57Þ

with the first sum taken over all points on the grid, with hx
and hz the grid spacing in the x and z directions,
respectively, and the second sum over all points in the z
and u directions (hu ¼ 0.25hx for our setup), for all x grid
points and keeping the maximum in the x direction. The
first sum involves only ingoing and the second only
outgoing variables. When, as will be the case in what
follows, we have hx ¼ hz ¼ h, we label the norm simply
with h. Our discrete approximation to the lopsided norm is

kuk2j2
qðhu;hx;hzÞ

¼
X
x;z

ψ2hxhz þmaxx
X
u;z

ðϕ2 þ ψ2
v þ ðDzϕÞ2Þhuhz;

ð58Þ

where Dz is the second-order accurate, centered, finite
difference operator that replaces the continuum operator
∂z, by

DzfhðxiÞ ¼
fhðxiþ1Þ − fhðxi−1Þ

2hz
; ð59Þ

for a grid function fh on a grid with spacing hz. When the
two grid spacings are equal, we again label the norm simply
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with h. This approximation to the continuum lopsided
norm is not unique. If we were attempting to prove that a
particular discretization converged, it might be necessary to
take another. Denoting by f the solution to the continuum
system and as fh the numerical approximation at resolution
h provided by a convergent finite difference scheme of
accuracy n, then

f ¼ fh þOðhnÞ; ð60Þ

and, hence,

kf − fhk ¼ OðhnÞ; ð61Þ

in some appropriate norm k · k on the grid, with the
understanding that the exact solution should be evaluated
on said grid. Full definitions of the notions of consistency,
stability, and convergence for the IVP can be found, for
example, in Refs. [13,39,44].
We use a second-order accurate numerical approxima-

tion, so that n ¼ 2. Considering numerical evolutions with
coarse, medium, and fine grid spacings hc, hm, and hf,
respectively, we can construct a useful quantity for these
tests:

Q≡ hnc − hnm
hnm − hnf

; ð62Þ

which we call convergence factor. In our convergence tests,
we solve the same discretized PDE problem for different
resolutions, and every time we want to increase resolution
we halve the grid spacing in all directions, i.e.,

hm ¼ hc=2; hf ¼ hc=4:

Following this approach, the convergence factor is Q ¼ 4.
Combining (60) and (62), one can obtain the relation

fhc − fhc=2 ¼ Qðfhc=2 − fhc=4Þ; ð63Þ

understood on shared grid points in the obvious way,
which is used to investigate pointwise convergence. In what
follows, the different resolutions are denoted as

hq ¼ h0=2q:

The lowest resolution h0 has Nx ¼ 17 points in the x grid
and Nz ¼ 16 in the z grid. We work in units of the code in
the entire section.

1. Smooth data

For the simulations with smooth given data, the initial
and final times are u0 ¼ 0 and uf ¼ 1, respectively. For
both toy models, we provide as initial data

ψð0; x; zÞ ¼ e−100ðx−1=2Þ2 sinðzÞ

and as boundary data

ϕðu; 0; zÞ ¼ 3e−100ðu−1=2Þ2 sinðzÞ

and

ψvðu; 0; zÞ ¼ e−100ðu−1=2Þ2 sinðzÞ:

For the SH model, we choose the following source terms:

−Sϕ ¼ ψ ; −Sψv
¼ ϕþ ψ ; −Sψ ¼ ϕ; ð64Þ

and for the WH model we choose the homogeneous case.
As discussed in Sec. III B, well posedness of the SH model
is unaffected by lower-order source terms, so the specific
choice of source terms here is not vital. However, we
choose to work with the homogeneous WH model, because
weakly well-posed problems are sensitive to lower-order
perturbations.
Runs with resolutions h0, h1, h2, h3, h4, and h5 were

performed. In Fig. 4, the basic dynamics are plotted with
each model. To first verify that the numerical scheme is
implemented successfully, we performed pointwise con-
vergence tests for both models. We focus specifically
here on the highest three resolutions. The algorithm is
the following:
(1) Consider h3, h4, and h5 as coarse, medium, and fine

resolutions, respectively.
(2) Calculate ψh3 − ψh4 and ψh4 − ψh5 for the grid

points of h3, for the final time step of the evolution.
(3) Plot simultaneously ψh3 − ψh4 and Qðψh4 − ψh5Þ.

As indicated from (63), for a convergent numerical
scheme the two quantities should overlap, when
multiplying the latter with the appropriate conver-
gence factor.

In Fig. 5, we illustrate the results of this test for the
aforementioned smooth given data for both models. At this
resolution, one clearly observes perfect pointwise conver-
gence in both cases.
We also wish to examine convergence of our numerical

solutions in discrete approximations of the aforementioned
norms. Given that the exact solution to the PDE problem is
unknown and that each time we increase resolution we
decrease the grid spacing in all directions by a factor of d,
we can build the following useful quantity:

Cself ¼ logd
kuhc −⊥hc=d

hc
uhc=dkhc

k⊥hc=d
hc

uhc=d −⊥hc=d2

hc
uhc=d2khc

; ð65Þ

which we call the self-convergence ratio, with u ¼
ðϕ;ψv;ψÞT the state vector of the PDE system and ϕ,
ψv, and ψ grid functions. Here⊥hc=d

hc
denotes the projection
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(in our setup injection) operator from the hc=d grid onto the
hc grid. We calculate Cself for a discrete analog of the L2

norm. However, if one wishes to examine convergence in a
different norm, L2 can be replaced with that. The theo-
retical value of Cself equals the accuracy n of the numerical
scheme, and in our specific setup

Cself ¼ log2
kuhc −⊥hc=2

hc
uhc=2khc

k⊥hc=2
hc

uhc=2 −⊥hc=4
hc

uhc=4khc
¼ 2: ð66Þ

We obtain numerical solutions for the same smooth given
data for both models at the various resolutions mentioned
before. For triple resolution, double resolution, and quad-
ruple resolution, we project all grid functions onto the
coarse grid, and compute Cself at its time steps. In the left
panel in Fig. 6, we collect the results of these norm
convergence tests. Both models show similar behavior.
At low resolutions, the curve drifts from the desired rate
at early times, but the situation improves as we increase
resolution, with Cself approaching the expected value. The

trend with increasing resolution is the essential behavior
we are looking at in these tests. By limiting ourselves to
convergence tests with smooth given data, we could be
misled that the WH toy model provides a well-posed
CIBVP in the L2 norm, since the numerical solutions
appear to converge in this norm during our simulations. In
other words, were we ignorant of the hyperbolicity of the
system, it would be impossible to distinguish strongly and
weakly hyperbolic PDEs with this test.

2. Noisy data

One can also perform norm convergence tests with
random noise as given data, which is a strategy to simulate
numerical error in an exaggerated form. Since it is expected
that numerical error decreases as resolution increases,
when performing simulations for these tests, one must
scale appropriately the amplitude of the noise as resolution
improves. This scaling is important to construct a sequence
of initial data that converges in a suitable norm to initial
data appropriate for the continuum system. The choice of
norm here is essential and should be one which, if possible,
provides a bound for the solution of a (weakly) well-posed
PDE problem, in the sense of (44) and (46).
For these tests, we perform simulations where the

smooth part of the given data is trivial (zero), and, hence,
the exact solution for every PDE problem based on our
models vanishes identically. Knowing the exact solution, in
addition to the self-convergence rate (65), we can also
construct the exact convergence ratio

Cexact ¼ logd
kuhc − uexactkhc

k⊥hc=d
hc

uhc=d − uexactkhc
; ð67Þ

where we decrease grid spacing by a factor of d when
increasing resolution. Cexact is cheaper numerically

FIG. 5. Here we plot simultaneously ψh3 − ψh4 and
Qðψh4 − ψh5Þ, for the SH (top) and the WH (bottom) toy models.
We fix x ¼ 0.5. Since our scheme is second order and we are
doubling resolution, we fix Q ¼ 4. The results for fixed z are
similar. The plot is compatible with perfect second-order point-
wise convergence.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. The fields ϕ, ψv, and ψ at final evolution time u ¼ 1,
for the SH model (left) and the homogeneous WH model (right),
with the same smooth given data. Observe that the fields ϕ and ψv
in the WH case are still of the same magnitude ∼10−11 as the
boundary data at the retarded time u ¼ 1. This is not true once
generic source terms are taken.

GIANNAKOPOULOS, HILDITCH, and ZILHÃO PHYS. REV. D 102, 064035 (2020)

064035-16



than Cself , since only two different resolutions are required
to build it, and again the exact solution is understood to be
evaluated on the grid itself. It is possible for a scheme to be
self-convergent but fail to be convergent, for example, if
one were to implement the wrong field equations in error.
Therefore, one would like to compare the numerical
solution to an exact solution wherever (rarely) possible.
To calculate Cexact, we compute the discretized approxi-
mation to a suitable continuum norm at two resolutions,
one twice the other. Each are computed on the naturally
associated grid. We then take the ratio of the two at shared
time steps, corresponding to those of the coarse grid hc. In
our setup uexact ¼ 0 and d ¼ 2; hence,

Cexact ¼ log2
kuhckhc

k⊥hc=2
hc

uhc=2khc
; ð68Þ

which again equals two for perfect convergence. As
previously mentioned, appropriate scaling of the random
noise amplitude is crucial and is determined by the norm in
which we wish to test convergence. To realize the proper
scaling in our setup, let us consider the exact convergence
ratio (68) and denote as Ahc and Ahc=2 the amplitude of the
random noise for simulations with resolution hc and hc=2,
respectively:

Cexact ¼ log2
kuhckhc

k⊥hc=2
hc

uhc=2khc
∼ log2

OðAhcÞ
OðAhc=2Þ

:

The above suggests that, to construct noisy data that
converge in the discretized version of the L2 norm (57)
for our second-order accurate numerical scheme, we need
to drop the amplitude of the random noise by a quarter
every time we double resolution. For convergence tests in

the lopsided norm, the scaling factor is different, due to the
Dzϕ term that appears in the discretized version of the
lopsided norm (58). By replacing the L2 with the lopsided
norm in (68), we get

Cexact ¼ log2
kuhckqðhcÞ

k⊥hc=2
hc

uhc=2kqðhcÞ
∼ log2

OðAhcÞ
2OðAhc=2Þ

;

where now the norm estimate is dominated by the Dzϕ
term. Hence, to construct noisy data that converge in the
lopsided norm for our second-order accurate numerical
scheme, we need to multiply the amplitude of the random
noise with a factor of one-eighth every time we double
resolution. This discussion would be more complicated
if we were using either pseudospectral approximation or
some hybrid scheme, which is why we focus exclusively on
a straightforward finite differencing setup.
The results for norm convergence tests with appropriately

scaled noisy data for the L2 norm, for both SH and WH
models, are collected in the right column in Fig. 6. As
illustrated there, the inhomogeneous SH model still exhibits
convergence, since with increasing resolution the exact
convergence ratio tends closer to the desired value of two
at all times of the evolution. On the contrary, the homo-
geneous WH model does not converge, and it becomes clear
that with increasing resolution the exact convergence ratio of
this model moves further away from two at all times.
To appreciate intuitively why noisy data allow us to

diagnose a lack of strong hyperbolicity, consider the
systems in frequency space as in Sec. III B, which we
may think of as momentum space. In practical terms,
Eq. (48) states that the homogeneous WH model does not
satisfy condition (44), and so high-frequency modes can
grow arbitrarily fast. Considering smooth data, however,
predominantly low-frequency modes are excited, and so

FIG. 6. The convergence ratio in the L2 norm, for the strongly (above) and the weakly (below) toy models, for smooth (left) and noisy
(right) given data, as a function of the simulation time. All plots have the same scale on the y axis. For smooth given data, we consider
the self-convergence ratio (66), while, for noisy given data, the exact convergence ratio (67). If we consider the self-convergence ratio
also for the noisy case, the results are qualitatively the same.
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using our discretized approximation the violation of
inequality (44) is not visible at the limited resolutions
we employ. Noisy data, on the contrary, excite substantially
both high- and low-frequency modes, with the former
crucial to illustrate the violation.
We also perform convergence tests in the lopsided norm

(58) to examine the behavior of the different WH models.
As in the previous setup, in these tests we monitor the exact
convergence ratio as a function of the simulation time. As
illustrated in Fig. 7, our expectations from Sec. III B for the
homogeneous model are verified. The homogeneous WH
model converges at all times in the lopsided norm,
provided, of course, that the given data are restricted to
converge at second order to the trivial solution in the same
norm. As also expected, the inhomogeneous case with B3

fails to converge whatsoever during the evolution, exhibit-
ing behavior similar to the homogeneous WH model in the
L2-norm tests. In fact, in this test the exact convergence
ratio diverges further from two with increasing resolution
and at earlier times. The discussion for the inhomogeneous
WH models with sources B1 and B2 is more subtle. Both
cases initially exhibit convergence, with the B1 case
maintaining this behavior for longer. The difference lies
in their late time behavior and their trend with increasing
resolution. In particular, the B1 case converges for longer
with increasing resolution, whereas B2 does the opposite.
At late times, in the B1 case, Cexact reaches a plateau that
converges to two with increasing resolution, which is not
true with sources B2. Thus, our numerical evidence seems
to indicate that the B1 inhomogeneous WH model con-
verges in the lopsided norm but to disagree with the
theoretical expectation at the continuum that the B2 case
does so, too. This is not in contradiction with our earlier

calculations, however, because, as a careful examination of
the approximation could reveal, purely algorithmic short-
comings may render a scheme nonconvergent.

V. CONCLUSIONS

Single-null formulations of GR are popular for applica-
tions in numerical relativity in various settings. In asymp-
totically flat spacetimes, they are used with compactified
coordinates to compute gravitational waveforms at future-
null infinity. In asymptotically AdS spacetimes, they are
used to compute in from the timelike conformal boundary.
But relatively little attention has been paid to well posed-
ness of the resulting PDE problems, which serves as an
obstacle to the construction of rigorous error estimates from
computational work. Presently, therefore, we have exam-
ined two popular formulations, the Bondi-Sachs and affine-
null systems, and performed numerical tests for toy models
that illustrate the relevance of our findings. We found in a
free-evolution analysis that, due to the nondiagonalizability
of their angular principal part matrices, both are only
weakly hyperbolic.
Our analysis employed a first-order reduction but was

sufficiently general to rule out the existence of any other
reduction (at least within a large class) that is strongly
hyperbolic. We showed also that the degeneracy cannot be
avoided by a change of frame. Textbook results on these
systems then show that they are ill posed in the L2 norm or
its obvious derivatives. Considering model problems of a
similar structure, we saw that the same result naturally
carries over to the CIBVP. In the latter case, care is needed
not to confuse the usual degeneracy of the norms that appear
naturally in characteristic problems with high-frequency

FIG. 7. The exact convergence ratio in the lopsided norm (58) for the different WH models. From top to bottom, we plot the
homogeneous WH model, and then the inhomogeneous adjustments, in order B1, B2, and B3. Overall, we conclude that the
homogeneous model and B1 models are converging in the limit of infinite resolution, with the others failing to do so. Of these, all but
the third panel, with source B2, agree with our expectation from continuum considerations. In this one case, our method appears to have
an honest numerical instability, which could be understood properly by careful consideration of the scheme.
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blowup of solutions. It follows that a numerical approxi-
mation cannot converge to the exact solution of these PDE
problems in any discrete approximation to L2. We demon-
strated this shortcoming numerically using our models and
adapting the well-known robust-stability test. Spotting this
shortcoming in practice is subtle, because smooth data may,
and often do, give misleading results.
Although our weakly hyperbolic toy model is ill posed in

L2, it may be well posed in a lopsided norm in which the
angular derivative of some specific components of the state
vector are included. Thus, in such a case one must be able
to control the size of not only the elements of the state
vector in the given data, but also some of their derivatives.
This weaker notion of well posedness is sensitive to the
presence of lower-order source terms. For example, our
weakly hyperbolic model is well posed in a (specific)
lopsided norm if it is homogeneous, or inhomogeneous
with sources that respect the nested structure of the
equations intrinsic to the characteristic hypersurfaces. If
this nested structure is broken by the source terms, it
becomes ill posed in any sense. Again using random noise
for initial data, our numerical experiments are consistent
with this analytic result. There is one case in which
convergence is not apparent in our approximation, despite
the well posedness of the continuum equations in the
lopsided norm. This is our only example of a pure
numerical instability and is important, as it highlights
the fact that for weakly hyperbolic systems numerical
methods are not well developed and are not guaranteed
to converge, even when using lopsided norms.
Bringing our attention back to the characteristic initial

boundary value problem for GR, which covers both CCE
and applications in numerical holography, it is clear that the
two formulations we considered will be ill posed in L2. It is
not clear, however, in general, if they will admit estimates
in suitable lopsided norms. But since the field equations do
have a nested structure, and our weakly hyperbolic model
problem turned out to admit estimates in lopsided norms
whenever this structure was present, there is reason to be
hopeful. On the other hand, given this uncertainty and the
fact that numerical approximation to weakly hyperbolic
systems (using lopsided norms) is poorly understood, it is
desirable to obtain and adopt strongly or ideally symmetric
hyperbolic alternatives. These could be sought out by
changing gauge directly or by the use of a dual-foliation
formulation as suggested in Ref. [26]. Perhaps a simpler
option would be to pay the price of evolving curvature
quantities as variables. Several such formulations are
known to be symmetric hyperbolic in a double-null gauge
[45–47] and could be adjusted appropriately.

A true principle solution to wave extraction would be a
robust scheme for CCM, the other main alternative being
the use of compactified hyperboloidal slices, a topic also
under active research for full GR [48–57]. To understand
the consequences of our findings for CCM, we considered a
model in which the IBVP is solved for a symmetric
hyperbolic system, and the solutions are then glued through
boundary conditions to those of a weakly hyperbolic
system accepting estimates in lopsided norms. The former
of these two sets of equations is viewed as a model for the
formulation used in the strong-field region, the latter for a
single-null formulation used on the outer characteristic
domain. With this setup, we found that the fundamental
incompatibility of the norms naturally associated with the
two domains prohibits their combined use in building
estimates. But if the weakly hyperbolic system were made
symmetric, hyperbolic progress could be made. A less
appealing possibility would be to demonstrate that the
formulation in the Cauchy domain, or some suitable
replacement, admits estimates in a lopsided norm compat-
ible with that of the characteristic region. Since this relies
on very special structure in the field equations, the outlook
for a complete proof of well posedness of CCM using
existing Bondi-like gauges is, unfortunately, not rosy.
Our results signpost a number of paths to follow. First

and foremost, we need to recover our numerical results for
toy models for full GR. Beyond that, we seek a well-posed
setup for the CIBVP that can be used in numerical
applications with minimum change to existing code. For
the latter, it will be useful to perform a pure gauge analysis
along the lines of Refs. [58,59] to establish whether or not
the blame for the degeneracy can be unambiguously laid on
the coordinate choice, or if the specific construction of the
formulations we discussed have some influence. Work in
both directions is ongoing.
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